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SOME LOGICAL INVARIANTS OF ALGEBRAS
AND LOGICAL RELATIONS BETWEEN ALGEBRAS

B. PLOTKIN AND G. ZHITOMIRSKI

Dedicated to the centenary of D. K. Faddeev’s birth

Abstract. Let Θ be an arbitrary variety of algebras and H an algebra in Θ. Along
with algebraic geometry in Θ over the distinguished algebra H, a logical geometry
in Θ over H is considered. This insight leads to a system of notions and stimulates a
number of new problems. Some logical invariants of algebras H ∈ Θ are introduced
and logical relations between different H1 and H2 in Θ are analyzed. The paper
contains a brief review of ideas of logical geometry (§1), the necessary material from
algebraic logic (§2), and a deeper introduction to the subject (§3). Also, a list of
problems is given.

0.1. Introduction. The paper consists of three sections. A reader wishing to get a
feeling of the subject and to understand the logic of the main ideas can confine himself
to §1. A more advanced look at the topic of the paper is presented in §§2 and 3.

In §1 we give a list of the main notions, formulate some results, and specify problems.
Not all the notions used in §1 are well formalized and commonly known. In particular,
we operate with algebraic logic, referring to §2 for precise definitions. However, §1 is
self-contained from the viewpoint of ideas of universal algebraic geometry and logical
geometry.

Old and new notions from algebraic logic are collected in §2. Here we define the
Halmos categories and multisorted Halmos algebras related to a variety Θ of algebras.

§3 is a continuation of §1. Here we give necessary proofs and discuss problems. The
main problem we are interested in is what are the algebras with the same geometrical
logic.

The theory described in the paper has deep ties with model theory, and some problems
are of a model-theoretic nature.

We emphasize once again that §1 gives a complete insight on the subject, while §2
and §3 describe and decode the material of §1.

§1. Preliminaries. General view

1.1. Main idea. We fix an arbitrary variety Θ of algebras. Throughout the paper we
consider algebras H in Θ. To each algebra H ∈ Θ one can attach an algebraic geometry
(AG) in Θ over H and a logical geometry (LG) in Θ over H.

In algebraic geometry we consider algebraic sets over H, while in logical geometry we
consider logical (elementary) sets over H. These latter sets are related to the elementary
logic, i.e., to the first order logic (FOL).

Consideration of these sets gives grounds to geometries in an arbitrary variety of
algebras. We distinguish algebraic and logical geometries in Θ. However, there is very
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little trace of the usual geometry in geometries of such a kind. It should be remembered
that we consider an arbitrary variety Θ. Only some “good” varieties Θ and “good”
algebras H ∈ Θ lead to a geometry that is, in some sense, close to a traditional one.

Algebraic sets are defined by systems of equations T of the type w ≡ w′. Here we
assume that there is a fixed finitely generated free algebra W = W (X) in Θ, and w, w′

are elements of W .
Elementary sets are defined by systems T of first order formulas. In this setting,

arbitrary FOL formulas play a role occupied by the usual equations in the above setting.
Suppose that, along with a free algebra W (X), we consider a special algebra of formu-

las Φ = Φ(X). This Φ is also associated with the variety Θ. Then a system of “equations”
(= a system of first order formulas T ) is a set of elements of Φ. In particular, an equation
w = w′ is viewed as a formula of equality of the form w ≡ w′, and this is an element in
the algebra Φ(X).

Algebraic sets and elementary sets lie in the affine space HX , which we identify in a
standard way with the set of homomorphisms Hom(W (X), H). Hence, any point of an
affine space is a homomorphism µ : W → H.

Let us consider the algebra Φ = Φ(X) in more detail. We are not ready to give the
precise definition of this algebra yet. It will be given in §2. For our immediate needs we
say that Φ(X) is the algebra of compressed first order formulas, i.e., the quotient algebra
of the usual first order formulas modulo their semantic equivalence. It is important to
note the following.

1. Φ(X) is a Boolean algebra equipped with unary quantifier operations with respect
to variables x ∈ X and with equations w ≡ w′, w ∈ W (X), which are viewed as nullary
operations.

2. With each formula u ∈ Φ, its value ValXH(u) = A is associated, which is a subset in
Hom(W (X), H). In particular,

ValXH(w ≡ w′) = {µ : W → H | (w, w′) ∈ Ker(µ)}.
3. The logical kernel LKer(µ) of a point µ : W → H can be defined as follows. A

formula u ∈ Φ(X) belongs to LKer(µ) if and only if µ ∈ ValH(u). The usual kernel
Ker(µ) is the set of all (w, w′) with w ≡ w′ ∈ LKer(µ). We say that a point µ is a
solution of an “equation” u if u ∈ LKer(µ).

The logical kernel LKer(µ) is an ultrafilter in the algebra Φ. We denote by MX the
set of all equalities w ≡ w′ over the algebra W = W (X). Then

Ker(µ) = LKer(µ) ∩ MX .

1.2. Galois correspondence. First, we recall this correspondence in universal alge-
braic geometry [P1]–[P4]. For more information on universal AG, see [P1]–[P5] and
[P7, MR1, MR2].

Let Θ and a finitely generated free algebra W (X) ∈ Θ be fixed, and let T be a binary
relation on W (X). We view T as a system of equations w ≡ w′, (w, w′) ∈ T , and as a
system of formulas of the form w ≡ w′. We define

T ′
H = A = {µ : W → H | T ⊂ Ker(µ)}

for every H ∈ Θ.
We can write the definition of T ′

H as

T ′
H = A =

⋂
(w,w′)∈T

ValH(w ≡ w′).

Here A is the set of points satisfying every equation in T , i.e., the set of solutions of
all equations in T . Such sets A are called algebraic sets.
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We define a correspondence in the reverse direction:

A′
H = T =

⋂
µ∈A

Ker(µ) = {(w, w′) | A ⊂ ValXH(w ≡ w′)}.

Here T is a congruence in W called an H-closed congruence.
The resulting correspondence between algebraic sets and H-closed congruences is a

Galois correspondence. This means that
1) A1 ⊂ A2 implies A′

2H ⊂ A′
1H ;

2) T1 ⊂ T2 implies T ′
2H ⊂ T ′

1H ;
3) A ⊂ A′′

H , T ⊂ T ′′
H .

Here, the algebraic set A′′
H and the H-closed congruence T ′′

H are the closures of a set
A and a system T , respectively.

Proposition 1.1. A congruence T is H-closed if and only if W/T ∈ SC(H).

Here S is the operator of taking subgroups, while C takes Cartesian products.
For each set of formulas T , consider quasi-identities of the form∧

(w,w′)∈T

w ≡ w′ → w0 ≡ w′
0,

or, briefly, T → w0 ≡ w′
0.

The set T is not necessarily finite, and the formulas above are considered in the
infinitary logic.

Proposition 1.2. We have (w0, w
′
0) ∈ T ′′

H if and only if the formula T → w0 ≡ w′
0 holds

in H.

In logical geometry we start with the algebra of formulas Φ(X) and consider an arbi-
trary subset T in Φ. In this case, in order to establish a correspondence similar to the
previous one, we shall replace the kernel Ker(µ) by the logical kernel LKer(µ). We define

TL
H = A = {µ : W → H | T ⊂ LKer(µ)} =

⋂
u∈T

ValH(u).

Here A is an elementary set in Hom(W, H) that consists of all points µ satisfying every
“equation” u ∈ T . In the reverse direction:

AL
H = T =

⋂
µ∈A

LKer(µ) = {u ∈ Φ(X | A ⊂ ValXH(u)}.

We defined the Galois correspondence in the case of logical geometry. The Galois
closures are ALL

H and TLL
H , respectively. Here T = AL

H is always an H-closed Boolean
filter in Φ.

For a given set of formulas T ⊂ Φ(X) and a given v ∈ Φ(X), consider the formula∧
u∈T

u → v,

or equally T → v, where T is not necessarily finite.

Proposition 1.3. We have u ∈ TLL
H if and only if the formula T → v holds in H.

1.3. Geometrical equivalence and logical equivalence of algebras. We recall (see
[P1, P2]) that the algebras H1 and H2 are geometrically equivalent (AG-equivalent for
short) if for every finite X and T in W = W (X) we have

T ′′
H1

= T ′′
H2

.

See the survey [P3] and [P2] for the details.
Now we are able to define the notion of logically equivalent algebras.
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Definition 1.4. The algebras H1 and H2 are logically equivalent (LG-equivalent for
short) if for every finite X and T in Φ = Φ(X) we have

TLL
H1

= TLL
H2

.

We look at the idea of LG-equivalence from yet another point of view.
We denote by T̂ (H) the elementary theory of the algebra H. In accordance with the

definition, a formula u belongs to T̂ (H) if and only if u is fulfilled in H identically.
By definition, the algebras H1 and H2 are elementary equivalent if we have

T̂ (H1) = T̂ (H2).

Consider formulas of the form

u1 ∧ u2 ∧ · · · ∧ un → v,

i.e., formulas T0 → v, where T0 is a finite set. Let LG0 − T̂ (H) denote the set of all
formulas of this kind that hold in H. It is easily seen that H1 and H2 are elementary
equivalent if and only if LG0 − T̂ (H1) = LG0 − T̂ (H2).

Along with the invariants T̂ (H) and LG0 − T̂ (H) of the algebra H, consider the
invariant LG − T̂ (H). We call LG − T̂ (H) the implicative theory of the algebra H. It
consists of all formulas of the form

T → v

that hold in H. Here, T is a set of formulas in Φ (possibly infinite), and v is a formula
in Φ.

Proposition 1.5. The algebras H1 and H2 are logically equivalent if and only if their
implicative theories coincide, i.e.,

LG − T̂ (H1) = LG − T̂ (H2).

This implies the following statement.

Proposition 1.6. If the algebras H1 and H2 are LG-equivalent, then they are elementary
equivalent.

The reverse implication is not true, and hence, the relation of LG-equivalence is
stronger than that of elementary equivalence.

The next statement is also clear.

Proposition 1.7. If the algebras H1 and H2 are LG-equivalent, then they are geomet-
rically equivalent.

Definition 1.8. The algebras H1 and H2 are said to be weakly LG-equivalent if

TLL
H1

= TLL
H2

for all finite T .

Proposition 1.9. The algebras H1 and H2 are weakly LG-equivalent if and only if they
are elementary equivalent.

1.4. Noetherian-type properties. We shall consider conditions that provide the co-
incidence of the notions of LG-equivalence and elementary equivalence.

Definition 1.10. We say that an algebra H ∈ Θ is LG-Noetherian if for any elementary
set A = TL

H there is an element u in Φ = Φ(X) such that A = ValXH(u).

In other words, this means that every elementary set is one-definable.
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Definition 1.11. An algebra H ∈ Θ is strongly LG-Noetherian if for every elementary
set A = TL

H there is a finite subset T0 ⊂ T such that TL
H = TL

0H .

If T0 = {u1, . . . , un}, then A is also one-definable by the element u = u1∧u2∧· · ·∧un.
This element may fail to be an element of T .

Definition 1.12. An algebra H ∈ Θ is H-weakly LG-Noetherian if for every formula
T → v ∈ LG − T̂ (H) there is a finite subset T0 ⊂ T such that T0 → v ∈ LG − T̂ (H).

Note that here T0 may depend on v.

Proposition 1.13. Suppose that the algebras H1 and H2 possess any of the Noether-
ian properties. The LG-equivalence of these algebras coincides with their elementary
equivalence.

See §3 for the details.

1.5. Some categories and lattices. We fix an infinite set X0 and let Γ0 denote the
set of all finite subsets of X0.

For a given variety Θ, denote by Θ0 the category whose objects are the free algebras
W = W (X) in Θ with finite X ∈ Γ0. The category Θ0 is a full subcategory in the
category Θ. Its morphisms are homomorphisms of free algebras.

Given an algebra H ∈ Θ, we define the category of affine spaces K0
Θ(H) over H. Its

objects are the sets of homomorphisms Hom(W, H), W ∈ Θ0, and the morphisms are of
the form

s̃ : Hom(W1, H) → Hom(W2, H),

where s : W2 → W1 is a morphism in Θ0 and the mapping s̃ is given by the rule
s̃(ν) = νs : W2 → H for ν : W1 → H. We have a contravariant functor Θ0 → K0

Θ(H),
which implies duality of the categories if and only if the identities of the algebra H
determine the entire variety Θ, i.e., Var(H) = Θ (see [P4]).

The next category is the category SetΘ(H) of affine sets over an algebra H. Its objects
are of the form (X, A), where A is an arbitrary subset in the affine space Hom(W (X), H).
The morphisms are

[s] : (X, A) → (Y, B).

Here s : W (Y ) → W (X) is a morphism in Θ0. The corresponding s̃ : Hom(W (X), H) →
Hom(W (Y ), H) should be coordinated with A and B by the following condition: if
ν ∈ A ⊂ Hom(W (X), H), then s̃(ν) ∈ B ⊂ Hom(W (Y ), H). Then we view the induced
mapping [s] : A → B as a morphism (X, A) → (Y, B).

Now we define the category of algebraic sets KΘ(H) and the category of elementary
sets LKΘ(H). Both these categories are full subcategories in SetΘ(H) and are viewed as
important invariants of the algebra H. We call them AG and LG-invariants of H.

The objects of the category KΘ(H) are of the form (X, A), where A is an algebraic set
in Hom(W (X), H). If we take the elementary sets for A, then we arrive at the category
of elementary sets LKΘ(H). The category KΘ(H) is a full subcategory in LKΘ(H).

Let us turn to the lattices. We shall see that if A and B are elementary sets in
Hom(W, H), then the union A ∪ B is also an elementary set. This means that the
elementary sets in Hom(W, H) constitute a lattice, which is a sublattice in the lattice of
all subsets in the given affine space. A similar fact is not true in AG. For two algebraic
sets A and B, the set A ∪ B may fail to be an algebraic set. (Clearly, A ∪ B is an
elementary set.)

In the sequel we shall coordinate the categories and lattices introduced above.
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1.6. Coordinate algebras and the categories of coordinate algebras. First, we
look at the situation in AG. Let A ⊂ Hom(W, H) be an algebraic set, and let T = A′

H be
an H-closed congruence in W . Then W/T is called the coordinate algebra for A. It is an
algebraic invariant of the algebraic set A. Denote by CΘ(H) the category of coordinate
algebras. It is a full subcategory in Θ. It can be seen (consult [P2]) that there is a duality
KΘ(H) → CΘ(H).

Now, we look at the same subject from the viewpoint of logical geometry. Let A ⊂
Hom(W, H) be an elementary set and T = AL

H the corresponding Boolean filter in Φ(X).
We have a Boolean algebra Φ(X)/T , which is viewed as the coordinate algebra for A.
The category of such coordinate Boolean algebras LCΘ(H) will be defined in §3. The
transition (X, A) → Φ(X)/AL

H determines a contravariant functor LKΘ(H) → LCΘ(H).
However, this functor is not a duality in the general case.

Consider a particular example A = Hom(W (X), H). The definitions show that AL
H =

T̂X(H), where T̂X(H) is the X part of the elementary theory T̂ (H). At the same time,
T̂X(H) is the minimal H-closed filter in Φ(X). The corresponding coordinate algebra
for A = Hom(W, H) is the Boolean algebra Φ(X)/ThX(H).

1.7. Algebras with the same logic. First, we recall some general facts from category
theory; see [M]. Let ϕ1, ϕ2 be two functors C1 → C2. An isomorphism s : ϕ1 → ϕ2 of
functors is defined by the following conditions.

1. To every object A of the category C1, an isomorphism sA : ϕ1(A) → ϕ2(A) in C2

is assigned.
2. If ν : A → B is a morphism in C1, then there is a commutative diagram of the

following form in C2:
ϕ1(A) sA−−−−→ ϕ2(A)

ϕ1(ν)

⏐⏐� ⏐⏐�ϕ2(ν)

ϕ1(B) sB−−−−→ ϕ2(B).
The isomorphism of functors ϕ1 and ϕ2 is denoted by ϕ1 � ϕ2. Now, let a pair (ϕ, ψ)

of functors ϕ : C1 → C2 and ψ : C2 → C1 be given. We say that it determines a category
equivalence of C1 and C2 if ψϕ � 1C1 and ϕψ � 1C2 . Here, 1C1 and 1C2 are identity
functors. The conditions ψϕ = 1C1 and ϕψ = 1C2 define an isomorphism of categories.
If C1 = C2 = C, then we get the notions of automorphism and autoequivalence of the
category C.

An automorphism ϕ of the category C is said to be inner if it is isomorphic to the
identity automorphism 1C . The latter means that if s : 1C → ϕ is an isomorphism of
functors, then for every object A of C there is an isomorphism sA : A → ϕ(A) such that
the diagram

A
sA−−−−→ ϕ(A)

ν

⏐⏐� ⏐⏐�ϕ(ν)

B
sB−−−−→ ϕ(B)

is commutative for any morphism ν : A → B in C. So, ϕ is inner if and only if it can be
represented in the form

ϕ(ν) = sBνs−1
A : ϕ(A) → ϕ(B).

This formula motivates the term “inner automorphism”.
In the subsequent sections we shall consider the category Hal0Θ of all algebras of

formulas Φ(X), where X runs through all finite subsets of X0. In logical geometry, this
category plays a role similar to that of the category of free algebras Θ0 in the case of
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algebraic geometry. We shall see that an automorphism ϕ∗ of Hal0Θ corresponds to an
automorphism ϕ of Θ0. In particular, if ϕ is inner, then ϕ∗ is also inner.

Now we consider the main topic of this subsection. Let LatH : Θ0 → Lat be the functor
that assigns to each W (X) the lattice of elementary sets in Hom(W (X)), H). We say
that the algebras H1 and H2 have the same lattices if there exists an automorphism
ϕ : Θ0 → Θ0 such that the functors LatH1 and LatH2ϕ are isomorphic. The coincidence
of lattices can be represented by the commutative diagram

ϕ
Θ0 � Θ0

�
�

��
LatH1

�
�

��
LatH1

Lat

Here Lat is the category of lattices, and commutativity means the existence of an
isomorphism LatH1 → LatH2 ϕ (see §3).

Consider also isomorphisms of categories LKΘ(H1) → LKΘ(H2). We require that
there should exist a special correct isomorphism of these categories. Informally speaking,
correctness means coordination of the category isomorphism with the lattices. We regard
the algebras H1 and H2 as having the same logic if the categories LKΘ(H1) and LKΘ(H2)
are correctly isomorphic.

This approach repeats similar definitions in the case of AG. In AG we prove that if
H1 and H2 are AG-equivalent, then the categories KΘ(H1) and KΘ(H2) are correctly
isomorphic. Similarly, the following is true.

Theorem 1.14. If the algebras H1 and H2 are LG-equivalent, then the categories
LKΘ(H1) and LKΘ(H2) are correctly isomorphic.

(See Subsection 3.3 for the proof.) Here, LG-equivalence means that the corresponding
logics are the same. In the case of AG, the proof of a theorem of such a kind is trivial
and is based on the duality between KΘ(H) and CΘ(H). In the case of LG there is no
such duality and the proof is not trivial (see §3).

Note that the definition of the coincidence of logics can be grounded also on the correct
equivalence of the categories of algebraic and elementary sets.

1.8. Some problems. We shall provide the reader with a list of problems related to
the general scheme described above.

Problem 1.15. Consider various nonisomorphic LG-equivalent algebras.

It is hard to believe that LG-equivalence always implies isomorphism. Moreover,
the general model-theoretic methods make it possible to construct nonisomorphic LG-
equivalent algebras. We are mostly interested in the cases where LG-equivalence of
algebras implies their isomorphism. With this in mind, we introduce the following defi-
nitions.

Definition 1.16. Let H1 and H2 be two nonisomorphic algebras in Θ. We say that they
are LG-separated if they are not LG-equivalent.

Definition 1.17. An algebra H is LG-separable in Θ if H is not LG-equivalent to any
other algebra H ′ in Θ.

Problem 1.18. Consider varieties Θ such that every free algebra W (X) in Θ is separable.

It is known (see Subsection 3.9) that the varieties of semigroups and inverse semigroups
possess this property. There are also other examples of such a kind.
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Problem 1.19. What is the situation in the case of the variety of all groups, i.e.,
Θ = Grp?

It can be proved (Z. Sela, unpublished) that every free group Fn can be separated
from the other free groups Fm, n 	= m. Hence, the question is what can be said if the
second group is not free (see also Subsection 3.9).

Problem 1.20. What is the situation in the case of the variety of all commutative and
associative algebras over a field P , i.e., Θ = Com − P?

Problem 1.21. What is the situation in the case of the variety of all associative algebras
over a field P , i.e., Θ = Ass − P , or in the case of the variety of all Lie algebras over a
field P , i.e., Θ = Lie − P?

Problem 1.22. Let a free algebra W (X) be fixed in the variety Θ. Describe all algebras
H LG-equivalent to W (X). In particular, consider Θ = Grp.

Problem 1.23. Let H1 and H2 be two Abelian groups. Suppose that they are LG-
equivalent. Is it true that they are isomorphic?

It can happen that this question has a positive answer.

Problem 1.24. Let L1 and L2 be two extensions of a field P . Suppose they are LG-
equivalent. Is it true that they are isomorphic?

In fact, a negative answer to this question in the case of arbitrary L1 and L2 can also
be deduced from model theory (see the survey [G] and the references therein). The most
interesting case is to consider extensions with some natural restrictions on L1 and L2.

Now we mention the following important question. Let H1 and H2 be elementary
equivalent. When does a single formula of the form T → v make H1 and H2 isomorphic?
Or, vice versa, when can we separate nonisomorphic H1 and H2 with the help of a single
formula of the form T → v ?

The following three problems are related to Noetherian algebras. It is clear that every
finite algebra is LG-Noetherian.

Problem 1.25. Construct examples of infinite LG-Noetherian algebras.

Problem 1.26. Construct examples of weakly LG-Noetherian algebras.

Problem 1.27. Consider specific varieties Θ in respect to the properties of being LG-
Noetherian and weakly LG-Noetherinian. In particular, what is the situation for the
variety of Abelian groups?

In the sequel we point out some other problems.

§2. About algebraic logic

We always relate logic and algebraic logic to a fixed variety Θ of algebras.
Polyadic Halmos algebras and cylindric Tarski algebras are the main structures of

algebraic logic [HMT, H]. They used to be defined for an infinite set X0 of variables. For
our purposes we need to explore another situation, where we take the set Γ0 of all finite
subsets of X0 instead of one infinite X0. In particular, this leads to Halmos categories
and special multisorted Halmos algebras. Here Γ0 takes the role of the set of sorts. From
now on X denotes a finite set.
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2.1. Extended Boolean algebras. First, note that in algebraic logic (AL) quantifiers
are treated as operations on Boolean algebras. Let B be a Boolean algebra. Its existential
quantifier is a mapping ∃ : B → B that satisfies the following conditions:

1) ∃0 = 0;
2) ∃a > a;
3) ∃(a ∧ ∃b) = ∃a ∧ ∃b.
The universal quantifier ∀ : B → B is defined dually:
1) ∀1 = 1;
2) ∀a < a;
3) ∀(a ∨ ∀b) = ∀a ∨ ∀ b.

Here 0 and 1 are the zero and the unit of the algebra B and a, b are arbitrary elements
of B. The quantifiers ∃ and ∀ are coordinated in the usual way: ∃a = ∀a, ∀a = ∃a.

Let Θ and W = W (X) ∈ Θ be fixed, and let B be a Boolean algebra. We call B an
extended Boolean algebra in Θ over W (X) if

1. The quantifiers ∃x for all x ∈ X are defined in B with ∃x∃y = ∃y∃x for all x, y ∈ X.
2. With every formula w ≡ w′, w, w′ ∈ W , a constant in B, denoted also by w ≡ w′,

is associated. Here,
2.1) w ≡ w is the unit of the algebra B;
2.2) for every n-ary operation ω ∈ Ω we have

w1 ≡ w′
1 ∧ · · · ∧ wn ≡ w′

n < w1 · · ·wnω ≡ w′
1 · · ·w′

nω.

We can consider the variety of such algebras for given Θ and W = W (X).

2.2. Example. Take an affine space Hom(W (X), H), and let

Bool(W (X), H) = Sub(Hom(W (X), H))

be the Boolean algebra of all subsets A in Hom(W (X), H). We define quantifiers ∃x,
x ∈ X, on the algebra Bool(W (X), H). We set µ ∈ ∃xA if and only if there exists ν ∈ A
such that µ(y) = ν(y) for every y ∈ X, y 	= x.

Every equality w ≡ w′, w, w′ ∈ W , is implemented on this algebra as

ValXH(w ≡ w′) = {µ : W → H | (w, w′) ∈ Ker(µ)}.
As a result, we have an extended Bool(W (X), H) in Θ over W (X).

Next, consider the category HalΘ(H) of extended Boolean algebras for a given H ∈ Θ.
Its morphisms are of the form

s∗ : Bool(W (X), H) → Bool(W (Y ), H),

where s : W (X) → W (Y ) is a morphism in Θ0. We define the transition from s to s∗.
We have

s̃ : Hom(W (Y ), H) → Hom(W (X), H).

Let A be a subset in Hom(W (X), H). We set s∗A = s̃−1A. The map s∗ is a homomor-
phism of Boolean algebras, but, in general, not a homomorphism of extended Boolean
algebras.

We have a covariant functor Θ0 → HalΘ(H).

2.3. Halmos categories. A category Υ is a Halmos category if the following is true.
1. Every object of Υ has the form Υ(X), and this object is an extended Boolean

algebra in Θ over W (X).
2. The morphisms are of the form s∗ : Υ(X) → Υ(Y ), where the s : W (X) → W (Y )

are morphisms in Θ0, the s∗ are homomorphisms of Boolean algebras, and the transition
s → s∗ is given by a covariant functor Θ0 → Υ.
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3. There are identities controlling the interaction of morphisms with quantifiers and
equalities. The coordination with the quantifiers is as follows:

3.1) s1∗∃xa = s2∗∃xa, a ∈ Υ(X), if s1y = s2y for every y ∈ X, y 	= x.
3.2) s∗∃xa = ∃(sx)(s∗a) if sx = y ∈ Y and y = sx is not in the support of sx′,

x′ ∈ X, x′ 	= x.
4. The following conditions describe the coordination with equalities:

4.1) s∗(w ≡ w′) = (sw ≡ sw′) for s : W (X) → W (Y ), w, w′ ∈ W (X).
4.2) sx

wa ∧ (w ≡ w′) < sx
w′a for an arbitrary a ∈ Υ(X), x ∈ X, where w, w′ ∈

W (X), and sx
w : W (X) → W (X) is defined by the rule sx

w(x) = w, sx
w(y) = y, y ∈ X,

y 	= x.
The category HalΘ(H) is an example of a Halmos category. Another important ex-

ample is the category of formulas Hal0Θ of the algebras of formulas Hal0Θ(X) = Φ(X).
As was mentioned before, in logical geometry this category plays the same role as the
category Θ0 plays in AG.

2.4. Multisorted algebras. We shall use multisorted algebras in order to define the
notion of Halmos algebras. One-sorted algebras are algebras with one domain. In multi-
sorted algebras there are many domains. They are written as G = (Gi, i ∈ Γ), where Γ is
a set of sorts, which can be infinite. Categories are often related to multisorted algebras
[Hi].

Every operation ω in G has a specific type η = η(ω). In the one-sorted case it is the
arity of an operation. In the multisorted case we have η = (i1, . . . , in; j) and a mapping-
operation ω : Gi1 × · · · × Gin

→ Gj . Morphisms of multisorted algebras are of the form
µ = (µi, i ∈ Γ) : G → G′, where the µi : Gi → G′

i are the mappings and µ is naturally
correlated with the operations ω.

Subalgebras, quotient algebras, and Cartesian products of multisorted algebras are
defined in the usual way. Hence, one can define varieties of multisorted algebras with a
given domain Γ and signature Ω. In every such variety there exist free algebras deter-
mined by multisorted sets (see also [Hi]).

2.5. Halmos algebras. We deal with multisorted Halmos algebras associated with Hal-
mos categories. First, we define the signature LX . Take LX = {∨,∧, −, ∃x, x ∈ X, MX}
for every X. Here MX is the set of all equalities over the algebra W = W (X). We add
all s : W (X) → W (Y ) to LX , treating them as symbols of unary operations. The new
signature is denoted by LΘ.

Next, we consider algebras Υ = (ΥX , X ∈ Γ). Every ΥX is an algebra in the signature
LX , and a unary operation (mapping) s∗ : ΥX → ΥY corresponds to every s : W (X) →
W (Y ). An algebra Υ in the signature LΘ will be called a Halmos algebra if

1) every ΥX is an extended Boolean algebra in the signature LX ;
2) every mapping s∗ : ΥX → ΥY is coordinated with the Boolean operations and is a

homomorphism of Boolean algebras;
3) the identities controlling interaction of the operations s∗ with quantifiers and equal-

ities are the same as in the definition of Halmos categories.
Now it is clear that each Halmos category Υ can be viewed as a Halmos algebra and

vice versa. In particular, this is true for HalΘ(H).

2.6. Categories and algebras of formulas. Denote by M = (MX , X ∈ Γ) a multi-
sorted set with the components MX .

Let Υ0 = (Υ0
X , X ∈ Γ0) be the absolutely free algebra over M in the signature LΘ.

The elements of each Υ0
X are first order logic (FOL) formulas, which are constructed

inductively from the equalities by using the signature LΘ. So, Υ0 is a multisorted algebra
of pure FOL formulas over equalities.
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Let HalΘ denote the variety of Γ0-sorted Halmos algebras in the signature LΘ, and
let Hal0Θ be the free algebra of this variety over the multisorted set of equalities M . The
same M determines the homomorphism π = (πX , X ∈ Γ) : Υ0 → Hal0Θ. If u ∈ Υ0

X , then
the image uπx = ū in Hal0Θ(X) is viewed as a compressed formula.

Setting Hal0Θ(X) = Φ(X), we get the required algebra of compressed formulas. This
is an extended Boolean algebra.

Recall that the Halmos algebra Hal0Θ of formulas is also a Halmos category. We have
a covariant functor Θ0 → Hal0Θ.

2.7. Value of a formula. The value ValXH(w ≡ w′) corresponds to each equality w ≡ w′

with w, w′ ∈ W (X). This determines a mapping ValH : M → HalΘ(H), which is uniquely
extended up to the homomorphisms Val0H : Υ0 → HalΘ(H) and ValH : Hal0Θ → HalΘ(H).
For every X ∈ Γ we have a commutative diagram

Val0X
H

Υ0 � Bool(W (X), H)
�

�
��

πX

�
�

��
ValXH

Φ(X)

Thus, for every u ∈ Υ0
X and the corresponding ū ∈ Φ(X) we have the values Val0X

H (u) =
ValXH(ū).

Formulas u and v in Υ0
X are said to be semantically equivalent if Val0Θ(u) = Val0Θ(v)

for every algebra H ∈ Θ. In [P6] it was proved that
1) formulas u and v are semantically equivalent if and only if uπX = ū = v̄ = vπX ;
2) the variety HalΘ is generated by all algebras HalΘ(H), where H ∈ Θ.
The second proposition motivates the definition of the variety HalΘ as a variety de-

termined by common identities of all HalΘ(H) for every H ∈ Θ. These identities were
specified in the definition of a Halmos category.

We make a remark on the kernel of the homomorphism ValH . We have

Ker(ValH) = Th(H) = (ThX(H), X ∈ Γ).

Here Th(H) = (ThX(H), X ∈ Γ) is the elementary theory of the algebra H, i.e., the set
of formulas u ∈ ThX(H) such that ValXH(u) = Hom(W (X), H) for every X. It is clear
also that the image Im ValH is a subalgebra in HalΘ(H), which consists of one-defined
elementary sets. This is the necessary information from algebraic logic.

2.8. Variation of the variety Θ.

Proposition 2.1. The elementary equivalence of algebras and the logical equivalence of
algebras are invariant with respect to the choice of the variety Θ.

Let H be an algebra in Θ, and take a subvariety Θ1 in Θ that also contains H.
Let W = W (X) and W 1 = W 1(X) be the free algebras over the set X in Θ and Θ1,
respectively. We have the homomorphism πX : W (X) → W 1(X) and the commutative
diagram

µ

W � H

�
�

��
πX

�
�

��
ν

W 1
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This diagram gives rise to the bijection π̃X : Hom(W 1, H) → Hom(W, H) defined by
π̃X(ν) = µ = νπX . The same π̃X induces an isomorphism of Boolean algebras:

π̃X : Bool(W 1, H) → Bool(W, H).

We shall coordinate this isomorphism with quantifiers and equalities. Let A be a set
of points ν : W 1 → H, and let x ∈ X. We check the relation π̃X(∃xA) = ∃x(π̃X(A)).

Take µ ∈ π̃X(∃xA), µ = π̃X(ν) = νπX , ν ∈ ∃xA. There is ν1 ∈ A with ν(y) = ν1(y)
for every y ∈ X, y 	= x. Next, let µ1 = ν1πX ∈ π̃X(A). We have

µ1(y) = ν1πX(y) = ν1(y) = ν(y) = νπX(y) = µ(y),

whence µ ∈ ∃xπ̃X(A). Here we identify π̃X(y) = y, for every y ∈ X.
Let µ ∈ ∃xπ̃X(A). We must check that there exists ν ∈ ∃xA such that µ = νπX . Take

µ1 ∈ π̃X(A) with µ(y) = µ1(y) for y 	= x. Here, µ1 = ν1πX for ν1 ∈ A. We have

µ(y) = µ1(y) = ν1πX(y) = ν1(y).

We take ν satisfying ν(y) = ν1(y) for every y 	= x and ν(x) = µ(x). Then ν ∈ ∃xA and
always µ(x) = ν(x) = νπX(x), µ = νπX , µ ∈ π̃X(∃xA).

Also, we have
π̃−1

X (∃xB) = ∃x(π̃−1
X (B))

for B ⊂ Hom(W (X), H).
Now we consider the coordination between πX and the equalities. Take an equality

w ≡ w′, w, w′ ∈ W . It corresponds to the equality w ≡ w′ in Θ1, where w = πX(w).
Here, w ≡ w′ is viewed as a symbol of equality which is implemented in Θ and Θ1. We
take ValXH : Φ(X) → Bool(W (X), H), and Val′XH : Φ1(X) → Bool(W 1(X), H). Here,
Φ1(X) is the algebra of formulas for Θ1. We have

π̃X(Val′XH (w ≡ w′)) = ValXH(w ≡ w′).

So, π̃X is coordinated with the equalities, and we have isomorphisms of extended Boolean
algebras:

π̃X : Bool(W 1(X), H) → Bool(W (X), H)

and
π̃−1

X : Bool(W (X), H) → Bool(W 1(X), H).

Now we relate the varieties HalΘ and HalΘ1 and the algebra-categories Hal0Θ and
Hal0Θ1

. The variety HalΘ is generated by all algebras HalΘ(H), H ∈ Θ. Consider a
subvariety in HalΘ generated by all algebras HalΘ(H), H ∈ Θ1. This is a subvariety in
the signature LΘ. Proceeding from the signature LΘ1 , we get the variety coinciding with
HalΘ1 . Thus, if Θ1 is a subvariety in Θ, then HalΘ1 is embedded in HalΘ .

We describe Hal0Θ and Hal0Θ1
. The transition w ≡ w′ → w ≡ w′ determines a surjection

MX → M1
X , where M1

X is related to Θ1. Denote M = (MX , X ∈ Γ0) and M1 =
(M1

X , X ∈ Γ0). We have a surjective map τ = (τX , X ∈ Γ0) : M → M1. This τ

can be extended to a homomorphism τ : Hal0Θ → Hal0Θ1
. For each X ∈ Γ0 we have

τX : Φ(X) → Φ1(X). Also, we have a commutative diagram

Φ(X)
ValXH−−−−→ Bool(W (X), H)

τX

⏐⏐� ⏐⏐�π̃−1
X

Φ1(X)
Val′XH−−−−→ Bool(W 1(X), H)

The commutativity of this diagram follows from the coordinations above.
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Now we consider the elementary theories T̂X
Θ (H) and T̂X

Θ1
(H). The diagram shows that

u ∈ T̂X
Θ (H) if and only if τX(u) ∈ T̂X

Θ1
(H). The latter implies that T̂X

Θ (H1) = T̂X
Θ (H2) if

and only if T̂X
Θ1

(H1) = T̂X
Θ1

(H2).
Hence, the elementary equivalence of algebras is invariant with respect to the choice

of the variety Θ.
We check that this property is also fulfilled for LG-equivalent algebras.
Let T be a set of formulas in Φ(X). Denote T τX = {τX(u)u | u ∈ T} ⊂ Φ1(X). For

each formula u ∈ T , we have π̃−1
X (ValXH(u)) = Val′XH (τX(u)). Then

(T τX )L
H =

⋂
u∈T

Val′XH (τX(u)) =
⋂

u∈T

π̃−1
X (ValXH(u)) = π̃−1

( ⋂
u∈T

ValXH(u)
)

= π̃−1
X TL

H .

Now, let u ∈ TLL
H . This means that TL

H ⊂ ValXH(u). Then π̃−1
X (TL

H) ⊂ π̃−1
X ValXH(u).

This gives (T τX )L
H ⊂ Val′XH (τX(u)) and τX(u) ∈ (T τX )LL

H . The inverse embedding is also
valid. Hence, u ∈ TLL

H if and only if τX(u) ∈ (T τX )LL
H .

Now, assuming that
TLL

H1
= TLL

H2
,

we check the formula
T τXLL

H1
= T τXLL

H2
.

Let τX(u) ∈ T τXLL
H1

. Then u ∈ TLL
H1

and u ∈ TLL
H2

, i.e., τX(u) ∈ T τXLL
H2

. The same
is true in the reverse direction. Hence, TLL

H1
= TLL

H2
if and only if T τXLL

H1
= T τXLL

H2. This
means that LG-equivalence does not depend on the choice of the variety Θ.

§3. Logical geometry

In this section we continue the streamline outlined in §1. We shall use the material of
§2, where the background from algebraic logic was given.

3.1. Lattices of elementary sets and H-closed filters. Let A and B be two ele-
mentary sets in Hom(W (X), H). We show that A ∪ B is also an elementary set.

Consider the filters T1 = AL
H and T2 = BL

H . Denote by T1 ∨ T2 the set of all formulas
of the form u ∨ v, where u ∈ T1 and v ∈ T2. We have T1 ∨ T2 ⊂ T1 ∩ T2. Then

(T1 ∨ T2)L
H =

⋂
T1∨T2

ValXH(u ∨ v) =
( ⋂

u∈T1

ValXH(u)
)
∪

( ⋂
v∈T2

ValXH(v)
)

= A ∪ B.

Hence, (T1 ∩ T2)L
H = A ∪ B.

This lattice will be denoted by LatH(Φ(X)). The lattice Lat∗H(Φ(X)) of all H-
closed filters in the algebra Φ(X) can also be considered. Given X ∈ Γ0, both lattices
LatH(Φ(X)) and Lat∗H(Φ(X)) are anti-isomorphic distributive lattices. Consider two
functors:

LClH : Hal0Θ → Lat

and
LCl∗H : Hal0Θ → poSet .

Here Lat denotes the category of lattices and poSet is the category of partially or-
dered sets. The first functor is covariant, while the second is contravariant. We have
LClH(Φ(X)) = LatH(Φ(X)), X ∈ Γ0, i.e., LClH(Φ(X)) is the lattice of all elementary
sets in Hom(W (X), H). Similarly, LCl∗H(Φ(X)) is the lattice of all H-closed filters in
Φ(X).
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Let s∗ : Φ(X) → Φ(Y ) be a morphism in Hal0Θ. We have also s : W (X) → W (Y ).
Define

LClH(s∗) : LClH(Φ(X)) → LClH(Φ(Y )),

LCl∗H(s∗) : LCl∗H(Φ(Y )) → LCl∗H(Φ(X)).

Take A ⊂ LClH(Φ(X)), A ⊂ Hom(W (X), H). We consider s̃ : Hom(W (Y ), H) →
Hom(W (X), H) and take s̃−1A = s∗A. Denote LClH(s∗)(A) = s∗A. The functor LClH
is defined and coordinated with the lattice operations.

In order to define the functor LCl∗H , take T ∈ LCl∗H(Φ(Y )). Then s∗T is the set of
all u ∈ Φ(X) such that s∗u ∈ T . We shall see that s∗T is an H-closed filter in Φ(X).
Defining LCl∗H(s∗)(T ) = s∗T , we determine the functor LCl∗H .

Let ϕ : Θ0 → Θ0 be an automorphism of the category Θ0. It corresponds to ϕ∗ :
Hal0Θ → Hal0Θ defined by the rule ϕ∗(Φ(X)) = Φ(Y ) if ϕ(W (X)) = W (Y ), and ϕ∗(s∗) =
ϕ(s)∗ : ϕ∗(Φ(X)) → ϕ∗(Φ(Y )) if ϕ(s) : ϕ(W (X)) → ϕ(W (Y )) is a morphism in Θ0.

Consider the product LClH ϕ∗ and apply it to Φ(X). We get the lattice LClH(Φ(Y ))
of all elementary sets in Hom(W (Y ), H) = Hom(ϕ(W (X)), H).

Suppose that there is an isomorphism of functors LClH1 → LClH2 ϕ∗. Then for every
Φ(X) there is an isomorphism of lattices LClH1(Φ(X)) → LClH2(Φ(Y )). This means
that there is an isomorphism of the lattices of elementary sets in Hom(W (X), H1) and
in Hom(ϕ(W (X)), H2).

We say that the algebras H1 and H2 have the same lattices of elementary sets if
there exists a functor ϕ : Θ0 → Θ0 such that there is an isomorphism of functors
LClH1 → LClH2 ϕ∗. An isomorphism LCl∗H1

→ LCl∗H2
ϕ∗ is used in a similar way.

In the sequel we shall consider these lattice isomorphisms and category isomorphisms
LKΘ(H1) → LKΘ(H2) and LCΘ(H1) → LCΘ(H2) all together.

3.2. Correct isomorphism of categories of elementary sets. Our aim is to define
the notion of a correct isomorphism of elementary sets. First, we note that the category of
affine spaces K0

Θ(H) is always a subcategory in the category of elementary sets LKΘ(H).
Let an isomorphism F : LKΘ(H1) → LKΘ(H2) be given. Suppose that F takes

K0
Θ(H1) to K0

Θ(H2). This means that there is an automorphism ϕ : Θ0 → Θ0 such that
F (Hom(W, H1)) = Hom(ϕ(W ), H2) for every object W = W (X) in the category Θ0.

Next, let (X, A) be an object in the category LKΘ(H1) and F (X, A) = (Y, B). Here
we assume that W (Y ) = ϕ(W (X)) and B is an elementary set in Hom(W (Y ), H2).
Assume also that for every W = W (X) the isomorphism F induces an isomorphism of
the lattices of elementary sets in Hom(W, H1) and in Hom(ϕ(W ), H2).

An isomorphism F : LKΘ(H1) → LKΘ(H2) is said to be correct if it satisfies the
conditions above. However, we cannot say that such an isomorphism always induces an
isomorphism of lattices LClH1 → LClH2ϕ

∗.
We finish this subsection with the remark that we can build a similar theory by

replacing the notion of a correct isomorphism by a correct equivalence of the categories
of elementary sets.

3.3. LG-equivalence of algebras implies a correct isomorphism of categories.
In this section we prove Theorem 1.14. We start with some general remarks. Take
s : W (X) → W (Y ) and, accordingly, s∗ : Φ(X) → Φ(Y ). For T ⊂ Φ(Y ) we set
u ∈ s∗T if s∗u ∈ T . For T ⊂ Φ(X) we have s∗T = {s∗u | u ∈ T}. Further, s̃ :
Hom(W (Y ), H) → Hom(W (X), H). Take B = s∗A = s̃−1A for A ⊂ Hom(W (X), H).
For B ⊂ Hom(W (Y ), H) we have s∗B = {s̃(µ) | µ ∈ B}.

We have the following properties:
1) if T ⊂ Φ(X), then (s∗T )L

H = s∗T
L
H ;
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2) if B ⊂ Hom(W (Y ), H), then (s∗B)L
H = s∗B

L
H ;

3) if A ⊂ Hom(W (X), H), then s∗AL
H ⊂ (s∗A)L

H .
We view these properties as rules of the behavior of elementary sets under the moves

of affine spaces. The first rule implies that if A is an elementary set, then so is s∗A. The
second rule says that if T is an H-closed filter in Φ(Y ), then so is s∗T in Φ(X).

Now we can prove that if H1 and H2 are L-equivalent, then the categories LKΘ(H1)
and LKΘ(H2) are correctly isomorphic.

Suppose that H1 and H2 are L-equivalent. We shall define an isomorphism F :
LKΘ(H1) → LKΘ(H2). Let (X, A) be an object in LKΘ(H1). We set F (X, A) = (X, B),
where B = (AL

H1
)L
H2

. Here F determines a bijection on the objects of the category.
Take a morphism [s] = [s]H1 : (X, A1) → (X, A2) in LKΘ(H1). We have s : W (Y ) →

W (X) and s̃ : Hom(W (X), H1) → Hom(W (Y ), H1). If ν ∈ A1, then s̃(ν) ∈ A2. We
check that for the same s we have s̃(µ) ∈ B2 if µ ∈ B1. Here B1 = (AL

1H1
)L
H2

, B2 =
(AL

2H1
)L
H2

. Our aim is to define [s]H2 : (X, B1) → (X, B2). The embedding s̃(ν) = νs ∈
A2 means that ν ∈ s̃−1A2 = s∗A2. This is equivalent to A1 ⊂ s∗A2. We have

(AL
1H1

) ⊃ (s∗A2)L
H1

⊃ s∗AL
2H1

and
(AL

1H1
)L
H2

= B1 ⊂ (s∗AL
2H1

)L
H2

= s∗(AL
2H1

)L
H2

= s∗B2.

Thus, B1 ⊂ s∗B2, and we have s̃(µ) ∈ B2 for every µ ∈ B1. Similarly we can check
that if s̃(µ) ∈ B2 for every µ ∈ B1, then s̃(ν) ∈ A2 for every ν ∈ A1.

We show that for s1, s2 : W (Y ) → W (X) the relation s̃1(ν) = s̃2(ν) for every ν ∈
A1 = A is equivalent to s̃1(µ) = s̃2(µ) for every µ ∈ B1 = B.

Let s̃1(ν) = νs1 = νs2 = s̃2(ν) be given. For every w ∈ W (Y ) we have νs1(w) =
νs2(w). Consider the equation s1w ≡ s2w. Then ν is a solution of this equation. This
gives A ⊂ ValXH1

(s1w ≡ s2w), and s1w ≡ s2w ∈ AL
H1

. Since AL
H1

= BL
H2

, we have
s1w ≡ s2w ∈ BL

H2
and B ⊂ ValXH2

(s1w ≡ s2w). This means that for every µ ∈ B
we have µs1w = µs2w. This is true for every w ∈ W (Y ), so that µs1 = µs2, i.e.,
s̃1(µ) = s̃2(µ). The converse statement is also true. Now it is clear that F ([s]H1) = [s]H2

is well defined, because it does not depend on the choice of a representative. Thus, we
get an isomorphism of categories: F : LKΘ(H1) → LKΘ(H2).

The lattice LatH1(W ) of all elementary sets in Hom(W (X), H1) is anti-isomorphic
to the lattice of H1-closed filters in Φ(X). The latter is anti-isomorphic to the lattice
LatH2(W ). Here LatH1(W ) and LatH2(W ) are isomorphic. The isomorphism is induced
by the initial isomorphism of categories F . The theorem is proved.

It would be quite natural to expect that F induces an isomorphism of functors
LClH1 → LClH2 . This would mean that for every s : W (X) → W (Y ) and every el-
ementary set A ⊂ Hom(W (X, H)) we have (s∗(AL

1H1
))L

H2
= s∗B, B = (AL

1H1
)L
H2

. But we
can prove only the inclusion B ⊂ (AL

1H1
)L
H2

.

3.4. Automorphic LG-equivalence of algebras. The notion of automorphic equiv-
alence generalizes the notion of LG-equivalence of algebras. Consider the diagram

ϕ∗

Hal0Θ � Hal0Θ
�

�
��

LClH1
�

�
��
LClH2

Lat

Here ϕ∗ is the automorphism of the category Hal0Θ corresponding to ϕ : Θ0 → Θ0. The
commutativity of this diagram means that there is a transition β(ϕ) : LClH1 → LClH2 ϕ∗
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such that for every object Φ = Φ(X) of Hal0Θ there is an isomorphism of lattices

β(ϕ)Φ : LClH1(Φ) → LClH2 ϕ∗(Φ).

Note that β(ϕ) is not necessarily an isomorphism of functors. Next, assume that ϕ and
β(ϕ) are coordinated in the following way.

1. Let s : W (Y ) → W (X), and accordingly, s∗ : Φ(Y ) → Φ(X) be given. We also have
s̃Hom(W (X), H1) → Hom(W (Y ), H1). Take the elementary sets A1 ⊂ Hom(W (X), H1)
and A2 ⊂ Hom(W (Y ), H1), and put B1 = β(ϕ)Φ(X)(A1), B2 = β(ϕ)Φ(Y )(A2). Assume

that s̃(ν) ∈ A2 for ν ∈ A1 if and only if ϕ̃(s)(µ) ∈ B2 for µ ∈ B1.
2. Let s1, s2 : W (Y ) → W (X) be given, and let s̃1, s̃2 : Hom(W (X), H1) →

Hom(W (Y ), H1). Take an elementary set A⊂Hom(W (X), H1) and put B=β(ϕ)Φ(X)(A).

Assume that s̃1(ν) = s̃2(ν) for every ν ∈ A if and only if ϕ̃(s1)(µ) = ϕ̃(s2)(µ) for every
µ ∈ B.

These commutativity conditions determine the notion of automorphic LG-equivalence
for the algebras H1 and H2. LG-equivalence is a particular case of automorphic LG-
equivalence; this case arises when ϕ = 1 is the identity automorphism and β(1)Φ(A) =
(AL

H1
)L
H2

. The conditions for ϕ = 1 and β(1) were checked in the proof of Theorem 1.14.
The next theorem is proved in a similar way.

Theorem 3.1. If H1 and H2 are automorphically LG-equivalent, then the categories
LKΘ(H1) and LKΘ(H2) are correctly isomorphic.

Remark 3.2. Observe that, in the case of algebraic geometry, if ϕ is inner, then the
corresponding H1 and H2 are AG-equivalent. In the situation of logical geometry we
cannot prove a similar statement. We also cannot prove that β(ϕ) is an isomorphism of
functors. In the situation of AG this is always the case.

3.5. Coordinate algebras. The category LCΘ(H). Let A be an elementary set in
Hom(W (X), H). Consider T = AL

H . The algebra Φ(X)/T is the coordinate Boolean
algebra for the set A.

Given a formula u ∈ Φ(X), we denote by ũ the characteristic Boolean function of the
set (ValXH)(u) in Hom(W (X), H) and by ũA the specialization of the function ũ to the
set A. It is known [P6] that Φ(X)/T is isomorphic to the algebra of all such ũA.

We define the category LCΘ(H) of all Φ(X)/T . As usual, consider s : W (Y ) → W (X)
and s∗ : Φ(Y ) → Φ(X). Consider the corresponding filters T2 in Φ(Y ) and T1 in Φ(X).
We say that s is admissible with respect to T1 and T2 if s∗u ∈ T1 for every u ∈ T2.
In this case we have a homomorphism s̄ = s̄∗ : Φ(Y )/T2 → Φ(X)/T1. All these s̄ for
H-closed T1 and T2 are taken as morphisms in the category LCΘ(H). Let A1 and A2

be elementary sets, and let T1 = AL
1H , T2 = AL

2H . We say that s : W (Y ) → W (X) is
admissible with respect to A1 and A2 if s̃(ν) ∈ A2 for ν ∈ A1.

Proposition 3.3 ([P6]). The homomorphism s : W (Y ) → W (X) is admissible for ele-
mentary sets A1 and A2 if and only if s is admissible for T2 and T1.

Next, suppose that [s1] and [s2] coincide as morphisms in (X, A1) → (Y, A2). Then
s̄1 and s̄2 coincide as morphisms in Φ(Y )/T2 → Φ(X)/T1 (see [P6]). This gives a con-
travariant functor LKΘ(H) → LCΘ(H).

However, we cannot state that s̄1 = s̄2 implies [s1] = [s2] because of the lack of duality.
Duality appears if the following separability condition is fulfilled: if s1 	= s2 and for some
point ν we have νs1 	= νs2, then ValH(u) contains one of these points and does not
contain the other for some u. This type of separability occurs if the algebra H consists
of constants.
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The next proposition demonstrates the role of constants in this setting. Now we
consider varieties of the type ΘG. Here G ∈ Θ is the algebra of constants. Each algebra
H ∈ ΘG admits an embedding h : G → H, not necessarily faithful. The morphisms are
of the form

h1
G � H1

�
�

��
h2

�

µ

H2The free algebras in ΘG have the form

iG : G → G ∗ W0(X) = W (X).

Here W0(X) is a free algebra in Θ, ∗ is the sign of the free product in Θ, iG is the
embedding in the definition of the free product. The algebra G is an algebra in ΘG with
the identical morphism ε : G → G. The diagram

iG

G � W

�
�

��
εG

�

µ

G
implies that for every g ∈ G and every µ we have µ(g) = g. Moreover, s(g) = g for every
g ∈ G and every s : W (Y ) → W (X) in ΘG.

Now we take the algebra G as an algebra where we are looking for solutions of equa-
tions, i.e., G plays the role of H. Then we have the following statement.

Proposition 3.4. The equality s̄1 = s̄2 implies the equality [s1] = [s2].

Proof. The equality [s1] = [s2] means that every point ν ∈ A satisfies every equation
s1w ≡ s2w, w ∈ W (Y ). Consider the equality s̄1 = s̄2 : Φ(Y )/T2 → Φ(X)/T1. This
means that for every u ∈ Φ(Y ), and accordingly for every ū ∈ Φ(Y )/T2, we have s̄1(ū) =
s̄2(ū); s1∗(u) = s2∗(u). This is an equality in Φ(X)/T1 and it means that a formula of
the form

v = (s1∗(u) → s2∗(u)) ∧ (s2∗(u) → s1∗(u))
is contained in the filter T1 = AL

G. We have A ⊂ ValG(v). Denote ValG(u) = C. Then
ValG(v) = (s1∗C → s2∗C) ∧ (s2∗C → s1∗C).

We fix w ∈ W (Y ) and ν ∈ A. Let νs1(w) = g ∈ G. Consider the equation w ≡ g.
We take this equation as u ∈ Φ(Y ) and let C = ValG(w ≡ g). Here s1∗w ≡ g. The
point ν satisfies this equation, i.e., ν ∈ s1∗C. Then ν ∈ s2∗C, νs2w ≡ g. Hence,
νs1w = νs2w = g.

On the other hand, one can proceed from νs2w = g1 for the same ν and w. Let us
look again at w ≡ g1. Using the formula for ValG(v), we obtain νs2w = νs1w ≡ g1.
Since ν belongs to both parts of the formula for ValG(v), we get g = g1. In both cases
νs1(w) = νs2(w) for all ν and w, and the proposition is proved. So, we come up with
the duality LKΘG(G) → LCΘG(G). �
3.6. More about automorphic equivalence of algebras. Consider the diagram

ϕ∗

Hal0Θ � Hal0Θ
�

�
��

LCl∗H1 �
�

��
LCl∗H2

poSet
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We describe the meaning of the commutativity of this diagram. Consider a transition
(not necessarily an isomorphism) α(ϕ) : LCl∗H1

→ LCl∗H2
ϕ∗. Suppose that for every

object Φ = Φ(X) = Hal0Θ(X) there is an isomorphism of H-closed filters:

α(ϕ) : LCl∗Φ → LCl∗H2
ϕ∗.

Suppose also that α(ϕ) and ϕ are coordinated in the following sense.
1. Let s : W (Y ) → W (X), and accordingly, s∗ : Φ(Y ) → Φ(X), be given. Consider

the corresponding filters T2 in Φ2 = Φ(Y ) and T1 in Φ1 = Φ(X). Take α(ϕ)Φ1(T1) = T ∗
1

and α(ϕ)Φ2(T2) = T ∗
2 . The coordination condition says that s∗ is admissible with respect

to T2 and T1 if and only if ϕ∗(s∗) = ϕ(s)∗ is admissible with respect to T ∗
2 and T ∗

1 .
2. Let s1, s2 : W2 → W1 be given, and let s1∗, s2∗ : Φ2 → Φ1. Let T1 be an H1-closed

filter in Φ1, let µ : Φ1 → Φ1/T1 be the natural homomorphism, and let α(ϕ)Φ1(T1) = T ∗
1

and µ∗ : ϕ∗(Φ1) → ϕ∗(Φ1)/T ∗
1 . The coordination says that µs1∗ = µs2∗ if and only if

µ∗ϕ(s1)∗ = µ∗ϕ(s2)∗.
The diagram above is commutative if it satisfies conditions 1 and 2. Now we relate

α(ϕ) and β(ϕ). Suppose that

α(ϕ)Φ(T ) = β(ϕ)Φ(TL
H1

)L
H2

,

β(ϕ)Φ(A) = α(ϕ)Φ(AL
H1

)L
H2

.

Under these conditions, we have the following statement.

Proposition 3.5. α(ϕ) and ϕ are coordinated if and only if β(ϕ) and ϕ are coordinated.

This is proved by a straightforward check.
Now we can say that the algebras H1 and H2 are automorphically LG-equivalent if

and only if there is a commutative diagram
ϕ∗

Hal0Θ � Hal0Θ
�

�
��

LCl∗H1 �
�

��
LCl∗H2

poSet
It can be proved that if H1 and H2 are LG-equivalent, then there is a correct isomor-

phism of categories LCΘ(H1) → LC(H2).
Note that in the situation of algebraic geometry all the coordination conditions above

allow us to compute α(ϕ) and β(ϕ) explicitly. Moreover, these transitions turn out to
be isomorphisms of functors. In logical geometry this is not the case.

3.7. LG-similarity of algebras. Our main goal is to study necessary and sufficient
conditions for the algebras H1 and H2 to have the same logic. First, observe that if H is
an algebra in the variety Θ, and Θ1 is a subvariety in Θ containing H, then the categories
LKΘ(H) and LKΘ1(H) are canonically isomorphic. This follows from the observations
in Subsection 2.8.

Denote Θ1 = Var(H1) and Θ2 = Var(H2). Now we are able to relate the categories
LKΘ1(H1) and LKΘ2(H2). Consider the diagrams

ϕ∗

Hal0Θ1
� Hal0Θ2

�
�

��
LClH1

�
�

��
LClH2

Lat

and

ϕ∗

Hal0Θ1
� Hal0Θ2

�
�

��
LCl∗H1 �

�
��
LCl∗H2

poSet
The commutativity of these diagrams is defined in accordance with the scheme used in

the definition of automorphic LG-equivalence of algebras. Here α(ϕ) : LCl∗H1
→ LCl∗H2

ϕ∗
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and β(ϕ) : LCl∗H1
→ LCl∗H2

ϕ∗ are such that for every Φ = Φ(X) = Hal0Θ1
(X) we have

an isomorphism of lattices

α(ϕ)Φ : LCl∗H1
(Φ) → LCl∗H2

(ϕ∗(Φ)),

β(ϕ)Φ : LClH1(Φ) → LClH2(ϕ
∗(Φ)).

Here, α(ϕ), β(ϕ), and ϕ are related by the rules cited above. This implies that the
diagrams are commutative simultaneously.

Definition 3.6. The algebras H1 and H2 are said to be logically similar if there exists
ϕ : Θ0 → Θ0 such that the diagrams above are commutative.

Theorem 3.7. The following conditions are equivalent:
1) H1 and H2 are logically similar;
2) the categories LKΘ1(H1) and LKΘ2(H2) are correctly isomorphic;
3) the categories LCΘ1(H1) and LCΘ2(H2) are correctly isomorphic.

The proof is similar to the arguments used in [P4].
Now some remarks about the isomorphism ϕ : Θ0

1 → Θ0
2 are in order. Consider the

category LCΘ(H). Its objects are of the form Hal0Θ(X)/T = Φ(X)/T , where T is an
H-closed filter in Φ. Consider its full subcategory defined by objects Hal0Θ(X)/ThX(H).
Recall that the elementary theory ThX(H) is the minimal H-closed filter in Φ(X).
Moreover, if u ∈ ThX(H) and sx : Φ(X) → Φ(Y ) is a morphism in Hal0Θ, then
s∗u ∈ ThX(H). We denote the resulting subcategory by Hal�Θ. Let an isomorphism
Q : LCΘ1(H1) → LCΘ2(H2) be given. Suppose that Q is correct, which means that
it induces an isomorphism ψ : Hal�Θ1

→ Hal�Θ2
. Assume also that an isomorphism

ϕ : Θ0
1 → Θ0

2 induces ϕ∗ : Hal0Θ1
→ Hal0Θ2

, and ϕ∗ induces ψ. The correctness condition
for Q is parallel to the condition that an isomorphism F : LKΘ1(H1) → LKΘ2(H2)
induces an isomorphism of affine spaces K0

Θ1
(H1) → K0

Θ2
(H2).

We conclude this subsection with some general remarks. We compare the situations
of AG and LG.

In AG, an investigation of automorphisms ϕ : Θ0 → Θ0 or isomorphisms ϕ : Θ0
1 → Θ0

2

leads to a description of constructive algebraic relations between the algebras H1 and H2

with the same algebraic geometry. In LG, there are no general rules to find out whether
the logics are the same. The problem should be considered at the level of the particular
algebras H1 and H2. In AG, automorphic equivalence with an inner automorphism ϕ
implies AG-equivalence. There is no reduction of this sort in LG. In AG the transitions
α(ϕ) and β(ϕ) are isomorphisms of functors determined by explicit formulas. In LG this
is impossible. All these properties determine mainstreams of investigations. In logical
geometry, the main problems are related to ideas of LG-equivalence and the property of
being LG-Noetherian. Such an LG-theory is considered with respect to different varieties
Θ and specific H ∈ Θ. Here there is much individuality for each particular case. One can
expect interesting results for the variety of Abelian groups, the variety of modules over
a ring K, or in the case where Θ is the variety of all commutative, associative algebras
over a field Θ = Com − P .

We make some observations about logically Noetherian algebras. All necessary defi-
nitions can be taken from §1. Similar definitions work also in AG.

Note that if H is an LG-Noetherian algebra, then H is not necessarily AG-Noetherian.
Indeed, if T is a system of equalities in Φ(X), and H is LG-Noetherian, then TL

H =
T ′

H = ValXH(u). However, the formula u may fail to be an equality. Therefore, T is not
necessarily reduced to one equality. On the other hand, if an algebra H is strictly or
weakly LG-Noetherian, then it is strictly or weakly AG-Noetherian.
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Now we show that if H1 and H2 are weakly LG-Noetherian, then their elementary
equivalence implies their LG-equivalence. Indeed, suppose T → v holds in H1. We take
a finite T0 ⊂ T such that T0 → v holds in H1. Elementary equivalence implies that
T0 → v holds in H2. Hence, T → v holds in H2.

In the general case, elementary equivalence does not imply LG-equivalence. Indeed,
take H = H1 that is not weakly AG-Noetherian. There is an ultrapower H2 of H such
that H1 and H2 are not AG-equivalent (see [MR1, P4]). Therefore, H1 and H2 are not
LG-equivalent. However, they are elementary equivalent.

There are also specific examples of elementary equivalent algebras that are not LG-
equivalent. For instance, if L1 and L2 are two extensions of a ground field P , then they
can be elementary equivalent, but not LG-equivalent. In the case of Θ = Com − P we
have the AG-Noetherian property (Hilbert’s basis theorem), but not the LG-Noetherian
property.

Group theory provides other examples. Two free groups Fn and Fm with different
n ≥ 2 and m ≥ 2 are elementary equivalent but not LG-equivalent.

It is easily seen that every finite algebra is LG-Noetherian. However, no infinite
algebras with such a property have yet been constructed.

3.8. Elementary sets over H and the group Aut(H). The group of automorphisms
Aut(H) acts in Hom(W, H). If µ : W → H is a point and g ∈ Aut(H), then gµ(w) =
g(µ(w)).

Theorem 3.8 (see [P6]). Every elementary set A ⊂ Hom(W, H) is invariant with respect
to the action of AutH.

If H is a finite algebra, then the converse statement is also true: if a set A ⊂
Hom(W, H) is invariant with respect to the action of AutH, then A is an elementary
set.

It can be proved that Aut(H) is naturally isomorphic to the automorphism group of
the algebra HalΘ(H). For finite H this leads to a Galois correspondence that relates
subgroups in Aut(H) and subalgebras in HalΘ(H).

3.9. Results for specific varieties. It is easy to prove that two free (finitely gener-
ated) semigroups are isomorphic if they are elementary equivalent. The same statement
is true for free inverse semigroups. On the other hand, if two semigroups (or inverse
semigroups) are elementary equivalent and one of them is free, then the other semigroup
may fail to be free. The following results show that LG-equivalence is stronger in this
case.

Theorem 3.9. Every free semigroup is separable in the variety of all semigroups.

Proof. Let S = S(X) be a free semigroup over a set X = {x1, . . . , xn} of free generators.
Let H be a semigroup logically equivalent to S. Consider the following formulas in the
semigroup language:

A1 :
∧

i �=j, i,j=1,...n

(xi 	≡ xj),

A2 : (∀xn+1 	≡ x1, . . . , xn)(∃! xn+2)(xn+1 ≡ x1xn+2 ∨ · · · ∨ xn+1 ≡ xnxn+2),

A3 :
∧

i,j=1,...n

(∀xn+1)(xi 	≡ xjxn+1),

A4 : (∀x1)(∀x2)(∀x3)(x1x3 ≡ x2x3 ⇒ x1 ≡ x2),

and the following family of formulas:

Bi1,i2,...,ik
: xn+1 	≡ xi1xi2 · · ·xik

,

where i1, i2, . . . , ik ∈ {1, 2, . . . , n}, k ∈ N.
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The meaning of these formulas is obvious. Now we construct the conjunction of the
first four formulas and close the resulting formula in the following way:

(3.1) (∃x1, . . . , xn)(A1 ∧ A2 ∧ A3) ∧ A4.

If the elementary formula (3.1) is true in a semigroup H, then there exist n pairwise
different elements a1, . . . , an in H such that every element a different from these n ele-
ments can be represented as a = aib for some i = 1, . . . , n and some element b ∈ H, and
this representation is unique.

Obviously, the sentence (3.1) is true in S, and the only solutions of the formula
A1∧A2∧A3 are n-tuples of pairwise different elements x1, . . . , xn ordered in some way.
Thus, (3.1) is true in H. Fix an n-tuple (a1, . . . , an) of elements of H that give a solution
of the formula A1 ∧ A2 ∧ A3.

Consider the infinite set T of formulas A1, A2, A3, Bi1,i2,...,ik
. This set is an inconsis-

tent system in S, because for all values of the variables x1, . . . , xn, xn+1, if the formulas
A1, A2, A3 are satisfied, then one of the formulas Bi1,i2,...,ik

is wrong. Thus, the impli-
cation

T → x1 	≡ x1

is true in S.
Consequently, this implication is true in H. Let a be an arbitrary element of H. Let the

free variables x1, . . . , xn, xn+1 have the following values in H: a1, . . . , an, a, respectively.
Then one of the formulas in Γ must be wrong. However, A1, A2, and A3 are true. This
means that one of the formulas Bi1,i2,...,ik

is wrong, whence a is a composition of elements
a1, . . . , an. It has been mentioned above that such a representation is unique.

Thus, H is the free semigroup over the free generators a1, . . . , an, so that H is isomor-
phic to S. �

The case of inverse semigroups is more complicated, but the same idea is realized,
that is, the free generators can be determined in terms of the first-order language.

We consider inverse semigroups as algebras with two operations, a binary multiplica-
tion · and a unary inversion −1 (here a−1 is the inverse of an element a). The class of all
inverse semigroups forms a variety defined by the identities

(xy)z ≡ x(yz), (xy)−1 ≡ y−1x−1, (x−1)−1 ≡ x,

xx−1x ≡ x, x−1xy−1y ≡ y−1yx−1x.

Theorem 3.10. Every free inverse semigroup is separable in the variety of all inverse
semigroups.

Proof. Let S = S(X) be a free inverse semigroup over a set X = {x1, . . . , xn} of free
generators. Let H be an inverse semigroup logically equivalent to S. Consider the
following formulas in the inverse semigroup language:

A1 :
∧

i �=j, i,j=1,...n

(xi 	≡ xj) ∧
∧

i,j=1,...n

(xi 	≡ x−1
j ),

A2 : (∀xn+1 	= x±1
1 , . . . , x±1

n )(∃ xn+2)(xn+1 = x±1
1 xn+2 ∨ · · · ∨ xn+1 = x±1

n xn+2),

A3 :
∧

i �=j, i,j=1,...n

(∀xn+1)((xi 	≡ xjxn+1) ∧ (xi 	≡ x−1
j xn+1)).

Now we close the conjunction of these three formulas in the following way:

(3.2) (∃x1, . . . , xn)(A1 ∧ A2 ∧ A3).

If the elementary formula (3.2) is true in an inverse semigroup H, then there exist n
pairwise different elements a1, . . . , an in H such that every element a different from these
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n elements can be represented either in the form a = aib, or in the form a = a−1
i b

for some i = 1, . . . , n, and some element b ∈ H, and moreover, no element ak can be
represented in this form if k 	= i.

Obviously, the sentence (3.2) is true in S, and the only solutions of the formula
A1 ∧ A2 ∧ A3 are n-tuples of elements u1, . . . , un of the set {x1, . . . , xn, x−1

1 , . . . , x−1
n },

where every ui is different from uj if i 	= j and from u−1
j . Thus, u1, . . . , un are free

generators of S. Since (3.2) is true in S, (3.2) is true in H.
Now, to every two different elements w1 and w2 of S, we assign the formula w1 	≡ w2.

To the resulting set of formulas we add the formulas A1, A2, A3 and come up with a set
T1. It is obvious that T1 is consistent in S. Therefore, T1 has a solution in H. Fix an
n-tuple (a1, . . . , an) of elements of H that gives a solution of all formulas in T1.

Now, to every element w of S we assign the formula xn+1 	≡ w. Adding all these
formulas to T1, we obtain a set T2. Obviously, T2 is inconsistent in S. Thus, T2 is
inconsistent also in H. The function that takes every element xi to ai determines a
homomorphism ϕ : S → H. Since all formulas in T1 are satisfied, this homomorphism is
injective. Since one of the formulas xn+1 	≡ w must be wrong, every element of H belongs
to the image of S, i.e., ϕ : S → H is surjective. Thus, S and H are isomorphic. �

Applying the method used above, we can obtain a general and helpful fact.

Theorem 3.11. If two algebras H1 and H2 in the same variety are logically equivalent,
then they contain the same free subalgebras, which means the following: if one of these
algebras has a free subalgebra of range n, then the other algebra has a free subalgebra of
the same range. Moreover, if H1 contains a free proper subalgebra F , then H2 contains
a proper subalgebra isomorphic to F .

Proof. Suppose H1 has a free subalgebra F of range n with free generators a1, . . . , an.
Consider the free algebra W = W (x1, . . . , xn) over X = {x1, . . . , xn} in our variety. For
every two different elements w1 and w2 of W , we construct the formula w1 	≡ w2. Let T
be the set of all such formulas. The set T has a solution a1, . . . , an in H1. Then T has a
solution b1, . . . , bn in H2.

Let η : W → B be a homomorphism that assigns the element bi to every xi. Since all
formulas in T become true, η is an injection of W into H2. Thus, H2 has a subalgebra
isomorphic to F .

Let F be a proper free subalgebra of H1. To the set T , we add all formulas of the
form xn+1 	≡ w, where w ∈ W . The resulting set T1 is consistent in H1, whence T1 is
consistent in H2. The solution of T1 in H2 generates a proper subalgebra isomorphic
to F . �

Corollary 3.12. If there is no proper subalgebra of a free algebra F isomorphic to F ,
then F is separable in the corresponding variety.

Proof. Let H be logically equivalent to F . Then H has a subalgebra isomorphic to F .
This subalgebra cannot be a proper subalgebra of H if F has no proper free subalgebras
isomorphic to F . �

It is known that there are varieties with free algebras satisfying the condition men-
tioned in the corollary above, for example, the variety generated by a finite group.

It is known that elementary theories pass through any ultrafilter. Below we show that
this is not the case for implicative theories.

We recall [CK] that a filter F on an infinite set I is said to be countably complete if
the intersection of every countable set of elements of F is an element of F. Otherwise,
this filter is countably incomplete.
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Let F be a countable free algebra. Obviously, if an ultrafilter F is countably complete,
then the corresponding ultrapower H = FF is logically equivalent to F . But the existence
of such ultrafilters is problematic, and moreover, H = FF is isomorphic to H. Thus, this
kind of ultrapower is not interesting.

Theorem 3.13. Let F be a free algebra satisfying some nontrivial implicative formula
T → v with countable T . If F is a countably incomplete ultrafilter, then the corresponding
ultrapower G = FF is not logically equivalent to F .

Proof. Since F is countably incomplete, there exists a countable collection A1, . . . , An, . . .
of subsets of I such that they all belong to F but the intersection of them is empty.
Obviously, we may assume that A1 ⊃ · · · ⊃ An ⊃ · · · .

Consider a set T of formulas constructed on the base of n variables and such that T is
in contradiction (has no solution in F ), but every finite subset of T is consistent (has a
solution in F ). Let T = {γ1, γ2, . . . }. Instead of these formulas, we can take the formulas
γ1, γ1 ∧ γ2, . . . , γ1 ∧ γ2 ∧ · · · ∧ γm, . . . . Therefore, we may assume from the very outset
that γk ⇒ γk−1 is true for all k = 2, 3, . . . . Let −→u k = (u1k, . . . , unk) denote a solution of
γk, that is, the sentence γk(−→u k) is true. Then all sentences γk(−→u m) are true for m < k.

Let i ∈ A1. Since the intersection of all sets Ak is empty, there exists m such that
i 	∈ Am. We construct an element of H = FF with the help of the following function:
f(i) = −→u k, where k is the greatest number such that i ∈ Ak, that is, i 	∈ Ak+1 and
f(i) = −→u 1 if i 	∈ A1.

Now, let i ∈ Am. There exists k such that i ∈ Ak \ Ak+1. Thus, f(i) = −→u k and
γk(−→u k) is true. Since k ≥ m, we see that γm(f(i)) = γm(−→u k) is also true. Hence, the
set A of all elements i ∈ I such that γm(f(i)) is true includes Am, and therefore, this set
A belongs to the ultrafilter F. We have proved that the function f determines a solution
of all formulas in T . �
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