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SOME REMARKS ON SPHERICAL HARMONICS

V. M. GICHEV

Abstract. Several observations on spherical harmonics and their nodal sets are pre-
sented: a construction for harmonics with prescribed zeros; a natural representation
for harmonics on S2; upper and lower bounds for the nodal length and the inner
radius (the upper bounds are sharp); the sharp upper bound for the number of com-
mon zeros of two spherical harmonics on S2; the mean Hausdorff measure of the
intersection of k nodal sets for harmonics of different degrees on Sm, where k ≤ m
(in particular, the mean number of common zeros of m harmonics).

Introduction

This article contains several observations on spherical harmonics and their nodal sets;
the emphasis is on the case of S

2.
Let M be a compact connected homogeneous Riemannian manifold, let G be a compact

Lie group acting on M transitively by isometries, and let E be a G-invariant subspace of
the (real) eigenspace for some nonzero eigenvalue of the Laplace–Beltrami operator. We
show that each function in E can be realized as the determinant of a matrix whose entries
are values of the reproducing kernel for E . There is a similar well-known construction for
orthogonal polynomials. However, the method does not work in the case of an arbitrary
finite-dimensional G-invariant subspace of C(M) (see Remark 2). There is a natural and
unique (up to scaling factors) realization of this type for spherical harmonics on S

2. It
can be obtained by complexification and restriction to the null-cone x2 + y2 + z2 = 0 in
C3. There is a two-sheeted equivariant covering of this cone by C2, which identifies the
space Hn of harmonic homogeneous complex-valued polynomials of degree n on R3 with
the space P2

2n of homogeneous holomorphic polynomials on C
2 of degree 2n.1

The set of all zeros of a real spherical harmonic u is called a nodal set. We say that u
and its nodal set Nu are regular if 0 is not a critical value of u. Then each component
of Nu is a Jordan contour. In accordance with [11], any two nodal sets Nu, Nv, where
u, v ∈ HR

n and n > 0, have a nonempty intersection; moreover, if u is regular, then each
component of Nu contains at least two points of Nv. The set Nu ∩ Nv may be infinite,
but the family of such pairs (u, v) is closed and nowhere dense in HR

n ×HR
n. If Nu ∩ Nv

is finite, then cardNu ∩ Nv ≤ 2n2. This estimate follows from the Bezout theorem and
is sharp. This gives an upper bound (probably, not sharp) for the number of critical
points of a generic spherical harmonic. The configuration of critical points is always
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1In 1876, Sylvester used an equivalent construction to refine Maxwell’s method for representation

of spherical harmonics. In accordance with it, we must differentiate the function 1/r, where r is the
distance to the origin, in suitable directions in R3 to get a real harmonic. The directions are determined
uniquely; the corresponding points in S2 are called the poles (see [15, Chapter 9] or [3, 11.5.2]; the books
[7, Chapter 7, § 5] and [1, Appendix A] contain extended expositions and further information).
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degenerate in a sense (see Remark 5). The problem of finding lower bounds seems to be
more difficult. Partial results and computer experiments show that 2n may be the sharp
lower bound.

The investigation of metric and topological properties of nodal sets has a long and
rich history; we only give a few remarks on the subject of this paper. Let ∆ be the
Laplace–Beltrami operator, and let λ be an eigenvalue of −∆.

In 1978, Brüning [5] found a lower bound of the form c
√

λ for the length of a nodal
set on a Riemann surface. Yau conjectured (see [22, Problem 74]) that the Hausdorff
measure of the nodal set of a λ-eigenfunction on a compact Riemannian manifold admits
upper and lower bounds of type c

√
λ. This conjecture was proved by Donnelly and

Fefferman in [8] for real analytic manifolds. In [18], Savo proved that 1
11 Area(M)

√
λ is

a lower bound for the length of a nodal set in a surface M for all sufficiently large λ (and
for all λ if the curvature is nonnegative). Upper and lower estimates of the inner radius
were found by Mangoubi (see [13, 14]); in the case of surfaces, they are of order of λ− 1

2

(see [13]).
The 1-dimensional Hausdorff measure of a set on S2 can be found by integrating over

SO(3) the counting function for the number of its common points with the translates
of a suitable subset of S2 (see Theorem 4). Using estimates for the number of common
zeros, we give upper and lower bounds for the length of a nodal set and for the inner
radius of a nodal domain in S2. The upper bounds are sharp.

Let Hm+1
n be the space of all real spherical harmonics of degree n on the unit sphere

Sm in Rm+1. Assigning to a point of Sm the evaluation functional at it on Hm+1
n , we get

an equivariant immersion of Sm to the unit sphere in Hm+1
n , which is locally a metric

homothety with the coefficient
√

λn

m , where λn = n(n+m−1) is the eigenvalue of −∆ in
Hm+1

n . This makes it possible to calculate the mean Hausdorff measure of the intersection
of the nodal sets of k harmonics of degrees n1, . . . , nk: it is equal to c

√
λn1 · · ·λnk

, where
c depends only on m and k and k ≤ m (Theorem 6). In particular, if k = m, then we
get the mean number of common zeros of m harmonics, equal to 2m−m

2
√

λn1 · · ·λnm
; if

m = 2, then we get
√

λn1λn2 . In [8], Donnelly and Fefferman wrote: “A main theme
of this paper is that a solution of ∆F = −λF , on a real analytic manifold, behaves like
a polynomial of degree c

√
λ.” Following this idea, L. Polterovich conjectured that the

mean number of common zeros is subject to the Bézout theorem, i.e., that it is as above.
Thus, the result for k = m confirms this conjecture up to multiplication by a constant,
and may be treated as “the Bézout theorem in the mean” for the spherical harmonics.
For k = 1, by different but similar methods, the mean Hausdorff measure was found by
Bérard in [4] and Neuheisel in [16]. The case of a flat torus was investigated by Rudnick
and Wigman in [17].

§1. Construction of eigenfunctions that vanish on prescribed finite sets

In this section, M is a compact connected oriented homogeneous Riemannian manifold
of a compact Lie group G acting by isometries on M , ∆ is the Laplace–Beltrami operator
on M ,

(1) λ > 0

is an eigenvalue of −∆, Eλ is the corresponding real eigenspace (i.e., Eλ consists of real-
valued eigenfunctions), and E is its G-invariant linear subspace. Thus, E is a finite sum
of G-invariant irreducible subspaces of C∞(M). The invariant measure with the total
mass 1 on M is denoted by σ, L2(M) = L2(M, σ). For any a ∈ M , there exists a unique
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φa ∈ E that realizes the evaluation functional at a: 〈u, φa〉 = u(a) for all u ∈ E . Put

φ(a, b) = φa(b), a, b ∈ M.

It follows that

φ(a, b) = φa(b) = 〈φa, φb〉 = 〈φb, φa〉 = φb(a) = φ(b, a),(2)

u(x) = 〈u, φx〉 =
∫

φ(x, y)u(y) dσ(y) for all u ∈ E ,(3)

x ∈ Nu ⇐⇒ φx ⊥ u,(4)

φx 
= 0 for all x ∈ M.(5)

The last relation holds true by the homogeneity of M . By (3), φ(x, y) is the reproducing
kernel for E (i.e., the mapping u(x) →

∫
φ(x, y)u(y) dσ(y) is the orthogonal projection

onto E in L2(M)).
Let a1, . . . , ak, x, y ∈ M . Let a = (a1, . . . , ak) ∈ Mk, and let a also denote the

corresponding k-subset of M : a = {a1, . . . , ak}. Set

Φa
k(x, y) = Φa

k,y(x) = det

⎛
⎜⎜⎜⎝

φ(a1, a1) . . . φ(a1, ak) φ(a1, y)
...

. . .
...

...
φ(ak, a1) . . . φ(ak, ak) φ(ak, y)
φ(x, a1) . . . φ(x, ak) φ(x, y)

⎞
⎟⎟⎟⎠ .(6)

Obviously, Φa
k(x, y) = Φa

k(y, x). We fix y and set v = Φa
k,y. Then, by (6), v ∈ E and

(7) a1, . . . , ak ∈ Nv.

We say that a1, . . . , ak are independent if the vectors φa1 , . . . , φak
∈ E are linearly inde-

pendent. For a subset X ⊆ M , put

(8) NX = span{φx : x ∈ X}.
If X = Nu, where u ∈ E , then we abbreviate: NNu

= Nu. Set n = dim E − 1. Condition
(1) implies that n ≥ 1 (note that E is real and G-invariant).

Lemma 1. Let a ∈ Mk, where k ≤ n. Then a1, . . . , ak are independent if and only if
Φa

k,y 
= 0 for some y ∈ M .

Proof. By (4), we have E = NM , and Na 
= E because k ≤ n. Therefore, if a1, . . . , ak are
independent, then we get an independent set by adding y to a, for some y ∈ M . Then
Φa

k,y 
= 0 because Φa
k,y(y) > 0 (by (2) and (6), Φa

k,y(y) is the determinant of the Gram
matrix for the vectors φa1 , . . . , φak

, φy). Clearly, Φa
k,y = 0 for all y ∈ M if a1, . . . , ak are

dependent. �
The following proposition implies that each function in E can be realized in the

form (6).

Proposition 1. For any u ∈ E, Nu = u⊥ ∩ E.

Lemma 2. If u, v ∈ E and Nv ⊇ Nu, then v = cu for some c ∈ R.

Proof. This immediately follows from the inclusion Nv ⊇ Nu and Lemma 1 in [11], which
states that v = cu for some c ∈ R if there exist nodal domains U, V for u, v, respectively,
such that V ⊆ U . �

Here is a sketch of the proof of this lemma; it is based on the same idea as Courant’s
nodal domain theorem. Since u does not change its sign in U , λ is the first Dirichlet
eigenvalue for U . Hence, it has multiplicity 1 and D(w) ≥ λ‖w‖L2(U) for all w ∈ C2(M)
that vanish on ∂U , where D is the Dirichlet form on U . Moreover, equality occurs if and
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only if w = cu for some c ∈ R. On the other hand, if w vanishes outside V and coincides
with v in V , then we have equality.

Proof of Proposition 1. If v ∈ E and v ⊥ Nu, then Nv ⊇ Nu by (4). Thus, v ∈ Ru by
Lemma 2. Therefore, Nu ⊇ u⊥ ∩ E . The reverse inclusion is evident. �

Let Φ : Mn+1 → E be the mapping (a, y) �→ Φa
n,y; we set U = Φ(Mn+1).

Theorem 1. (i) Let u ∈ E, u 
= 0. For (a, y) ∈ Nn
u × M , we have

(9) Φ(a, y) = c(a, y)u,

where c is a continuous nontrivial function on Nn
u × M .

(ii) U is a compact symmetric neighborhood of zero in E .
(iii) For every a ∈ Mn, there exists a nontrivial nodal set containing a; for a generic

point a, this set is unique.

Proof. Let a ∈ Nn
u . If a1, . . . , an are independent, then codimNa = 1; since u ⊥ Nu

by (4), we get (9), where c(a, y) 
= 0 for some y ∈ M by Lemma 1. If a1, . . . , an

are dependent, then Φ(a, y) = 0 for all y ∈ M by the same lemma. The function c is
continuous by (6); it is nonzero because the set Nu contains independent points a1, . . . , an

by Proposition 1. This proves (i).
By (6), Φ is continuous. Hence, U is compact. Since M is connected, for any u ∈ U

we may get the segment [0, u] by moving y; hence, U is starlike. Since transposition of
every two points in a changes the sign of c(a, y), U is symmetric if n > 1; for n = 1,
U is a disk in E because it is G-invariant and starlike. Thus, U is compact, symmetric,
starlike, and

⋃
t>0 tU = E . Hence, U is a neighborhood of zero, i.e., (ii) is true.

For a ∈ Mn, let a′ ⊆ a be a maximal independent subset of a. Then Φa′

k,y 
= 0 for
some y ∈ M by Lemma 1, where k = card a′. Set v = Φa′

k,y. By (7), we have a′ ⊂ Nv. By
(4), Nv contains any point x ∈ M such that φx ∈ Na′ . Hence, Nv includes a. The set
Nv is unique if a1, . . . , an are independent, because codimNv = 1 in this case. Since M
is homogeneous and E is finite-dimensional, the functions φx, x ∈ M , are real analytic.
Therefore, either Φa

n,y = 0 for all (a, y) ∈ Mn+1, or Φa
n,y 
= 0 for generic (a, y) (note that

M is connected). Finally, Φa
n,y 
= 0 for some (a, y) ∈ Mn+1, because NM = E due to (4)

and (5). �

A closed subset X ⊆ M is called an interpolation set for a function space F ⊆ C(M)
if F|X = C(X).

Corollary 1. Let k ≤ dim E . For generic a1, . . . , ak ∈ M , the set a = {a1, . . . , ak} is an
interpolation set for E .

Remark 1. The function c may vanish on some components of the set Nn
u × M . For

example, let M be the unit sphere S2 ⊂ R3, and let E be the restriction to it of the space
of harmonic homogeneous polynomials of degree k; then dim E = 2k+1, n = 2k. If k > 1,
then any big circle S1 in S2 is contained in several nodal sets (for example, the nodal sets
of the functions x1f(x2, x3), where f is harmonic, contain the big circle {x1 = 0} ∩ S2);
moreover, if k is odd, then S1 may be a component of Nu. Hence, codimNS1 > 1 and
Φ(a, y) = 0 for all (a, y) ∈

(
S

1
)n × S

2.

Remark 2. Theorem 1 fails for a generic finite-dimensional G-invariant subspace E ⊆
C(M). Indeed, if dim E > 1 and E contains constant functions, then it includes the open
subset of functions without zeros, which evidently cannot be realized in the form (6).
Furthermore, the theorem implies that the products φa1 ∧ · · · ∧ φan

fill a neighborhood
of zero in the nth exterior power of E , which can be identified with E . Obviously, this



SOME REMARKS ON SPHERICAL HARMONICS 557

property implies the interpolation property of Corollary 1, but the converse is not true;
an example is the space of all homogeneous polynomials of degree m > 1 on R3, restricted
to S2 (or the space of all polynomials of degree less than n on [0, 1] ⊂ R, where n > 2).

§2. Spherical harmonics on S2

Let Pm
n denote the space of all homogeneous holomorphic polynomials of degree n

on Cm and/or the space of all complex-valued homogeneous polynomials of degree n on
R

m; clearly, there is a one-to-one correspondence between these spaces. Its subspace of
polynomials that are harmonic on Rm is denoted by Hm

n ; we omit the index m in Hm
n if

m = 3. Then dimHn = 2n + 1. The polynomials in Hm
n , as well as their traces on the

unit sphere Sm−1 ⊂ Rm, are called spherical harmonics. They are eigenfunctions of the
Laplace–Beltrami operator; if m = 3, then the corresponding eigenvalue is −n(n + 1).
For the proof of these facts, see, e.g., [19]. We say that u ∈ Pm

n is real if it takes real
values on Rm.

The standard inner product in Rm and its bilinear extension to Cm will be denoted
by 〈 , 〉, and

r(v) = |v| =
√
〈v, v〉, v ∈ R

m,

so that r2 is a holomorphic quadratic form on Cm. For a ∈ Cm, set

la(v) = 〈a, v〉 .

The functions Φa
k(x, y) admit holomorphic extensions relative to all variables (except

for k). If M = S
2 ⊂ R

3, then the extension to C
3 and subsequent restriction to the

null-cone
S0 = {z ∈ C

3 : r2(z) = 0}
makes it possible to construct a kind of a natural representation in the form (6), which
is unique up to multiplication by a complex number, for any complex-valued spherical
harmonic. The projection of S0 to CP2 is the Riemann sphere CP1. The cone S0 admits
a natural parametrization:

(10) κ(ζ1, ζ2) = (z1, z2, z3) = (2ζ1ζ2, ζ
2
1 − ζ2

2 , i(ζ2
1 + ζ2

2 )), ζ1, ζ2 ∈ C.

Lemma 3. The mapping R : Hn → P2
2n defined by

Rp = p ◦ κ

is one-to-one and intertwines the natural representations of SO(3) and SU(2) in Hn and
P2

2n, respectively.

Proof. Clearly, p ◦ κ is a homogeneous polynomial on C2 of degree 2n for any p ∈ P3
n.

Further, κ is equivariant with respect to the natural actions of SU(2) in C2 and SO(3)
in C

3: an easy calculation with (10) shows that the change of variables ζ1 → aζ1 + bζ2,
ζ2 → −bζ1 + aζ2, where |a|2 + |b|2 = 1, induces a linear transformation in C3 that
preserves r2 and leaves R3 invariant (in other words, the transformation of P2

2 induced
by this change of variables in the base 2ζ1ζ2, ζ2

1 − ζ2
2 , i(ζ2

1 + ζ2
2 ) corresponds to a matrix

in SO(3)). Hence, R is an intertwining operator. It is well known that

P3
n = Hn ⊕ r2P3

n−2

(see, e.g., [19]). Since R 
= 0 and Rr2 = 0, we get RHn 
= 0. It remains to note that the
natural representations of these groups in Hn and P2

n are irreducible. �

Corollary 2. For any p ∈ Hn \ {0}, the set p−1(0) ∩ S0 is a union of 2n complex
lines; some of them may coincide. If the lines are distinct, q ∈ Hn, and p−1(0) ∩ S0 =
q−1(0) ∩ S0, then q = cp for some c ∈ C.
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Proof. Clearly, κ maps lines onto lines and induces an embedding of CP1 into CP2. �

The functions φa of the previous section can be written explicitly:

φa(x) = cnPn(〈a, x〉), where a, x ∈ S
2,

cn is a normalizing constant, and Pn is the nth Legendre polynomial:

Pn(t) =
1

2nn!
dn

dtn
(t2 − 1)2n.

There is a unique extension of
φ(a, x) = φa(x)

to R3 that is homogeneous of degree n and harmonic in both variables (it is also symmetric
and extends to C

3 holomorphically). For example, if n = 3, then 2P3(t) = 5t3 − 3t, and
φ(a, x) is proportional to 5 〈a, x〉3 − 3 〈a, a〉 〈a, x〉 〈x, x〉 (if a = (1, 0, 0), then this reduces
to 2x3

1 − 3x1x
2
2 − 3x1x

2
3). Of course, the representation of p ∈ Hn in the form (6) holds

true for M = S
2, but there is a more natural version in this case. For ζ = (ζ1, ζ2) ∈ C

2,
set jζ = (−ζ2, ζ1).

Theorem 2. Let p ∈ Hn. Suppose that p−1(0) ∩ S0 is the union of distinct lines
Ca1, . . . , Ca2n. Then there exists a constant c 
= 0 such that

(11) p(x)p(y) = c det

⎛
⎜⎜⎜⎝

〈a1, a1〉n . . . 〈a1, a2n〉n 〈a1, y〉n
...

. . .
...

...
〈a2n, a1〉n . . . 〈a2n, a2n〉n 〈a2n, y〉n
〈x, a1〉n . . . 〈x, a2n〉n 〈x, y〉n

⎞
⎟⎟⎟⎠

for all y ∈ S0, x ∈ C
3. Moreover, replacing 〈x, y〉n with φ(x, y) in the matrix, we get

such a representation of p(x)p(y) for all x, y ∈ C3 (with another c in general).

Proof. A calculation shows that 〈a, x〉n is harmonic in x for all n if a ∈ S0. Hence,
the function Φa

y(x) = Φa(x, y) on the right-hand side belongs to Hn for each y ∈ S0.
Clearly, Φa

y(ak) = 0 for all k = 1, . . . , 2n. By Corollary 2, Φa
y is proportional to p. Since

Φa(x, y) = Φa(y, x), we get (11) if the right-hand side is nontrivial. Thus, we must prove
that c 
= 0. Let x ∈ S0. There exist α1, . . . , α2n, ξ, η ∈ C2 such that ak = κ(αk) for all k,
x = κ(ξ), and y = κ(η). By a straightforward calculation, for any a, b ∈ C2 we get

(12) 〈κ(a), κ(b)〉 = −2 〈a, jb〉2 .

Hence, the right-hand side of (11) is equal to

(13) −2(2n+1)nc det

⎛
⎜⎜⎜⎝

〈α1, jα1〉2n . . . 〈α1, jα2n〉2n 〈α1, jη〉2n

...
. . .

...
...

〈α2n, jα1〉2n . . . 〈α2n, jα2n〉2n 〈α2n, jη〉2n

〈ξ, jα1〉2n . . . 〈ξ, jα2n〉2n 〈ξ, jη〉2n

⎞
⎟⎟⎟⎠ .

The determinant can be calculated explicitly. More generally, if C = (crs)k+1
r,s=1, where

crs = 〈ar, bs〉k, ar, bs ∈ C2, then

(14) detC =
k∏

r=1

(
k

r

) ∏
s<r

〈ar, jas〉
∏
s<r

〈br, jbs〉 .

Let ar = (ar,1, ar,2), bs = (bs,1, bs,2). If all the entries are nonzero, then

crs =
k∑

t=0

(
k

r

)
(ar,1bs,1)t(ar,2bs,2)k−t = ak

r,2b
k
s,1

k∑
t=0

(
k

r

)(
ar,1

ar,2

)t (
bs,2

bs,1

)k−t

.
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We can factor out common factors from rows and columns of C. Then we get a matrix
C̃ that admits the decomposition C̃ = AB, where

A =
((k

r

)
αt

r

)k

r,t=0
, B =

(
βk−t

s

)k

t,s=0
, αr =

ar,1

ar,2
, βs =

bs,2

bs,1
.

Thus, the computation of detC is reduced to the Vandermonde determinant. A straight-
forward calculation proves (14); obviously, the assumption that the entries are nonzero
is not essential. By (14) and (12), this implies that the determinant in (13) is nonzero
if the lines Cξ, Cη, Ca1, . . . , Ca2n are distinct (if a ∈ S0, then the plane 〈z, a〉 = 0
intersects S0 along the line Ca). Hence, c 
= 0.

The definitions of Pn and φ show that

(15) φ(x, y) = sn 〈x, y〉n + r2(x)r2(y)h(x, y),

where sn > 0 is a constant and h is a polynomial. Therefore, we can get a function
f 
= 0 on C3 that coincides with p(x) on S0 up to a constant factor, by replacing 〈x, y〉n
with φ(x, y) in (11) and fixing a generic y ∈ C3. By Corollary 2, the same is true on
C

3 because f ∈ Hn by (11) (all functions in the last row are harmonic in x). Since
φ(x, y) = φ(y, x), this proves the second assertion. �

Remark 3. The set p−1(0)∩S0, where p ∈ Hn, is also distinguished by the orthogonality
condition ∫

S2
p(x) 〈x, w〉n dσ(x) = 0,

where σ is the invariant measure on S
2 and w ∈ S0. This is a consequence of (15)

because
∫

p(x)φ(x, y) dσ(x) = p(y) for all y ∈ S2, hence for all y ∈ R3 (p(y) and φx(y)
are homogeneous of degree n), and moreover, for all y ∈ C3 (both sides are holomorphic
on y). In particular, this is true for y ∈ S0, but φ(x, y) = sn 〈x, y〉n in this case.

If p−1(0) ∩ S0 is the union of distinct lines Cak, k = 1, . . . , 2n, then the functions
〈x, ak〉n, k = 1, . . . , 2n, form a linear base for the space of functions in Hn that are
orthogonal to p with respect to the bilinear form

∫
fg dσ. This is a consequence of (12):

it is easy to check that the functions 〈ζ, bs〉k on C2, where s = 1, . . . , k, are linearly
independent if the lines Cbs are distinct (the Vandermonde determinant).

We conclude this section with remarks on the number of zeros in S2 of functions in
Hn. Let f ∈ Hn, u = Re f , v = Im f . A zero of f is a common zero of u and v. The
following proposition was proved in [11] in a slightly more general form. We say that u
is regular if zero is not a critical value for u.

Proposition 2 (see [11]). Suppose n > 0, u ∈ Hn. If u is regular, then for any v ∈ Hn

each connected component of Nu contains at least two points of Nv.

The assertion follows from the Green formula, which implies that

(16)
∫

C

v
∂u

∂n
ds = 0,

where C is a component of Nu (Nu is a Jordan contour because u is regular), ds is the
length measure on C, and ∂u

∂n is the normal derivative; note that ∂u
∂n keeps its sign on C.

For the standard sphere S2, (16) follows from the classical Green formula for the domain
Dε = (1 − ε, 1 + ε) × S

2, where ε ∈ (0, 1), and for the extensions of u, v to Dε that are
homogeneous of degree 0.

Let u, v ∈ Hn be real and regular. Set

ν(u, v) = card Nu ∩ Nv.
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For singular u, v, the zeros must be counted with their multiplicities; if u, v ∈ Hn, then
the multiplicity of a zero can be defined as the number of smooth nodal lines that meet
at it; if u, v have multiplicities k, l at their common zero, then we must count it kl
times (the greatest number of common zeros that arise under small perturbations). If
u = φa with a ∈ S2, then Nu is the union of n parallel circles 〈x, a〉 = tk, x ∈ S2, where
k = 1, . . . , n and t1, . . . , tn are the zeros of Pn(t). Since they are distinct, P ′

n(tk) 
= 0 for
all k. Proposition 2 shows that

ν(φa, v) ≥ 2n,

for any real v ∈ Hn, where a ∈ S
2. If b ∈ S

2 is sufficiently close to a, then equality
occurs for v = φb. In the inequality above, φa and n may be replaced with any regular
u and the number of components of Nu, respectively. The latter can be less than n (in
accordance with [12], it can be equal to one or two if n is odd or even, respectively).2

However, computer experiments support the following conjecture: ν(u, v) ≥ 2n for all
real u, v ∈ Hn.

The common zeros must be counted with their multiplicities. Otherwise, there is
a simple example of two harmonics with only two common zeros: Re(x1 + ix2)n and
Im(x1 + ix2)n.

On the other hand, for generic real u, v ∈ Hn there is a trivial sharp upper bound for
ν(u, v). We prove a version that is a bit stronger.

Proposition 3. Let u, v ∈ Hn be real. If ν(u, v) is finite, then

(17) ν(u, v) ≤ 2n2.

By the Bézout theorem, if u, v ∈ P3
n have no proper common divisor, then the set

{z ∈ C3 : u(z) = v(z) = 0} is the union of n2 (with multiplicities) complex lines.
Then ν(u, v) ≤ 2n2 because each line has at most two common points with S2. The
proposition is not an immediate consequence of this fact because u and v may have a
nontrivial common divisor with a finite number of zeros in S

2. This cannot happen for
u, v ∈ Hn by the following lemma.

Lemma 4. Suppose u ∈ Hn is real, x ∈ S2, and u(x) = 0. Suppose u = vw, where
v ∈ P3

m and w ∈ P3
n−m are real. If w(y) 
= 0 for all y ∈ S2 \ {x} sufficiently close to x,

then w(x) 
= 0.

Proof. We may assume x = (0, 0, 1). If u has a zero of multiplicity k at x, then

u(x1, x2, x3) = pk(x1, x2)xn−k
3 + pk+1(x1, x2)xn−k−1

3 + · · · + pn(x1, x2),

where pj ∈ P2
j , pk 
= 0. Since ∆u = 0, we have ∆pk = 0. Hence,

pk(x1, x2) = Re(λ(x1 + ix2)k)

for some λ ∈ C \ {0}. Therefore, pk is the product of k distinct linear forms. Let

w = ql(x1, x2)xn−m−l
3 + ql+1(x1, x2)xn−m−l−1

3 + · · · + qn−m(x1, x2),

v = rs(x1, x2)xm−s
3 + rs+1(x1, x2)xm−s−1

3 + · · · + rm(x1, x2),

where qj , rj ∈ P2
j and ql, rs 
= 0. Since pk = qlrs, we have k = l+s; moreover, either ql is

constant or it is a product of distinct linear forms. The latter implies that it changes its
sign near x; then the same is true for w, contradictory to the assumption. Hence, l = 0.
Thus, ql 
= 0 implies w(x) = ql(x) 
= 0. �

2The corresponding harmonic is a small perturbation of the function Re(x1 + ix2)n.
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Proof of Proposition 3. Let u, v ∈ Hn be real, and let w be the greatest common divisor
of u and v. Clearly, w is real. Since Nu ∩ Nv is finite, the zeros of w in S2 must be
isolated; by Lemma 4, w has no zeros in S2. Applying the Bézout theorem to u/w and
v/w, we get the claim. �

Equality in (17) occurs, for example, for the following pairs and their small perturba-
tions:

u = φa, v = Re(x2 + ix3)n, where a = (1, 0, 0);

u = Re(ix2 + x3)n, v = Re(x1 + ix2)n.
(18)

Corollary 3. If the number of critical points for real u ∈ Hn is finite, then it does not
exceed 2n2; in particular, this is true for a generic real u ∈ Hn.

Proof. If x is a critical point of u, then ξu(x) = 0 for any vector field ξ ∈ so(3). It is
possible to choose two fields ξ, η ∈ so(3) that do not annihilate u and are independent
at all critical points; then the critical points of u are precisely the common zeros of
ξu, ηu ∈ Hn. �

Remark 4. This bound is not sharp. At least, for n = 1, 2, the number of critical points
is equal to 2(n2−n+1) provided it is finite. Let u, v be as in (18). Then u+ εv, where ε
is small, has 2(n2 − n + 1) critical points. I know of no example of a spherical harmonic
with a greater (finite) number of critical points.

Remark 5. The consideration above proves a bit more than Corollary 3 says. A nontrivial
orbit of u under SO(3) is either 3-dimensional or 2-dimensional, and the latter occurs if
and only if u = cφa for some constant c and a ∈ S

2. In the first case, the set C of critical
points of u is precisely the set of common zeros of three linearly independent spherical
harmonics (a base for the tangent space to the orbit of u). Hence, codimNC ≥ 3. Note
that generic three harmonics have no common zero. Thus, the configuration of critical
points is always degenerate. The problem of estimation of the number of critical points,
components of nodal sets, nodal domains, etc. for spherical harmonics on S2 was stated
in [2].

Proposition 4. The set I of functions f = u + iv ∈ Hn such that ν(u, v) = ∞ is closed
and nowhere dense in Hn.

Proof. If the set Nu ∩ Nv is infinite, then it contains a Jordan arc that extends to a
contour, because u and v are real analytic (by [6], a nodal set, outside of its finite
subset, is a finite union of smooth arcs). This contour cannot be included into a disk
D contained in some of the nodal domains: otherwise, the corresponding first Dirichlet
eigenvalue would be greater than n(n + 1). Therefore, the diameter of the contour is
bounded from below. This implies that the set I is closed. If f ∈ I, then u and v have
a nontrivial common divisor by the Bézout theorem; hence, I is nowhere dense. �

In all examples known to me, if f ∈ I, then Nu ∩ Nv is a union of circles.

§3. Estimates of nodal lengths and inner radii

Let M be a C∞-smooth compact connected Riemannian manifold, let m = dim M ,
and let hk be the k-dimensional Hausdorff measure on M . Yau conjectured that there
exist positive constants c and C such that

c
√

λ ≤ h
m−1(Nu) ≤ C

√
λ

for the nodal set Nu of any eigenfunction u corresponding to the eigenvalue −λ. For
real analytic M , this conjecture was proved by Donnelly and Fefferman in [8]. In the
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case of a surface, lower bounds were obtained in [5] and [18]; in [18] it was shown that
c = 1

11 Area(M) fits.
First, we consider the case where M = Sm ⊂ Rm+1, m ≥ 1. Set

ψ(x) = Re(x1 + ix2)n.

Clearly, ψ ∈ Hm+1
n . Let φ denote a zonal spherical harmonic; we omit the index because

the geometric quantities that characterize Nφ are independent of it. Set

ωk = h
k(Sk) =

2π
k+1
2

Γ
(

k+1
2

) .

Theorem 3. For any nonzero real u ∈ Hm+1
n , we have

(19) h
m−1(Nu) ≤ h

m−1(Nψ) = nωm−1.

The theorem is simply an observation modulo the following fact (a particular case of
Theorem 3.2.48 in [10]). A set that can be realized as the image of a bounded subset of
R

k under a Lipschitz mapping is said to be k-rectifiable (we only consider sets that can
be realized as a countable union of compact sets). Since u ∈ Hm+1

n is a polynomial, the
set Nu is (m − 1)-rectifiable. Let µm denote the invariant measure on O(m + 1) with
total mass 1.

Theorem 4 (see [10]). Suppose A, B ⊆ Sd are compact, A is k-rectifiable, and B is
l-rectifiable. Set r = k + l − d. Suppose r ≥ 0. Then

(20)
∫

O(d)

h
r(A ∩ gB) dµd(g) = Kh

k(A)hl(B),

where K =
Γ

(
k+1
2

)
Γ

(
l+1
2

)
2Γ

(
1
2

)d Γ
(

r+1
2

) =
ωr

ωkωl
.

If r = 0, then the left-hand side of (20) is a version of the Favard measure for spheres
(on A or B). Also, note that in this setting (20) can be proved directly, because, for
fixed A (or B), the left-hand side is additive on finite families of disjoint compact sets;
thus, it suffices to check its asymptotic behavior on small pieces of submanifolds.

Lemma 5. For any real u ∈ Hm+1
n and each big circle S

1 in S
m, if S

1 ∩ Nu is finite,
then

(21) card(S1 ∩ Nu) ≤ 2n.

Proof. The restriction of u to the linear span of S
1, which is 2-dimensional, is a homo-

geneous polynomial of degree n in two variables. �

Proof of Theorem 3. Since S1 has precisely two points in common with any hyperplane
that does not contain it, for almost all g ∈ O(m + 1) we have

card(gS
1 ∩ Nu) ≤ 2n = card(gS

1 ∩ Nψ).

Integrating over O(m + 1) and applying (20) with k = 1, l = m − 1, A = S
1, B = Nu,

and B = Nψ, we get the inequality in (19). The identity in (19) is evident. �

A lower bound can also be obtained in a similar way. In what follows, we assume that
k = l = 1 and m = 2; then K = 1

2π2 , and (19) reads as follows:

(22) h
1(Nu) ≤ 2πn.

The nodal set Nφ of a zonal spherical harmonic φ = φa ∈ Hn, where a ∈ S
2, is the

union of parallel circles of Euclidean radii
√

1 − t2k, where the tk are the zeros of the
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Legendre polynomial Pn. The smallest circle corresponds to the greatest zero tn. Set
rn =

√
1 − t2n and let Cn be a circle in S2 of Euclidean radius rn. By Proposition 2, for

any u ∈ Hn, we have

(23) card(gCn ∩ Nu) ≥ 2 for all g ∈ O(3).

By (20),

h
1(Nu) ≥ 2π

rn
.

By [21, Theorem 6.3.4], tn = cos θn with

(24) 0 < θn <
j0

n + 1
2

and j0 ≈ 2.4048 is the smallest positive zero of the Bessel function J0. Relation [21,
(6.3.15)] shows that this estimate is asymptotically sharp: limn→∞ nθn = j0. Thus,

rn = sin θn < sin
j0

n + 1
2

<
j0

n + 1
2

,

and we get

(25) h
1(Nu) >

2π

j0

(
n +

1
2

)
.

The bound (25) is not the best possible, but it is greater than 1
11 Area (M)

√
λ, the bound

of the paper [18]:
4π

11

√
n(n + 1) <

2π

j0

(
n +

1
2

)
,

because 4π
11 ≈ 1.4248, 2π

j0
≈ 2.6127; in accordance with [18], 1

11 Area (M)
√

λ estimates
from below the nodal length for all closed Riemannian surfaces M (for sufficiently large
λ in general, and for all λ if the curvature is nonnegative). It seems plausible that the
sharp lower bound may coincide with the length of the nodal set of a zonal harmonic.
By [21, (6.21.5)], we have k− 1

2
n+ 1

2
π ≤ τn−k ≤ k

n+ 1
2
π, where cos τk, k = 0, . . . , n − 1, are the

zeros of Pn in decreasing order (i.e., τ1 = θn). Hence,

h
1(Nφ) = 2π

n∑
k=1

sin θk ≈ 2πn

∫ 1

0

sin πx dx = 4n

as n → ∞. If the conjecture above is true, then the upper bound is rather close to the
lower one, because their ratio tends to π

2 as n → ∞.
It is also possible to estimate the inner radius of S2 \ Nu:

inr(S2 \ Nu) = sup
{

infy∈Nu
ρ(x, y) : x ∈ S

2
}

,

where ρ is the inner metric in S2:

ρ(x, y) = arccos 〈x, y〉 .

The least upper bound is evident:

inr(S2 \ Nu) ≤ inr(S2 \ Nφ) = θn,

by (24). Indeed, equality is attained for u = φ, and the left-hand side cannot be greater
because the circle Cn intersects any nodal set by Proposition 2. Let C(θ) be a circle
of radius θ in the inner metric of S2; then the Euclidean radius of C(θ) is r = sin θ. A
number θ0 > 0 is a lower bound for the inner radius if and only if the following conditions
are fulfilled:

(i) θ0 ≤ θn;
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(ii) for each real u ∈ Hn, there exists g ∈ O(3) such that gC(θ0) ∩ Nu = ∅

(note that the disk bounded by C(θ0) cannot contain a component of Nu, by (i)). Next,
for almost all g ∈ O(3) the number card(gC(θ0)∩Nu) is even. Therefore, we may assume
that

card(gC(θ0) ∩ Nu) ≥ 2
if gC(θ0) ∩ Nu 
= ∅. Set r0 = sin θ0. If (ii) is false, then

2 ≤ 1
2π2

h
1(C(θ0))h1(Nu) =

r0

π
h
1(Nu) ≤ 2r0n

by (20). Thus, if r0 < 1
n , then θ0 is a lower bound for inr(S2 \ Nu). Hence arcsin 1

n is
a lower bound for inr(S2 \ Nu). This estimate seems to be not sharp; perhaps, the set
S2 \ Nψ has the smallest inner radius (it is equal to π

2n ).
We summarize the results on S2.

Theorem 5. Let M = S2. For any nonzero real u ∈ Hn, we have

2π

j0

(
n +

1
2

)
< h

1(Nu) ≤ 2πn,(26)

arcsin
1
n
≤ inr

(
S

2 \ Nu

)
≤ θn <

j0

n + 1
2

.(27)

In (26), the upper bound is attained if u = ψ; the upper bound θn in (27) is attained for
u = φ.

§4. Mean Hausdorff measure of intersections of nodal sets

We fix m ≥ 2 and the unit sphere Sm ⊂ Rm+1. We shall find the mean value over
u1, . . . , uk, k ≤ m, of the Hausdorff measure of the sets

Nu1 ∩ · · · ∩ Nuk
⊂ S

m.

If k = m, then this is the mean number of the common zeros of u1, . . . , um in Sm. Set

n = (n1, . . . , nk), δ(n) = dimHm+1
n − 1,

where n, nj are positive integers. We define the mean value as follows:

(28) Mn =
∫

Sδ(n1)×···×Sδ(nk)
h

m−k (Nu1 ∩ · · · ∩ Nuk
) dσ̃δ(n1)(u1) · · · dσ̃δ(nk)(uk),

where σ̃j denotes the invariant measure on Sj with total mass 1. Let λn be the eigenvalue
of −∆ in Hm+1

n ; we recall that

λn = n(n + m − 1).

Theorem 6. Let 1 ≤ k ≤ m. Then

(29) Mn = ωm−km− k
2
√

λn1 · · ·λnk
,

where Mn is defined by (28).

If k = m, then we get the mean value of card (Nu1 ∩ · · · ∩ Num
); since ω0 = 2 and

h0 = card, it is equal to 2m−m
2
√

λn1 · · ·λnm
.

There is a natural equivariant immersion ιn : Sm → Sδ(n) ⊂ Hm+1
n :

(30) ιn(a) =
φa

|φa|
.

If n is odd, then ιn is one-to-one; for even n > 0, ιn is a two-sheeted covering that identifies
opposite points. Clearly, the Riemannian metric in ι(Sm) is O(m + 1)-invariant, and the
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stable subgroup of a acts transitively on the spheres in TaSm. Hence, the mapping ιn is
locally a metric homothety. Let sn be its coefficient. Clearly,

(31) sn =
|daιn(v)|

|v| ,

where the right-hand side is independent of a ∈ Sm and v ∈ TaSm \ {0}. For any
l-rectifiable set X ⊆ Sm such that X ∩ (−X) = ∅, where l ≤ m, we have

(32) h
l(ιn(X)) = sl

nh
l(X).

Lemma 6. Let u ∈ Hm+1
n , and let X ⊆ Sm be compact, symmetric, and (r+1)-rectifiable,

where r ≤ m − 1. Then∫
Sδ(n)

h
r(Nu ∩ X) dσδ(n)(u) = sn

ωr

ωr+1
h

r+1(X).

Proof. Since both sides are additive with respect to X, we may assume X ∩ (−X) = ∅.
We apply Theorem 4 to the sphere Sδ(n) and its subsets A = Sδ(n)−1 and B = ιn(X).
In the notation of that theorem, d = δ(n), k = d − 1, l = r + 1; Kωk = ωr

ωl
. Replacing

integration over S
d by averaging over O(d + 1) and using (32), we get∫

Sd

h
r(Nu ∩ X) dσd(u) =

1
sr

n

∫
Sd

h
r(ι(Nu ∩ X)) dσd(u)

=
1
sr

n

∫
Sd

h
r(u⊥ ∩ ι(X)) dσd(u) =

1
sr

n

∫
O(d+1)

h
r(gS

k ∩ ι(X)) dµd(g)

=
1
sr

n

Kh
k
(
S

k
)
h

r+1(ι(X)) =
ωr

sr
nωr+1

h
r+1(ι(X)) = sn

ωr

ωr+1
h

r+1(X). �

Corollary 4. The mean value of hm−1(Nu) over u ∈ Hm+1
n is equal to snωm−1.

Proof. Set X = Sm, r = m − 1. �

Corollary 5. Let Mn, m, and k be as in (28). Then

(33) Mn = ωm−k

k∏
j=1

snj
.

Proof. Set X = Nu1 ∩ · · · ∩ Nuk−1 . By Lemma 6,

Mn = snk

ωm−k

ωm−k+1
Mn′ ,

where n′ = (n1, . . . , nk−1). Applying this procedure repeatedly and using Corollary 4 at
the final step, we get (33). �

It remains to find sn. Set d = dim O(m + 1). Since the stable subgroup O(m) of the
point a = (0, . . . , 0, 1) acts transitively on the spheres in TaSm, the invariant Riemannian
metric in S

m can be lifted up to a bi-invariant metric on O(m + 1) in such a way that
the canonical projection O(m + 1) → Sm is a metric submersion. Let ξ1, . . . , ξm, . . . , ξd

be an orthonormal linear basis in the Lie algebra so(m + 1). Realizing so(m + 1) by the
left invariant vector fields on O(m + 1), we get the invariant Laplace–Beltrami operator
on O(m + 1):

∆̃ = ξ2
1 + · · · + ξ2

d.

The sum is independent of the choice of the basis because it is left invariant and this
property holds true at the identity element e. Thus, we may assume that

(34) ξm+1, . . . , ξd ∈ so(m).
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For f ∈ C2(Sm), we set f̃(g) = f(ga). Then 〈∆f, φa〉 = ∆̃f̃(e). Since ι is equivariant,
we have

(35) daι(ξa) =
1

|φa|
ξφa

for all ξ ∈ so(m + 1). From (34) it follows that ξ1a, . . . , ξma is a basis for TaSm, and
ξ1φa, . . . , ξmφa is a basis for Tφa

ι(Sm). Moreover,

|ξka| = 1, k = 1, . . . , m,

ξka = 0, k = m + 1, . . . , d,

where the first relation is true because the projection O(m + 1) → Sm is a metric
submersion. Using these identities and also (30), (31), and (35), we get

ms2
n = s2

n

d∑
k=1

|ξka|2 =
d∑

k=1

|daι(ξka)|2 =
1

|φa|2
d∑

k=1

|ξkφa|2

= − 1
|φa|2

d∑
k=1

〈
ξ2
kφa, φa

〉
= − 1

|φa|2
〈∆φa, φa〉 = λn.

Proof of Theorem 6. In accordance with the calculation above,

sn =

√
λn

m
.

Thus, Corollary 5 implies (29). �

In the case where n1 = · · · = nk = n, there is another natural explanation of formulas
(29) and (33):

Mn = ωm−k

(
λn

m

) k
2

= ωm−ksk
n.

The mean value can be defined as the average over the action of the group O(m + 1) on
the set of subspaces of codimension k in Hm+1

n , which can be realized as Nu1∩· · ·∩Nuk
=

u⊥
1 ∩ · · · ∩ u⊥

k :

Mn =
∫

O(m+1)

h
m−k(ι−1

n (gS
δ(n)−k ∩ ιn(Sm))) dµm(g)

= sk−m
n

∫
O(m+1)

h
m−k(gS

δ(n)−k ∩ ιn(Sm)) dµm(g)

= sk−m
n

ωm−k

ωm
h

m(ι(Sm)) = ωm−ksk
n.

The method of calculation of the mean Hausdorff measure can easily be extended to fami-
lies of invariant (possibly, reducible) finite-dimensional function spaces on a homogeneous
space whose isotropy group acts transitively on the spheres in the tangent space.
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