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ON SOLVABILITY OF PERTURBED SOBOLEV TYPE EQUATIONS

V. E. FEDOROV AND O. A. RUZAKOVA

Abstract. Linear Sobolev type equations

Lu̇(t) = Mu(t) + Nu(t), t ∈ R+,

are considered, with degenerate operator L, strongly (L, p)-radial operator M , and
perturbing operator N . By using methods of perturbation theory for operator semi-
groups and the theory of degenerate semigroups, unique solvability conditions for
the Cauchy problem and Showalter problem for such equations are deduced. The
abstract results obtained are applied to the study of initial boundary value problems
for a class of equations, the operators in which are polynomials of elliptic selfad-
joint operators, including various equations of filtration theory. Perturbed linearized
systems of the phase space equations and of the Navier–Stokes equations are also
considered. In all cases the perturbed operators are integral or differential.

§1. Introduction

We consider the Cauchy problem

(1.1) u(0) = u0

for the Sobolev type equation

(1.2) Lu̇(t) = Mu(t) + Nu(t), t ∈ R+.

This is an abstract form of initial boundary value problems for various equations and
systems of equations modeling real processes [1, 2, 3, 4]. Here U and F are Banach
spaces, L ∈ L(U; F), i.e., L is a continuous linear operator, the operators M, N belong to
Cl(U; F), i.e., they are linear, closed, and densely defined in U and map U to F. The papers
[1, 3, 5, 6, 7, 8] are devoted to finding conditions that ensure the existence of resolving
semigroups from several smoothness classes for the nonperturbed Sobolev type equation
(N = 0). In particular, it was shown that in the case where kerL �= {0} such semigroups
are degenerate. In other words, the identity of such a semigroup has a nontrivial kernel.
If the operator L−1 ∈ L(F ; U) exists, then equation (1.2) can be reduced to the form

(1.3) u̇(t) = L−1Mu(t) + L−1Nu(t), t ∈ R+.

If the operator L−1M generates a (C0)-continuous operator semigroup, then problem
(1.1), (1.3) can be investigated by methods of perturbation theory for operator semi-
groups. The basis of that theory was established in the works [9, 10] by R. Phillips; see
also the bibliography in [11] and Ivanov’s papers [12, 13] concerning semigroup pertur-
bations in locally convex spaces. Our aim in this paper is in applying the methods of
perturbation theory for operator semigroups and of the theory of degenerate semigroups
to the study of problem (1.1), (1.2) in the case where kerL �= {0}. In this case the
perturbed equation can be reduced to a system of two equations on mutually comple-
mentary subspaces, namely, the kernel and the image of the resolving semigroup for the
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nonperturbed equation (N = 0). Since the equation on the image is resolved with respect
to the derivative, the existence of its solution follows from Phillips’ results concerning
perturbed (C0)-semigroups. The equation on the kernel contains a nilpotent operator
applied to the derivative and cannot be analyzed in the general form. However, under
some assumptions on the perturbed operator N , in this paper we find a solution of this
equation and, thereby, of equation (1.2). We illustrate the abstract results obtained by
examples of initial boundary value problems for partial differential equations and systems
of equations.

§2. Preliminaries

Let U, F be Banach spaces. The Banach space of all continuous linear operators from
U to F will be denoted by L(U; F). The notation L(U) will mean that F = U. The set
of all closed linear operators with dense domain in a space U, with values in F, will be
denoted by Cl(U; F). The set Cl(U; U) will be written as Cl(U).

Everywhere in what follows we assume that L ∈ L(U; F), M ∈ Cl(U; F). We also
denote ρL(M) = {µ ∈ C : (µL − M)−1 ∈ L(F; U)}, RL

µ (M) = (µL − M)−1L, LL
µ(M) =

L(µL − M)−1, RL
(λ,p)(M) =

∏p
k=0 RL

µk
(M), LL

(λ,p)(M) =
∏p

k=0 LL
µk

(M), N0 = N ∪ {0},
R+ = {a ∈ R : a > 0}, and R+ = R+ ∪ {0}.

Definition 2.1. An operator M is strongly (L, p)-radial if
(i) there exists a ∈ R such that (a, +∞) ⊂ ρL(M);
(ii) there exists K > 0 such that for any µk ∈ (a, +∞), any k = 0, . . . , p, and any

n ∈ N we have

max{‖(RL
(µ,p)(M))n‖L(U), ‖(LL

(µ,p)(M))n‖L(F)} ≤ K∏p
k=0(µk − a)n

;

(iii) in F there exists a dense subspace F̊ such that

‖M(λL − M)−1LL
(µ,p)(M)f‖F ≤ const(f)

(λ − a)
∏p

k=0(µk − a)
, f ∈ F̊,

for all λ, µ0, µ1, . . . , µp ∈ (a, +∞);
(iv) for all λ, µ0, µ1, . . . , µp ∈ (a, +∞) we have

‖RL
(µ,p)(M)(λL − M)−1‖L(F;U) ≤

K

(λ − a)
∏p

k=0(µk − a)
.

We denote by U0 (F0) the kernel kerRL
(µ,p)(M) (kerLL

(µ,p)(M)), and by U1 (F1) the
closure of the subspace imRL

(µ,p)(M) (imLL
(µ,p)(M)) in the space U (F). By Mk (Lk) we

denote the restriction of M (L) to the subspace domMk = Uk ∩ dom M (Uk), k = 0, 1.

Theorem 2.1 ([6]). If M is a strongly (L, p)-radial operator, then:
(i) U = U0 ⊕ U1, F = F0 ⊕ F1;
(ii) Lk ∈ L(Uk; Fk), Mk ∈ Cl(Uk; Fk), k = 0, 1;
(iii) the operators M−1

0 ∈ L(F0; U0) and L−1
1 ∈ L(F1; U1) exist;

(iv) the operator H = M−1
0 L0 ∈ L(U0) is nilpotent of degree at most p;

(v) there exists a strongly continuous resolving semigroup {U t ∈ L(U) : t ∈ R+} of the
equation Lu̇ = Mu, and

‖U t‖L(U) ≤ Keat, t ∈ R+;

(vi) the infinitesimal generator of the C0-continuous semigroup {U t
1 = U t

∣∣∣
U1

∈ L(U1) :

t ∈ R+} is the operator L−1
1 M1 ∈ Cl(U1).
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Remark 2.1. The projection along U0 to U1 (along F0 to F1) has the form

P = s-lim
µ→+∞

(µRL
µ(M))p+1

(
Q = s-lim

µ→+∞
(µLL

µ(M))p+1
)
.

In the proof of (ii) we use the fact that, under the conditions of Theorem 2.1, we have
QL = LP and QMu = MPu for u ∈ dom M . Put I − Q = Q0.

Theorem 2.2 ([6]). Suppose M is a strongly (L, p)-radial operator, and a function f is
such that Q0f ∈ Cp+1(R+; F), L−1

1 Qf ∈ C1(R+; F). Then for any initial value

u0 ∈ Pf =

{
u ∈ dom M : (I − P )u = −

p∑
k=0

HkM−1
0 (Q0f)(k)(0)

}
there exists a unique solution u ∈ C1(R+; U) ∩ C(R+; domM) of the Cauchy problem
u(0) = u0 for the equation Lu̇ = Mu + f . The solution has the form

(2.1) u(t) = U tu0 +
∫ t

0

U t−sL−1
1 Qf(s) ds −

p∑
k=0

HkM−1
0 (Q0f)(k)(t).

Remark 2.2. We need the condition u0 ∈ dom M to ensure the differentiability of the
function v(t) = U tu0. Strictly speaking, for this purpose the condition u0 ∈ U0+̇ domM1

would suffice.

Theorem 2.3 ([3]). Suppose M is a strongly (L, p)-radial operator, and a function
f is such that Q0f ∈ Cp+1(R+; F), L−1

1 Qf ∈ C1(R+; F). Then for any initial value
u0 ∈ dom M there exists a unique solution u ∈ C1(R+; U)∩C(R+; domM) of the problem
Pu(0) = Pu0 for the equation Lu̇ = Mu + f . This solution has the form (2.1).

§3. The perturbed equation

Let ker L �= {0}, and let the operator M be strongly (L, p)-radial [3, 6]. Applying the
projection Q to the two parts of (1.2) and using Remark 2.1, we obtain the equation

L1v̇ = M1v + QN(v + w),

where Pu(t) = v(t), (I − P )u(t) = w(t), u(t) = v(t) + w(t). Therefore,

(3.1) v̇ = L−1
1 M1v + L−1

1 QNv + L−1
1 QNw.

Applying the operator M−1
0 (I − Q) to equation (1.2), we get

(3.2) Hẇ = w + M−1
0 Q0Nw + M−1

0 Q0Nv,

where Q0 = I − Q. Thus, equation (1.2) reduces to the system (3.1), (3.2).
If the equation

(3.3) v̇(t) = L−1
1 M1v(t) + L−1

1 QN1v(t),

where N1 = N
∣∣∣
U1

, admits a resolving semigroup Ũ t, t ∈ R+, then the solution of the
Cauchy problem

(3.4) v(0) = Pu(0) = Pu0 = v0

for equation (3.1) can be written in the form

(3.5) v(t) = Ũ tv0 +
∫ t

0

Ũ t−sL−1
1 QNw(s) ds.

Conditions sufficient for the existence of a (C0)-continuous resolving semigroup for
equation (3.3) were found by Phillips [9, 14] in terms of perturbation theory for operator
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semigroups. Here the operator L−1
1 QN1 plays the role of the perturbing operator. To

formulate these conditions, we need to introduce some additional notions.
Let V be a Banach space, and let an operator A ∈ Cl(V) be the infinitesimal generator

of a (C0)-continuous semigroup of operators {V t ∈ L(V) : t ∈ R+}.

Definition 3.1. Let P(A) denote the set of operators B ∈ Cl(V) satisfying the conditions
(i) dom B ⊇ dom A;
(ii) for any t ∈ R+ there exists Ct ∈ R+ such that for all v in a subspace V̊ dense in

V we have
‖BV tv‖V ≤ Ct‖v‖V;

(iii) in (ii), the constants Ct can be chosen so that
∫ 1

0
Ct dt < ∞.

By the results of [9, 14], if the Hille–Yosida conditions are fulfilled for the operator
L−1

1 M1, and if the operator L−1
1 QN1 belongs to the class P(L−1

1 M1), then equation
(3.3) admits a (C0)-continuous resolving semigroup. It is easy to check that this means
precisely that the operator N satisfies the following conditions:

(i) dom N ∩ U1 ⊇ dom M ∩ U1;
(ii) for any t ∈ R+ there exists Ct ∈ R+ such that for all u in a subspace Ů1 dense in

U1 we have
‖NU tu‖U ≤ Ct‖u‖U;

(iii) the constants Ct in (ii) can be chosen so that
∫ 1

0
Ct dt < ∞.

The set of all operators satisfying these three conditions will be denoted by P(L, M).

Remark 3.1. If N ∈ L(U; F), then, obviously, N ∈ P(L, M). By Theorem 2.1 (v), we can
take Ct = Keat‖N‖L(U;F).

Remark 3.2. If Ni ∈ P(L, M), i = 1, 2, then N1 + N2 ∈ P(L, M).

We formulate the Phillips theorem on perturbation of a (C0)-continuous semigroup in
terms of equation (3.3).

Theorem 3.1 ([14]). Let M be strongly (L, p)-radial, and let N ∈ P(L, M). Then
equation (3.3) admits a (C0)-continuous semigroup of the form

(3.6)

{
Ũ t =

∞∑
n=0

Sn(t) ∈ L(U) : t ∈ R+

}
,

where

S0(t) = U t
1, Sn(t)u =

∫ t

0

U t−s
1 L−1

1 QNSn−1(s)u ds, u ∈ U
1, t ∈ R+, n ∈ N.

Moreover, the series (3.6) converges absolutely and uniformly in t on any finite interval in
R+, and the operator-valued functions Sn(·), n ∈ N, are strongly continuous in t on R+.

Application of this theorem allows us to establish the solvability of equation (3.1). The
case of equation (3.2) is more difficult, because of the term M−1

0 Q0Nw. In [15], the case
where H = 0, ‖M−1

0 Q0N0‖ < 1 was considered. However, in applications, as a rule, it is
very hard to estimate the norm of such an operator. We shall consider the cases where
this term vanishes. It is easily seen that this happens if U0 ⊂ kerN or N [U0] ⊂ F1. In
the second case it is possible to express w as a function of v and of its derivatives of order
at most p, because the operator H is nilpotent. If we substitute this function in (3.5),
we obtain a complicated high order integro-differential equation for v. We shall simplify
the situation by assuming that im N ⊂ F1. Then it is easy to obtain the following result.
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Theorem 3.2. Suppose the operator M is strongly (L, p)-radial, N ∈ P(L, M), im N ⊂
F1, and u0 ∈ dom M1. Then there exists a unique solution u ∈ C1(R+; U) of problem
(1.1), (1.2). This solution has the form u(t) = Ũ tPu0.

Proof. If im N ⊂ F1, then Q0N = 0. In this case, equation (3.2) becomes Hẇ(t) = w(t),
so that it has a unique solution w ≡ 0 because H is nilpotent (see [3, 6]). Therefore,
the Cauchy problem w(0) = (I − P )u0 for (3.2) has a solution only if u0 ∈ U1, and then
u(t) = v(t) = Ũ tPu0 is a solution of problem (1.1), (1.2). �

Now we consider the first of the cases mentioned above: U0 ⊂ ker N .

Theorem 3.3. Suppose M is strongly (L, p)-radial, N ∈ P(L, M), dom M ⊂ dom N ,
U0 ⊂ ker N , Pu0 ∈ im RL

(µ,p)(M), and

(3.7) (I − P )u0 = −
p∑

k=0

HkM−1
0 Q0N(L−1

1 M1 + L−1
1 QN1)kPu0.

Then problem (1.1), (1.2) admits a unique solution u ∈ C1(R+; U). This solution has the
form

u(t) = Ũ tPu0 −
p∑

k=0

HkM−1
0 Q0N(L−1

1 M1 + L−1
1 QN1)kŨ tPu0.

Proof. If U0 ⊂ ker N , then we have Nw ≡ 0. System (3.1), (3.2) takes the form

v̇(t) = L−1
1 M1v(t) + L−1

1 QN1v(t),(3.8)

Hẇ(t) = w(t) + M−1
0 Q0Nv(t).(3.9)

Then v(t) = Ũ tPu0 is a solution of problem (3.4), (3.8), and the function

w(t) = −
p∑

k=0

HkM−1
0 Q0Nv(k)(t) = −

p∑
k=0

HkM−1
0 Q0N(L−1

1 M1 + L−1
1 QN1)kŨ tPu0

solves equation (3.9) and the Cauchy problem

w(0) = (I − P )u(0) = (I − P )u0

for (3.9), provided

(3.10)
(I − P )u0 = −

p∑
k=0

HkM−1
0 Q0N(L−1

1 M1 + L−1
1 QN1)kPu0,

Pu0 ∈ dom(L−1
1 M1 + L−1

1 QN1)p+1.

Since N ∈ P(L, M), we have

dom N(L−1
1 M1 + L−1

1 QN1)p ⊂ dom(L−1
1 M1 + L−1

1 QN1)p+1.

Moreover, domL−1
1 M1 ⊂ dom L−1

1 QN1; consequently, dom(L−1
1 M1 + L−1

1 QN1)p+1 =
dom(L−1

1 M1)p+1. A vector u belongs to domL−1
1 M1 if and only if u ∈ dom M1 and

there exists a vector v ∈ U1 such that M1u = L1v. If λ > a, then (M1 − λL1)u =
L1(v−λu) and u = RL1

λ (M1)(λu−v) ∈ im RL1
λ (M1). Since this argument can be reversed,

we have dom L−1
1 M1 = im RL1

λ (M1). Similarly, dom(L−1
1 M1)p+1 = im RL1

(µ,p)(M1) =
im RL

(µ,p)(M). The second identity is fulfilled because imRL
(µ,p)(M) ⊂ U1 by the definition

of the subspace U1. Thus, condition (3.10) means precisely that the vector Pu0 belongs
to the subspace imRL

(µ,p)(M).
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We have Pu0 ∈ dom M , and by Remark 2.2 the function Ũ tu0 is differentiable. The
condition domM ⊂ dom N is necessary for the operator N to be defined on the values
of the solution. �

The initial condition

(3.11) Pu(0) = Pu0

will be called the generalized Showalter condition. When reducing problem (1.2), (3.11)
to an initial problem for system (3.1), (3.2), we arrive at the initial condition v(0) = Pu0

and have no constraints for w(0). Therefore, the arguments used in the proofs of the last
two theorems allow us to obtain similar solvability theorems for the generalized Showalter
problem.

Theorem 3.4. Suppose M is strongly (L, p)-radial, N ∈ P(L, M), im N ⊂ F1, and
u0 ∈ U0+̇ domM1. Then there exists a unique solution u ∈ C1(R+; U) of problem (1.2),
(3.11). This solution has the form u(t) = Ũ tPu0.

Theorem 3.5. Suppose M is strongly (L, p)-radial, N ∈ P(L, M), dom M ⊂ dom N ,
U0 ⊂ ker N , and Pu0 ∈ im RL

(µ,p)(M). Then there exists a unique solution u ∈ C1(R+; U)
of problem (1.2), (3.11). This solution has the form

u(t) = Ũ tPu0 −
p∑

k=0

HkM−1
0 Q0N(L−1

1 M1 + L−1
1 QN1)kŨ tPu0.

Proof. In the proof, it is essential that equation (3.9) without any initial conditions is
uniquely solvable. If we impose such conditions on a solution of this equation, then we
need to coordinate the solution already available with the initial data. This leads to
imposing additional constraints of the form (3.7) on the data of the problem. In the
case of the generalized Showalter problem, we have no need to impose the constraint
(3.7). �

§4. The inhomogeneous perturbed equation

With the operators L, M, N as above, we now consider the Cauchy problem and
generalized Showalter problem for the inhomogeneous perturbed equation

(4.1) Lu̇(t) = Mu(t) + Nu(t) + f(t), t ∈ R+,

where f : R+ → F.

Theorem 4.1. Suppose M is strongly (L, p)-radial, N ∈ P(L, M), dom M ⊂ dom N ,
im N ⊂ F1, Q0f ∈ Cp+1(R+; F), Qf − N

∑p
k=0 HkM−1

0 (Q0f)(k) ∈ C1(R+; F), and

(4.2) (I − P )u0 = −
p∑

k=0

HkM−1
0 (Q0f)k(0).

Then the Cauchy problem u(0) = u0 for equation (4.1) admits a unique solution u ∈
C1(R+; U), and

u(t) = Ũ tPu0 +
∫ t

0

Ũ t−sL−1
1 Q

(
f(s) − N

p∑
k=0

HkM−1
0 (Q0f)(k)(s)

)
ds

−
p∑

k=0

HkM−1
0 (Q0f)(k)(t).
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Proof. After application of the operator M−1
0 Q0, equation (4.1) takes the form Hẇ(t) =

w(t) + M−1
0 Q0f(t). Since H is nilpotent, the results of [3, 6] show that the function

−
∑p

k=0 HkM−1
0 (Q0f)(k)(t) is a unique solution of the latter equation. Therefore, the

Cauchy problem w(0) = (I −P )u0 for it has a solution only if condition (4.2) is fulfilled.
Applying the operator L−1

1 Q to (4.1), we deduce the equation

v̇(t) = L−1
1 M1v(t) + L−1

1 QNv(t) + L−1
1 QNw(t) + L−1

1 Qf(t).

As a unique solution of the Cauchy problem v(0) = Pu0 for this equation we have the
function

v(t) = Ũ tPu0 +
∫ t

0

Ũ t−sL−1
1 Q (f(s) + Nw(s)) ds

= Ũ tPu0 +
∫ t

0

Ũ t−sL−1
1 Q

(
f(s) − N

p∑
k=0

HkM−1
0 (Q0f)(k)(s)

)
ds.

The solution u(t) of the original problem is the sum of the two projections v(t) and
w(t). �

Theorem 4.2. Suppose M is strongly (L, p)-radial, N ∈ P(L, M), dom M ⊂ dom N ,
U0 ⊂ ker N , Qf ∈ C1(R+; F), Q0 (Nv + f) ∈ Cp+1(R+; F), where v(t) = Ũ tPu0 +
N

∫ t

0
Ũ t−sL−1

1 Qf(s) ds, and

(4.3) (I − P )u0 = −
p∑

k=0

HkM−1
0 (Q0Nv + Q0f)(k)(0).

Then the Cauchy problem u(0) = u0 for equation (4.1) admits a unique solution u ∈
C1(R+; U), and

u(t) = Ũ tPu0 +
∫ t

0

Ũ t−sL−1
1 Qf(s) ds −

p∑
k=0

HkM−1
0 (Q0Nv + Q0f)(k)(t).

Proof. Since under the conditions of the theorem we have Nw ≡ 0, equation (4.1) reduces
to the system

(4.4)
v̇(t) = L−1

1 M1v(t) + L−1
1 QN1v(t) + L−1

1 Qf(t),

Hẇ(t) = w(t) + M−1
0 Q0Nv(t) + M−1

0 Q0f(t).

The function

v(t) = Ũ tPu0 +
∫ t

0

Ũ t−sL−1
1 Qf(s) ds

is a unique solution of the Cauchy problem v(0) = Pu0 for the first equation in that
system. Hence,

w(t) = −
p∑

k=0

HkM−1
0 (Q0Nv + Q0f)(k)(t)

is a solution of the second equation. The Cauchy condition w(0) = (I − P )u0 for the
solution of (4.4) is satisfied if the coordination condition (4.3) is fulfilled. �

In the case of a continuous perturbation operator N , the above result can be refined.
Let dom(L−1

1 M1 + L−1
1 QN1)k, k ∈ N, be equipped with the graph norm of the operator

(L−1
1 M1 + L−1

1 QN1)k. It is well known that such a subspace is a Banach space if the
corresponding operator is closed. By dom(L−1

1 M1+L−1
1 QN1)0 we shall mean the Banach

space U.
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Theorem 4.3. Suppose M is strongly (L, p)-radial, N ∈ L(U; F), U0 ⊂ ker N , Q0f ∈
Cp+1(R+; F), Qf ∈ C1(R+; F), Pu0 ∈ im RL

(µ,p)(M),

L−1
1 Qf ∈

p⋂
k=0

Cp−k(R+; dom(L−1
1 M1 + L−1

1 QN1)k),

and

(I − P )u0 = −
p∑

k=0

HkM−1
0 Q0N(L−1

1 M1 + L−1
1 QN1)kPu0 −

p∑
k=0

HkM−1
0 (Q0f)(k)(0)

−
p∑

k=1

HkM−1
0 Q0N

k−1∑
m=0

(L−1
1 M1 + L−1

1 QN1)m(L−1
1 Qf)(k−1−m)(0).

Then the Cauchy problem u(0) = u0 for equation (4.1) admits a unique solution u ∈
C1(R; U), and

(4.5)

u(t) = Ũ tPu0 +
∫ t

0

Ũ t−sL−1
1 Qf(s) ds −

p∑
k=0

HkM−1
0 (Q0f)(k)(t)

−
p∑

k=0

HkM−1
0 Q0N(L−1

1 M1 + L−1
1 QN1)kŨ tPu0

−
p∑

k=0

HkM−1
0 Q0N

∫ t

0

(L−1
1 M1 + L−1

1 QN1)kŨ t−sL−1
1 Qf(s) ds

−
p∑

k=1

HkM−1
0 Q0N

k−1∑
m=0

(L−1
1 M1 + L−1

1 QN1)m(L−1
1 Qf)(k−1−m)(t).

Proof. If we write the function v(t) obtained in the proof of the preceding theorem
explicitly and recall that the operator N is continuous, we arrive at formula (4.5). The
identity

dk

dtk

∫ t

0

Ũ t−sL−1
1 Qf(s) ds

= (L−1
1 Qf)(k−1)(t) + (L−1

1 M1 + L−1
1 QN1)(L−1

1 Qf)(k−2)(t) + · · ·

+ (L−1
1 M1 + L−1

1 QN1)k−1L−1
1 Qf(t) +

∫ t

0

(L−1
1 M1 + L−1

1 QN1)kŨ t−sL−1
1 Qf(s) ds

should also be used. �

As in §3, these theorems imply sufficient conditions for the solvability of the generalized
Showalter problem. The difference from similar conditions for the Cauchy problem is
that the coordination condition (4.2) or (4.3) is absent. The solution of the generalized
Showalter problem has the same form as that for the Cauchy problem.

§5. Equations with polynomials in elliptic selfadjoint operators

Let Pn(λ) =
∑n

i=0 ciλ
i and Qm(λ) =

∑m
j=0 djλ

j be polynomials such that ci, dj ∈ C,
i = 0, . . . , n, j = 0, . . . , m, cn, dm �= 0, m ≥ n. Next, let Ω ⊂ Rs be a bounded domain
with boundary ∂Ω of class C∞, and let A, B1, . . . , Br be a regularly elliptic collection



ON SOLVABILITY OF PERTURBED SOBOLEV TYPE EQUATIONS 653

of operators [16], where

(Au)(x) =
∑

|α|≤2r

aα(x)Dαu(x), aα ∈ C∞(Ω),

(Blu)(x) =
∑

|α|≤rl

blα(x)Dαu(x), blα ∈ C∞(∂Ω), l = 1, . . . , r.

It is also assumed that the operator A1 ∈ Cl(L2(Ω)) with domain domA1 = H2r
{Bl}(Ω)

[16], acting as A1u = Au, is selfadjoint.
Suppose K ∈ L2(Ω×Ω); then, by the Fubini theorem, for almost all x, y ∈ Ω we have

K(·, y), K(x, ·) ∈ L2(Ω). We want to reduce the initial boundary value problem

Pn(A)ut(x, t) = Qm(A)u(x, t) +
∫

Ω

K(x, y)u(y, t) dy, (x, t) ∈ Ω × R+,(5.1)

BlA
ku(x, t) = 0, k = 1, . . . , r, l = 1, . . . , r, (x, t) ∈ ∂Ω × R+,(5.2)

u(x, 0) = u0(x), x ∈ Ω,(5.3)

to a problem of the form (1.1), (1.2). For this, we take

U = {u ∈ H2rn(Ω) : BlA
ku(x) = 0, k = 0, . . . , n − 1, l = 1, . . . , r, x ∈ ∂Ω},

F = L2(Ω), L = Pn(A), M = Qm(A),

dom M = {u ∈ H2rm(Ω) : BlA
ku(x) = 0, k = 0, . . . , m − 1, l = 1, . . . , r, x ∈ ∂Ω},

(Nu)(x) =
∫

Ω

K(x, y)u(y) dy, N ∈ L(U; F), ‖N‖L(U;F) ≤ ‖K‖L2(Ω×Ω).

Indeed, by the Hölder inequality we have

‖Nu‖2
L2(Ω) =

∫
Ω

∣∣∣∣∫
Ω

K(x, y)u(y) dy

∣∣∣∣2 dx ≤
∫

Ω

(∫
Ω

|K(x, y)|2 dy

∫
Ω

|u(y)|2 dy

)
dx

=
∫

Ω

∫
Ω

|K(x, y)|2 dxdy · ‖u‖2
L2(Ω).

Let {ϕk : k ∈ N} denote the orthonormal eigenfunctions of the operator A1 with
respect to the inner product 〈·, ·〉 in L2(Ω), enumerated with respect to the nonascending
order of the corresponding eigenvalues {λk : k ∈ N} (with regard to multiplicity). Here
we use the fact that the spectrum of A1 is real and tends to −∞.

Theorem 5.1. Suppose m > n, (−1)m−n Re(dm/cn) ≤ 0, and the spectrum σ(A1)
contains no common roots of the polynomials Pn(λ) and Qm(λ). Then the operator M
is strongly (L, 0)-radial.

Proof. Under the conditions of the theorem, all numbers µk = Qm(λk)/Pn(λk) with k
such that Pn(λk) �= 0 form the set σL(M). Moreover,

lim
k→∞

∣∣∣∣arg
Qm(λk)
Pn(λk)

∣∣∣∣ ∈ [π/2, π].

Therefore there exists a ≥ 0 such that σL(M) ⊂ {µ ∈ C : Reµ ≤ a}. We must check the
estimates in the definition of the strong (L, 0)-radiality. Suppose µ, ν > a, u ∈ U, and



654 V. E. FEDOROV AND O. A. RUZAKOVA

f ∈ L2(Ω); then

‖LL
µ(M)f‖2

L2(Ω) =
∑

Pn(λk) �=0

|〈f, ϕk〉|2∣∣∣µ − Qm(λk)
Pn(λk)

∣∣∣2 ≤
‖f‖2

L2(Ω)

(µ − a)2
,

‖RL
µ (M)u‖2

H2rn(Ω) =
∑

Pn(λk) �=0

(1 + λ2n
k )|〈u, ϕk〉|2∣∣∣µ − Qm(λk)

Pn(λk)

∣∣∣2 ≤
‖u‖2

H2rn(Ω)

(µ − a)2
,

‖RL
µ (M)(νL − M)−1f‖2

H2rn(Ω)

=
∑

Pn(λk) �=0

(1 + λ2n
k )|〈f, ϕk〉|2

|Pn(λk)|2
∣∣∣µ − Qm(λk)

Pn(λk)

∣∣∣2 ∣∣∣ν − Qm(λk)
Pn(λk)

∣∣∣2 ≤
C‖f‖2

L2(Ω)

(µ − a)2(ν − a)2
.

Indeed, since limk→∞
1+λ2

k

|Pn(λk)|2 = |cn|−2, the sequence is bounded by some constant

C > 0. Taking f ∈ dom M = F̊, we obtain

‖M(νL − M)−1LL
µ(M)f‖2

L2(Ω)

=
∑

Pn(λk) �=0

|Qm(λk)|2|〈f, ϕk〉|2

|Pn(λk)|2
∣∣∣µ − Qm(λk)

Pn(λk)

∣∣∣2 ∣∣∣ν − Qm(λk)
Pn(λk)

∣∣∣2 ≤
c−2‖Mf‖2

L2(Ω)

(µ − a)2(ν − a)2
.

We have used the inequality |Pn(λk)| ≥ c for all k occurring in the sum, which follows
from the absence of finite limit points of the set {λk}. Moreover, in the case under
consideration we have dom M ⊂ U ⊂ F = L2(Ω). �

Remark 5.1. In Theorem 5.1 and in the subsequent statements, the conditions m > n,
(−1)m−n Re(dm/cn) ≤ 0 can be replaced by the condition m = n.

We have P = Q =
∑

Pn(λk) �=0〈·, ϕk〉ϕk, the subspaces U0 =F0 =span{ϕk : Pn(λk) = 0}
are finite-dimensional, and U1, F1 are the closures of the set span{ϕk : Pn(λk) �= 0} with
respect to the norm of the space U or F, respectively.

Theorem 5.2. Suppose m > n, (−1)m−n Re(dm/cn) ≤ 0, the spectrum σ(A1) contains
no common roots of the polynomials Pn(λ) and Qm(λ), u0 ∈ dom M , and for all k ∈ N

such that Pn(λk) = 0 we have

(5.4)
∫

Ω

K(x, y)ϕk(x) dx ≡ 0,

∫
Ω

u0(x)ϕk(x) dx = 0.

Then the problem (5.1)–(5.3) is uniquely solvable.

Proof. By Theorem 5.1 and Remark 3.1, the assumptions of Theorem 3.2 are fulfilled.
Conditions (5.4) mean that imN ⊂ F1, u0 ∈ U1. Indeed, since K(x, y)ϕk(x)u(y) ∈
L2(Ω × Ω), the Fubini theorem says that∫

Ω

ϕk(x) dx

∫
Ω

K(x, y)u(y) dy =
∫

Ω

u(y)dy

∫
Ω

K(x, y)ϕk(x) dx

The last integral is equal to zero for all k ∈ N such that Pn(λk) = 0. This means
that for all u ∈ U the functions Nu are L2(Ω)-orthogonal to the functions ϕk with the
corresponding k. Therefore, imN ⊥ F0. �

Remark 5.2. Clearly, for system (5.1), (5.2) the condition u0 ∈ dom M can be formulated
in terms of the Fourier coefficients u0k = 〈u0, ϕk〉 as follows: {λm

k u0k} ∈ l2.
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Consider the case where P1(λ) = 1 + λ, Q2(λ) = λ− 2λ2, Ω = (0, π), Au = u′′, r = 1,
and B1 = I. Then λk = −k2, ϕk(x) = sin kx, k ∈ N and problem (5.1)–(5.3) takes the
form (

1 +
∂2

∂x2

)
∂u

∂t
(x, t) =

(
∂2

∂x2
− 2

∂4

∂x4

)
u(x, t)

+
∫ π

0

K(x, y)u(y, t) dy, (x, t) ∈ (0, π) × R+,

(5.5)

u(0, t) =
∂2u

∂x2
(0, t) = u(π, t) =

∂2u

∂x2
(π, t) = 0, t ∈ R+,(5.6)

u(x, 0) = u0(x), x ∈ (0, π).(5.7)

For this problem, conditions (5.4) read as follows:∫ π

0

K(x, y) sinx dx = 0,

∫ π

0

u0(x) sin x dx = 0,

and they are fulfilled, e.g., if K(x, y) =
∑q

k=2 ak(y) sin kx, where ak ∈ L2(0, π), u0(x) =∑∞
k=2 bk sin kx. The condition {k4bk} ∈ l2 guarantees that u0 ∈ dom M ⊂ H4(0, π).

Lemma 5.1. Suppose M is strongly (L, 0)-radial. Then the conditions u0 ∈ U0+̇ domM1

and Pu0 ∈ im RL
(µ,p)(M) are equivalent. For system (5.1), (5.2), they are equivalent to

the condition u0 ∈ dom M .

Proof. Since p = 0, we have

im RL
µ(M) = imRL1

µ (M1) = domL−1
1 M1 = domM1.

For system (5.1), (5.2), since the subspace U0 is finite-dimensional, we have domM0 = U0.
Therefore, domM = domM0+̇ dom M1 = U0+̇ dom M1. �

If the operator M is strongly (L, 0)-radial, then U0 = ker L [3, 6]. Consequently, the
generalized Showalter problem is equivalent to the Showalter problem Lu(0) = Lu0 [17].
Therefore, the generalized Showalter condition for this system can be written in the form

(5.8) Pn(A)u(x, 0) = Pn(A)u0(x), x ∈ Ω.

Denote u0k = 〈u0, ϕk〉, k ∈ N. Applying Theorems 3.4 and 3.5, we obtain the following
assertions.

Theorem 5.3. Suppose m > n, (−1)m−n Re(dm/cn) ≤ 0, the spectrum σ(A1) contains
no common roots of the polynomials Pn(λ) and Qm(λ), u0 ∈ dom M , and for all k ∈ N

such that Pn(λk) = 0 we have
∫
Ω

K(x, y)ϕk(x) dx ≡ 0. Then problem (5.1), (5.2), (5.8)
has a unique solution u ∈ C1(R+; U).

Theorem 5.4. Suppose m > n, (−1)m−n Re(dm/cn) ≤ 0, the spectrum σ(A1) contains
no common roots of the polynomials Pn(λ) and Qm(λ), u0 ∈ dom M , and for all k ∈ N

such that Pn(λk) = 0 we have
∫
Ω

K(x, y)ϕk(y) dy ≡ 0. Then there exists a unique
solution u ∈ C1(R+; U) of problem (5.1), (5.2), (5.8).

Proof. The integral identity in the conditions of the theorem means that U0 ⊂ kerN . By
Lemma 5.1, Pu0 ∈ im RL

µ(M) if and only if u ∈ dom M . Applying Theorem 3.5, we get
the claim. �

Now, consider the same problem for m > 2n, but with a differential perturbation
operator
(5.9)
Pn(A)ut(x, t) = Qm(A)u(x, t) + Pn(A)

∑
|α|≤(m−2n)2r−1

aα(x)Dαu(x, t), (x, t) ∈ Ω × R+.
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Here we use the standard notation α = (α1, . . . , αs) ∈ Ns
0, |α| = α1 + · · · + αs, Dα =

∂|α|

∂x
α1
1 ···∂xαs

s
. The functions aα belong to L∞(Ω).

Lemma 5.2. Under the conditions of the present section,

N = Pn(A)
∑

|α|≤(m−2n)2r−1

aα(x)Dα ∈ P(L, M).

Proof. We have dom M ⊂ dom N = H(m−n)2r−1(Ω), and for u ∈ U we can write

NU tu = Pn(A)
∑

|α|≤(m−2n)2r−1

aα(x)Dα
∞∑

k=1

eµkt〈u, ϕk〉ϕk

= N(b + 1 − A1)n−m+1/r
∞∑

k=1

(b + 1 − λk)m−n−1/r

µ
1− 1

(m−n)r

k

µ
1− 1

(m−n)r

k eµkt〈u, ϕk〉ϕk,

where µk = Qm(λk)
Pn(λk) and b = maxk∈N λk. Since the operator A1 is sectorial, the set

dom(b + 1 − A1)β is a Banach space with the norm

‖u‖β = ‖(b + 1 − A1)βu‖L2(Ω).

If β > m−n− 1
2r , then this space is continuously and densely embedded in H(m−n)2r−1(Ω)

(Theorems 1.4.8 and 1.6.1 in [18]); moreover,

(b + 1 − A)n−m+1/r : L2(Ω) → dom(b + 1 − A1)m−n−1/r.

Therefore, for u ∈ L2(Ω) we have∥∥∥N(b + 1 − A1)n−m+1/ru
∥∥∥

L2(Ω)

≤ sup
|α|≤(m−2n)2r−1

‖aα‖L∞(Ω)‖(b + 1 − A1)n−m+1/ru‖H(m−n)2r−1(Ω)

≤ c‖(b + 1 − A1)n−m+1/ru‖m−n−1/r = c‖u‖L2(Ω).

Since the limit

lim
k→∞

(b + 1 − λk)m−n−1/r

µ
1− 1

(m−n)r

k

= lim
k→∞

(b + 1 − λk)m−n−1/r(
dm

cn
λm−n

k

)1− 1
(m−n)r

is finite, we have∥∥∥∥ ∞∑
k=1

(b + 1 − λk)m−n−1/r

µ
1− 1

(m−n)r

k

µ
1− 1

(m−n)r

k eµkt〈u, ϕk〉ϕk

∥∥∥∥
L2(Ω)

≤ c

∥∥∥∥ ∞∑
k=1

µ
1− 1

(m−n)r

k eµkt〈u, ϕk〉ϕk

∥∥∥∥
L2(Ω)

≤ ct
1

(m−n)r −1‖u‖L2(Ω).

We have used the fact that for positive t the function µβeµt of the variable µ has a
unique local minimum, equal to ct−β, at the point µ = −β/t. Therefore, on the semiaxis
(−∞, a] the maximum of the modulus of this function is attained at that point or at the
point µ = a.

Finally, we obtain ‖NU t‖L(L2(Ω)) ≤ ct
1

(m−n)r −1. �

Theorem 5.5. Suppose m > 2n, (−1)m−n Re(dm/cn) ≤ 0, the spectrum σ(A1) contains
no common roots of the polynomials Pn(λ) and Qm(λ), u0 ∈ dom M , and for all k ∈ N

such that Pn(λk) = 0 we have
∫
Ω

u0(x)ϕk(x) dx = 0. Then problem (5.2), (5.3), (5.9) has
a unique solution.
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Proof. The proof is similar to that of Theorem 5.2. Note that the conditions imposed on
the operator N in Theorem 3.2 are fulfilled by Lemma 5.2, because, obviously, F1 = imL
implies im N ⊂ F1. �
Remark 5.3. For equation (5.9), the conditions imN ⊂ F1 and U0 ⊂ ker N are fulfilled
simultaneously. Therefore, by the obvious embedding domM ⊂ dom N and Lemma 5.1,
an application of Theorem 3.4 or Theorem 3.5 to problem (5.2), (5.8), (5.9) leads to the
following result.

Theorem 5.6. Suppose m > 2n, (−1)m−n Re(dm/cn) ≤ 0, the spectrum σ(A1) contains
no common roots of the polynomials Pn(λ) and Qm(λ), and u0 ∈ dom M . Then problem
(5.2), (5.8), (5.9) has a unique solution u ∈ C1(R+; U).

Remark 5.4. It is clear that, using Remark 3.2, it is possible to obtain solvability condi-
tions of similar initial boundary problems for the equation

Pn(A)ut(x, t) = Qm(A)u(x, t) + Pn(A)
∑

|α|≤(m−2n)2r−1

aα(x)Dαu(x, t) +
∫

Ω

K(x, y)u(y, t) dy

containing differential and integral perturbations simultaneously.

Remark 5.5. The Barenblatt–Zheltov–Kochina equation, the Dzektser equation, and
other equations occurring in applications (see [1, 2, 3, 4, 6]) are particular cases of the
nonperturbed equation of the form (5.1).

§6. Linearized system of the phase field equations

Let Ω ⊂ R
s be a bounded domain with boundary ∂Ω of class C∞, and let λ, α, β ∈ R,

Km ∈ L2(Ω × Ω), m = 1, 2, ai, bj ∈ L∞(Ω), i, j = 0, . . . , s. Consider the problem

u(x, 0) = u0(x), x ∈ Ω,(6.1)
∂u

∂n
(x, t) + λu(x, t) =

∂v

∂n
(x, t) + λv(x, t) = 0, (x, t) ∈ ∂Ω × R+,(6.2)

ut(x, t) = ∆u(x, t) − ∆v(x, t) +
∫

Ω

K1(x, y)u(y, t) dy +
∫

Ω

K2(x, y)v(y, t) dy

+ a0(x)u +
s∑

i=1

ai(x)
∂u

∂xi
+ b0(x)v +

s∑
j=1

bj(x)
∂v

∂xj
, (x, t) ∈ Ω × R+,

(6.3)

∆v(x, t) + βv(x, t) + αu(x, t) = 0, (x, t) ∈ Ω × R+.(6.4)

Here the role of the unknowns is played by the functions u(x, t), v(x, t).

Remark 6.1. System (6.1)–(6.4) with Km ≡ 0, m = 1, 2, is a linearization at zero, up to
linear changes, of the initial boundary value problem for the system of the phase field
equations describing the first kind phase transitions in mesoscopic theory [19, 20].

We put U = F = (L2(Ω))2,

L =
(

1 0
0 0

)
, M =

(
∆ −∆
α β + ∆

)
,

H2
∂

∂n +λ
(Ω) = {w ∈ H2(Ω) :

(
∂

∂n + λ
)
w(x) = 0, x ∈ ∂Ω}, domM = (H2

∂
∂n +λ

(Ω))2,

N1

(
u
v

)
=

(∫
Ω

K1(x, y)u(y) dy +
∫
Ω

K2(x, y)v(y) dy
0

)
, N1 ∈ L(U),

N2 =
(

a0(x) +
∑s

i=1 ai(x) ∂
∂xi

b0(x) +
∑s

j=1 bj(x) ∂
∂xj

0 0

)
,
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N = N1 +N2, domN = domN2 = (H1(Ω))2. Thus, the operators L ∈ L(U), M ∈ Cl(U),
and N ∈ Cl(U) are well defined, and kerL = {0} × L2(Ω).

Denote Aw = ∆w, domA = H2
∂

∂n +λ
(Ω) ⊂ L2(Ω). Let {ϕk : k ∈ N} be the orthonor-

mal eigenfunctions with respect to the inner product 〈·, ·〉 in L2(Ω) of the operator A,
enumerated in the nonascending order of its eigenvalues {λk : k ∈ N}, with regard to
multiplicity.

Theorem 6.1 [21]. Suppose −β /∈ σ(A). Then the operator M is strongly (L, 0)-radial.

In [21], the semigroup of the nonperturbed system (6.2)–(6.4),

U t =

⎛⎜⎝
∑∞

k=1 exp
(

(α+β)λk+λ2
k

β+λk
t
)
〈·, ϕk〉ϕk 0

∑∞
k=1

−α exp

(
(α+β)λk+λ2

k
β+λk

t

)
β+λk

〈·, ϕk〉ϕk 0

⎞⎟⎠ ,

and the projections

P =
(

I 0
−α(β + A)−1 0

)
, Q =

(
I A(β + A)−1

0 0

)
were also obtained. Therefore, U1 = imP = {(u,−α(β+A)−1u) ∈ (L2(Ω))2 : u ∈ L2(Ω)}
is isomorphic to L2(Ω)×{0}, and F1 = imQ = {(u+A(β+A)−1v, 0) ∈ (L2(Ω))2 : (u, v) ∈
(L2(Ω))2} = L2(Ω)×{0}. Consequently, (6.1) is the generalized Showalter condition for
this system of equations.

Lemma 6.1. Under the conditions of this section,

N2 =
(

a0(x) +
∑s

i=1 ai(x) ∂
∂xi

b0(x) +
∑s

j=1 bj(x) ∂
∂xj

0 0

)
∈ P(L, M).

Proof. We have dom M ⊂ dom N2, and

N2U
t

(
u
v

)
= N2

⎛⎜⎝
∑∞

k=1 exp
(

(α+β)λk+λ2
k

β+λk
t
)
〈u, ϕk〉ϕk∑∞

k=1

−α exp

(
(α+β)λk+λ2

k
β+λk

t

)
β+λk

〈u, ϕk〉ϕk

⎞⎟⎠
=

((
a0 +

∑s
i=1 ai

∂
∂xi

) ∑∞
k=1 eµkt〈u, ϕk〉ϕk+

(
b0 +

∑s
j=1 bj

∂
∂xj

) ∑∞
k=1

−αeµkt

β+λk
〈u, ϕk〉ϕk

0

)
,

where µk = (α+β)λk+λ2
k

β+λk
. Moreover,(

b0(x) +
s∑

j=1

bj(x)
∂

∂xj

) ∞∑
k=1

−αeµkt

β + λk
〈u, ϕk〉ϕk

= −α

(
b0(x) +

s∑
j=1

bj(x)
∂

∂xj

)
(β + A)−1

∞∑
k=1

eµkt〈u, ϕk〉ϕk.

Denoting a = maxk∈N µk, for u ∈ L2(Ω) we have∥∥∥∥ ∞∑
k=1

eµkt〈u, ϕk〉ϕk

∥∥∥∥
L2(Ω)

≤ eat‖u‖L2(Ω),∥∥∥∥(
b0(x) +

s∑
j=1

bj(x)
∂

∂xj

)
(β + A)−1u

∥∥∥∥
L2(Ω)

≤ sup
j=0,...,s

‖bj‖L∞(Ω)‖(β + A)−1u‖H1(Ω) ≤ c1‖(β + A)−1u‖H2(Ω) ≤ c‖u‖L2(Ω).
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We have used the fact that −β ∈ ρ(A), so that the operator (β + A)−1 is a one-to-one
continuous map from L2(Ω) into H2

∂
∂n +λ

(Ω). Thus,∥∥∥∥(
b0(x) +

s∑
j=1

bj(x)
∂

∂xj

) ∞∑
k=1

−αeµkt

β + λk
〈u, ϕk〉ϕk

∥∥∥∥
L2(Ω)

≤ C‖u‖L2(Ω)

for all u in L2(Ω). Next,(
a0(x) +

s∑
i=1

ai(x)
∂

∂xi

) ∞∑
k=1

eµkt〈u, ϕk〉ϕk

=
(

a0(x) +
s∑

i=1

ai(x)
∂

∂xi

)
(b + 1 − A)−

2
3

∞∑
k=1

(b + 1 − λk

µk

) 2
3
µ

2
3
k eµkt〈u, ϕk〉ϕk,

where b = maxk∈N λk. We argue as in the proof of Lemma 5.2. The operator A is sectorial
and we have a continuous and dense embedding of the Banach space dom(b +1−A)

2
3 in

H1(Ω). Consequently, for u ∈ L2(Ω) we have∥∥∥∥(
a0(x) +

s∑
i=1

ai(x)
∂

∂xi

)
(b + 1 − A)−

2
3 u

∥∥∥∥
L2(Ω)

≤ sup
i=0,...,s

‖ai‖L∞(Ω)‖(b + 1 − A)−
2
3 u‖H1(Ω) ≤ c‖(b + 1 − A)−

2
3 u‖ 2

3
= c‖u‖L2(Ω),∥∥∥∥ ∞∑

k=1

(
a + 1 + λk

µk

) 2
3

µ
2
3
k eµkt〈u, ϕk〉ϕk

∥∥∥∥
L2(Ω)

≤ max
k∈N

(
a + 1 + λk

µk

) 2
3

∥∥∥∥ ∞∑
k=1

µ
2
3
k eµkt〈u, ϕk〉ϕk

∥∥∥∥
L2(Ω)

≤ ct−
2
3 ‖u‖L2(Ω).

This proves that ‖N2U
t‖L(L2(Ω)) ≤ ct−

2
3 , as required. �

Theorem 6.2. Suppose −β /∈ σ(A), u0 ∈ H2
∂

∂n +λ
(Ω). Then problem (6.1)–(6.4) has a

unique solution (u, v) ∈ (C1(R+; L2(Ω)))2.

Proof. Obviously, imN ⊂ F1. By Lemma 6.1 and Remarks 3.1, 3.2, we have N =
N1 + N2 ∈ P(L, M). It remains to refer to Theorem 3.4. �

Consider the system

ut(x, t) = ∆u(x, t) − ∆v(x, t)

+
∫

Ω

K1(x, y)u(y, t) dy + a0(x)u +
s∑

i=1

ai(x)
∂u

∂xi
, (x, t) ∈ Ω × R+,

(6.5)

∆v(x, t) + βv(x, t) + αu(x, t)

+
∫

Ω

K2(x, y)u(y, t) dy + b0(x)u +
s∑

j=1

bj(x)
∂u

∂xj
= 0, (x, t) ∈ Ω × R+.

(6.6)

As before, Km ∈ L2(Ω × Ω), m = 1, 2, ai, bj ∈ L∞(Ω), i, j = 0, . . . , s. In this case,

N1

(
u
v

)
=

(∫
Ω

K1(x, y)u(y) dy∫
Ω

K2(x, y)u(y) dy

)
, N2 =

(
a0(x) +

∑s
i=1 ai(x) ∂

∂xi
0

b0(x) +
∑s

j=1 bj(x) ∂
∂xj

0

)
,

N1 ∈ L(U), N = N1 + N2, dom N = domN2 = H1(Ω) × L2(Ω), N2, N ∈ Cl(U).
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Lemma 6.2. Under the conditions of this section,

N2 =

(
a0(x) +

∑s
i=1 ai(x) ∂

∂xi
0

b0(x) +
∑s

j=1 bj(x) ∂
∂xj

0

)
∈ P(L, M).

Proof. The embedding dom M ⊂ dom N2 is obvious. Next, we have

N2U
t

(
u
v

)
=

⎛⎝(
a0(x) +

∑s
i=1 ai(x) ∂

∂xi

) ∑∞
k=1 eµkt〈u, ϕk〉ϕk(

b0(x) +
∑s

j=1 bj(x) ∂
∂xj

) ∑∞
k=1 eµkt〈u, ϕk〉ϕk

⎞⎠ .

Therefore, as under the conditions of Lemma 6.1, the estimate

‖N2U
t‖L(L2(Ω)) ≤ ct−

2
3

is fulfilled. �

Theorem 6.3. Suppose −β /∈ σ(A), u0 ∈ H2
∂

∂n +λ
(Ω). Then problem (6.1), (6.2), (6.5),

(6.6) has a unique solution (u, v) ∈ (C1(R+; L2(Ω)))2.

Proof. As in the proof of Theorem 6.2, we obtain N = N1 + N2 ∈ P(L, M). Moreover,
U0 = ker P = {0} × L2(Ω) ⊂ kerN . It remains to use Theorem 3.5 and Lemma 5.1. �

§7. Linearized Navier–Stokes system

Consider the initial boundary value problem

u(x, 0) = u0(x), x ∈ Ω,(7.1)

u(x, t) = 0, (x, t) ∈ ∂Ω × R+,(7.2)

for the linearized Navier–Stokes system with integral perturbation
ut(x, t) = ν∆u(x, t) − r(x, t)

+
∫

Ω

K1(x, y)u(y, t) dy +
∫

Ω

K2(x, y)r(y, t) dy, (x, t) ∈ Ω × R+,
(7.3)

∇ · u = 0, (x, t) ∈ Ω × R+.(7.4)

Here ν > 0, Ω ⊂ Rn is a bounded domain with boundary ∂Ω of class C∞, and r =
r(x, t) = ∇p is the pressure gradient.

We denote H2 = (H2(Ω))n, H2
0 = {w ∈ H2 : w(x) = 0, x ∈ ∂Ω}, L2 = (L2(Ω))n,

L = {w ∈ (C∞
0 (Ω))n : ∇ · w = 0}. The closure of the subspace L with respect the

norm of the space L2 will be denoted by Hσ. This is a Hilbert space with the inner
product of the space L2. We can decompose L2 = Hσ ⊕ Hπ, where Hπ is the orthogonal
complement of Hσ. Let Π : L2 → Hπ denote the orthogonal projection corresponding to
this decomposition. The restriction of Π to the space H2

0 ⊂ L2 is a continuous operator
Π1 : H2

0 → H2
0. Therefore, H2

0 is the direct sum H2
σ ⊕ H2

π, where H2
σ = ker Π1 and

H
2
π = im Π1.
We replace the incompressibility equation (7.4) with a more general equation:

(7.5) Πu(x, t) = 0, (x, t) ∈ Ω × R+.

Indeed, if u(x) is sufficiently smooth, then Πu ≡ 0 implies (7.4). Otherwise, by (7.5), u
is the limit in L2 of smooth functions satisfying condition (7.4).

It is easy to observe that the formula A = diag{∆, . . . , ∆} determines a continuous
linear operator A : H2

0 → L2 with discrete spectrum σ(A); this spectrum has finite
multiplicity and condenses only at −∞.

Like H2
0, the space H4

0,A = {w ∈ H4 : w(x) = Aw(x) = 0, x ∈ ∂Ω} can be decomposed
as H4

σ ⊕ H4
π.
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We denote Aσ = A
∣∣
H2

σ
, Aπ = A

∣∣
H2

π
, Σ = I − Π.

Lemma 7.1. Aσ acts from H2
σ to Hσ, and Aπ acts from H2

π to Hπ.

Proof. We show that ΠAΣ ≡ O. Indeed, for v ∈ L we have (∇ · Av) = ∆(∇ · v) = 0.
This relation extends to H2

σ by continuity. Hence, Aσ : H2
σ → Hσ.

Next we show that ΣAΠ ≡ O. Take v ∈ H2
σ, u ∈ H2

π. Let 〈·, ·〉 be the inner product
in L2. We have 〈v, Au〉 = 〈Av, u〉 = 0, because A is selfadjoint, Av ∈ Hσ (see above),
and the spaces Hσ and Hπ are mutually orthogonal. Since H

2
σ is dense in Hσ, we have

Au ⊥ Hσ, so that Aπ : H2
π → Hπ. �

Put U = F = Hσ × Hπ × Hr, Hr = Hπ. Then for vectors v ∈ U, f ∈ F we have
v = (vσ, vπ, vr), f = (fσ, fπ, fr), and

L =

⎛⎝1 0 0
0 1 0
0 0 0

⎞⎠ , M =

⎛⎝νAσ 0 0
0 νAπ −1
0 −1 0

⎞⎠ .

Then L : U → F is a continuous linear operator with kerL = {0} × {0} × Hr and
im L = Hσ×Hπ×{0}. The domain of the closed and densely defined operator M : U → F

is dom M = H2
σ × H2

π × Hr.

Theorem 7.1. The operator M is strongly (L, 1)-radial.

Proof. We have

µL − M =

⎛⎝µ − νAσ 0 0
0 µ − νAπ 1
0 1 0

⎞⎠ .

By Lemma 7.1, the operator Aσ : H
2
σ → Hσ is continuous and linear, and its spectrum

σ(Aσ) is discrete, has finite multiplicity and condenses only at −∞, because the subspace
Hσ is infinite-dimensional. Let {ϕk} be the eigenfunctions of Aσ orthonormal in Hσ,
enumerated in the nonascending order of the corresponding eigenvalues {λk : k ∈ N},
with regard to multiplicity. Then Σ(µ− νA)Σ = (µ− νAσ)Σ =

∑∞
k=1(µ− νλk)〈·, ϕk〉ϕk,

where 〈·, ·〉 is the inner product in L2. If µ �= νλk, then we have a continuous operator

A−1
σµ ≡ (µ − νAσ)−1 =

∞∑
k=1

〈·, ϕk〉ϕk

µ − νλk
: Hσ → Hσ.

For µ �= νλk we can construct the L-resolvent of M :

(µL − M)−1 =

⎛⎝A−1
σµ 0 0
0 0 1
0 1 −(µ − νAπ)

⎞⎠ .
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Thus,

RL
µ (M) =

⎛⎝A−1
σµ 0 0
0 0 0
0 1 0

⎞⎠ , RL
(µ,1)(M) =

⎛⎝A−1
σµ0

A−1
σµ1

0 0
0 0 0
0 0 0

⎞⎠ ,

LL
µ(M) =

⎛⎝A−1
σµ 0 0
0 0 1
0 0 0

⎞⎠ , LL
(µ,1)(M) =

⎛⎝A−1
σµ0

A−1
σµ1

0 0
0 0 0
0 0 0

⎞⎠ ,

RL
(µ,1)(M)(λL − M)−1 =

⎛⎝A−1
σµ0

A−1
σµ1

A−1
σλ 0 0

0 0 0
0 0 0

⎞⎠ ,

M(λL − M)−1LL
(µ,1)(M)f =

⎛⎝νA−1
σµ0

A−1
σµ1

A−1
σλAfσ 0 0

0 0 0
0 0 0

⎞⎠ ,

where f ∈ F̊ = H2
σ × Hπ × Hr. The obvious inequality ‖A−1

σµ‖L(Hσ) ≤ (µ − νλ1)−1 for
µ > νλ1 implies that M is strongly (L, 1)-radial. �

Since, by Remark 2.1,

P = s-lim
µ→+∞

(µRL
µ(M))2, Q = s-lim

µ→+∞
(µLL

µ(M))2,

it is easy to check that

P = Q =

⎛⎝1 0 0
0 0 0
0 0 0

⎞⎠ .

Theorem 7.2. Let u0 ∈ H2
σ, and let Ki(·, y) ∈ Hσ for almost all y ∈ Ω, i = 1, 2. Then

problem (7.1)–(7.3), (7.5) has a unique solution u ∈ C1(R+; U).

Proof. The initial value u0 of the problem belongs to the set domM1 = domM ∩ im P =
H

2
σ × {0} × {0}. Take v = (Σu, Πu, r). Since F1 = imQ = Hσ × {0} × {0}, we have

Nv =

⎛⎝Σ
∫
Ω

K1(x, y)u(y) dy + Σ
∫
Ω

K2(x, y)r(y) dy
Π

∫
Ω

K1(x, y)u(y) dy + Π
∫
Ω

K2(x, y)r(y) dy
0

⎞⎠ ∈ F
1

by the assumptions of the theorem concerning the functions Ki, i = 1, 2. We have used
the continuity of the operator Π. It remains to refer to Theorem 3.4. �

Now we consider a similar system with integral perturbation of another form:

ut(x, t) = ν∆u(x, t) − r(x, t) +
∫

Ω

K1(x, y)u(y, t) dy, (x, t) ∈ Ω × R+,(7.6)

Πu =
∫

Ω

K2(x, y)u(y, t) dy, (x, t) ∈ Ω × R+.(7.7)

Theorem 7.3. Suppose u0 ∈ H4
σ, Ki(x, ·) ∈ Hσ for almost all x ∈ Ω, i = 1, 2, and

K2(·, y) ∈ Hπ for almost all y ∈ Ω. Then problem (7.1), (7.2), (7.6), (7.7) has a unique
solution u ∈ C1(R+; U).

Proof. We have U0 = ker P = {0} × Hπ × Hr and, for v = (uσ, uπ, r),

Nv =

⎛⎝Σ
∫
Ω

K1(x, y)uσ(y) dy + Σ
∫
Ω

K1(x, y)uπ(y) dy
Π

∫
Ω

K1(x, y)uσ(y) dy + Π
∫
Ω

K1(x, y)uπ(y) dy∫
Ω

K2(x, y)uσ(y) dy +
∫
Ω

K2(x, y)uπ(y) dy

⎞⎠ .
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Therefore, the conditions imposed on the functions Ki(x, ·), i = 1, 2, for fixed x ∈ Ω
imply the condition U0 ⊂ ker N of Theorem 3.5. The condition imposed on the functions
K2(·, y) for fixed y ∈ Ω is necessary for the solvability of equation (7.7), because (7.7)
implies the relations

Π
∫

Ω

K2(x, y)u(y, t) dy = Π2u = Πu =
∫

Ω

K2(x, y)u(y, t) dy, (x, t) ∈ Ω × R+.

Therefore, ΠK2(·, y) = K2(·, y) for almost all y ∈ Ω. It remains to observe that u0 ∈
im RL

(µ,1)(M) if and only if u0 ∈ dom A2
σ, which means that u0 ∈ H

4
σ. Thus, all the

assumptions of Theorem 3.5 are fulfilled. �
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