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GAP OPENING IN THE ESSENTIAL SPECTRUM

OF THE ELASTICITY THEORY PROBLEM

IN A PERIODIC HALF-LAYER

S. A. NAZAROV

Abstract. Rayleigh waves are studied in an elastic half-layer with a periodic end
and rigidly clamped faces. It is established that the essential spectrum of the cor-
responding problem of elasticity theory has a band structure, and an example of
a waveguide is presented in which a gap opens in the essential spectrum; i.e., an
interval arises that contains points of an at most discrete spectrum.

§1. Introduction

1. Preamble. In the case of a homogeneous isotropic elastic half-space, surface waves
were discovered by Lord Rayleigh [1], and since then many investigations devoted to
similar effects have appeared (see a survey of modern literature in [2], and also the paper
[3], which is absent in [2]). A Rayleigh wave is a plane wave of the form

(1.1) exp(ikx2)U(x3), x = (x1, x2, x3) ∈ R3
−, k ∈ R,

with a vector-valued factor U(z) decaying exponentially as z = x3 → −∞. The arising
of such waves explains specific wave processes in elastic bodies.

The wave number k ∈ R+ = [0,+∞) determines a frequency cutoff ω†(k) above
which, i.e., for ω ≥ ω†(k), the wave (1.1) exists necessarily. In the present paper we deal
with a problem related to a similar phenomenon. Namely, we study an elastic, but not
necessarily homogeneous and isotropic cushion Ω0 having the form of a half-layer with
a periodic end and rigidly clamped side faces (see Figure 1, where the clamped surface
is shadowed). Some Rayleigh waves decaying exponentially as z → −∞ can propagate
along the end of the cushion, and if Ω0 is a cylinder ∆ × R, then we have a single
cutoff ω† > 0; i.e., the corresponding operator of the elasticity theory system acquires
a continuous spectrum [ω†,+∞). Our main goal in this paper is to show that, in the
periodic case, a gap can open in the essential spectrum; i.e., an interval can exist the
ends of which belong to the continuous spectrum, but inside which only points of the
discrete spectrum may occur. Some of the results were announced earlier in [4].

2. Setting of the problem. Let Π be a domain in Euclidean space R3 (see Figures 2–4;
Figure 4 shows a section of the 3-dimensional cell depicted in Figure 3). It is assumed
that Π(−H) ⊂ Π ⊂ Π(H), where

(1.2) Π(H) = {x = (y, z) : y = (y1, y2), |yp| < lp/2, p = 1, 2, z < H},
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Figure 1. A periodic half-layer.

Figure 2. A periodicity cell.

and lp and H are positive quantities. By scaling, we reduce the size l1 to unity; after
that, we put l = l2. A half-layer Ξ with a periodic structure will be introduced as the
interior of the set

(1.3) Ω0 =
⋃
j∈Z

Πj ,

where Z = {0,±1, . . . } and Πj = {x : (y1−j, y, z) ∈ Π}. We assume that Ω0 is a domain
with Lipschitz boundary and, in particular, a connected set (see Figures 1 and 5, which
correspond to the cells in Figures 2 and 4). Finally, let Ω be yet another Lipschitz domain
that coincides with Ω0 off a ball BR0 = {x : |x| < R0} with a large radius R0 > 0 (cf.
Figures 5 and 6). Viewing the domain Ω as a solid, we consider the spectral problem of
elasticity theory in a matrix form (see [5, 6]):

D(−∇x)
�A(x)D(∇x)u(x) = λρ(x)u(x), x ∈ Ω,(1.4)

D(ν(x))�A(x)D(∇x)u(x) = 0, x ∈ Σ,(1.5)

u(x) = 0, x ∈ Γ.(1.6)

We explain the notation adopted. The displacement vector is regarded as a column
(u1, u2, u3)

� in R3 (here � means transposition), and up and u3 are the projections of
u to the axes xp = yp and x3 = z, respectively, p = 1, 2. The columns of strains and
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Figure 3. A mushroom-like periodicity cell.

Figure 4. The two-dimensional cross-section of a cell.

stresses, ε(u) and σ(u), are defined respectively by the formulas

ε(u) = (ε11, ε22, ε33,
√
2ε23,

√
2ε31,

√
2ε12)

�,

σ(u) = (σ11, σ22, σ33,
√
2σ23,

√
2σ31,

√
2σ12)

�,
(1.7)

ε(u;x) = D(∇x)u(x), σ(u;x) = A(x)ε(u;x),

where εjk = 1
2 (∂juk + ∂kuj) and the σjk are the Cartesian coordinates of the strain and

stress tensors (the factors
√
2 are involved in the definition (1.7) for equating the natural

norms of the tensors and the corresponding columns; see [6, §2.1]), and D(∇x) is the
following (6× 3)-matrix of differential operators:

(1.8)

D(∇x)
� =

Ñ
∂1 0 0 0 2−1/2∂3 2−1/2∂2
0 ∂2 0 2−1/2∂3 0 2−1/2∂1
0 0 ∂3 2−1/2∂2 2−1/2∂1 0

é
,

∇x =

Ñ
∂1
∂2
∂3

é
, ∂j =

∂

∂xj
.

The material density ρ and the elements Apq of the (6× 6)-matrix A of elastic modules
are bounded measurable functions on Ω that are subject to the positivity condition

(1.9) cA|ξ|2 ≤ ξ�A(x)ξ ≤ CA|ξ|2, ξ ∈ R6, cρ ≤ ρ(x) ≤ Cρ,

and the stabilization condition

(1.10) |Apq(x)−A0
pq| ≤ c0 exp(−δ0|x|), |ρ(x)− ρ0| ≤ c0 exp(−δ0|x|),
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Figure 5. The cross section of a periodic half-layer.

Figure 6. The cross section of a periodic half-layer perturbed locally.

where cA, CA, cρ, Cρ, and c0, δ0 are positive numbers, and relations (1.9) remain valid for
the numerical (6× 6)-matrix A0 and the scalar ρ0 in formula (1.10), probably, with new
positive constants c0A, C

0
A ,c0ρ, C

0
ρ . The spectral parameter λ is the squared frequency

of elastic oscillations. The Dirichlet boundary conditions (1.6) correspond to the rigid
clamping of the surface Γ which, by assumption, includes the half-planes {x : y2 = ±l,
z < −H}, while the Neumann condition, involving the outward unit normal, means that
the other part Σ = ∂Ω \Γ of the surface is traction-free. In the sequel, we shall need the
following restriction: off the ball BR, the surface Γ is invariant under shifts by ±1 along
the x1-axis (see Figure 7, where the surface Γ (the shadowed domain) and the ball BR

are depicted schematically). Formally, the requirements listed look like this:

(1.11)

Γ± = {x ∈ Γ : ±y2 ≥ 0}, Γ± \ BR0 = Γ±
0 \ BR0 ,

Γ±
0 = {x : (y1 ± 1, y2, z) ∈ Γ±

0 }, {x : y1 = ±1/2, z < −H} ⊂ Γ±
0 ,

Γ0 = Γ+
0 ∪ Γ−

0 .

Elastic bodies with a periodic structure as described occur in practice; imposing the
boundary conditions (1.5) and (1.6) allows us to interpret Ω as an elastic cushion clamped
between two absolutely rigid stamps. Part of the cushion goes beyond the stamp’s edges
(in our notation these are the lines where the type of the boundary conditions changes).
The discrete spectrum and the continuous spectrum of problem (1.4)–(1.6) are related to
the arising of elastic trap modes and also waves that propagate along the edge and decay
exponentially as the distance from the edge grows (see the paper [7] and the surveys
[2, 8]).

Since the boundary of the body and the coefficients of the differential operators in-
volved may happen to be irregular, we understand problem (1.4)–(1.6) as the following
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Figure 7. A periodic clamping zone with local perturbation.

integral identity [9, 10]:

(1.12) (AD(∇x)u,D(∇x)v)Ω = λ(ρu, v)Ω, v ∈ H̊1(Ω; Γ)3.

Here ( , )Ω is the inner product in the Lebesgue space L2(Ω), H̊
1(Ω; Γ) is the Sobolev

space of functions that vanish on Γ (the mark ◦ above H), and the upper index 3 indicates
the number of vector components. We omit the size of the vectors in the notation for
norms and inner products. In the terminology of [10], the Neumann condition (1.5)
and the Dirichlet condition (1.6) are (respectively) the intrinsic condition and the stable
condition for the system of equations of elasticity theory.

The Hilbert space H̊1(Ω; Γ)3 equipped with a specific inner product, namely

(1.13) 〈u, v〉 = (AD(∇x)u, (D(∇x)v)Ω + (ρu, v)Ω

(see the Korn inequalities (3.1) and (2.34) below), will be denoted by H. Half of the
quantity 〈u, u〉 is the sum of the elastic and kinetic energies. The formula

(1.14) 〈Ku, v〉 = (ρu, v)Ω, u, v ∈ H,

determines a positive, symmetric, and continuous (and hence, selfadjoint) operator K in
the space H. Since the first term on the right-hand side in (1.14) is nonnegative, the
norm of K does not exceed 1. Therefore, Hilbert space operator theory (see, e.g., [11,
§§3.7, 10.2]) guarantees that the spectrum of K lies on the interval [0, 1] of the real axis
in the complex plane C, and the set C \ [0, 1] is included in the resolvent set of K.

The definitions (1.13), (1.14) and the spectral parameter change

(1.15) µ = (1 + λ)−1

allow us to rewrite the variational problem (1.12) as an abstract spectral equation:

(1.16) Ku = µu.

Due to (1.15), the λ-spectrum of problem (1.12) inherits all properties of the µ-spectrum
of equation (1.16) except those related to the point µ = 0, which corresponds to the
infinitely remote λ. Therefore, in what follows we restrict ourselves to studying the
spectrum of K.

3. Preliminary description of the results. Since the domain Ω is unbounded, the
embedding H1(Ω) ⊂ L2(Ω) is not compact, so that the essential spectrum of K consists
of more than the point µ = 0 (see [11, Theorem 9.2.1]). In §2 we use the Gelfand
and Fourier transformations to introduce model problems on the periodicity cell Π and
on the section Θ = (−1/2, 1/2) × (−l/2, l/2) of its cylindrical part, which determine
the structure of the essential spectrum. Largely, we use the method traditional for the
theory of elliptic boundary-value problems in domains with piecewise smooth boundary
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(see the key publications [12]–[15] and, e.g., the books [16, 17]), which include, as an
intermediate element, the study of systems of differential equations in domains that go to
infinity cylindrically or quasicylindrically (periodically). That theory provides necessary
and sufficient conditions for the operator of the boundary-value problem in question to
be Fredholm in the usual or weighted Sobolev spaces. The loss of the Fredholm property
for some λ means precisely the arising of a point (1.15) that belongs to the essential
spectrum of K.

Nevertheless, when studying the operator of problem (1.4)–(1.6), we need to deviate
from the usual method. First, since the data of the problem are not sufficiently smooth,
we are forced to deal with the variational setting (1.12) (rather than with the classical one,
as is practical in the theory in question). However, this does not cause any complications,
because we can use the Parseval identities for both transformations. Though such a
generalization is evident, the author has found no detailed account of the corresponding
arguments in the literature. They are reproduced in the proofs of Theorems 2.1 and 2.2,
but not in detail.

A more substantial deviation from the standard pattern is caused by the unbounded-
ness of the periodicity cell Π: the pencil A related to the model problem (2.6) on Π (see
formula (2.7)) acquires both the discrete spectrum (2.36) and the continuous spectrum.
In its turn, the continuous spectrum of the operator K is born by both parts of the
spectrum of A. This gives rise to the absolute threshold µ0

† and to the partial thresh-

olds µ
(n)
† (see formulas (2.50) and (2.51)), while the essential spectrum is obtained as the

union of the segments [0, µ0
† ] and ∆(n) corresponding to the above thresholds (see (2.52)).

This structure gives way to arising gaps, i.e., intervals containing points of the discrete
spectrum only, but having both its ends in the essential spectrum. The verification that
such a gap arises indeed in the case of a “cushion with fringe” depicted schematically in
Figures 5 and 6, is the main result of the present paper. To deduce estimates for the
eigenvalues of the model problem on the cell Π (Figures 3, 4) we apply the max-min
principle (see, e.g., [11, Theorem 10.2.2]), along with asymptotic constructions typical of
joints of elastic bodies that have different limiting dimensions (see, e.g., [18]–[21]).

The model problem on the periodicity cell involves two parameters: the spectral pa-
rameter λ occurring in the system of differential equations (1.4), and the dual variable η
of the Gelfand transformation. In the above-mentioned theory of boundary-value prob-
lems in domains with piecewise smooth boundary, the parameter λ is fixed, and, when
the spectrum of the quadratic pencil (2.7) generated by the model problem in Π is stud-
ied, some complex values of the prescribed spectral parameters η are allowed. Another
method for the investigation of formally selfadjoint systems of differential equations in
Rn with periodic coefficients is based on the theory of selfadjoint operators in Hilbert
space (see the survey [22] and the books [24, 25]); in the framework of that method, the
dual variable η ∈ Rn is fixed, and the object of study becomes the spectrum of the un-
bounded operator generated by the corresponding Hermitian form (see [11, Chapter 10])
in the Lebesgue space on the periodicity cell. In this paper we use both approaches; in
particular, the band structure of the spectrum is established via describing the spectrum
of the problem operator on the cell.

It should be noted that the known examples of a gap opening in the continuous
spectrum pertain precisely to the setting of elliptic systems with periodic coefficients
in Rn, as described in the preceding paragraph (see the papers [23], [26]–[30] and the
survey [31]), and the result is achieved with the help of the method of variation of periodic
coefficients. Below, a gap in the continuous spectrum of the operator of problem (1.4)–
(1.6) will be constructed exclusively by choosing the form of the cell; i.e., the matrix A0

of elastic modules and the density ρ may be thought of as constants.
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§2. The basic properties of the operator

1. The model problem and the Gelfand transformation. We freeze the coefficients
of our differential operators at infinity, i.e., we make the changes A(x) 
→ A0 and ρ(x) 
→
ρ0 (see the stabilization conditions (1.10)), and pass from the domain Ω to the periodic
set Ω0 (see formula (1.3)). Then, the Neumann conditions (intrinsic conditions in the
terminology of (1.5)) in the resulting model problem,

(2.1) (A0D(∇x)u,D(∇x)v)Ω0
= λρ0(u, v)Ω0

, v ∈ H0,

are imposed on the surface Σ0 = ∂Ω0 \Γ0, and the (stable) Dirichlet conditions (1.6) are
imposed on the surface Γ±

0 described in (1.11) and having periodic structure. Accordingly,
the Hilbert space H0 consists of vector-valued functions u ∈ H1(Ω0)

3 that vanish for
x ∈ Γ0 = Γ+

0 ∪ Γ−
0 . We recall that (u, v)Ω0

is the inner product in L2(Ω
0).

The Gelfand transformation (discrete Fourier transformation; see [32] and also, e.g.,
the books [25, 16] and the paper [33]), defined by the formula

(2.2) v(x) 
→ v̂(x; η) =
1√
2π

∑
j∈Z

exp(−iη(j + y1)) v(j + y1, y2, z),

yields the isometric isomorphism

L2(Ω0) ∼= L2(0, 2π;L2(Π)).

Here L2(0, 2π;B) is the space of abstract functions with values in a Banach space B,
and the norm looks like this:

‖v;L2(0, 2π;B)‖ =

Å∫ 2π

0

‖v(η);B‖2 dη
ã1/2

.

Observe that on the left-hand side in (2.2) the point x belongs to the periodic domain
Ω0, while on the right-hand side x is an element of the standard periodicity cell Π (see
the definition in (1.3)).

The inverse transformation is of the form

(2.3) v̂(x; η) 
→ v(x) =
1√
2π

∫ 2π

0

exp(iηy1)v̂(y1 − [y1], y2, z; η) dη.

Here [t] = max{n ∈ Z : n ≤ t} is the integral part of t ∈ R and, as usual, i is the
imaginary unit. Now x ∈ Π on the left-hand side of (2.3), but x ∈ Ω0 on the right-hand
side. Since v̂(0, y2, z) = v̂(1, y2, z) for smooth functions with compact support, and

(2.4) ”Pv(x; η) = P (∂1 + iη, ∂2, ∂3)v̂(x; η)

for any differential operator P (∇x) with constant (or periodic) coefficients, the transfor-
mation (2.2) establishes the isomorphism

H1(Ω0) ≈ L2(0, 2π;H
1
per(Π));

here H1
per(Π) is the Sobolev space of functions with period 1 in the variable x1 = y1.

Using (2.4) and the Parseval identity

(2.5) (u, v)Ω0
=

∫ 2π

0

(û(·; η), v̂(·, η))Π dη,

we reshape problem (2.1) to the following family of problems on the periodicity cell Π:

(2.6)
q(u,v; η,Π) := (A0D(∂1 + iη, ∂2, ∂3)u(·; η), D(∂1 + iη, ∂2, ∂3)v(·; η))Π

= λρ0(u(·; η),v(·; η))Π, v ∈ H̊1
per(Π; γ)3, for a.e. η ∈ [0, 2π).
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Note that, since in what follows we shall need complex values of the parameter η, on the
left-hand side in (2.6) we write the complex conjugate number η. Also in (2.6), H̊1

per(Π; γ)
denotes the Sobolev space of functions that vanish on γ = Γ0 ∩ ∂Π and have period 1
in the variable y1, and for simplicity of notation the Gelfand transforms are denoted by
letters in bold.

Remark 2.1. The Parseval identity (2.5) and the extension of the Lebesgue inner product
by duality between the Sobolev space H1(Ω0) and its dual H(Ω0)

∗ allow us to extend
the Gelfand transformation to functionals in H1(Ω0)

∗ and to establish the isomorphism

H1(Ω0)
∗ ≈ L2(0, 2π;H

1
per(Π)∗).

This fact will be used in the study of the nonhomogeneous problems (2.1) and (2.6).

By the Riesz theorem on the representation of a linear functional in Hilbert space, the
variational spectral problem (2.6) gives rise to a quadratic pencil

(2.7) η 
→ a(η;λ) : H̊1
per(Π; γ)3 → H̊1

per(Π; γ)3.

Since the domain Π is unbounded, this pencil requires a separate consideration.

2. Spectrum of the pencil on a cross section of the periodicity cell. For fixed
η ∈ [0, 2π) and λ ∈ R, we apply the Fourier transformation

(2.8) v(x; η) 
→ V (y; η, ζ) =
1√
2π

∫
R

exp(−izζ)v(y, z; η) dz

to problem (2.6) after multiplying its solution by an appropriate cutoff function. This
yields yet another family of spectral problems on the rectangle Θ = (−1/2, 1/2) ×
(−l/2, l/2), which is a cross section of the prism Π. Namely,

(2.9)
Q(U, V ; η, ζ) := (A0D(∂1 + iη, ∂2, iζ)U( · ; η, ζ), D(∂1 + iη, ∂2, iζ)V ( · ; η, ζ))Θ

= λρ0(U( · ; η, ζ), V ( · ; η, ζ))Θ, V ∈ H̊1
per(Θ; θ)3, for a.e. ζ ∈ R,

where H̊1
per(Θ; θ) is the Sobolev space of functions 1-periodic with respect to y1 and

vanishing on the sides θ± = (−1/2, 1/2) × {±l/2} of the rectangle, and the complex
conjugate parameters η and ζ arise for the same reason as in (2.6). Problem (2.9) has
its own quadratic pencil

(2.10) ζ 
→ A(ζ; η, λ) : H̊1
per(Θ; θ)3 → H̊1

per(Θ; θ)3.

We recall that the parameters η and λ are assumed to be fixed and, so far, real.
The following facts should be mentioned. First, the coefficients of the differential op-

erators involved are constant, and the periodicity conditions make the angular points on
the boundary of the rectangle inessential. Thus, the variational setting (2.9) is equivalent
to the classical one (see the results on smoothness improvement for solutions of elliptic
boundary-value problems in [10, Chapter 2]):

(2.11)

L(∇y, iζ; iη)U(y; η, ζ) := D(−∂1 − iη,−∂2,−iζ)�A0D(∂1 + iη, ∂2, iζ)U(y; η, ζ)

= λρ0U(y; η, ζ), y ∈ Θ, U(y; η, ζ) = 0, y ∈ θ±,

U
(1

2
, y2; η, ζ

)
= U

(
− 1

2
, y2; η, ζ

)
,

∂1U
(1

2
, y2; η, ζ

)
= ∂1U

(
− 1

2
, y2; η, ζ

)
, |y2| <

l

2
.

As a result, we can view the pencil (2.10) as a map

(2.12) A(ζ; η, λ) : Hs+1
per (Θ)3 ∩ H̊1

per(Θ; θ)3 → Hs−1
per (Θ)3

for any smoothness exponent s ∈ N = {1, 2, . . . }.
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Second, the embedding H1(Θ) → L2(Θ) is compact, and for any ζ1, ζ2 ∈ C the
difference L(∇y; η, ζ1) – L(∇y; η, ζ2) turns out to be a matrix first order differential
operator (see the definition in the first line of (2.11)); i.e., A(ζ1; η,Λ) − A(ζ2; η,Λ) is a
compact operator. Consequently, by [34, 1.5.1], the map (2.12) is an isomorphism for all
ζ ∈ C except for a countable collection of normal eigenvalues with a single accumulation
point at infinity (see also Remark 2.2).

Finally, L(∇y, iζ; η) is an elliptic differential operator with a parameter (see [35]), i.e.,

(2.13) detL(ξ, iζ; η) ≥ cη(|ξ|2 + |ζ|2), ξ ∈ R2, ζ ∈ R.

Therefore, by the results of [35], the eigenvalues of the pencil A lie inside the union of a
strip and a double angle:

(2.14) {ζ ∈ C : | Im ζ| ≤ βη,λ} ∪ {ζ ∈ C : |Re ζ| ≤ κη,λ| Im ζ|}.
The positive numbers cη and βη,λ, κη,λ in (2.13) and (2.14) depend on η and λ, but
obvious reasons show that they can be taken to be the same for all η ∈ [0, 2π).

Remark 2.2. If η, λ ∈ R and iζ ∈ R, |ζ| > βη,λ, then the formally selfadjoint problem
(2.11) is uniquely solvable, because ζ does not belong to the set (2.11) and, thus, is not
an eigenvalue of [34]. This observation establishes one of the conditions of Theorem 1.5.1
in [34] (the other conditions have already been verified).

3. Spectrum of the pencil on the periodicity cell. The following statement about
the solvability of the problem

(2.15) q(u,v; η,Π)− λρ0(u,v)Π = f(v), v ∈ H̊1
per(Π; γ)3,

with a linear functional f ∈ (H̊1
per(Π; γ)3)∗ is verified by a standard method (see [12] and

also [16]).

Theorem 2.1. Let η ∈ [0, 2π). The operator of problem (2.15), viewed as the map (2.7),
is Fredholm if and only if the pencil (2.12) has no real eigenvalues.

Proof. The “if ” part. By the Korn inequality (3.1) (to be discussed below), the auxiliary
problem

(2.16) q(uH ,vH ; η,ΠH)− (λ− λH)ρ0(u
H ,vH)ΠH = fH(vH), vH ∈ H̊1

per(Π
H ; γH)3,

posed on the prism ΠH = {x ∈ Π : z > −4H} (see the definition (1.2)) and involving
a large positive number λH , is uniquely solvable for any functional fH on the Sobolev
space H̊1

per(Π
H ; γH)3 of vector-valued functions in H1(ΠH)3 that vanish additionally on

the surface γH = (∂ΠH ∩Γ0)∪{x ∈ Π : z = −4H} and have period 1 in the variable y1.
We construct a right regularizer (parametrix) for the operator of problem (2.15). The

solution u ∈ H̊1
per(Π; γ)3 of (2.15) with a right-hand side f ∈ (H̊1

per(Π; γ)3)∗ will be sought
in the form

(2.17) u = χ+1
H uH + (1− χ−1

H )u∞,

where χp
H ∈ C∞(R) is a cutoff function equal to 0 for z ≤ −(3 + p)H and to 1 for

z ≥ −(2 + p)H (we use the indices p = ±1 and p = 0). As components in (2.17),

we take the solution uH ∈ H̊1
per(Π

H ; γH)3 of problem (2.16), extended by zero to ΠH ,

and the solution u∞ ∈ H̊1
per(Π

∞; γ∞)3 of the following problem in the infinite prism
Π∞ = (−1/2, 1/2)× (−l/2, l/2)× R :

(2.18) q(u∞,v∞; η,Π∞)− λρ0(u
∞,v∞)Π∞ = f∞(v∞), v∞ ∈ H̊1

per(Π
∞, γ∞)3.

The right-hand sides of the above problems will be the functionals fH(v) = f(χ0
Hv) and

f∞(v) = f((1−χ0
H)v), respectively, and the Dirichlet conditions for (2.18) will be imposed
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on the union γ∞ of the strips γ∞
± = (−1/2, 1/2)×{±l/2}×R. The presence of the cutoff

function χ0
H ensures that fH∈(H̊1

per(Π
H ; γH)3)∗. Hence, there is a vector-valued function

uH ∈ H̊1
per(Π

H ; γH)3 satisfying the integral identity (2.16) and such that

(2.19) ‖uH ; H̊1
per(Π

H ; γH)‖ ≤ cH‖fH ; H̊1
per(Π

H ; γH)∗‖ ≤ CH‖f; H̊1
per(Π; γ)∗‖.

To find a solution of (2.18), we apply the Fourier transformation (2.8). The Parseval
identity for Fourier images reshapes (2.9) to a family of nonhomogeneous problems (2.9):

(2.20)
(A0D(∂1 + iη, ∂2, iζ)U

∞(y; η, ζ), D(∂1 + iη, ∂2, iζ)V
∞( · ; η, ζ))Θ

− λρ0(U∞( · ; η, ζ), V∞( · ; η, ζ))Θ = F (V ∞; η, ζ), V ∞ ∈ H̊1
per(Θ; θ)3.

Since the line R ⊂ C is free from the spectrum of the pencil A, the estimates [35] for
solutions of elliptic problems with a parameter (see [12] or [16, Chapter 3] for the details)

show that a solution U∞ ∈ H̊1
per(Θ; θ)3 of problems (2.20) exists for a.e. ζ ∈ R, and

(2.21) ~U∞; Θ~ζ ≤ c~F∞; Θ~ζ∗,

where c is independent of the functional F∞ and the parameter ζ, and

(2.22)
~U∞; Θ~

2
ζ = ‖∇yU

∞;L2(Θ)‖2 + (1 + ζ2)‖U∞;L2Θ‖2,
~F∞; Θ~ζ∗ = sup{|F∞(V ∞)| : V ∞ ∈ H̊1

per(Θ; θ)3, ~V ∞; Θ~ζ = 1}.

Now, the inverse Fourier transformation

U∞(y; η, ζ) 
→ u∞(x; η) =
1√
2π

∫
R

exp(izζ)U∞(y; η, ζ) dζ

provides a solution u∞ ∈ H̊1
per(Π

∞; γ∞)3 of problem (2.18), while formulas (2.21) and
(2.22), together with the rule for differentiation of Fourier images, ensure the estimate

(2.23)
‖u∞H̊1

per(Π
∞; γ∞)‖2 ≤

∫
R

~U∞; Θ~
2
ζ dζ ≤ c

∫
R

~F∞; Θ,~
2
ζ∗ dζ

≤ c‖f∞; H̊1
per(Π

∞; γ∞)‖2 ≤ c‖f; H̊1
per(Π; γ)‖2.

The last inequalities in the chains (2.23) and (2.19) are ensured by the properties of the
functionals f∞ and fH .

We calculate the discrepancy of the vector-valued function (2.17) in problem (2.15)

with a right-hand side f . Let v ∈ H̊1
per(Π; γ)3, and take vH = χ+1

H v and v∞ = (1−χ−1
H )v

as test functions in (2.16) and (2.18), respectively. Observe that

f(v) = fH(vH) + f∞(v∞)

by the definitions of the cutoff functions and the right-hand sides of the integral identities.
Also, we have

q(uH ,vH ; η,ΠH) = q(χ+1
H uH ,v; η,Π) + q̃ H(uH ,v; η,Π),

q(u∞v∞; η,Π∞) = q((1− χ−1
H )u∞,v; η,Π) + q̃∞(u∞,v; η,Π),

where

(2.24)

FH(f,v) := q̃ H(uH ,v; η,Π) = (A0D(∂1 + iη, ∂2, ∂3)u
H , D(0, 0, ∂3χ

+1
H )v)Π

− (A0D(0, 0, ∂3χ
+1
H )uH , D(∂1 + iη, ∂2, ∂3)v)Π,

F∞(f,v) := q̃∞(u∞,v; η,Π) = −(A0D(∂1 + iη, ∂2, ∂3)u
∞, D(0, 0, ∂3χ

−1
H )v)Π

+ (A0D(0, 0, ∂3χ
−1
H )u∞, D(∂1 + iη, ∂2, ∂3)v)Π.
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The forms (2.24) arose as a result of shifting the cutoff functions χ+1
H and 1−χ−1

H from the
test function v to the solutions uH and u∞. While doing so, we were forced to commu-
tate twice the differential operator D(∂1+ iη, ∂2, ∂3) with the cutoff functions mentioned
above, obtaining the matrix-valued functions D(0, 0, ∂3χ

+1
H ) and D(0, 0,−∂3χ

−1
H ) (ob-

serve that χp
H depends only on the variable x3 = z). In what follows the fact that the

supports of the derivatives ∂3χ
+1
H and ∂3(1 − χ−1

H ) = −∂3χ
−1
H are compact sets will be

important.
So, adding the integral identities (2.16) and (2.18), making the above transformations,

and recalling the definitions (2.17), we find that

(2.25) q(u,v; η,Π)− λρ0(u, v̂)Π = f(v)−FH(f,v)−F∞(f, v̂)−Fλ(f,v).

The linear maps

(H̊1
per(Π; γ)3)∗ � f 
→ FH(f, · ),F∞(f, · ),Fλ(f, · ) ∈ (H̊1

per(Π; γ)3)∗

turn out to be compact, because (2.24) and the expression

Fλ(f, v̂) = λHρ0(u
H , χ+1

H v)ΠH

involve no products of first derivatives of components of the vector-valued functions
uH ,u∞ and v, and integration in all cases is over the bounded set {x ∈ Π∞ : −H > z >
−4H}. Thus, for the abstract equation

(2.26) f−FH(f, · )−F∞(f, , · )−Fλ(f, · ) = f ∈ (H̊1(Π; γ)3)∗,

the Fredholm alternative is valid; i.e., if the right-hand side f satisfies a finite collection
of orthogonality conditions, then (2.26) admits a solution f for which formula (2.25) turns
into the integral identity (2.15), which has a solution (2.17). In other words, we have
constructed a right regularizer; now, in order to check that the operator of problem (2.4)
is Fredholm, it remains to verify that the kernel of the operator is finite-dimensional; this
will be done in Remark 2.4.

The “only if ” part. If the real axis R contains an eigenvalue of the pencil (2.12), then
the range of the operator of problem (2.15), viewed as a map (2.7), is not closed. The
corresponding singular sequence of functions for this operator can be constructed in a
standard way (see [12] and, e.g., [16, Theorem 3.1.1 and Remark 3.1.5]). Moreover, in
the proof of the second part of Theorem 2.2 we shall find a Weyl singular sequence for
the operator K in a similar situation and by the same method. Therefore, here we do
not present these constructions. �

For η ∈ [0, 2π) and ζ ∈ R, we introduce the unbounded symmetric operator M(η, ζ)
generated in L2(Θ)3 by the Hermitian form Q defined in (2.9) (see [11, §10.1]). The
relationship between the pencils (2.10) and (2.12) (see above) shows that the domain

D(M(η, ζ)) of M(η, ζ) is the subspace H2
per(Θ)3 ∩ H̊1(Θ; θ)3, and this operator is closed.

It is selfadjoint, because the matrix differential operator L(∇y, iζ; iη) in problem (2.11) is
formally selfadjoint. Since the embedding H1(Θ) ⊂ L2(Θ) is compact, Theorems 10.2.5
and 10.2.2 in [11] imply that the operator M(η, ζ) has a discrete spectrum consisting of
eigenvalues

(2.27) 0 < Λ1(η, ζ) ≤ Λ2(η, ζ) ≤ · · · ≤ Λn(η, ζ) ≤ · · · → +∞

(we list them with multiplicities; the fact that they are positive is ensured by the lemma
below). Moreover,

(2.28) Λ1(η, ζ) = inf
{
‖U ;L2(Θ)‖−2Q(U,U ; η, ζ)

∣∣∣U ∈ H̊1
per(Θ; θ)3 \ {0}

}
.
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Lemma 2.1. We have

(2.29) Q(U,U ; η, ζ) ≥ cA(1 + |ζ|2)‖U ;L2(Θ)‖2,
where cA > 0 is a constant independent of η ∈ [0, 2π), ζ ∈ R, and U ∈ H̊1

per(Θ; θ)3.

Proof. Put

(2.30) U(x) = exp(iηy1 + iζz)U(y).

Clearly, we have U ∈ H̊1(Θ × (0, 1); θ × (0, 1))3, but the periodicity of vector-valued
functions is lost. Nevertheless, by the Dirichlet conditions on the faces θ × (0, 1) of the
parallelepiped Θ× (0, 1), we have the Korn inequality

(2.31)
‖U ;L2(Θ× (0, H))‖2 + ‖∇xU ;L2(Θ× (0, H))‖2

≤ cH‖D(∇x)U ;L2(Θ× (0, H))‖2

(see [36, 37, 6], and also relation (3.1)). In the second term on the left, we keep only the
derivative ∂zU and perform differentiation and integration with respect to z ∈ (0, H).
As a result, we arrive at the estimate

(1 + |ζ|2)‖U ;L2(Θ)‖2 ≤ ch‖D(∂1 + iη, ∂2, iζ)U ;L2(Θ)‖2,
as required. �

Formulas (2.29) and (2.28) imply the inequality Λ1(η, ζ) ≥ cA(1 + |ζ|2). Since the
eigenvalues depend continuously on the parameter ζ (see, e.g., [38, Chapter 7]), the
function ζ 
→ Λ1(η, ζ) takes all values starting with

(2.32) Λmin(η) = min{Λ1(η, ζ) : ζ ∈ R} > 0

and up to +∞. Thus, by Theorem 2.1, the operator of problem (2.15), viewed as the
map (2.7), is not Fredholm for

λ ≥ ρ−1
0 Λmin(η).

4. Spectrum of the operator K. For η ∈ [0, 2π) fixed, we introduce the selfadjoint
unbounded operator m(η) in L2(Π)3 generated (see [11, Chapter 10]) by the Hermit-
ian form q(u,v; η,Π) indicated on the left-hand side of (2.6) and closed on the space

H̊1
per(Π; γ)3. The next statement says that this operator is positive.

Lemma 2.2. We have

(2.33) q(u,u; η,Π) ≥ CA,Π‖u;L2(Π)‖2,

where CA,Π > 0 is independent of η ∈ [0, 2π) and u ∈ H̊1
per(Π; γ)3.

Proof. As in the proof of Lemma 2.1, we introduce a vector-valued function U by formula
(2.30), but now we put ζ = 0 and replace U(y) with u(x). We apply the Korn inequality
(2.31) on the sets {x ∈ Π : z > −H} and Qn = Θ × (−(n − 1)H,−nH), n ∈ Z; the
corresponding constants will be denoted by c0 and cH . Observe that cH does not depend
on n, because the parallelepipeds Qn are congruent. Summing the inequalities, we obtain

(2.34) ‖U ;H1(Π)‖2 ≤ cΠ‖D(∇x)U ;L2(Π)‖2,
where cΠ = max{c0, cH}. Now, keeping on the left only the L2-norm of the vector-valued
function U itself, and taking the factor exp(iηy1) into account, we get

(2.35) ‖u;L2(Π)‖2 ≤ cΠ‖D(∂1 + iη, ∂2, ∂3)u;L2(Π)‖2.
Note that D(∇x)U = exp(iηy)D(∂1 + iη, ∂2, ∂3)u, and exp(iηy) disappears when we
calculate norms, because η is real. Relation (2.35) turns into (2.33) because the matrix
A0 is positive definite. �
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By Theorem 2.1 and Definition (2.32), the essential spectrum of the operator m(η) is
located on the ray [Λmin(η),+∞). The interval (0,Λmin(η)) contains only points of its
discrete spectrum:

(2.36) 0 < cA,Π ≤ Λ(1)(η) ≤ Λ(2)(η) ≤ · · · ≤ Λ(N(η))(η).

The number N(η) of eigenvalues, listed in (2.36) with multiplicities, depends on η; the
cases of N(η) = 0 and N(η) = +∞ are not excluded.

Remark 2.3. In general, the function η 
→ N(η) is not continuous, because the eigenvalues
Λ(n)(η) can run away from the interval (0,Λmin(η)), disappearing inside the continuous
spectrum [Λmin(η),∞) of the operator m(η). Thus, at the discontinuity points of the
function in question, at least one of the one-sided limits of the eigenvalues Λ(N(η))(η) is
equal to Λmin(η).

Theorem 2.2. A point µ ∈ (0, 1] belongs to the discrete spectrum or to the resolvent set
of the operator K if and only if for λ = µ−1 − 1 the half-interval [0, 2π) is free of the
spectrum of the pencil (2.7).

Proof. The “only if ” part. As in the proof of the first statement in Theorem 2.1, we
consider an auxiliary problem on the bounded domain Ω(R) = Ω0 ∩ BR :

(2.37) (AD(∇x)u
R, D(∇x)v

R)Ω(R) − (λ− λR)(ρuR, vR)Ω(R) = fR(vR), vR ∈ H(R).

The space H(R) consists of all vector-valued functions vR ∈ H̊1
per(Ω(R); Γ ∩ BR)

3 that

vanish on ∂BR ∩ Ω0, and the parameter λR is assumed to be sufficiently large to ensure
that the following is true: by the Riesz theorem on representation of a linear functional,
the Korn inequality for uR ∈ H(R) guarantees the unique solvability of problem (2.37)
and the estimate

‖uR;H1(Ω(R))‖ ≤ c‖fR;H(R)∗‖
with a constant c independent of the parameter R ≥ R0 and the functional fR.

We construct a right regularizer for the operator of the problem

(2.38) (AD(∇x)u,D(∇x)v)Ω − λ(ρu, v)Ω = f(v), v ∈ H.

The solution of (2.38) with right-hand side g ∈ H∗ will be sought in the form

(2.39) v = χ2
Ru

R + (1− χ0
R)u

0,

where χp
R ∈ C∞(R3) is a cutoff function equal to zero for |x| ≥ (2 + p)R and to 1 for

|x| ≤ (1 + p)R, and |∇xχ
p
R(x)| ≤ cR−1, p = 0, 1, 2. Also in (2.3), uR ∈ H(R) is the

solution of (2.37) in a bounded domain, and u0 ∈ H0 is the solution of the following
problem on the periodic set Ω0:

(2.40) (A0D(∇x)u
0, D(∇x)v

0)Ω0
− λ(ρu0, v0)Ω0

= f0(v0), v0 ∈ H0.

The right-hand sides have the form fR(vR) = g(χ1
Rv

R) and f0(v0) = g((1 − χ1
R)v

0),
respectively. Note that (1 − χ0

R)u
0 satisfies the boundary-value condition (1.6), due to

the definition of the cutoff function χ0
R and the requirement (1.11).

Since the half-interval [0, 2π) is free from eigenvalues of the pencil A, it follows that,
combining the Gelfand transformation, the inversion of the operator of the problem

q(û0,v; η,Π)− λρ0(û
0,v)Π = f̂0(v), v ∈ H̊1

per(Π; γ)3,

with parameter η ∈ [0, 2π), and the inverse transformation (2.3), we obtain a solution of
(2.40) subject to the estimate

(2.41)
‖u0;H0‖2 ≤ c

∫ 2π

0

‖û0;H1(Π)‖2 dη ≤ c

∫ 2π

0

‖f̂0; (H̊1
per(Π; γ)3)∗‖2 dη

≤ c‖f0;H∗
0‖2 ≤ cR‖g;H∗‖2.
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Note that here (and throughout the proof) cmeans a constant independent of R, and that
the additional factor R arose on the right in the chain (2.41) because |∇xχ

p
R(x)| ≤ cR−1.

Let v ∈ H; then vR = χ2
Rv ∈ H(R) and v0 = (1− χ0

R)v ∈ H0. We plug these two test
functions in the integral identities (2.37) and (2.40), respectively. Adding the results, we
observe that, by the identities χ1

Rχ
2
R = χ1

R, (1−χ1
R)(1−χ0

R) = 1−χ1
R and the definitions

of fR and f0, we have

fR(χ2
Rv) + f0((1− χ0

R)v) = g(χ1
Rv) + g((1− χ1

R)v) = g(v).

Finally, we use (2.39) to arrive at the integral identity

(2.42) (AD(∇x)v, D(∇x)v)Ω − λ(ρv, v)Ω = g(v) +G
R(g; v) +G

0(g; v), v ∈ H,

where

G
R(g; v) = (AD(∇x)u

R, D(∇xχ
2
R)v)Ω

− (AD(∇xχ
2
R)u

R, D(∇x)v)Ω − λR(ρuR, χ2
Rv)Ω,

(2.43)

G
0(g; v) =− (AD(∇x)u

0, D(∇xχ
0
R)v)Ω + (AD(∇xχ

0
R)u

0, D(∇x)v)Ω

+ ((A−A0)D(∇x)u
0, D(∇x)((1− χ0

R)v))Ω

− λ((ρ− ρ0)u0, (1− χ0
R)v)Ω.

(2.44)

As in the calculations in (2.24), here we have performed a commutation of the differ-
ential operator D(∇x) with the cutoff functions χ2

R and 1 − χ0
R, i.e., D(∇xχ

p
R)

� is a
matrix-valued function obtained from (1.8) by the substitutions ∂/∂xj 
→ ∂jχ

p
R. Also,

to the right-hand side of (2.44) we have placed the discrepancies that arose because of
freezing the coefficients at infinity (see the deduction of the model problem (2.1) in Sub-
section 1 of §2). The stabilization condition (1.10) and inequality (2.41) imply that the
norm of the operator generated in the space H∗ by the terms indicated does not exceed
cRN exp(−δ0R). The presence of the exponential function above shows that the factors
with power-like growth, which arose, e.g., on the right-hand side in (2.41), leave the ma-
jorant infinitely small as R → +∞. The other terms in (2.43) and (2.44) give rise only
to compact operators in H∗, because the corresponding expressions contain no products
of first derivatives of (components of) uR, u0, and v, and integration is taken over the
bounded set {x ∈ Ω : R ≤ |x| ≤ 4R} ⊃ supp |∇xχ

p
R|. Thus, if R ≥ R0 is sufficiently

large, then for the equation

(2.45) g+GR(g; · ) +G
0(g; · ) = f ∈ H∗,

similar to (2.26), the Fredholm alternative is valid. Imposing a finite number of orthog-
onality conditions on the right-hand side f , we can find the functional g ∈ H∗. Then we
can use formula (2.39) to obtain a function v ∈ H satisfying the integral identity (2.38)
(by (2.42) and (2.45)). So, we have constructed a right regularizer for the operator of
problem (2.38).

Now we show that the kernel ker(K−µ) is finite-dimensional. Let u ∈ H be a solution
of (1.12). Since problem (2.37) in the bounded domain Ω(R) is uniquely solvable, we get
the relation

‖χ1
Ru;H

1(Ω)‖ ≤ c‖u;L2(Ω(R))‖.
Here the right-hand side arose because of commutation of the corresponding differential
operator with the cutoff function χ1

R (cf. (2.43)). We multiply the solution by 1 − χ1
R,

freeze the coefficients, and turn to the uniquely solvable model problem (2.40); this gives
the estimate

‖(1− χ1
R)u;H

1(Ω)‖ ≤ c(‖u;L2(Ω(R))‖+ exp(−δ0R)‖u;H1(Ω)‖).
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The two inequalities above imply that for sufficiently large R we have

‖u;H1(Ω)‖ ≤ C‖u;L2(Ω(R))‖,

which shows that the subspace ker(K − µ) is finite-dimensional. It remains to mention
that, by the definitions (1.13) and (1.14), problem (2.38) is equivalent to the nonhomo-
geneous abstract equation (1.16) with the right-hand side (1 + λ)−1F ∈ H and with the
parameter (1.15).

Thus, the operator K−µ is Fredholm; i.e., the point µ does not belong to the essential
spectrum of F .

The “if ” part. First, suppose that the half-interval [0, 2π) contains an eigenvalue η0 of

the pencil η 
→ a(η;λ). Then there is a nontrivial vector-valued function u ∈ H̊1
per(Π; γ)3

satisfying problem (2.6) with the parameters η0 and λ. Put

(2.46) uq(x) = 2−q/2X(y1 − 2q)X(2q+1 − y1) exp(iη0y1)u(x).

Here X ∈ C∞(R) is a cutoff function such that X(y1) = 0 for y1 ≤ 0, X(y1) = 1
for y1 ≥ 1, and 0 ≤ X ≤ 1. The number q ∈ N is taken so large that the support
{x : 2q ≤ y1 ≤ 2q+1} of the vector-valued function uq is disjoint with the ball BR0 ;

then uq ∈ H by (1.11) and the definition of the space H̊1
per(Π; γ)3 (see the comment on

formula (2.6)).
Since the product Xq of the cutoff functions on the right in (2.46) is equal to 1 for

y1 ∈ (2q + 1, 2q+1 − 1), the second condition in (1.10) allows us to write

(ρuq, uq)Ω ≥ 2−q(2q+1 − 2q − 2)
(
‖u;L2(Π)‖2 − c exp(−δ02

q)
)

≥ c1 − c02
−q ≥ c1/2.

Here c0 and c1 are positive constants, and the index q is assumed to be large.
Similarly,

(ρuq, uq)Ω ≤ c2, (AD(∇x)u
q, D(∇x)u

q)Ω ≤ c3.

Hence, the sequence (2.46) is bounded and uniformly separated away from zero in the
norm of the space H, and it converges to zero weakly in H, because the supports of uq

and up are disjoint for q �= p. Thus, it remains to verify the third fundamental property
of a Weyl sequence (see, e.g., [11, §9.1]), namely,

(2.47) ‖Kuq − µuq;H‖ → 0, q → +∞.

We have

(2.48)

‖Kuq − µuq;H‖ = sup{|〈Kuq − µuq, w〉| : w ∈ H, ‖w;H‖ = 1},
〈Kuq − µuq, w〉 = (1 + λ)−1((AD(∇x)u

q, D(∇x)w)Ω − λ(ρuq, w)Ω)

= (1 + λ)−1((A0D(∇x)u
q, D(∇x)w)Ω0

− λρ0(u
q, w)Ω0

)

+O(exp(−δ02
q)).

Here we have used formulas (1.10) and (1.12)–(1.14). Putting v(x) = Xq(y1)w(x), in
the last-written inner product in (2.48) we transfer the cutoff function Xq, and also the
factor exp(iη0y1) from the vector-valued function u (see (2.46)) to the test function w.
Since the support of the commutator D(∇xXq) lies in the closure of only two prisms Π2q
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and Π2q+1−1, we obtain

(A0D(∇x)u
q, D(∇x)w)Ω0

− λρ0(u
q, w)Ω0

= 2−q/2((A0D(∂1 + iη0, ∂2, ∂3)u, D(∂1 + iη, ∂2, ∂3) exp(iη0y1)v)Ω0

− λρ0(u, exp(iη0y1)v)Ω0
+O(1))

= 2−q/2((A0D(∂1 + iη0, ∂2, ∂3)u, D(∂1 + iη0, ∂2, ∂3)v)Π

− λρ0(u,v)Π +O(1))

= O(2−q/2).

(2.49)

Here, we applied the definition (2.2) of the Gelfand image v = v̂, and then identity (2.6)
for the spectral pair {η0,u} of the pencil a( · ;λ). Relations (2.48) and (2.49) imply the
convergence (2.47).

If a point η0 of the continuous spectrum of the pencil η 
→ a(η;λ) lies on [0, 2π),
then, by Theorem 2.1, the pencil ζ 
→ A(ζ; η, λ) has a real eigenvalue ζ0. Let U denote
an eigenfunction corresponding to ζ0. The construction of elements of an appropriate
singular Weyl sequence differs little from that used earlier in (2.46):

uq(x) = 2−qXq(y1)Xq(z) exp(iη0y1) exp(iζ0z)U(y).

The function z 
→ Xq(z), cutting off in the vertical direction, is added because the solution
U(x) = exp(iζ0z)U(y) of the system of differential equations

L(∇y, ∂z; iη)U(x) = λρ0U(x), x ∈ Π∞

(see the definition of the differential operator in the first line of (2.11)) satisfies the
Dirichlet conditions (1.6) on the faces {±1/2} × (−l/2, l/2) × R of the prism and the
periodicity conditions on the other two faces, i.e., possesses the required properties of
the function u in (2.46), but does not belong to the Sobolev space H1(Π)3. The factor
2−q is responsible for the preservation of inequality (2.5) (of course, without its middle
part). The other calculations and arguments need no essential changes. �

By Theorem 2.2 and the remarks about the operatorm(η) made before the formulation
of that theorem, the segment [0, µ0

†] (the ray [λ0
† ,+∞)) is occupied by the continuous

spectrum of the operator K (the continuous spectrum of problem (1.12)). The absolute
thresholds

(2.50) µ0
† = (1 + λ†)

−1, λ0
† = (ρ0)−1min{Λmin(η) : η ∈ [0, 2π)}

are related to the continuous spectrum of the pencil (2.7) (i.e., to the loss of the Fredholm
property by the operator of the model problem (2.6) on the section Θ of the periodicity
cell Π), and are only determined by the limiting rigidity matrix A0 and by the size l
(see (1.10) and (1.2), respectively), via the eigenvalues (2.27) of the pencil (2.12) (see
formula (2.27)).

Besides the thresholds (2.50), partial thresholds may arise:

(2.51) µ
(n)
† = (1 + λ

(n)
† )−1, λ

(n)
† = ρ−1

0 Λ
(n)
min,

where n = 1, . . . , Nmax, Nmax = max{N(η) : η ∈ [0, 2π)},

Λ
(n)
min = min{Λ(n)(η) : η ∈ [0, 2π)},

and the number Λ
(n)
max is defined similarly. Here we have used the eigenvalues of the

operators m(η), and if Λ(n)(η) is absent on the list (2.36), then we put Λ(n)(η) = +∞.
The partial thresholds (2.51) are generated by the discrete spectrum (2.36) of m(η). By
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Theorem 2.2 and the continuous dependence of Λ(n)(η) ∈ [0,Λmin(η)] on η, each of the
thresholds (2.51) is an end, upper or lower (respectively), of the segments

(2.52) ∆(n) = [µ
(n)
# , µ

(n)
† ] and [λ

(n)
† , λ

(n)
# ]

forming the continuous spectra of the operator K and problem (1.12), and

λ
(n)
# = ρ−1

0 Λ(n)
max, µ

(n)
# = (1 + λ

(n)
# )−1.

Since the continuous spectrum of problem (1.12) is a union of finite and half-infinite seg-
ments (in particular, [λ0

#,+∞)), this spectrum can admit gaps, i.e., intervals containing
discrete spectrum points only. An example of such a gap is presented in the next section.

5. On the exponential decay of solutions at infinity. By what was said about
the eigenvalues of the pencil (2.12), in particular since they belong to the set (2.14), the
absence of points of the spectrum on the real axis means that there are no such points
also in a strip {ζ ∈ C : Im ζ ∈ (−δ(λ), 0]} for some δ(λ) > 0 and all η ∈ [0, 2π). It is
well known (see [12] and also, e.g., [16, Chapter 3]) that this property of the spectrum
ensures the exponential decay of solutions of problem (2.15) with appropriate right-hand
sides. Now we formulate the result, postponing comments till Proposition 2.2, where a
similar statement will be established for problem (2.38).

Proposition 2.1. Suppose that, for some λ ≥ 0 and η ∈ [0, 2π), the real axis is free
from the spectrum of the pencil ζ 
→ A(ζ;λ, η). Also, suppose that a functional f ∈
(H̊1

per(Π; γ)3)∗ satisfies

(2.53) |f(exp(−δz)v)| ≤ cδ(f)‖v;H1(Π)‖, v ∈ H̊1
per(Π; γ)3.

There exists a number δ(λ, η) > 0 such that if δ ∈ (0, δ(λ, η)), then for the solution

u ∈ H̊1
per(Π; γ)3 of problem (2.15) we have exp(−δz)u ∈ H̊1

per(Π; γ)3 and

‖ exp(−δz)u;H1(Π)‖ ≤ cδ(cδ(f) + ‖f ; (H̊1
per(Π; γ)3)∗‖+ ‖u;H1(Π)‖).

The constant cδ depends on δ, but not on u and f , and cδ(f) is the coefficient occurring
on the right-hand side in (2.53).

In particular, Proposition 2.1 implies that the eigenfunctions corresponding to the
eigenvalues (2.36) decay exponentially as z → −∞.

Remark 2.4. Independently of the presence or absence of the spectrum of the pencil A
on the line R ⊂ C, the kernel of the operator of problem (2.15), viewed as the map (2.7),
turns out to be finite-dimensional. Indeed, we can always find δ > 0 such that the line
R + iδ = {ζ ∈ C : Im ζ = δ} is free from the spectrum of the pencil. By the results of
[12] (see also [16, Chapter 3] and the proof of Theorem 2.1), the operator of problem
(2.15), acting from the space

(2.54) W̊ 1
δ,per(Π; γ)3 := {u ∈ H1

loc(Π)
3 : exp(δζ)u ∈ H̊1

per(Π; γ)3}

of exponentially decaying vector-valued functions to the space

(2.55) (W̊ 1
−δ,per(Π; γ)3)∗ :=

{
f : |f(exp(δz)v)| ≤ c‖v;H1(Π)‖, v ∈ H̊1

per(Π; γ)3
}
,

of functionals, is Fredholm, so that its kernel is finite-dimensional. It remains to observe
that, since the space (2.54) is wider than H̊1

per(Π; γ)3, the kernel could only become larger
when we pass to functions that grow at infinity. Consequently, the kernel of the operator
defined on H̊1

per(Π; γ)3 is also finite-dimensional.
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We turn to problem (1.4)–(1.6), or (1.12). We equip the space

(2.56) W(δ) = {u ∈ H1
loc(Ω)

3 : exp(δ(|y1| − z))u ∈ H}

with the natural norm ‖u;W(δ)‖ = ‖ exp(δ(|y1|−z))u;H‖. Clearly, W(0) = H. If δ > 0,
then the vector-valued functions in the space (2.56) decay exponentially at infinity, but
if δ < 0, then certain growth is allowed.

Let W(δ)∗ be the dual space. Since (C∞
c (Ω) ∩ H)3 is dense in W(δ), the integral

identity (2.38) remains meaningful for any u ∈ W(δ), f ∈ W(−δ)∗, and v ∈ W(−δ).
Thereby, this identity gives rise to an operator

Qδ : W(δ) → W(−δ)∗

which coincides with the operator considered before for δ = 0.
If the half-interval [0, 2π) is free from the spectrum of the pencil (2.7), then, for some

δ(λ) > 0, the rectangle

{η ∈ C : Re η ∈ [0, 2π), Im η ∈ (−δ(λ), δ(λ)}.

possesses the same property. Let δ ∈ (−δ(λ), δ(λ)). We extend the Gelfand transfor-
mation (2.2) to complex values of η, and in the inverse transformation (2.3) we shift
integration to the half-interval {η ∈ C : Re η ∈ [0, 2π), Im η = δ} (cf. [33] and [16, §3.4]).

Consider the nonhomogeneous model problem (2.1) and introduce the space W0(δ)
by formula (2.56) with H0 in place of H. As the right-hand side of a problem on the
periodic set Ω0, we take a functional f0 ∈ W0(−δ1)

∗, where δ1 ∈ (0, δ(λ)). Since v 
→
f0(exp(±δy1)v) is a continuous functional belonging to the dual space H∗ for all δ ∈
[0, δ1], and ∂η v̂ is the image of the function x 
→ −iy1v(x), the Gelfand transformation
yields an abstract 2π-periodic function holomorphic in the strip and continuous up to
the boundary of the half-strip. The operator of problem (2.15), viewed as a map

W̊ 1
δ1,per(Π; γ)3 → (W̊ 1

−δ1,per(Π; γ)3)∗

(see (2.54) and (2.55)), has a resolvent Rδ(η) holomorphic in the strip {η : | Im η| < δ(λ)}
and 2π-periodic along the real axis. As a result, the inverse Gelfand transformation
determines a family, parametrized by δ ∈ [−δ1, δ1], of solutions

vδ(x) =
1√
2π

∫ 2π+iδ

iδ

exp(iηy1)Rδ(η)f̂
0( · ; η) dη

of the model problem on the periodic set Ω0. These solutions do not differ from one
another, because the difference of two solutions is representable as a contour integral
along the boundary of the rectangle vδ1 − vδ2 , and the integrals along its lateral sides
cancel, because of the opposite directions of integration and the 2π-periodicity of the
integrand with respect to the variable Re η. Thus, for the solution v0 ∈ H0 we have
exp(δy1) exp(−δz)v0 ∈ H for all δ ∈ [−δ1, δ1], whence v0 ∈ W0(δ1). Also,

‖v0;W0(δ1)‖ ≤ c‖f0;W0(−δ1)
∗‖.

Now, let u ∈ H be a solution of problem (2.38) with a right-hand side f ∈ W(−δ)∗

for some δ > 0. We multiply a test function v by a smooth cutoff function X equal to 0
for |x| < R0 and to 1 for |x| > 2R0 and transfer the following forms to the right:

((A− A0)D(∇x)u,D(∇x)(Xv))Ω, λ((ρ− ρ0)u,Xv)Ω,

(A0D(∇x)u,D(∇xX)v)Ω, −(A0D(∇xX)u,D(∇x)v)Ω.

In the first pair we have an additional weight factor exp(−δ0|x|), occurring in the stabi-
lization condition (1.10), and in the second pair integration is over a compact set. Thus,
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the product v0 = Xv turns out to be a solution of the model problem in Ω0 with the
right-hand side f0 ∈ W0(−δ1)

∗, where δ1 = min{δ, δ0}. So, the above arguments, which
followed the lines of [33] (see also [16, §3.4]), imply the next statement.

Proposition 2.2. Suppose δ ∈ (0, δ0] (see (1.10)) and f ∈ W(−δ)∗. Then the solu-
tion u ∈ H of problem (2.38) belongs to W(δ) and satisfies the estimate ‖u;W(δ)‖ ≤
cδ‖f ;W(−δ)∗‖.

In particular, this shows that the eigenfunction u corresponding to a point µ of the
discrete spectrum of K decays exponentially at infinity.

The verification of Proposition 2.1 repeats, with simplifications, the above proof of
Proposition 2.2.

Remark 2.5. In contrast to the kernel of the operatorm(η), mentioned in Remark 2.4, the
kernel of the operator K−µ may fail to be finite-dimensional. Here is a simplest example.
Let Ω = Ω0, let A = A0, and suppose that for all η on a segment [η1, η2] ⊂ [0, 2π)
of positive length the operator m(η) has an eigenvalue Λ = ρ0λ. The corresponding
eigenfunction

u( · ; η) ∈ H̊1
per(; γ)

3

decays exponentially at infinity by Proposition 2.1. Consequently, for any density ϕ ∈
C∞

c (η1, η2) the formula

uϕ(x) =
1√
2π

∫ 2π

0

exp(iηy1)u(y1 − [y1], y2, z; η) dη

gives us a solution of the homogeneous problem, and this solution belongs to the space
H = H0.

§3. Specific forms

1. The Korn inequality. Let Ξ be a 3-dimensional elastic body with Lipschitz bound-
ary Ξ and compact closure Ξ. A part Γ of the surface of Ξ is clamped rigidly; i.e.,
Dirichlet conditions of the form (1.6) are preassigned on Γ. Various methods for the
proof of the Korn inequality

(3.1) ‖u;H1(Ξ)‖2 ≤ cΞ‖D(∇x)u;L2(Ξ)‖2, u ∈ H̊1(Ξ; Γ)3,

which was already used in the proofs of Lemmas 2.1 and 2.2, can be found in [39]–[37].
Largely, the dependence of the Korn constant cΞ on the domain Ξ is not known; in [37] it
was proved only that if a body Ξ is star-shaped relative to the ball BR, then the constant
c in the inequality

(3.2) ‖u;H1(Ξ)‖2 ≤ c(‖D(∇x)u;L2(Ξ)‖2 + ‖u;L2(BR)‖2), u ∈ H1(Ξ)3,

can be taken depending only on the ratio of the diameters D and 2R > 0 of the domains
Ξ and BR.

In the case of thin elastic bodies (plates and rods), to make the Korn inequality
asymptotically sharp relative to the small geometric parameter h > 0, we should consider
anisotropic and weighted Sobolev norms, (3.1) and (3.2), on the left-hand sides in [42] and
[43] (see also the book [6] and the survey [44, § 2]). Here we present such an inequality,
anisotropic and weighted, see [43, 45], for a rod Gh = ωh × (0, 1) with cross section
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ωh = {y : h−1y ∈ ω}, where ω is a domain in R2 bounded by a simple closed contour
∂ω:

w;Gh
2
: =

∥∥∥∂wp

∂yp
;L2(Gh)

∥∥∥2

+
∥∥∥∂w3

∂z
;L2(Gh)

∥∥∥2

+ h2
(∥∥∥ρ−1

h

∂wp

∂z
;L2(Gh)

∥∥∥2

+
∥∥∥ρ−1

h

∂w3

∂yp
;L2(Gh)

∥∥∥2

+
∥∥∥ρ−1

h

∂w1

∂y2
;L2(Gh)

∥∥∥2

+
∥∥∥ρ−1

h

∂w2

∂y1
;L2(Gh)

∥∥∥2)
+

∥∥ρ−1
h w3;L2(Gh)

∥∥2
+ h2

∥∥ρ−2
h wp;L2(Gh)

∥∥2

≤ c ‖D(∇x)w;L2(Gh)‖2 .

(3.3)

Here p = 1, 2, and ρh(x) = z + h is a weight factor equal to O(1) far from the clamped
end ωh(0) = ωh × {0} of the rod (for z > c > 0), and equal to O(h) near that end (for
z ≤ Ch). In [45, 46] it was shown that for many purposes inequality (3.3) is insufficient,
and that an additional relation of the form

(3.4) ‖ρ−1
h (wp − wp);L2(Gh)‖2 ≤ c‖D(∇x)w;L2(Gh)‖2

is required. In (3.4), the quantities

(3.5) wp(z) = (meas2 ωh)
−1

∫
ωh

wp(y, z) dy

are the mean displacements. Of course, the constants c in (3.3) and (3.4) are independent

of h ∈ (0, 1] and w ∈ H̊1(Gh;ωh(0))
3. The proof of inequalities (3.3) and (3.4) can be

found in [6, Chapter 3] and [44, §2].

2. Cushion with fringe. Suppose that the periodicity cell has the form

(3.6) Π = Π(1/6) ∪Gh ∪B,

where Π(H) is a half-infinite prism (1.2), B = {x : |y|2 + |z − 5/6|2 < 1/4} is the ball
of radius 1/2 centered at x = (0, 0, 5/6), and Gh is the rod mentioned in the preceding
subsection. The number h0 will be chosen so that Gh ⊂ Π(∞) = {x = (y, z) : |yp| <
lp/2, z ∈ R} for h ∈ (0, h0]. We assume that the disk {y : |y| < 1} lies inside the reduced
(h = 1) section ω; then the rod Gh includes the cylinder �h = {x : |y| < h, |z − 3/4| <
1/4}. For the role of the clamped surfaces we take the half-planes Σ± = Σ±

0 = {x : y2 =
±l/2, z < 0}.

Plane pictures of the periodicity cell and the cushion with fringe Ω are presented in
Figures 4 and 6, respectively; to form the periodic set Ω0 (Figure 5) one needs to restore
the two elements of the fringe that are defective in Figure 6.

Now we deduce an asymptotically sharp, weighted and anisotropic, Korn inequality
for the cell (3.6); we use the method described in [19] (see also [44, §3]). Let u ∈
H̊1(Π;Σ ∩ ∂Π)3. Repeating the proof of Lemma 2.1, we arrive at the relation

(3.7) ‖u;H1(Π(1/6))‖2 ≤ c‖D(∇x)w;L2(Π)‖2.

We employ the corollary

(3.8) ‖ |x|−1u;L2(Θ× (−1/6, 1/6))‖2 ≤ c‖u;H1(Θ× (−1/6, 1/6))‖2

to the one-dimensional Hardy inequality

(3.9)

∫ ∞

0

|W (r)|2 dr ≤ 4

∫ ∞

0

r2
∣∣∣dW
dr

(r)
∣∣∣2 dr, W ∈ C1

c [0,+∞),
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involving the radial variable r = |y| and integrated over the angular variables of the
spherical system of coordinates. As a result, for the field w(x) = X(h−1z)u(x) on the
rod Gh we obtain the estimate

(3.10)

‖D(∇x)w;L2(Gh)‖2 ≤ 2‖D(∇x)u;L2(Gh)‖+ 2‖D(∂zX)u;L2(Gh)‖2

≤ 2‖D(∇x)u;L2(Gh)‖2 + ch−2‖u;L2(ωh × (0, h))‖2

≤ 2‖D(∇x)u;L2(Gh)‖2 + c‖ |x|−1;L2(ωh × (0, h))‖2

≤ ‖D(∇x)u;L2(Π(1/6) ∪Gh)‖2.

Here X is the same cutoff function as in (2.46). Since w(y, 0) = 0 because of cutting off,
we have inequalities (3.3) and (3.4) at our disposal. Observe that, first, in the middle of
the calculations (3.10) we used the fact that r < ch on the cylinder ωh×(0, h), and second,
to deduce formula (3.8) from the Hardy inequality (3.9) we should put W (r) = χ(r)u(x),
where χ is an appropriate cutoff function.

We represent the restriction of the vector-valued function u to a ball B in the form

(3.11) u(x) = u⊥(x) + d(y, z − 3/4)a,

∫
B

d
(
y, z − 3

4

)�
u⊥(x) = 0 ∈ R6,

where d(x)a is the rigid displacement (i.e., a is a column in R6 and d is a linear matrix-
valued function of size 3× 6, similar to the matrix D(x)� in formula (1.8)),

(3.12) d(x) =

Ñ
1 0 0 0 2−1/2x3 −2−1/2x2

0 1 0 −2−1/2x3 0 2−1/2x1

0 0 1 2−1/2x2 −2−1/2x1 0

é
.

Due to the orthogonality conditions in (3.11), the following version of the Korn inequality
is valid (see [41, 37] and, e.g., [6, §2.2] and [44, §2]):

(3.13) ‖u⊥;H1(B)‖2 ≤ c‖D(∇x)u
⊥;L2(B)‖2 = c‖D(∇x)u;L2(B)‖2.

The last identity is ensured by the relation D(∇x) d(x) = 0 implied by (1.8) and (3.12)
(strains vanish at the rigid displacements).

It remains to handle the column a. Formulas (3.11) show that

(3.14) a =

{ ∫
	h

d
(
y, z− 3

4

)�
d
(
y, z− 3

4

)
dx

}−1 ∫
	h

d
(
y, z− 3

4

)�
(u(x)−u⊥(x)) dx,

and the Gram matrix occurring in braces becomes diagonal because the point (0, 0, 3/4)
lies in the center of the circular cylinder �h; namely, this Gram matrix looks like this:

diag

ß
π

2
h2,

π

2
h2,

π

2
h2,

π

16
h2

Å
1

12
+ h2

ã
,
π

16
h2

Å
1

12
+ h2

ã
,
π

8
h4

™
.

The first three positions are occupied by the volume of the cylinder �h, and the last
three by its moments of inertia.

By (3.14), we have

(3.15) |aq|2 ≤ ch−4meas3 �h

∫
	A

(|uq(x)|2 + |u⊥
q (x)|2) dx, q = 1, 2, 3.

First, let q = 3. We observe that meas3�h = O(h2) and uq = wq on �h and estimate
the integral in (3.15) with the help of (3.3) and (3.13), obtaining

(3.16) |a3|2 ≤ ch−2‖D(∇x)u;L2(Π)‖2.
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For q = 1, 2, the factor h−1 arises in the majorant for the norm ‖wq;L2(�h)‖ because of
the anisotropic structure of the Korn inequality (3.3). As a result, we obtain

(3.17)

|aq|2 ≤ ch−2(‖wq;L2(�h)‖2 + ‖u⊥
q ;L2(�h)‖2)

≤ ch−2(h−2‖D(∇x)u;L2(Π(1/6) ∪Gh)‖2 + ‖D(∇x)u;L2(B)‖2)
≤ ch−4‖D(∇x)u;L2(Π)‖2.

A similar inequality is fulfilled for q = 4, 5:

(3.18)
|a6−p|2 ≤ ch−2(‖wp;L2(�h)‖2 + h2‖w3;L2(�h)‖2 + ‖u⊥;L2(�h)‖2)

≤ ch−4‖D(∇x)u;L2(Π)‖2, p = 1, 2.

Finally,

|a6|2 ≤ ch−8

Å∣∣∣∣ ∫
	h

(y1w2(x)− y2w1(x)) dx

∣∣∣∣2 + ∣∣∣∣ ∫
	h

(y1u
⊥
2 (x)− y2u

⊥
1 (x)) dx

∣∣∣∣2ã
≤ ch−8

Å∣∣∣∣ ∫
	h

(y1(w2(x)− w2(z))− y2(w1(x)− w1(z))) dx

∣∣∣∣2
+ h2meas2�h

∫
	h

|u⊥(x)(x)|2 dx
ã

≤ ch−4(‖D(∇x)w;L2(Gh)‖2 + ‖D(∇x)u
⊥;L2(B)‖2)

≤ ch−4‖D(∇x)u;L2(Π)‖2.

(3.19)

Note that, instead of the Korn inequality (3.3), here we have used inequality (3.4) in-
volving the mean values (3.5) of the displacements wp on a section of the rod Gh, and
that the substitutions wp 
→ wp−wp in the first integral in the chain (3.19) are possible,
because the integral of y3−p over a circular section of the cylinder �h vanishes.

Collecting relations (3.7), (3.15)–(3.19), (3.10), and (3.3), we arrive at the following
result.

Theorem 3.1. For any u ∈ H̊1(Π;Σ)3 we have

‖u;H1(Π(1/6))‖2 + Xhu;Gh
2
+ ‖u⊥;H1(B)‖+ h2(H2|a′|2 + |a3|2)

≤ cΠ ‖D(∇x)u;L2(Π)‖2,

where Xh(Z) = X(h−1z); . . . is the weighted anisotropic norm (3.3); u⊥, a3, and
a′ = (a1, a2, a4, a5, a6)

� ∈ R5 are the components in the decomposition (3.11) of the field
u on the ball B; and cΠ is a constant independent of h ∈ (0, h0].

Let R be the subspace in H̊1(Π;Σ)3 distinguished by the five orthogonality conditions

(3.20)

∫
B

d ′
(
y, z − 3

4

)�
u(x) dx = 0 ∈ R6,

where d ′(x) is the (3× 6)-matrix obtained from the matrix (3.12) by replacing the unit
at the third position in the third column with zero.

Corollary 3.1. For any u ∈ R we have

(3.21) ‖u;H1(Π)‖2 ≤ CΠh
−2‖D(∇x)u;L2(Π)‖2,

where CΠ is a constant independent of u and h ∈ (0, h0].
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Proof. It suffices to note that a′ = 0 by (3.20), and we have the inequalities

‖u;H1(Gh) \Π(1/6)‖2 ≤ ch−2 Xhu;Gh
2
,

‖u;H1(B)‖2 ≤ c(‖u⊥;H1(B)‖2 + |a3|2),
which, together with (3.3), (3.10), (3.7), (3.13), and (3.16), lead to the desired estimate.

�

3. Existence of a gap in the continuous spectrum. The absolute thresholds (2.51)
do not depend on h > 0. Now we verify that, as this geometric parameter becomes
smaller on the interval (µ0

†, 1), one or several segments of the continuous spectrum of K
separated away from the segment [0, µ0

† ] can be formed.

Proposition 3.1. There exists h0 > 0 such that if h ∈ (0, h0] and η ∈ [0, 2π), then for
the discrete spectrum (2.36) of the operator m(η) we have

(3.22) N(η) ≥ 6, Λ(1)(η) ≤ · · · ≤ Λ(5)(η) ≤ cΛh
4, Λ(6)(η) ≥ CΛh

2,

with constants cΛ and CΛ > 0 independent of η.

Proof. We employ the max-min principle (see, e.g., [11, Theorem 10.2.2]):

(3.23) Λ(j)(η) = max
Ej

inf
u∈Ej\{0}

q(u,u; η,Π)

‖u;L2(Π)‖2 ,

where q is the Hermitian form (2.6), and Ej is an arbitrary subspace of codimension j−1

in H̊1
per(Π;Σ)3, i.e., dim(H̊1

per(Π;Σ)3 �Ej) = j − 1. We shall construct some special test

fields supported on B ∪Gh and, thus, 1-periodic in the variable y1. We put

(3.24)

wp(x) = epX0(z)− ype3∂zX0(z),

w2+p(x) = ep(z − 3/4)X0(z)− ype3∂z((z − 3/4)X0(z)), p = 1, 2,

w5(x) = (y2e1 − y1e2)X0(z), w6(x) = e3X0(z).

Here ep and e3 = (0, 0, 1)� are the unit vectors of the axes yp and z, and X0 ∈ C∞(R)
is a cutoff function equal to 1 for z > 1/3 and to 0 for z < 1/6. Since X0 = 1 on the ball
B, the restrictions of the fields (3.24) to B are nonzero rigid displacements, so that

(3.25) ‖wq;L2(Π)‖2 ≥ c0 > 0.

Calculating the strains εjk(w
q) (see formulas (1.7)–(1.8)), we find that, among these

strains, only the following are nontrivial:

(3.26)
ε33(w

p;x) = −yp∂
2
zX0(z), ε33(w

2+p;x) = −yp∂
2
z ((z − 3/4)X0(z)),

ε3p(w
5;x) = εp3(w

5;x) = −(−1)py3−p∂zX0(z), ε33(w
6;x) = ∂zX0(z).

The derivatives ∂zX0 = ∂X0/∂z are nonzero only for z ∈ (1/6, 1/3); i.e., the functions
(3.26) are supported on the rod Gh. Clearly, meas3Gh = O(h2) and |yp| ≤ ch for x ∈ Gh.
Thus,

(3.27)
q(wq, wq; 0,Π) = (A0D(∇x)w

q, D(∇x)w
q)Π ≤ cqh

4, q = 1, . . . , 5,

q(w6, w6; 0,Π) ≤ c6h
2.

Now, the inequality N(η) ≥ 6 follows from the next two observations. First, for the
vector-valued functions

(3.28) wq = exp(−iηy1)w
q ∈ H̊1

per(Π;Σ)3,

the quantities q(wq,wq; η,Π) and ‖wq;L2(Π)‖2 coincide with the left-hand sides of in-
equalities (3.27) and (3.25), respectively. Second, since any subspace E6 of codimension
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Figure 8. Periodic structure of the clamping zone.

Figure 9. Two-periodic structure of the clamping zone.

5 contains a nontrivial linear combination of functions (3.28), it follows that for j = 6
the right-hand side of (3.23) does not exceed ch2 and, if h is small, lies in the half-
interval [0,Λmin(η)). Therefore, by [11, Theorem 10.2.2], the operator m(η) has at least
6 eigenvalues on that half-interval.

The same theorem and formulas (3.26) and (3.25) show that Λ(5)(η) ≤ ch4. It remains
to verify the last relation on the list (3.22). For the role of E6 we take the subspace R(η)
of vector-valued functions u = exp(−iηy1)u with u ∈ R. The first observation made
above and inequalities (1.9) and (3.21) imply that

‖u;L2(Π)‖−2q(u,u; η,Π) ≥ cA‖u;L2(Π)‖−2‖D(∇x)u;L2(Π)‖2 ≥ cAC
−1
Π h2,

whence Λ(6)(η) ≥ cAC
−1
Π h2. �

Thus, the segments ∆(1), . . . ,∆(5) of the continuous spectrum of K (see (2.52)) lie
in the set [(1 + cΛh

4)−1, 1], and the segments ∆(n) with n ≥ 6 lie in [0, (1 + CΛh
2)−1].

If h is small, then these sets do not intersect; therefore, the continuous spectrum of K
necessarily has at least one gap.

4. Generalizations and consequences. The Dirichlet boundary conditions (1.6) are
necessary for building an example of a waveguide with a gap in the continuous spectrum.
Such conditions may be posed on one of the faces only, or even on a union of stripes
in that face (Figure 8). However, in the case of the Neumann conditions (1.5) on the
entire boundary ∂Ω =: Σ, the absolute threshold λ0

† (see (2.50)) becomes zero, because

for η = ζ = 0 the model problem (2.9) on the section Θ acquires the zero eigenvalue. As
a result, all of the half-axis R+ (all of the segment [0, 1]) becomes filled with the essential
spectrum of problem (1.4)–(1.6) (of the operator K).



GAP OPENING IN THE ESSENTIAL SPECTRUM 305

0

Figure 10. A gap between the fifth and sixth segments.

It may be assumed that, under the stabilization conditions (1.10), the rigidity matrix
A0 and the density ρ0 of the material depend l-periodically on the variable x3 = z.
In that case, instead of the Fourier transformation (2.8) we should apply the Gelfand
transformation (2.2) relative to the variable l−1z, which leads to a model problem on the
parallelepiped Θ × (0, 1) with periodicity conditions on its upper and lower faces. The
same modifications are required if the Dirichlet conditions are posed on a set periodic in
the two directions x1 and z (Figure 9).

The form of the joints (3.6) is not of principal importance. What is important indeed
is that two massive bodies are connected with a thin and long cushion (Figures 3 and
4). We also remind the reader about the Dirichlet conditions on the lower prism. The
construction is low-sensitive to the elastic properties of the material: all bounds in the
estimates of Subsection 3 in §3 are determined by the constants c0A, C0

A and c0ρ, C0
ρ

occurring in (1.9), but not by the rigidity matrix A0 and the density ρ0 themselves.
The gap discovered is depicted in Figure 10. It is located between the first five and

the sixth segment of the essential spectrum and is marked by a dashed line. The author
does not know whether there are gaps to the right or to the left of that one.

If a single ball in the half-layer given by formulas (1.3) and (3.6) is soft and/or heavy
compared to the other part of the elastic joint, then, by using the max-min principle
(3.23) with test functions localized in that ball, it is not difficult to verify (cf. [47]) the
following statement: if the characteristics of the material are chosen appropriately, then
an arbitrarily small interval (0, δ) of the continuous spectrum of problem (1.4)–(1.6) can
contain any preassigned number of eigenvalues. No example of an elastic waveguide for
which the gap contains an eigenvalue is known.
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[14] , Estimates in Lp and in Hölder classes, and the Miranda–Agmon maximum principle for
the solutions of elliptic boundary value problems in domains with singular points on the boundary,
Math. Nachr. 81 (1978), 25–82. (Russian) MR0492821 (58:11886)

[15] S. A. Nazarov, Polynomial property of selfadjoint elliptic boundary value problems, and the algebraic

description of their attributes, Uspekhi Mat. Nauk 54 (1999), no. 5, 77–142; English transl., Russian
Math. Surveys 54 (1999), no. 5, 947–1014. MR1741662 (2001k:35073)
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