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LOCAL SMOOTHNESS OF AN ANALYTIC FUNCTION COMPARED

TO THE SMOOTHNESS OF ITS MODULUS

A. V. VASIN, S. V. KISLYAKOV, AND A. N. MEDVEDEV

Dedicated to
Boris Mikhăılovich Makarov

Abstract. Let Φ be a function analytic in the disk and continuous up to the
boundary, and let its modulus of continuity satisfy the Hölder condition of order
α, 0 < α < 2, at a single boundary point. Under standard assumptions on the zeros
of Φ, this function must be then at least α/2-Hölder (in a certain integral sense)
at the same point. There are generalizations to not necessarily power-type Hölder
smoothness.

§0. Introduction

0.1. Consider a function Φ analytic in the unit disk and continuous up to the boundary.
What is the relationship between the smoothness of Φ and of ϕ = |Φ|? Surely, it suffices
to study this question for the restrictions of Φ and ϕ to the unit circle. The answer is
well known: under some natural assumptions, Φ must be at least one half as smooth as
ϕ, and this is best possible.

This natural assumptions should be imposed on the zeros of Φ. Consider the canonical
factorization (see [8] for the details) Φ = FθB, where F is the outer function constructed
by ϕ, θ is a singular inner function, and B is the Blaschke product over the zeros of Φ.
We remind the reader that for the boundary values of F (also denoted by the same
letter F ) we have

F = ϕeiH(logϕ),

where H is the operator of harmonic conjugation. Next, θ is generated by a certain
positive singular measure on the circle, and the boundary values of θ coincide a.e. with
the function e−iHμ. It is well known (see [8]) that if Φ is continuous up to the boundary,
then the support of μ is included in the set {t ∈ T : ϕ(t) = 0}; moreover, the zeros of B
also may accumulate only to points of this set.

No lower bound for the smoothness drop is available without further assumptions
about the zeros of Φ (see an explanation in [6]), and the simplest way out is to forbid
them radically in the disk, i.e., to assume that B = θ = 1. In this case, in the 1950s,
Carleson and Jakobs proved that if ϕ ∈ Lipα, 0 < α < 1, then Φ = F ∈ Lipα/2(T). The
proof was not published, and later the result was rediscovered by Havin and Shamoyan
(see [7]), who also included the case of α = 1. The story goes that Carleson extended the
result to an arbitrary positive power-like smoothness, but the proof also did not appear
in print. The only available proof of the fact that F ∈ Lipα/2 for all positive α is due to

Shirokov, see [11].
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Now we dwell on Havin’s paper [6]. There it was not assumed that θ = B = 1, but an
additional condition was imposed on the zeros of the Blaschke product B. Specifically,
they were forbidden to approach the unit circle tangentially. We present a way to express
this requirement, to be employed in the sequel. Suppose that a point t ∈ T satisfies
ϕ(t) > 0, and let I be an arc centered at t and such that ϕ(ζ) ≥ ϕ(t)/2 on I; we require
that

(NT) B(rζ) �= 0 for ζ ∈ I, r > 1− c|I|,

where c does not depend on t and I.
Under these assumptions, the function Φ = FθB must again be at least one half as

smooth as ϕ. Moreover, the moduli of continuity considered in [6] were not necessarily of
power type: it was assumed that |ϕ(t)− ϕ(s)| ≤ ω(|t− s|) and, under certain regularity

conditions on ω, it was ensured that |Φ(t) − Φ(s)| ≤ cω(
√
|t− s|). We mention two

principal regularity conditions often invoked in similar situations (strictly speaking, they
were used in [6] only implicitly):

∫ δ

0

ω(u)

u
du ≤ cω(δ);(R1)

δ

∫ 2π

δ

ω(u)

u2
du ≤ cω(δ).(R2)

Substantially, these conditions are related to “smoothness below 1”, though it is dif-
ficult to formalize this statement. Next, in [6] certain doubling conditions were imposed
on some functions related to ω, which were also assumed quasimonotone. All these
condition, including (R1) and (R2), are fulfilled if ω(δ) = δα, 0 < α < 1.

We mention yet another condition, which is very important but has been involved
only implicitly up to this point:

B1 =

∫
T

| logϕ| < ∞.(LOG)

The boundary values of an arbitrary analytic function bounded in the disk satisfy it a
fortiori (see, e.g., [8]). In the quite recent paper [12], Shirokov proved that the smoothness
of order p

p+1α can be guaranteed for an outer function F with modulus ϕ ∈ Lipα (α > 0)

provided

(LOGp) Bp =

(∫
T

| logϕ|p
)1/p

< ∞.

He also proved that smoothness does not drop at all if logϕ ∈ BMO (for 0 < α < 1, the
last statement was established in [1]; see also [4] on this matter).

In the present paper, we want to show that the phenomenon described above is of
local nature. This local nature will be ensured in the strongest form: a Hölder condition
at only one point for ϕ implies that Φ is at least one half as smooth at the same point.
Unfortunately, for the time being we have to restrict ourselves to fairly low smoothness,
specifically, lower than 2. The authors hope to return to the case of arbitrary smoothness
later. As a matter of fact, we do not understand at the moment whether a general answer
should be sought in a form similar to that in the present paper. But from a technical
point of view, it is not clear to us what should substitute the (simple!) Lemma 2 in §1
if smoothness is high. It should, however, be mentioned that the “global” theory also
survived a period when the result was known only for smoothness lower than 2; see [2].
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0.2. How to measure smoothness? For our purposes, this is convenient to do either
in terms of mean oscillation or in terms of averaged finite differences. The mean oscillation
of a (2π-periodic) function f over an interval I is the quantity

(1) νr(f ; I) = inf
c

(
1

|I|

∫
I

|f − c|r
)1/r

,

where the infimum is taken over all constants c; the number r, r ∈ [1,∞) can be fixed
arbitrarily. Often, it will be convenient to assume that r > 1. Clearly, the quantity
νr(f, I) grows with r.

The “mean” smoothness of a function f at a point x can be described by the condition
νr(f, I) ≤ ω(|I|) for every interval I that contains x (since f is 2π-periodic, I also should
be assumed not excessively long, say, |I| ≤ 4π). Here ω is some nonnegative continuous
monotone increasing function on [0,+∞) equal to zero at 0 and strictly positive elsewhere.

If we turn to the power scale ω(t) = Ctα, α > 0, then this condition reflects smoothness
“properly” only when α ≤ 1; for α > 1 it can be fulfilled at certain points but if, for
instance, it is true on an interval with one and the same number C, then f is constant
on this interval. An appropriate similar description of “smoothness in the mean” for
α > 1 is obtained as follows: instead of a constant c in (1), we subtract a polynomial of
degree [α] and take the infimum over all such polynomials. Two nonequivalent versions
exist if α is an integer: we may subtract polynomials of degree α or, alternatively, of
degree α − 1. Both ways are reasonable. See, e.g., the monographs [5] and [9] for more
details. However, we shall not need all this here.

Next, the nth difference Δnf(x; t) of a function f at a point x is defined as follows:

Δ1f(x, t) = f(x+ t)− f(x),

Δn+1f(x, t) = Δnf(x+ t, t)−Δnf(x, t) for n ≥ 1.

The “mean” smoothness of a function f at a point x can also be expressed by the
condition

(2)

(
1

2h

∫ h

−h

|Δnf(x, t)|r dt
)1/r

≤ ω(h),

where ω is as above and r is fixed. For every specific ω, the choice of n is not arbitrary: if
n is too small, degeneration may occur, but in the nondegenerate case raising n does not
lead usually to new function classes and can be useful only technically. It is well known
that, in the power scale ω(t) = ctα, the natural values are n = 1 for 0 < α ≤ 1 and n = 2
for 1 ≤ α < 2 (as in the case of mean oscillations, the two variants fit if α = 1, and
then they are not equivalent). Since we mainly deal with smoothness “up to order 2”, in
the sequel we restrict ourselves by first and second differences. However, for example, if
n = 2, in principle it is not forbidden for ω to tend to zero faster than t2 as t → 0 – in
that case we talk about “degeneration at the point x”.

We observe that condition (2) with n = 1 implies the condition νr(f, I) ≤ Aω(A|I|)
for mean oscillations (indeed, taking c = f(x) in (1) and assuming that the center of I
coincides with x, we obtain the first difference).

“Smoothness up to 1” (the term is used with some reservations) will be analyzed in
this paper with the help of estimates for mean oscillations, and “smoothness between
1 and 2” will be treated by means of averaged second differences. In fact, it would be
possible to do otherwise: to use averaged first differences for smoothness up to 1 and
– surely, not mean oscillations, but local approximations by polynomials of degree at
most 1 for smoothness not exceeding 2. This would require slightly stronger regularity
conditions on ω in the first case and would lead to a less sharp result in the second.
To estimate mean oscillations is somewhat easier than to estimate differences, though,



400 A. V. VASIN, S. V. KISLYAKOV, AND A. N. MEDVEDEV

basically, the methods are the same. Nevertheless, there are certain technical differences,
which we find amusing and which should not be abandoned, to our mind. That is why
we have decided to retain this “dualism”.

Now, we describe the layout and the main results of the paper. §1 contains some
preparatory material. In §2, we present a pointwise version of the main results of [6],
measuring smoothness in terms of mean oscillations. Let us discuss some consequences of
the estimates established there. We start with a spectacular but “improper” statement
(it hides some essential details).

As in the beginning of the Introduction, let Φ = FθB be a function analytic in the
unit disk and continuous up to the boundary. The smoothness of its modulus ϕ = |Φ|
(ϕ is identified with a 2π-periodic function on R in a standard way) will be measured in
the usual (nonintegral) sense: for every x ∈ R, let

Ωϕ,x(h) = sup
|x−s|≤h

|ϕ(x)− ϕ(s)|, 0 < h ≤ 4π,

be the standard local modulus of continuity of ϕ at a point x. To tell something substan-
tial, we need to introduce sufficiently regular majorants for Ωϕ,x: let Ωϕ,x(h) ≤ ωx(h),
where ωx is a continuous monotone decreasing function on [0,+∞) that is equal to zero
only at zero. We assume that these majorants satisfy a doubling condition:

(DB) ωx(2h) ≤ Dxωx(h),

and also that the function ωx(h)
h is almost monotone decreasing (the relevant constant

may depend on x). We remind the reader that a function κ is said to be almost monotone
decreasing with constant C if

(QM) κ(h1) ≥ Cκ(h2) for h1 ≤ h2.

Also, we assume that condition (NT) is fulfilled.

Theorem A. Let r > 1. Under the above assumptions, for every x and every interval
I � x, |I| ≤ 4π, we have νr(Φ; I) ≤ Cxωx(

√
|I|), where Cx depends on r, on the constants

in the regularity conditions for ωx, on the constant c in (NT), on B1 (see (LOG)), on
certain properties of the Blaschke product, and on the norm of the singular measure
corresponding to the singular inner function θ.

It should be noted that the functions t 	→ atα, 0 < α < 1, satisfy all the regularity
conditions listed above.

The next theorem claims that, when analyzed “quite locally”, smoothness does not
drop at all. Apparently, this phenomenon remained somewhat in shade in the course of
smoothness estimates uniform over the entire boundary. However, the statement is quite
obvious at the points x where ϕ(x) = 0. For other x, the following is true.

Theorem B. Under the above assumptions, let condition (R2) be fulfilled as well. If
ϕ(x) > 0, then there exists a number hx > 0 (depending on the quantity ϕ(x)) such that
νr(Φ, I) ≤ Cxωx(I) if |I| ≤ hx and I � x.

Clearly, Theorem B applies in the case where the role of ωx is played by power functions
ctα, 0 < α < 1. In what follows, we shall see that, as ϕ(x) approaches zero, the
constants Cx grow unlimitedly and the constants hx tend to zero (it is assumed that
all other constants involved in the hypotheses remain bounded). Theorem B shows that
the smoothness drop by one half is a purely quantitative phenomenon, visible only at
“medium” distances to x. So, in spite of the paper’s title, the entire theory is “not quite
local” in principle, though it is of pointwise nature.

Now, we pass to “proper” statements. The drawback of the said above is in the fact
that, to estimate the smoothness (“in the mean”) of Φ at x, it is not necessary to avail
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any smoothness of ϕ anywhere except at x (it may even be discontinuous elsewhere). In
this case, however, the outer and inner factors F and θB are not related so intimately as
in the case of a continuous Φ; so, such a relationship should be required forcibly. In all
previous results about smoothness drop, the main difficulty has been in estimating the
outer function F . As we shall see, the same feacher occurs when we are interested in the
behavior at a single point: the incorporation of an inner factor under a priori “coordi-
nation conditions” is an absolutely mechanical procedure. Therefore, in the remaining
part of the Introduction, we restrict ourselves to outer functions.

So, let ϕ be a nonnegative measurable function on the circle (a 2π-periodic function
on R) satisfying (LOG) and continuous at a point x; moreover, let |ϕ(x) − ϕ(s)| ≤
ω(|x − s|) for |x − s| ≤ 4π, where ω is continuous on [0,+∞), is monotone increasing
and vanishes only at zero. Let F = ϕeiH(logϕ) be the outer function constructed by
ϕ. Then analogs of Theorems A and B are fulfilled at x. However, we give a precise
statement under other regularity conditions, in order to present a generalization (for low

smoothness) of Shirokov’s result from [12]. Let κ(δ) = δ
∫ 2π

δ
ω(t)
t2 dt be the left-hand side

in (R2).

Theorem C. Suppose that (LOGp) is fulfilled, ω satisfies a doubling condition,1 and the

function ω(t)t−(p+1)/p is almost monotone decreasing; then for every r ≥ 1 and every

interval I � x with |I| ≤ 4π we have νr(F ; I) ≤ C
(
ω
(
|I|

p
p+1

)
+κ(|I|)

)
, where C depends

on r, the constant (Bp) in (LOGp), and the constants in the regularity conditions for ω.

A p+1
p times smoothness drop emerges if we require additionally that κ(h)≤C ′ω

(
h

p
p+1

)
.

Avoiding the analysis of this condition, we simply look at Theorem C for power-type
smoothness moduli ω(t) = atα. The requirement that ω(t)t(p+1)/p be (almost) monotone
decreasing is equivalent to the condition α ≤ p+1

p . So, certain α > 1 are admissible; in

this case a sort of degeneration occurs for ϕ at x. Next,

κ(δ) 


⎧⎪⎨
⎪⎩
δ if α > 1,

δ| log δ| if α = 1,

δα if α < 1.

So, for α ≤ p+1
p smoothness always drops p+1

p times.

In §2, it will also be shown that smoothness does not drop at all if, instead of (LOGp),
we require that logϕ satisfy the condition in the definition of BMO, but again at the
point x only:

(LOG∞)
1

|I|

∫
I

| logϕ− (logϕ)I | ≤ B∞

for all intervals I containing x. Here and below, gI is the average of g over I. It is natural
to treat the above statement as the case of p = ∞ in Theorem C.

Finally, we turn to the content of §3, where, as has already been said, we analyze
smoothness “between 1 and 2” for the original function ϕ, at a single point as before.
Again, we restrict ourselves to outer functions. Next, it would have been possible to write
out estimates with an arbitrary “smoothness modulus” ω (as in §2), but definitely the
result would not bring about any sort of merry mood. Furthermore, to make the formulas
transparent would have required certain regularity conditions that involve logarithmic
factors, which arise inevitably in abundance. Therefore, we restrict ourselves to the power

1This assumption is redundant because it is implied by the assumption after it. (Added in
translation.)
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scale. The smoothness of ϕ at (generally speaking, only one) point x will be measured
in terms of a “global” approximation by a polynomial of degree at most 1:

(3) |ϕ(t)− ϕ(x)− b(t− x)| ≤ d|t− x|α,

where α > 1 is a fixed number. We impose condition (LOGp) with p < ∞ on ϕ, and

then require that α ≤ 2
(
p+1
p

)
(thus, α ≤ 4 for p = 1). Again, for α > 2 the smoothness

of ϕ at x is “degenerate”, but it will drop p+1
p times in any case. In principle, we could

also include condition (LOG∞), basically by the same arguments as in §2, but we omit
these details.

Theorem D. Let F be the outer function constructed by ϕ, and let r > 1. Then(
1

2h

∫ h

−h

|Δ2F (x, t)|r dt
)1/r

≤ Ah
αp
p+1 , |h| ≤ 4π,

where the constant A depends on d in (3), on Bp in (LOGp), on α, and on r.

It should be noted that the definition of the second difference involves the number
F (x), which is well defined in our case (see §3 for the explanations), though F is only
defined almost everywhere.

0.3. How to pass to “genuine” smoothness? It is fairly well known that, whenever
integral conditions like those mentioned in the preceding section are fulfilled uniformly
at all points x, the function is smooth “in the right way”. This gives additional value to
the results described here.

Let us understand why this general principle applies to our situation.

0.3.1. Estimates of mean oscillation. Let Ω be a nonnegative monotone increasing
function on [0,∞) that vanishes only at zero.

Proposition 1. Let g be a 2π-periodic measurable function, and let Δ be an interval
with |Δ| ≤ 2π. Suppose that νr(g, I) ≤ Ω(|I|) for all intervals I with |I| ≤ 4π that
intersect Δ. If Ω satisfies condition (R1), then |g(x1) − g(x2)| ≤ CΩ(|x1 − x2|) for all
x1, x2 ∈ Δ.

This statement, proved in [13], was inspired by the result for Ω(t) = ctα, 0 < α ≤ 1,
obtained in [3] and [10]. See also the presentation in the monograph [9], which is also
restricted to power-type continuity moduli. Now it is no longer surprising that in [6] the
two regularity conditions (R1) and (R2) were involved (in fact), whereas here we only use
something like (R2): condition (R1) is required in the passage to global Hölder classes.

0.3.2. Estimates of averaged second differences. Now, suppose that the condition

(4)

(
1

2h

∫ h

−h

|Δ2g(x, t)|r dt
)1/r

≤ Dhβ, 0 ≤ h ≤ 4π,

is fulfilled for all x with the same constant and the same β. (As above, this may only
be assumed for x in a fixed interval Δ, but we leave this aside.) In our context, β
arises as pα

p+1 (see Theorem D), so it is sometimes smaller and sometimes greater than 1.

In the first case, we can reduce the matter to estimates for first differences, as in the
classical Zygmund lemma [15, Volume 1, Chapter 2, Theorem 3.4] or Marchaud inequality
(see [14]). Specifically, we have the following statement. The only point in it that may
happen to be original (to a certain extent) is the observation that this technique is
applicable to smoothness in the mean at a unique point.
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Proposition 2. Let g be a 2π-periodic measurable function, and let |g| ≤ L everywhere.
Fixing x, we put for brevity

Δ(h) =

(
1

2h

∫ h

−h

|Δ2g(x, t)|r dt
)1/r

, κ(h) =

(
1

2h

∫ h

−h

|Δ1g(x, t)|r dt
)1/r

.

Then

κ(ξ) ≤ L

2k−1
+ 2−1

k−1∑
s=0

Δ(2sξ)

2s
for 0 ≤ ξ ≤ π

2
,

where k is the greatest integer with 2kξ ≤ π.

The functions g that arise in (4) by the intermediance of Theorem D, are uniformly
bounded (see Corollary 2 in §1 about the parameters determining this bound). So, if
Δ(ξ) = cξβ with 0 < β < 1, uniformly in x, then Proposition 2 gives the estimate
κ(ξ) ≤ Cξβ for averaged first differences of g at an arbitrary point x (C does not depend
on x). After that, the genuine Lipschitz property for g follows again from Proposition 1
(it has already been mentioned that the averaged first difference dominates the mean
oscillation).

Before we prove Proposition 2, let us find out what to do if (4) is fulfilled with some
β ∈ [1, 2]. It turns out that if this happens uniformly in x, we can directly deduce the
existence of good local uniform approximations for g by polynomials of degree at most
one. The method of proof is standard in essence, but we include the arguments for
completeness because we are not sure that they can be found in the literature precisely
in this context.

Proposition 3. Let condition (4) be fulfilled with some r ≥ 1 and β ∈ [1, 2], uniformly
for all x with |x| ≤ 4π. If g ∈ C2, then for every interval |I|, |I| < 2π, there exists a
linear polynomial ρ with supx∈I |g(x)− ρ(x)| ≤ C|I|β.

If Proposition 3 is proved, we do the following. If g is C2-smooth, Proposition 3 easily
shows that |Δ2g(x, t)| ≤ C ′|t|β for all x (and, say, for |t| ≤ π/2). In the general case,
we convolve g, for example, with the Féjer kernels. This will result in a sequence gn
of infinitely smooth functions that satisfy (4) uniformly in n and converge to g a.e. It
remains to pass to the limit as n → ∞ in the inequality |Δ2gn(x, t)| ≤ C ′|t|β and deduce
that g coincides a.e. with a β-Hölder function (if β = 1, the Zygmund class arises rather
than Lip1).

Proof of Proposition 2. Observe that

g(x+ 2t)− 2g(x+ t)− g(x) = [g(x+ 2t)− g(x)]− 2[g(x+ t)− g(x)],

whence

Δ(h) =

(
1

2h

∫
|t|≤h

|g(x+ 2t)− 2g(x+ t) + g(x)|r dt
)1/r

≥
∣∣∣∣
(

1

2h

∫
|t|≤h

|g(x+ 2t)− g(x)|r dt
)1/r

− 2

(
1

h

∫
|t|≤h

|g(x+ t)− g(x)|r dt
)1/r∣∣∣∣.

Introducing the new variable 2t in the first term under the modulus sign on the right,
we rewrite this inequality in the following way: |κ(2h)− 2κ(h)| ≤ Δ(h). Substituting h

2j

for h and multiplying by 2j−1 (j = 1, . . . , k), we obtain∣∣∣∣2j−1
κ

(
h

2j−1

)
− 2jκ

(
h

2j

)∣∣∣∣ ≤ 2j−1Δ

(
h

2j

)
, j = 1, . . . , k,
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whence ∣∣∣∣κ(h)− 2kκ

(
h

2k

)∣∣∣∣ ≤
k∑

j=1

2j−1Δ

(
h

2j

)
.

Now, let 0 ≤ ξ ≤ π/2, and let k be the greatest positive integer with 2kξ ≤ π. Taking
h = 2kξ in the last inequality and dividing by 2k, we arrive at the required estimate

κ(ξ) ≤ κ(2kξ)

2k
+ 2−k

k∑
j=1

2j−1Δ(ξ · 2k−j) ≤ L

2k−1
+ 2−1

k−1∑
s=0

Δ(2sξ)

2s
. �

Proof of Proposition 3. Clearly, (4) implies the inequality

1

h

∫
h/2≤|t|≤h

|Δ2g(x, t)| dt ≤ C ′hβ, 0 < h ≤ 4π.

It is also clear that

(5) Δ2g(x, t) =

∫ t

0

∫ t

0

g′′(x+ σ + τ ) dσ dτ.

We integrate the identity g(x) = Δ2g(x, σ + τ ) + (2g(x+ σ + τ )− g(x+ 2σ + 2τ )) in σ
and in τ from 0 to t and divide by t2, obtaining

g(x) = ψ(x, t) +
1

t2

∫ t

0

∫ t

0

Δ2g(x, σ,+τ ) dσ dτ,

where

ψ(x, t) =
1

t2

∫ t

0

∫ t

0

(2g(x+ σ + τ )− g(x+ 2σ + 2τ )) dσ dτ.

Yet another integration yields

g(x) = ϕh(x) +
1

h

∫
h/2≤|t|≤h

1

t2

∫ t

0

∫ t

0

Δ2g(x, σ,+τ ) dσ dτ dt,

where ϕh(x) = 1
h

∫
h/2≤t≤h

ψ(x, t) dt. The second term on the right in the last formula

splits into two integrals, by positive and by negative t; their estimates are similar. For
example, for the integral I1(x) over the interval h/2 ≤ t ≤ h, we have

|I1(x)| ≤
C

h3

∫
h/2≤|t|≤h

(∫ h

0

∫ h

0

|Δ2g(x, σ + τ )| dσ dτ

)
dh

≤ C ′

h2

∫ h

0

∫ h

0

|Δ2g(x, σ + τ )| dσ dτ =
C ′

h2

∫ h

0

∫ τ+h

τ

|Δ2g(x, u)| du dτ

=
C ′

h2

[∫ h

0

∫ u

0

|Δ2g(x, u)| dσ du+

∫ 2h

h

∫ h

u−h

|Δ2g(x, u)| dσ du

]
≤ C ′′hβ

by (4). Therefore, |g(x)− ϕh(x)| ≤ Chβ for all x and h.
Now we estimate the second derivative (in x) for the function ϕh(x). First,

∂2

∂x2
ψ(x, t) =

1

t2

∫ t

0

∫ t

0

(2g′′(x+ σ + τ )− g′′(x+ 2σ + 2τ )) dσ dτ

=
2

t2
Δ2g(x, t)− 4

t2
Δ2g(x, 2t)
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by (5). Consequently,

|ϕ′′
h(x)| ≤

1

h

∫
h/2≤t≤h

| ∂
2

∂x2
ψ(x, t) dh|

≤ C

h2

(
1

h

∫
h/2≤|t|≤h

|Δ2g(x, t)| dt+ 1

h

∫
h/2≤|t|≤h

|Δ2g(x, 2t)| dt
)

≤ C ′hβ−2

by (4).
Now, let I be an interval, x0 it center, and h half its length. For x ∈ I we have

ϕh(x) = ϕh(x0) +
1

2
ϕ′
h(x0)(x− x0) +

1

2

∫ x

x0

ϕ′′
h(u)(x− u) du,

so that, putting ρ(x) = ϕh(x0) +
1
2ϕ

′
h(x0)(x− x0), we obtain

|ϕh(x)− ρ(x)| ≤ chβ−2|x− x0|2 ≤ chβ , x ∈ I.

It remains to combine this with the inequality

|g(x)− ϕh(x)| ≤ chβ

proved above. �

§1. Auxiliary statements

As before, we denote by ϕ a nonnegative function on the circle satisfying condition
(LOG). We shall assume that ϕ is smooth at a point x and, at the first place, we shall
be interested in the smoothness of the outer function F = ϕeiH logϕ at the same point x.
As has already been mentioned, we identify ϕ with its 2π-periodic extension to the reals.
On 2π-periodic functions, the harmonic conjugation operator is given by the formula

(Hu)(t) =
1

2π
p.v.

∫ π

−π

cot
t− s

2
u(s) ds, t ∈ R.

In what follows, all similar integrals are tacitly understood in the principal value sense,
so we shall omit the symbol v.p.

Without loss of generality, we assume that the point x where we measure smoothness
in 0. Generally speaking, ϕ is defined up to values on a set of measure zero, but we
assume that it has a definite value ϕ(0) at zero and

(6) |ϕ(t)− ϕ(0)− bt| ≤ ω(|t|)

for some constant b and some function ω. It will be b = 0 in §2, ω will be of power type
in §3, but it is convenient to do preliminary preparations in the general form. For the
moment, we only assume that ω is a monotone increasing continuous function on [0,+∞)
vanishing only at 0.

We introduce the near inverse function rω: rω(s) = min{t : ω(t) = s}. It is defined on
the range of ω (so, definitely near zero), is monotone increasing, and its limit at zero is 0.
Clearly,

ω(rω(s)) = s, rω(ω(t)) ≤ t, but rω((1 + ε)ω(t)) ≥ t for ε > 0.

Lemma 1. Suppose that for some γ > 0 the function t 	→ ω(t)
tγ is almost monotone

decreasing. Then the function s 	→ s
rω(s)γ is almost monotone decreasing.

Proof. Let s1 ≤ s2, and let ti = rω(si), i = 1, 2. Then t1 ≤ t2. We have ω(t1)
tγ1

≥ cω(t2)
tγ2

by

assumption. Since ω(ti) = si, the claim follows. �
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As has already been mentioned, our results are not of quite local nature (“an effect
of medium distances” mentioned in the Introduction). So, we cannot proceed without
global conditions on ϕ. One of them has already been imposed: this is (LOG1). We find
it convenient to formulate another condition as follows: we assume that (6) is true for
(almost) all t with |t| ≤ 4π. Soon we shall see that this is equivalent2 to the assumption
that (6) is fulfilled only near zero but ϕ is bounded.

Lemma 2. Let ϕ(0) > 0, then |b| ≤ max
( 2ϕ(0)

rω(ϕ(0)) ,
ϕ(0)
π

)
.

Remark. For small values of ϕ(0), the maximum is attained at the first quantity. More
precisely, if it is attained at the second quantity, then ϕ(0) ≥ ω(2π).

Proof of the lemma. If b = 0, there is nothing to prove. If b �= 0, we plug t0 = − 2ϕ(0)
b

in (6). This is surely possible provided 2ϕ(0)
|b| ≤ 2π, but, again, there is nothing to prove

in the opposite case.
So, we obtain ϕ(t0) + ϕ(0) ≤ ω(|t0|) and, a fortiori, ϕ(0) ≤ ω(|t0|). Therefore,

rω(ϕ(0)) ≤ |t0| = 2ϕ(0)
|b| , whence |b| ≤ 2ϕ(0)

rω(ϕ(0)) . �

Lemma 3. Let ϕ(0) > 0. If |t| ≤ 20−1 min
(

rω
(ϕ(0)

20

)
, π
4

)
, then ϕ(t) ≥ ϕ(0)

2 .

Proof. Suppose that the maximum in the inequality in Lemma 2 is attained at the first
quantity, then

ϕ(t) ≥ ϕ(0)− |b| |t| − ω(|t|)

≥ ϕ(0)− 20−1
rω
(ϕ(0)

20

) 2ϕ(0)

rω(ϕ(0))
− ω

(
20−1

rω
(ϕ(0)

20

))

≥ ϕ(0)− 10−1ϕ(0)− ω
(

rω
(ϕ(0)

20

))
≥ ϕ(0)− 3

20
ϕ(0) ≥ ϕ(0)/2.

But if that maximum is attained at the second quantity, we have

ϕ(t) ≥
(
ϕ(0)− |t|ϕ(0)

π

)
− ω(|t|).

Next, ϕ(0) − |t|ϕ(0)π ≥ 79
80ϕ(0), because |t| ≤ π

80 by assumption. Since also |t| ≤
20−1

rω
(ϕ(0)

20

)
≤ rω

(ϕ(0)
20

)
, we have ω(|t|) ≤ ϕ(0)

20 . So, again, the inequality ϕ(t) ≥ ϕ(0)
2 is

guaranteed. �
Corollary 1. Under the above assumptions on ϕ, the number ϕ(0) cannot be too large:
ϕ(0) ≤ D = D(B1, ω), where B1 =

∫ π

−π
| logϕ|, see (LOG).

Indeed, Lemma 3 shows that otherwise ϕ may be as large as we wish on an interval
of fixed length, with is not compatible with (LOG).

There exists also a “universal” upper estimate for b, depending neither on ϕ(0) nor
on B1.

Lemma 4. We have |b| ≤ ω(4π)/4π.

Proof. Let I be the integral of ϕ over any interval of length 2π (all such integrals are
equal). Integration of (6) over [−2π, 0] and then over [0, 2π] yields

|I − 2πϕ(0) + 2π2b| ≤ 2πω(2π),

|I − 2πϕ(0)− 2π2b| ≤ 2πω(2π),

whence 4π2|b| ≤ 4πω(2π). �

2We mean control for constants both ways.
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Corollary 2. The function ϕ is uniformly bounded by a constant D1 = D1(B1, ω) that
only depends on B1 and ω.

Remark. If (6) is only true near zero, but it is known beforehand that ϕ is bounded, we
can restore (6) for |t| ≤ 4π by an unessential modification of ω.

Some calculations in §§ 2 and 3 become much simpler if ϕ(0) ≤ 1. This is definitely
true if the quantity D(B1, ϕ) in Corollary 1 does not exceed 1, but in the opposite case
we may simply change ϕ, b, and ω slightly, dividing (6) by D(B1, ϕ). This leads to a
controlled change of B1 (or Bp, see (LOGp)), so does not lead to any loss of generality.
It should be noted that the normalization by division by ϕ(0) (to obtain ϕ(0) = 1) may
lead to an incontrollable change of the constants Bp and should be avoided.

For references, we write out the obvious inequality

(7) |ϕ(t)− ϕ(0)| ≤ |b| |t|+ ω(|t|),
and also note that if ω(h) = o(h) as h → 0, then b = 0 whenever ϕ(0) = 0 (because ϕ is
nonnegative).

Also for references, we need some formulas for first and second differences. Let G be a
function at least of class C2 on R, and let x0, x1, x2 ∈ R. We put δ0 = x0, δ1 = x1 − x0,
δ2 = (x2 − x1)− (x1 − x0). Clearly,

G(x1)−G(x0) =

∫ 1

0

∂

∂t
G (x0 + t(x1 − x0)) dt.

Repeating the same observation, we obtain

[G(x2)−G(x1)]− [G(x1)−G(x0)]

=

∫ 1

0

∫ 1

0

∂

∂s

∂

∂t
G(x0 + t[x1 − x0] + s[x1 − x0 + t((x2 − x1)− (x1 − x0))]) dt ds

=

∫ 1

0

∫ 1

0

∂

∂s

∂

∂t
G(δ0 + tδ1 + sδ1 + tsδ2) dt ds.

All values of the argument of G in the last integral lie in the convex hull of x0, x1, and
x2, i.e., in the smallest interval containing these points. Suppose that |G′| ≤ u, |G′′| ≤ v
on this interval. Calculating the second derivative in the integrand, we arrive at the
estimate

(8) |G(x2)− 2G(x1) +G(x0)| ≤ v(|δ1|+ |δ2|)2 + u|δ2|.
It the nodes are equidistant, i.e., δ2 = 0, we simply obtain

(9) |G(x2)− 2G(x1) +G(x0)| ≤ v|δ1|2.

§2. Smoothness below 1: estimates of mean oscillation

In this section, we assume that ϕ satisfies (6) with b = 0 for |t| ≤ 4π. Regularity
conditions will be imposed on ω at a due time. For the moment, we only assume that
a doubling condition, see (DB), is fulfilled. Throughout, we assume that (LOG) is true
and ϕ(0) ≤ 1. The latter leads to no loss of generality, as we saw in §1.

2.1. The case where ϕ satisfies LOGp with p < ∞. First, we study the smoothness

at 0 for the outer function F = ϕeiH(logϕ) (an inner part will be adjoined later). We
shall estimate the quantity

νr(F ; I) = inf
a

(
1

|I|

∫
|F − a|r

)1/r
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(see (1)) with fixed r > 1, where I is an interval containing 0 in its interior and included
in [−π/2, π/2].

Lemma 5. Suppose that (LOGp) is true with some p ∈ [1,+∞). Then:
(a) νr(F, I) ≤ ω(|I|) + 2ϕ(0);

(b) if ϕ(0) > 0 and |I| ≤ 100−1 min
(

rω
(ϕ(0)

20

)
, π
4

)
, and l is the greatest positive integer

with 2lI ⊂ [−π, π], then

νr(F ; I) ≤ cω(|I|) + c
∑
j≤l

ω(2j+1|I|)
2j

+
c|I|ϕ(0)Bp

min
(

rω
(ϕ(0)

20

)
, π
4

) p+1
p

.

The constant c depends only on r and the behavior of ω.

As usual, aI denotes the a times dilation of I relative to its center.

It should be noted at once that, if ω(t)
t2 is almost monotone decreasing, the regularity

condition (R2) says simply that the sum in the second term is dominated by ω(c|I|).
Thus, we arrive at Theorem B in the Introduction for outer functions: at small distances
from 0, smoothness does not drop. If ϕ(0) = 0, this can be read in (a), and if ϕ(0) > 0,
this is implied by (b). We postpone the further analysis of consequences of Lemma 5
and prove it.

Proof of Lemma 5. In the formula for νr(F ; I), we take the infimum only over the con-
stants of the form a = ϕ(0)eic, where c is real. We have

νr(F ; I) ≤
(

1

|I|

∫
I

|ϕ− ϕ(0)|r
)1/r

+ ϕ(0)

(
1

|I|

∫
I

|eiH(logϕ) − eic|
)1/r

.

The factor at ϕ(0) in the second summand does not exceed 2, so (a) follows. In order to
obtain (b) for ϕ(0) > 0, we need sharper estimates of the second summand. We choose
c in the following way:

c =
1

2π

∫
[−π,π]\2I

cot
(
−s

2

)
(logϕ(s)− logϕ(0)) ds.

We have

ϕ(0)

(
1

|I|

∫
I

|eiH(logϕ) − eic|r
)1/r

≤ ϕ(0)

(
1

|I|

∫
I

|H(logϕ)− c|r
)1/r

= ϕ(0)

(
1

|I|

∫
I

|H(logϕ− logϕ(0))− c|r
)1/r

,

because H takes the constants to zero. We continue the estimate:

. . . ≤ ϕ(0)

(
1

|I|

∫
I

|H(χ2I · (logϕ− logϕ(0)))|r
)1/r

+ ϕ(0)

(
1

|I|

∫
I

∣∣∣∣ 1

2π

∫
[−π,π]\2I

(
cot

t−s

2
− cot

(
− s

2

))
(logϕ(s)− logϕ(0)) ds

∣∣∣∣
r

dt

)1/r

= ϕ(0)A+ ϕ(0)B.

(10)

By Lemma 3 and the restriction on the length of I in (b), we have ϕ(t) ≥ ϕ(0)/2
on 2I. Since H is bounded on Lr, we estimate the quantity A in (10) as follows:

A ≤
(

1

|I|

∫ π

−π

|H(χ2I · (logϕ− logϕ(0))|r
)1/r

≤ Cr

(
1

|I|

∫
2I

| logϕ− logϕ(0)|r
)1/r

.
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The Lagrange formula for the logarithm yields | logϕ(t)−log(ϕ(0)| ≤ 2|ϕ(t)−ϕ(0)|ϕ(0)−1

for t ∈ 2I, so, finally,

(11) ϕ(0)A ≤ Cω(2|I|) ≤ C ′ω(|I|).

Now, we estimate the quantity B in (10). Let l be the greatest positive integer with
2lI ⊂ [−π, π]. We use the estimate

∣∣∣ cot t− s

2
− cot

(
− s

2

)∣∣∣ ≤ C|t|
s2

, s /∈ 2I, t ∈ I,

where C is independent of I:

B ≤ C

(
1

|I|

∫
I

( l∑
j=1

∫
2j+1I\2jI

|t|
s2

| logϕ(s)− logϕ(0)| ds
)r

dt

)1/r

.

(Strictly speaking, in the summand with j = l, the integral over 2l+1I \ 2lI ∩ [−π, π]
arises, but after putting the modulus in the integrand it can be extended over 2l+1I \2lI.)
It follows that

(12) B ≤ C|I|
l∑

j=1

|2jI|−2

∫
2j+1I\2jI

| logϕ(s)− logϕ(0)| ds.

Let Ej = {s ∈ 2j+1I \ 2jI : ϕ(s) ≥ ϕ(0)/2}, and let Fj = (2j+1I \ 2jI) \ Ej . We
know that Fj = ∅ for j ≤ k, where k is the greatest positive integer with 2j |I| ≤
50−1 min

(
rω
(ϕ(0)

20

)
, π
4

)
(see Lemma 3). Next, on Ej we have

| logϕ(s)− logϕ(0)| ≤ 2ω(|s|)
ϕ(0)

,

and, since ϕ(0) ≤ 1, on Fj we have 0 ≤ log 1
ϕ(0) ≤ log 2

ϕ(0) ≤ log 1
ϕ(s) , so that

| logϕ(s)− logϕ(0)| = log
1

ϕ(s)
− log

1

ϕ(0)
≤ log

1

ϕ(s)
.

Thus,

(13) B ≤ C
∑
j≤l

ω(2j+1|I|)
2jϕ(0)

+ C|I|
l∑

j=k+1

|2jI| 1q−2

(∫ π

−π

| logϕ|p
)1/p

,

where q is the exponent conjugate to p in condition (LOGp) (surely, if p = 1, we agree
that 1

q = 0.) In the second sum we have

|2k+1I| ≥ 50−1 min
(

rω
(ϕ(0)

20

)
,
π

4

)
,

so, finally, we obtain

ϕ(0)B ≤ C
∑
j≤l

ω(2j+1|I|)
2j

+
CBp|I|ϕ(0)

min
(

rω
(ϕ(0)

20

)
, π
4

) p+1
p

.

Combined with (11), this proves statement (b) of the lemma. �
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2.2. The case where ϕ satisfies (LOG∞). Let us find out what can be obtained in
this case in place of (b) in Lemma 5. Up to formula (12) (inclusive), we proceed as
before. The summands with j ≤ k on the right in (12) are also estimated as previously.
For k < j ≤ l we argue differently, i.e., we do not split the integral into two (over Ej

and Fj). To begin with, in each of these summands we replace logϕ(0) by the average
(logϕ)I = 1

|I|
∫
I
logϕ. This leads to an “error” of at most

1

|I|

∫
I

| logϕ(s)− logϕ(0)| ds ≤ cω(|I|)
ϕ(0)

(we recall that the interval I is “short”, we have ϕ(s) ≥ ϕ(0)
2 ) on it). Consequently,

S
def
= |I|

l∑
j=k+1

|2jI|−2

∫
2j+1I\2jI

| logϕ(s)− logϕ(0)| ds

≤ C
l∑

j=k+1

2−j 1

|2j+1I|

∫
2j+1I

| logϕ(s)− (logϕ)I |+ c
l∑

j=k+1

2−j ω(|I|)
ϕ(0)

.

In each integral, we want to replace (logϕ)I by (logϕ)2j+1I . For this, we observe that
for every function u and every interval J we have

|uJ − u2J | ≤
1

|J |

∫
J

|u− u2J | ≤ 2
1

|2J |

∫
2J

|u− u2J |,

so that

|(logϕ)I − (logϕ)2j+1I | ≤
j∑

s=0

|(logϕ)2sI − (logϕ)2s+1I | ≤ 2jB∞.

We continue estimating the quantity S:

S ≤ C

( l∑
j=k+1

(j + 1)2−jB∞ + 2−kω(|I|)
ϕ(0)

)
≤ C ′ k

2k
B∞ +

ω(|I|)
2kϕ(0)

.

Since k 
 log2 |I|−150−1 min
(

rω
(ϕ(0)

20

)
, π4

)
, we arrive at the following statement.

Lemma 6. If ϕ satisfies LOG∞, then inequality (b) in Lemma 5 can be replaced by the
estimate

νr(F ; I) ≤ C

[
ω(|I|) +

∑
j≤k

ω(2j+1|I|)
2j

+
|I|ω(|I|)

min
(

rω
(ϕ(0)

20

)
, π4

)
+ log2

(
min

(
rω
(ϕ(0)

20

)
, π4

)
50|I|

)
· |I|ϕ(0)
min

(
rω
(ϕ(0)

20

)
, π
4

)
]
.

2.3. Proof of Theorem C and of its extension to the case where ϕ satisfies
(LOG∞). To prove Theorem C from the Introduction, it suffices to trace the interrelation

of statements (a) and (b) in Lemma 5. We assume that if the function t 	→ ϕ(t)t−
p+1
p

is almost monotone decreasing, then a fortiori, ϕ(t)
t2 is almost monotone decreasing, and

then the sum in the inequality in (b) is dominated by the quantity κ(|I|) from Theorem C.
By assumption, the interval I in statement (b) satisfies 20ω(100|I|) ≤ ϕ(0). However, we
shall apply (b) or (a) depending on whether or not I obeys a stronger condition, namely,

(14) 20ω
(
100|I|

p
p+1

)
≤ ϕ(0)
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(this condition is stronger because also |I| < 1 in (b) automatically). If (14) is violated,
statement (a) in Lemma 5 yields

νr(F, I) ≤ ω(|I|) + cω
(
|I|

p
p+1

)
.

But if (14) is true, we use inequality (b) in Lemma 5, in which we need to estimate
the last term on the right, i.e., the quantity

(15) |I| ϕ(0)

min
(

rω
(ϕ(0)

20

)
, π
4

) p+1
p

.

This quantity does not exceed c|I| if the minimum in the denominator is equal to π/4.

But if it is equal to rω
(ϕ(0)

20

)
, we apply Lemma 1 and see that the quantity (15) does not

exceed the quantity

C|I|
ω
(
100|I|

p
p+1

)
rω
(
20ω(100|I|

p
p+1

)) p+1
p

≤ C ′ω
(
|I|

p
p+1

)
.

Collecting the estimates, we obtain Theorem C. �
In order to extend Theorem C to the case of p = ∞, we must use the estimate in

Lemma 6, and we are not enthusiastic of doing that for an arbitrary continuity modulus
ω, if for no other reason than that this would require certain “regularity conditions with
a logarithm”. So, we restrict ourselves to the case of a power-type function ω(t) = ctα,
0 < α < 1. It can easily be calculated that, applying (a) in Lemma 5 if |I| ≤ dϕ(0)1/α and
Lemma 6 otherwise (d is a sufficiently small positive number), we obtain νr(F ; I) ≤ C|I|α.

2.4. Adjoining an inner function. Now, we consider an arbitrary function Φ = FθB,
which is the boundary function of an analytic function with outer part F , F being
constructed by the same function ϕ as before. Now one cannot expect a relationship
between F , B, and θ, like that described in the beginning of the Introduction. We do
not see a better issue than to impose deliberately the same conditions on θ and B as if Φ
were continuous everywhere up to the boundary. In that case, we must ensure an analog
of Lemma 5, and it will soon become transparent that there are good reasons to restrict
ourselves to the case of p = 1.

2.4.1. Adjoining a singular inner factor. Let θ be a singular inner function corre-
sponding to a finite positive singular measure μ. It is well known that θ = e−iHμ a.e. on
the boundary of the disk. In accordance with the said above, in the case where ϕ(0) > 0

we assume that μ
{
t : |t| ≤ 20−1 min

(
rω
(ϕ(0)

20

)
, π4

}
= 0. We recall that ϕ is strictly posi-

tive on this “arc”, so that the conditions would definitely be fulfilled if ϕ were continuous
up to the boundary.

Recall that in Lemma 5 we estimated the quantity
(

1
|I|

∫
I
|F − a|r

)1/r
in two ways.

Here a = ϕ(0)eic and c is certain fixed real constant. We introduce another real constant
w and write

(16)

(
1

|I|

∫
I

|Fθ − aeiw|r
)1/r

≤
(

1

|I|

∫
I

|Φ− a|r
)1/r

+ ϕ(0)

(
1

|I|

∫
I

|θ − eiw|r
)1/r

,

because |a| = ϕ(0). This yields immediately an analog of (a) in Lemma 5:

νr(Fθ; I) ≤ ω(|I|) + 4ϕ(0).

In an instant, we shall see that, if p = 1, the second term on the right in (16) does not
contribute anything new in the estimate in (b) in Lemma 5. Indeed, put

w = − 1

2π

∫
|s|≥20−1 min(rω(

ϕ(0)
20 ),π/4)

cot
(
− s

2

)
dμ(s).
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Clearly, for any interval I as in statement (b) of Lemma 5, we have

ϕ(0)

(
1

|I|

∫
I

|θ − eiw|r
)1/r

≤ ϕ(0)

(
1

|I|

∫
I

∣∣∣∣ 1

2π

∫
|s|≥20−1 min(rω(

ϕ(0)
20 ),π4 )

(
cot

t−s

2
− cot

(
− s

2

))
dμ(s)

∣∣∣∣
r

dt

)1/r

≤ Cϕ(0)

(
1

|I|

∫
I

∣∣∣∣
∫
|s|≥20−1 min(rω(ϕ(0)

20 ),π4 )

|t|
s2

dμ(s)

∣∣∣∣
r

dr ≤ cϕ(0)|I| ‖μ‖
min

(
ω
(ϕ(0)

20

)
, π
4

)2 .
So, an analog of Lemma 5 with p = 1 is true for θΦ, and all consequences of that

lemma are retained.

2.4.2. Adjoining a Blaschke product. Now, let F and θ be as above, and let B =
zm

∏
k

z−zk
1−zzk

szk
|zk| be a Blaschke product, where the zk are points of the open unit disk

satisfying β =
∑

k(1 − |zk|) < +∞. In accordance with the general ideology presented
above, we “need” to impose on B the condition (NT) near the point 0 ∈ R (i.e., the
point 1 on the unit circle): if ϕ(0) > 0, then there is a constant ρ such that all zeros
zk = reitk lie outside the “cell”{

reit : |t| ≤ 40−1 min
(

rω
(ϕ(0)

20

)
,
π

4

)
, 1− r ≤ ρmin

(
rω
(ϕ(0)

20

)
,
π

4

)}
.

It follows that, if |I| contains 0 and, as before, |I| ≤ 100−1 min
(

rω
(ϕ(0)

20

)
, π
4

)
, then for

every s ∈ I and every k we have |zk − eis| ≥ C(ρ)min
(

rω
(ϕ(0)

20

)
, π4

)
. Next, for such s we

have ∣∣∣ d
ds

B(eis)
∣∣∣ ≤ m+

∑
k

|1− zk|2
|zk − eis|2 ≤ m+

2β

c(ρ)min
(

rω
(ϕ(0)

20

)
, π
4

)2 .
In an estimate like in (b) with p = 1 in Lemma 5 for BθF , this will lead to yet another
summand similar to one already present (specifically, to the last) and to an additional
summand of order in |I|, and so on.

2.5. Theorem A and B in the Introduction. At this point, no additional comment
on Theorem B is needed any longer. As to Theorem A. we have promised to tell something

in it under the mere condition that the function ωx(h)
h is almost monotone decreasing (and

without explicit reference to anything like (R2)). For this, we again turn to Lemma 5 and

its “explanation” in Subsection 2.3. If ϕ(h)
h is almost monotone decreasing, then ϕ(h)

h2 also
has this property, but this is precisely what is required in the analysis of competing terms

in (a) and (b) of Lemma 5 for p = 1. It remains to cope with the sum
∑

j≤l
ω(2j+1|I|)

2j .

Let m be the greatest among the indices j with 2j+1|I| ≤
√
|I|, then 2j 
 1/

√
|I|, and

the sum in question is dominated by( ∑
j≤m

1

2j

)
ω(

√
I) +

( ∑
j>m

1

2j

)
ω(4π) ≤ c

(
ω
(√

|I|
)
+
√
|I|

)
.

Since the function ω(h)
h is almost monotone decreasing, we have

ω(
√

|I|)√
|I|

≥ C ω(2π)
2π , whence√

|I| ≤ Cω(
√
|I|).

Thus, Theorem A is also proved. Surely, various statements in the spirit of Theorem A
are possible that involve other regularity conditions.
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§3. Smoothness up to 2: averaged second differences

In this section, we impose condition (6) on ϕ, where b is not necessarily zero. Intu-
itively, this corresponds to smoothness up to 2. Next, for simplicity we restrict ourselves
to power-type functions ω in (6). As will be apparent, the result of calculations with an
arbitrary function ω would have been exceedingly bulky.

So, we assume that ω(h) = dhα with α > 1. The methods allow us to tell something
also in the degenerate case, when α > 2 (some upper restrictions on α will emerge,
however). In this section, we only deal with outer functions F = ϕeiH(logϕ) and impose
on ϕ some condition (LOGp) with 1 ≤ p < ∞. We leave the case of p = ∞ aside.
All these “trifles” are omitted because, among other things, we wanted to concentrate
sooner on the use of averaged second differences in this range of problems. By the way,
for α ≤ 1 we also could employ second differences roughly in the same spirit, but we
also omit this because, on the one hand, the nature of calculations given below changes
sometimes when we pass through the point α = 1, and, on the other hand, the case of
α ≤ 1 was treated in §2.

Note that now rω(s) = d−1/αs1/α. Inequality (7) takes the form |ϕ(t) − ϕ(0)| ≤
|b| |t| + d|t|α. We shall often combine it with the estimate for b in Lemma 2 and much
less often with the estimate in Lemma 4. In particular, it follows that if ϕ(0) �= 0,
then the value H(logϕ)(0) is well defined (the corresponding principal value integral
converges). If ϕ(0) = 0, we still assign some value to H(logϕ) at the point zero, nothing
will depend on a particular choice of it. For brevity, we put ψ = H logϕ. We want to
estimate the quantity ( 1

2h

∫ h

−h

|Δ2(ϕeiψ)(0, t)|r dt
)1/r

with fixed r > 1. We have

Δ2(ϕeiψ)(0, t) = Δ2ϕ(0, t)eiψ(2t) + 2Δ1ϕ(0, t)Δ1(eiψ)(t, t) + ϕ(0)Δ2(eiψ)(0, t)

= S1(t) + S2(t) + S3(t).

We shall estimate the averages of these three summands separately.

Lemma 7. |S1(t)| ≤ Cd,α|t|α.

Proof. Let u(s) = ϕ(0) + bs, then

|Δ2ϕ(0, t)| = |Δ2(ϕ− u)(0, t)| = |(ϕ− u)(2t)− 2(ϕ− u)(t)| ≤ d(2α + 2)|t|α. �

Lemma 8. (a) |S2(t)| ≤ 2(|b| |t|+ d|t|α).
(b) If ϕ(0) > 0 and |h| ≤ 100−1 min((20d)−1/αϕ(0)1/α, π/4), then(
1

2h

∫ h

−h

|S2(t)|rdt
)1/r

≤ C

(
hα+

h1+α

ϕ(0)1/α
+

h2| log 1
h |

ϕ(0)2/α−1
+

h2

ϕ(0)
1
α

(
p+1
p +1

)
−1

+h2 | logϕ(0)|
ϕ(0)2/α−1

)
.

Proof. Inequality (a) follows because |ϕ(t)−ϕ(0)| ≤ |b| |t|+d|t|α and |Δ1(e
iψ)(0, t)| ≤ 2.

In the case of (b), using the same two estimates, we argue slightly subtler:

(17)

(
1

2h

∫ h

−h

|S2(t)|r dt
)1/t

≤ 2dhα + 2|b|h
(

1

2h

∫ h

−h

|eiψ(2t) − eiψ(t)|rdt
)1/r

.

The integral on the right in (17) does not exceed the sum

(18)

(
1

2h

∫ h

−h

|eiψ(2t) − eic|r dt
)1/r

+

(
1

2h

∫ h

−h

|eiψ(t) − eic|r dt
)1/r

,



414 A. V. VASIN, S. V. KISLYAKOV, AND A. N. MEDVEDEV

where c is chosen roughly as in §2:

c =
1

2π

∫
[−π,π]\[−4h,4h]

cot
(
− s

2

)
(logϕ(s)− logϕ(0)) ds.

Next, we repeat some calculations of §2 with slight modifications. Let positive integers k
and l play the same role as in §2, then l 
 log2

1
h , 2

kh 
 50−1 min((20d)−1/αϕ(0)1/α, π4 ).
As in §2 (see (11) and (12)), we write

(
1

2h

∫ h

−h

|eiψ(t) − eic|r dt
)1/r

≤ C

(
1

2h

∫ 4h

−4h

| logϕ(s)− logϕ(0)|rds
)1/r

+Ch

l∑
j=1

(2jh)−2

∫
2j+1h≤|s|≤2j+2h

| logϕ(s)− logϕ(0)| ds
(19)

(the second summand in (18) is treated similarly, we do not write out the calculation for
it). The first distinction from §2 is that now we use the inequality | logϕ(s)− logϕ(0)| ≤
c |b| |s|+d|s|α

ϕ(0) for ϕ(s) ≥ ϕ(0)/2. The second distinction is that the summands with k+1 ≤
j ≤ l will be treated in a less refined manner than in §2, but now this will yield a better
result. Specifically, we simply write∫

2j+1h≤|s|≤2j+2h

| logϕ(s)− logϕ(0)| ds ≤ C(2jh)1−
1
p ‖ logϕ‖Lp + C2jh| logϕ(0)|.

Then (19) can be continued in the following way:

· · · ≤ C

(
|b|h+ hα

ϕ(0)
+

1

ϕ(0)

∑
j≤k

(2(α−1)jhα + |b|h)

+ h

l∑
j=k+1

|2jh|−
p+1
p Bp + h

l∑
j=k+1

| logϕ(0)|
|2jh|

)
.

(20)

In this expression, we want to estimate |b| by Lemma 2, namely, to write 1
ϕ(0) |b| ≤

max
(

2d1/α

ϕ(0)1/α
, 1
π

)
, and to use, in the two last sums, the fact that

|2jh| ≥ Cmin((20d)1/αϕ(0)1/α, π/4).

To expedite matters considerably, we allow ourselves a slight inaccuracy, which will
also be repeated in the sequel. After these substitutions, all terms in (20) will involve
some power of h in the numerator (which is good) and a “hampering” power of the
“small” number ϕ(0) in the denominator (logarithmic factors do not influence the entire
picture). If either the maximum or the minimum written above is attained at the second
quantity, then a certain universal lower estimate for ϕ(0) is available, so that these
“small” denominators do not present an obstruction. This means that we can continue
the calculations under the assumption that both the maximum and the minimum are
attained at the first quantity (otherwise we do insure a better estimate). In accordance
with that, we continue (20), taking into account the relation

∑
j≤k

2(α−1)jhα ≤ chα(2k)α−1 ≤ c′hα
(ϕ(0)1/α

h

)α−1

= c′
h

ϕ(0)1/α−1
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and the fact that the sum of |b|h k times gives a certain term with a logarithm:

. . . ≤ C ′
(

h

ϕ(0)1/α
+

hα

ϕ(0)
+

h

ϕ(0)1/α

∣∣∣ log ϕ(0)1/α

h

∣∣∣+ h

ϕ(0)
1
α

p+1
p

+ h
| logϕ(0)|
ϕ(0)1/α

)

≤ C ′′
(

hα

ϕ(0)
+

h log 1
h

ϕ(0)1/α
+

h

ϕ(0)
1
α

p+1
p

+
h| logϕ(0)|
ϕ(0)1/α

)
.

(21)

Multiplying (21) by 2|b|h and substituting the result in (17) for the second term on the
right, after some simplifications we arrive at(

1

2h

∫ h

−h

|S2(t)|r dt
)1/r

≤ C

(
hα +

h1+α

ϕ(0)1/α
+

h2| log 1
h |

ϕ(0)2/α−1
+

h2

ϕ(0)
1
α ( p+1

p +1)−1
+

h2| logϕ(0)|
ϕ(0)2/α−1

)
. �

Lemma 9. (a) |S3(t)| ≤ 4ϕ(0).
(b) If ϕ(0) > 0 and h ≤ 100−1 min((20d)−1/αϕ(0)1/α, π/4), then(
1

2h

∫ h

−h

|S3(t)|r dt
)1/r

≤ C

(
h2 log

c

h
+

h2

ϕ(0)2/α−1
log

c

h
+

h2α

ϕ(0)
+

h2

ϕ(0)
2
α

p+1
p −1

+ hα + h2| logϕ(0)|+ h2| logϕ(0)|
ϕ(0)2/α−1

+
h2

ϕ(0)(2+
1
p )

1
α−1

)
.

Proof. Statement (a) is obvious, we only need to verify (b). We have(
1

2h

∫ h

−h

|S3(t)|r dt
)1/r

= ϕ(0)

(
1

2h

∫ h

−h

|Δ2(eiψ)(0, t)|r dt
)1/r

.

Using formula (8) with G(u) = eiu, we see that

|Δ2(eiH(logϕ))(0, t)| ≤ (|Δ2(H(logϕ))(0, t)|+|Δ2(H(logϕ))(0, t)|)2+|Δ2(H(logϕ))(0, t)|.
Inside the parentheses (i.e., in the term that is squared), we estimate the second difference
in terms of the first in accordance with the general formula f(x+2t)−2f(x+ t)+f(x) =
(f(x+ 2t)− f(x))− 2(f(x+ t)− f(x)). This yields

|Δ2(eiH(logϕ))(0, t)|
≤ C(|Δ1(H(logϕ))(0, t)|2 + |Δ1(H(logϕ))(0, 2t)|2 + |Δ2(H(logϕ))(0, t)|).

(22)

The contributions of the first and the second summand on the right to the averaged
second difference are estimated similarly, we only present the calculations for the first
summand. They are nearly the same as in the proof of (b) in Lemma 8 with the difference
that the results are squared and with an additional small alteration.

So, as in §2 and (implicitly) in Lemma 8, we replace the function logϕ under the sign
of H by u = logϕ− logϕ(0) and write u = uχ[−2h,2h] + v; then

A
def
=

(
1

2h

∫
|t|≤h

|H(logϕ)(t)−H(logϕ)(0)|2r dt
)1/r

≤ C

[(
1

2h

∫
|t|≤h

|H(χ−[2h,2h] · u)(t)|2r dt
)1/r

+ |H(χ[−2h,2h] · u)(0)|2

+
1

2h

∫
|t|≤h

(∣∣∣∣
∫
[−π,π]\[−2h,2h]

(
cot

( t−s

2

)
− cot

(
− s

2

))
(logϕ(s)− logϕ(0)) ds

∣∣∣∣
2r

dt

)1/r]
.
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Compared to calculations done before, a new term (the second) arose here, which is
estimated as follows:∣∣H(uχ[−2h,2h])(0)

∣∣2 =
1

4π2

∣∣∣∣
∫ 2h

−2h

(logϕ(s)− logϕ(0)) cot
(
− s

2

)
ds

∣∣∣∣
2

≤ C

(
1

ϕ(0)

∫ 2h

−2h

|b| |s|+ |s|α
|s| ds

)2

≤ C ′
(
|b|h+ hα

ϕ(0)

)2

≤ C ′′
(

h2

ϕ(0)2/α
+

h2α

ϕ(0)2

)
.

The same quantity dominates the first terms on the right (see the corresponding place
in the proof of Lemma 8). Thus, we see that the sum of the squares of the terms in
(21) dominates A, and, when multiplied by ϕ(0), this sum estimates the contribution

of the first two terms in (22) to the average
(

1
2h

∫ h

−h
|S3(t)|r dt

)1/r
. Here is an explicit

expression:

C

[
h2α

ϕ(0)
+

h2
(
log 1

h

)2
ϕ(0)

2
α−1

+
h2

ϕ(0)
2
α

p+1
p −1

+
h2

ϕ(0)2α p+1
p − 1

+
h2| logϕ(0)|2
ϕ(0)2/α−1

]
.

It remains to estimate the contribution to the average in question of the third summand
on the right in (22), i.e., the quantity ϕ(0)D, where

D =

(
1

2h

∫ h

−h

|Δ2(H(logϕ)(0, t)|r dt
)1/r

.

We would like to subtract from logϕ under the sigh of H an appropriate linear poly-
nomial, which, however, should be modified to a 2π-periodic function. So, we write

D ≤
(

1

2h

∫
|t|≤h

|Δ2[H(logϕ−u)](0, t)|rdt
)1/r

+

(
1

2h

∫ h

−h

|Δ2[Hu(0, t)]|rdt
)1/r

def
= W1+W2,

where u(s) = ξ(s)τ (s), ξ is a cut-off function of class C∞ that is equal to 1 for |s| ≤ π/4
and to 0 for |s| ∈ [π/2, π], and τ is the Taylor polynomial of order 1 for the function
s 	→ log(ϕ(0) + bs) (the function ϕ(0) + bs itself will be denoted by κ(s)) for brevity).

Namely, τ (s) = logϕ(0) + bs
ϕ(0) . The second derivative of logκ(s) is − b2

κ(s)2 , and from

Lemma 2 it follows that κ(s) ≥ ϕ(0)/2 for

(23) |s| ≤ 40−1 min
(
(20d)−1/αϕ(0)1/α,

π

4

)
(this is done roughly as in Lemma 3, but with simplifications). This allows us to estimate
the second derivative of logκ(s) from above and to conclude that, for s satisfying (23),
we have

(24) | logκ(s)− τ (s)| ≤ 4
b2

ϕ(0)
|s|2 ≤ C

|s|2
ϕ(0)2/α

(we have used Lemma 2 and the observation that the case where the maximum in the

inequality in that lemma is attained at ϕ(0)
π can be disregarded). We assume here that

u is defined originally on [−π, π] and then extended to become 2π-periodic.
Now, observe that H commutes with the second difference operator,

Δ2H(u)(0, t) =
1

2π

∫ π

−π

cot
(
− s

2

)
Δ2u(s, t) ds.

By construction, Δ2u(s, t) = 0 at least for |s| ≤ π/8 if

|t| ≤ h ≤ 40−1 min
(
(20d)−1/αϕ(0)1/α,

π

4

)
.
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On the complement of the interval {s : |s| ≤ π/8}, the cotangent is bounded by a
universal constant; therefore,

|Δ2H(u)(0, t)| ≤ C

∫ π

−π

|Δ2u(s, t)| ds.

Next, u′′(s) = ξ′′(s)τ (s) + 2ξ′(s)τ ′(s), whence |u′′(s)| ≤ c
(
| logϕ(0)|+ 1

ϕ(0)

)
. By (9), we

obtain

|Δ2u(s, t)| ≤ C
(
| logϕ(0)|+ 1

ϕ(0)

)
h2 for |t| ≤ h,

so

ϕ(0)W2 ≤ C ′(1 + ϕ(0)| logϕ(0)|)h2 ≤ C ′′h2.

It remains to estimate the quantity

(25) ϕ(0)W1 = ϕ(0)

(
1

2h

∫ h

−h

|Δ2[H(logϕ− u)](0, t)|r dt
)1/r

.

We split the function under the sign of H into 2 summands:

logϕ− u = χ[−4h,4h] · (logϕ− u) + v = v0 + v.

When treating the first summand, we extend the integral to [−π, π] and use the continuity
of H on Lr:

1

2h

∫ h

−h

|Δ2[H(v0)](0, t)|r dt)1/r

≤ 1

2h

∫ π

−π

(
|H(v0)(2t)|+ 2|Hv0(t)|)r dt

)1/r

+ |Hv0(0)|

≤ C

(
1

2h

∫ 4h

−4h

|v0(s)|r ds
)1/r

+ C|Hv0(0)|.

(26)

Next, for |s| ≤ 4h by (24) we have

|v0(s)| = | logϕ(s)− τ (s)| ≤ | logϕ(s)− logκ(s)|+ | logκ(s)− τ (s)|

≤ C
|ϕ(s)− κ(s)|

ϕ(0)
+ C

|s|2
ϕ(0)2/α

≤ C ′
( |s|α
ϕ(0)

+
|s|2

ϕ(0)2/α

)
,

and the same quantity (with s replaced by h and with a different constant) majorizes
the first summand on the right in (26). Furthermore,

|Hv0(0)| =
∣∣∣∣ 1

2π

∫ π

−π

cot
(
− s

2

)
v0(s) ds

∣∣∣∣
≤ C

∫ 4h

−4h

( 1

ϕ(0)
|s|α−1 +

1

ϕ(0)2/α
|s|

)
ds ≤ C ′

( hα

ϕ(0)
+

h2

ϕ(0)2/α

)
.

Thus, the contribution of v0 to (25) is majorized by

C ′′
(
hα +

h2

ϕ(0)2/α−1

)
.

The contribution of v to (25) looks like this:

ϕ(0)

(
1

2π

∫ h

−h

∣∣∣∣ 1

2π

∫
[−π,π]\[−4h,4h]

(
cot

2t− s

2
− 2 cot

t− s

2
+ cot

(
− s

2

))
× (logϕ(s)− u(s)) ds

∣∣∣∣
r

dt

)1/r

.
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By (9), the second difference of the cotangent on the domain of integration is dominated

by ct2

|s|3 , so the last expression is majorized by

ϕ(0)

(
l

2h

∫ h

−h

( l∑
j=1

∫
2j+1h≤|s|≤2j+2h

t2

|s|3 | logϕ(s)− u(s)| ds
)r

dt

)1/r

≤ Cϕ(0)h2
l∑

j=1

(2jh)−3

∫
2j+1h≤|s|≤2jh

| logϕ(s)− u(s)| ds,

where l is the same natural number as before. We also introduce the natural number k
as before, and first treat the terms with j ≤ k in the last sum (observe that u(s) = τ (s)
for these terms):∫

2j+1h≤|s|≤2j+2h

| logϕ(s)− u(s)| ds

≤
∫
2j+1h≤|s|≤2j+2h

| logϕ(s)− logκ(s)| ds+
∫
2j+1h≤|s|≤2j+2h

| logκ(s)− τ (s)| ds

≤ C2jh
(2jh)α

ϕ(0)
+ C

(2jh)3

ϕ(0)2/α
,

so that

ϕ(0)h2
k∑

j=1

(2jh)−3

∫
2j+1h≤|s|≤2j+2h

| logϕ(s)− u(s)| ds

≤ C

( k∑
j=1

(2jh)

22j
+ k

h2

ϕ(0)2/α−1

)
≤ C

⎧⎪⎪⎨
⎪⎪⎩
hα + | log2

ϕ(0)1/α

h

∣∣ h2

ϕ(0)2/α−1 if α < 2;

h2| log2
ϕ(0)1/2

h

∣∣ if α = 2;

ϕ(0)1−
2
αh2 if α > 2.

The remaining terms with k < j ≤ l are again estimated quite roughly:∫
2j+1h≤|s|≤2j+2h

| logϕ(s)− u(s)| ds

≤
∫
2j+1h≤|s|≤2j+2h

| logϕ(s)| ds+
∫
2j+1h≤|s|≤2j+2h

|τ (s)| ds

≤ C

(
Bp(2

jh)1−1/p + | logϕ(0)|2jh+
|b|
ϕ(0)

2jh

)
,

so that

ϕ(0)h2
l∑

j=k+1

(2jh)−3

∫
2j+1h≤|s|≤2j+2h

| logϕ(s)− u(s)| ds

≤ C

(
h2

ϕ(0)

(
2+ 1

p

)
1
α−1

+
h2| logϕ(0)|
ϕ(0)2/α−1

)
.

Collecting the estimates, we obtain statement (b) in Lemma 9. �

Now, we combine Lemma 7 and statements (a) in Lemmas 8 on the one hand and
statements (b) in Lemmas 8 and 9 on the other. This will result in two inequalities:

(I)
(

1
2h

∫ h

−h
|Δ2(ϕeiψ)(0, t)|r dt

)1/r ≤ C
(
hα + ϕ(0)1−

1
αh+ ϕ(0)

)
;
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(II) if |h| ≤ 100−1 min((20d)−1/αϕ(0)1/α, π/4), then

(
1

2h

∫ h

−h

|Δ2(ϕeiψ)(0, t)|r dt
)1/r

≤ C

(
hα+

h1+α

ϕ(0)1/α
+

h2| log 1
h |

ϕ(0)2/α−1
+

h2

ϕ(0)
1
α (2+ 1

p )−1
+
h2| logϕ(0)|
ϕ(0)2/α−1

+
h2α

ϕ(0)
+

h2

ϕ(0)
2
α

p+1
p −1

)
.

It turns out that only the boxed terms in these formulas really compete, and the
other terms are less important. The guideline for the last step is that the boxed terms

are roughly equal if ϕ(0) 
 hα p
p+1 . So, we finish the proof of Theorem D from the

Introduction as follows.
1◦. If ϕ(0) = 0, then (I) yields more than it was claimed: smoothness does not drop.
2◦. Let ϕ(0) > 0. Since p+1

p > 1 and ϕ(0) ≤ 1, for a sufficiently small δ > 0

independent of ϕ(0) we obtain

δϕ(0)
1
α

p+1
p ≤ 200−1

(
min(20d)−1/αϕ(0)1/α,

π

4

)
.

Fixing such δ, we assume first that h > δϕ(0)
1
α

p+1
p , then the right-hand side of (I) is

dominated by

C ′(hα + h
αp
p+1 (1−

1
α )+1 + h

αp
p+1

)
.

The exponent in the second term is αp
p+1 + 1 − p

p+1 > αp
p+1 , and the entire expression is

majorized by C ′′h
αp
p+1 .

3◦. Let h ≤ δϕ(0)
1
α

p+1
p , then we can use (II). We observe that the terms where

ϕ(0) occurs in the denominator are of order not worse that cαh
2 log 1

h provided that the
exponent of ϕ(0) is nonpositive, and in this case they present no trouble. In the boxed
term, this exponent becomes nonpositive when α ≥ 2 + 2

p , and there are two other cases

where it also becomes nonpositive, but earlier: respectively, for α ≥ 2+ 1
p , and for α ≥ 2.

We leave the case where α ≥ 2 + 2
p aside (some estimate can be deduced under this

condition, but this is not very interesting): suppose that we have the opposite inequality.
In all terms where the denominator involves ϕ(0) in a positive power, we can replace ϕ(0)

with the smaller quantity
(
h
δ

) αp
p+1 . For the boxed term, this yields an estimate of the

form ch2−2+ αp
p+1 = h

αp
p+1 . It can easily be calculated that the other terms are dominated

by powers of h with greater exponent.
It should be noted that for p = 1 the restriction α < 2 + 2

p means that α < 4.
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