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HÖRMANDER’S THEOREM FOR STOCHASTIC

PARTIAL DIFFERENTIAL EQUATIONS

N. V. KRYLOV

Dedicated to N. N. Ural’tseva on her jubilee

Abstract. Hörmander’s type hypoellipticity theorem for stochastic partial differen-
tial equations is proved in the case where the coefficients are only measurable with
respect to the time variable. Such equations arise, for instance, in filtering theory of
partially observable diffusion processes. If one sets all coefficients of the stochastic
part to be zero, one gets new results for usual parabolic PDEs.

§1. Introduction

Let (Ω,F , P ) be a complete probability space with an increasing filtration {Ft, t ≥ 0}
of σ-fields Ft ⊂ F complete with respect to (F , P ). Let d1 ≥ 1 be an integer, and let wk

t ,
k = 1, 2, . . . , d1, be independent one-dimensional Wiener processes with respect to {Ft}.

Fix an integer d ≥ 1 and introduce Rd as a Euclidean space of column-vectors (written
in a common abuse of notation as) x = (x1, . . . , xd). Denote

Di = ∂/∂xi, Dij = DiDj

and, for an R
d-valued function σt(x) = σt(ω, x) on Ω× [0,∞)×R

d and functions ut(x) =
ut(ω, x) on Ω× [0,∞)× R

d, set

Lσt
ut(x) = [Diut(x)]σ

i
t(x).

Next, we take an integer d2 ≥ 1, assume that we are given R
d-valued functions σk

t = (σik
t ),

k = 0, . . . , d1 + d2, on Ω× [0,∞)×R
d, which are infinitely differentiable with respect to

x for any (ω, t), and define the operator

(1.1) Lt =
1

2

d2+d1∑
k=1

L2
σk
t
+ Lσ0

t
.

Assume that on Ω× [0,∞)×R
d we are also given certain real-valued functions ct(x) and

νkt (x), k = 1, . . . , d1, which are infinitely differentiable with respect to x, and that on
Ω× [0,∞)×R

d we are given real-valued functions ft and gkt , k = 1, . . . , d1. Then under
natural additional assumptions that will be specified later, the SPDE

(1.2) dut = (Ltut + ctut + ft) dt+ (Lσk
t
ut + νkt ut + gkt ) dw

k
t

makes sense (here and below the summation convention over repeated indices is enforced
regardless of whether they stand at the same level or at different ones). One could
consider such equations with infinitely many Wiener processes, rather than only with d1
ones. However, this would make the presentation of the results much more technical.
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Our main goal in this paper is to show, somewhat loosely speaking, that if Ω0 ∈ F ,
(s1, s2) ∈ (0,∞), and for any ω ∈ Ω0 and t ∈ (s1, s2) the Lie algebra generated by the

vector fields σd1+k
t , k = 1, . . . , d2, has dimension d everywhere in a ball B in R

d, and
the ft and gkt are infinitely differentiable in B for any ω ∈ Ω0 and any t ∈ (s1, s2), then
any function ut satisfying (1.2) in Ω0 × (s1, s2) × B, for almost any ω ∈ Ω0, coincides
on (s1, s2)×B with a function infinitely differentiable with respect to x. Thus, under a
local Hörmander’s type condition we claim the local hypoellipticity of the equation.

We mention the paper [5], where the authors proved hypoellipticity for SPDEs whose
coefficients do not explicitly depend on time and ω under Hörmander’s type condition
that is global, but otherwise much weaker than ours. The dependence on the time variable
t and ω of the coefficients in [5] is allowed only through an argument in which a Wiener
process is substituted. However, it seems to the author of the present article that there
is a gap in the arguments in [5] when the authors claim that one can estimate derivatives
of order s + ε (ε > 0) of solutions through derivatives of order s for any s ∈ (−∞,∞)
and not only for s = 0. The claim albeit correct is only proved for s = 0 in [5], and even
if there are no stochastic terms, the proof of the claim is not completely trivial (see the
comment below formula (5.2) in [8]). It is worth noting that our methods are absolutely
different from those in [5]. Our main method of proving Theorems 2.3 and 2.4 is based
on an observation by A. Wentzell [16] who discovered the Itô–Wentzell formula and used
it to make a random change of coordinates in such a way that the stochastic terms in
the transformed equation disappear so that we can use the results from [8]. We apply
this method locally.

In [12], Kunita also used Wentzell’s reduction of SPDEs with even time-inhomogeneous
coefficients to deterministic equations with random and time-dependent coefficients sat-
isfying a global Hörmander type condition. He wrote that the probabilistic approach
to proving Hörmander’s theorem developed by Malliavin [15], Ikeda and Watanabe [6],
Stroock [17], and Bismut [1] can be applied to the case of operators continuously depend-
ing on the time parameter t. In [13], he replaced this list of references with [15, 6, 18],
and [2]. However, to the best of the author’s knowledge, until now the best results in
proving Hörmander’s theorem by using the Malliavin calculus for parabolic equations
with the coefficients only continuous with respect to t were obtained in [4], where equa-
tions with coefficients that are Hölder continuous in t were considered. In our case the
coefficients are only assumed to be predictable, so that if they are not random, then
their measurability with respect to t suffices. Another objection against the arguments
in [12] and [13] is that the reduction of SPDEs is done globally and yields deterministic
parabolic equations with random coefficients without any control on their behavior as
|x| → ∞, which is needed for any existing theory of unique solvability for such equations.

Wentzell’s method allows us to derive, from a local version of Hörmander’s type con-
dition, the infinite differentiability of solutions at the same locality, whereas in [5, 12]
and [13] a global condition was imposed, and the way ω and t enter the coefficients was
quite restrictive. Another difference between our results and those in [5] is that we prove
the infinite differentiability of any generalized solution and not only of measure-valued
ones.

Talking about generalized solutions, our functions ut, ft, g
k
t are, actually, assumed to

be given on a subset of Ω× [0,∞) and take values in D, which is the space of generalized
functions on R

d.
One more issue worth noting is that we derive a priori estimates, which allows us in

a subsequent paper [9] not only to show that the filtering density for t > 0 is in C∞ if
the unobservable process starts at any fixed point x, but also to prove that it is infinitely
differentiable with respect to x. As far as the author is aware, such kind of results has
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never been proved for degenerate SPDEs. As to the filtering problem, the reader may
know that the first filtering problems were successfully solved by Kalman and Bucy and
the solutions were used in the Apollo program many years ago. Needless to say that
any success in solving filtering problems numerically heavily depends on our knowledge
of the differentiability properties of their solutions, which may make our results valuable
for applications.

We finish the Introduction with a few more notation and a description of the structure
of the paper. For (generalized) functions u on R

d, by Du we mean the row-vector
(D1u, . . . , Ddu), and when we write Duφ, we always mean (Du)φ. In this notation,

Lσt
ut = [Diut]σ

i
t = Dutσt.

It is known that the product of any generalized function and an infinitely differentiable
one is again a generalized function, and that any generalized function is infinitely differ-
entiable in the generalized sense, so that what is said above has perfect sense.

For R, t ∈ (0,∞), we set

BR = {x ∈ R
d : |x| < R}, Ct,R = (0, t)×BR,

and denote by DR the set of generalized functions on BR. In the entire paper, T and R0

are fixed numbers from (0,∞).
The rest of the paper is organized as follows. In §2 we state our main results, The-

orems 2.3 and 2.4. §3 contains a computation of the determinant of a matrix-valued
process satisfying a linear stochastic equation. In the very short §4, we remind the
reader one of the properties of stochastic integrals of Hilbert-space valued processes. In
§5 we discuss some facts related to stochastic flows of diffeomorphisms and change of
variables. The reader can find in [14] much more information about stochastic flows of
diffeomorphisms in a much more general setting. Our discussion is more elementary than
in [14] albeit it is only valid in a particular case we need. In §6 we prove a version of
the Itô–Wentzell formula we need. Finally, in §7 and §8 we prove Theorems 2.3 and 2.4,
respectively.

§2. Main results

Let P denote the predictable σ-field in Ω× (0,∞) associated with {Ft}.

Definition 2.1. Denote by D(CT,R0
) the set of all DR0

-valued functions u (written as
ut(x) in a common abuse of notation) on Ω×[0, T ] such that, for any φ ∈ C∞

0 (BR0
), the re-

striction of the function (ut, φ) to Ω×(0, T ] is P-measurable and (u0, φ) is F0-measurable.
For p = 1, 2 denote by D−∞

p (CT,R0
) the subset of D(CT,R0

) consisting of u such that for
any ζ ∈ C∞

0 (BR0
) there exists m ∈ R such that for any ω ∈ Ω, for almost all t ∈ [0, T ],

we have ζut ∈ Hm
2 (= (1−Δ)−m/2L2, L2 = L2(R

d)) and

(2.1)

∫ T

0

‖utζ‖pHm
2
dt < ∞.

Definition 2.2. Assume that we are given some u, f, gk ∈ D(CT,R0
), k = 1, . . . , d1 (not

necessarily those from §1). We say that the equality

(2.2) dut(x) = ft(x) dt+ gkt (x) dw
k
t , (t, x) ∈ CT,R0

,

holds in the sense of distributions if f ∈ D
−∞
1 (CT,R0

), gk ∈ D
−∞
2 (CT,R0

), k = 1, . . . , d1,
and for any φ ∈ C∞

0 (BR0
) with probability one we have

(2.3) (ut, φ) = (u0, φ) +

∫ t

0

(fs, φ) ds+

d1∑
k=1

∫ t

0

(gks , φ) dw
k
s
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for all t ∈ [0, T ], where, as usual, ( · , · ) stands for pairing of generalized and test func-
tions.

Remark 2.1. Observe that if gk ∈ D
−∞
2 (CT,R0

), φ, ζ ∈ C∞
0 (BR0

), and ζ = 1 on the
support of φ, then

|(gks , φ)|2 = |(ζgks , φ)|2 ≤ ‖ζgks ‖2Hm
2
‖φ‖2

H−m
2

and the right-hand side has finite integral over [0, T ] (a.s.) if m is chosen appropriately.
This and a similar estimate concerning (fs, φ) show that the right-hand side in (2.3)
makes sense.

In the following assumption we are talking about the objects from §1.

Assumption 2.1. (i) The functions σk
t (x), k = 0, . . . , d1 + d2, ct, ν

k
t , k = 1, . . . , d1,

are infinitely differentiable with respect to x and each of their derivatives of any order is
bounded on Ω × [0, T ] × BR0

. These functions are predictable with respect to (ω, t) for
any x ∈ BR0

;
(ii) we have u, f, gk ∈ D

−∞
2 (CT,R0

), k = 1, . . . , d1;
(iii) equation (1.2) holds on CT,R0

in the sense of Definition 2.2;
(iv) for any ζ ∈ C∞

0 (BR0
) there exists m ∈ R such that for any ω ∈ Ω we have

u0ζ ∈ Hm
2 .

Remark 2.2. The argument in Remark 2.1 shows that (1.2) has perfect sense owing to
Assumptions 2.1 (i), (ii), and we need u ∈ D

−∞
2 (CT,R0

) in contrast to Definition 2.2,
because Du and u enter the stochastic part in (1.2).

Furthermore, under Assumption 2.1, for any ζ ∈ C∞
0 (BR0

) there is m such that
u0ζ ∈ Hm

2 and

∫ T

0

(
‖utζ‖2Hm

2
+ ‖ftζ‖2Hm

2
+

d1∑
k=1

‖gkt ζ‖2Hm
2

)
dt < ∞.

By a classical continuity result, it follows that (a.s.) utζ is a continuous Hm−1
2 -valued

function on [0, T ]. If we drop Assumption 2.1 (iv), then the same will be true with (0, T ]
in place of [0, T ] because utζ ∈ Hm

2 for almost all t ∈ (0, T ).

Next, as usual, for two smooth R
d-valued functions σ, γ on R

d we set

[σ, γ] = Dγσ −Dσγ,

where, for instance, Dγ is the matrix with the entries (Dγ)ij = Djγ
i, so that

[σ, γ]i = σjDjγ
i − γjDjσ

i.

Then we introduce collections of R
d-valued functions defined on Ω × [0, T ] × BR0

inductively as follows: L0 = {σd1+1, . . . , σd1+d2},

Ln+1 = Ln ∪ {[σd1+k,M ] : k = 1, . . . , d2,M ∈ Ln}, n ≥ 0.

For any multi-index α = (α1, . . . , αd), αi ∈ {0, 1, . . . }, we write as usual

Dα = Dα1
1 · . . . ·Dαd

d , |α| = α1 + · · ·+ αd.

Also, we define BC∞
b as the set of real-valued measurable functions a on Ω× [0, T ]×R

d

such that, for each t ∈ [0, T ] and ω ∈ Ω, at(x) is infinitely differentiable with respect to
x, and for any ω ∈ Ω and multi-index α we have

sup
(t,x)∈[0,T ]×Rd

|Dαat(x)| < ∞.
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Finally, we denote by Lien the set of (finite) linear combinations of elements of Ln

with coefficients that are of class BC∞
b . Observe that the vector-field σ0 is not explicitly

included into Lien. Finally, we fix Ω0 ∈ F and S ∈ [0, T ), and introduce

G = (S, T )×BR0
.

Note that localizing our result in Ω0 can be useful in applications to filtering problems
for partially observable diffusion processes when Hörmander’s type conditions are only
satisfied on part of trajectories of the observation process (see [9]).

Assumption 2.2. For every ω ∈ Ω0, η ∈ C∞
0 (S, T ), and ζ ∈ C∞

0 (BR0
), there exists

n ∈ {0, 1, . . . } such that ξηζ ∈ Lien for any ξ ∈ R
d.

Here is our first main result which is proved in §7. We remind the reader that the
common way of saying that a generalized function in a domain is smooth means that
there is a smooth function which, as a generalized function, coincides with the given
generalized one in the domain under consideration. Naturally, below in this section the
above assumptions are supposed to hold.

Theorem 2.3. Assume that for any ω ∈ Ω0, n = 1, 2, . . . , and ζ ∈ C∞
0 (G), for almost

any t ∈ [S, T ] we have ftζ ∈ Hn
2 and∫ T

S

‖ftζ‖2Hn
2
dt < ∞,

and that for any ω ∈ Ω, n = 1, 2, . . . , and ζ ∈ C∞
0 (G), for almost any t ∈ [S, T ] we have

gkt ζ ∈ Hn
2 , k = 1, . . . , d1, and

d1∑
k=1

∫ T

S

‖gkt ζ‖2Hn
2
dt < ∞.

Then, for almost all ω ∈ Ω0, ut(x) is infinitely differentiable with respect to x for
(t, x) ∈ G, and each derivative is a continuous function in G.

Furthermore, let [s0, t0] ⊂ (S, T ) and r ∈ (0, R0), let ζ ∈ C∞
0 (G) be such that ζ = 1

on a neighborhood of [s0, t0]× sBr, and take m (which exists by definition) such that (2.1)
is true with p = 2. Then, for any multi-index α and l such that

(2.4) 2(l − |α| − 2) > d+ 1,

there exists a (random, finite) constant N independent of u, f , and gk, such that for
almost any ω ∈ Ω0 we have

(2.5) sup
(t,x)∈[s0,t0]×Br

|Dαut(x)|2 ≤ N

∫ T

S

[
‖ftζ‖2Hl

2
+ ‖utζ‖2Hm

2

]
dt,

provided that gkt ζIΩ0
≡ 0, k = 1, . . . , d1.

Here is a result which is “global” in t. We derive it from Theorem 2.3 in §8.

Theorem 2.4. Suppose that an assumption stronger than Assumption 2.2 is satisfied:
for every ω ∈ Ω0 and ζ ∈ C∞

0 (BR0
) there exists n ∈ {0, 1, . . . } such that ξI[S,T ]ζ ∈ Lien

for any ξ ∈ R
d. Also suppose that the assumption stated in Theorem 2.3 is satisfied with

ζ ∈ C∞
0 (BR0

) rather than ζ ∈ C∞
0 (G).

Then the first assertion of Theorem 2.3 holds true with (S, T ] × BR0
in place of G,

and the second assertion holds with s0 ∈ (S, T ) and t0 = T , and with ζ ∈ C∞
0 (BR0

) that
equals one in a neighborhood of sBr.

If we additionally assume that uS is infinitely differentiable in BR0
for every ω ∈ Ω0,

then the first assertion of Theorem 2.3 holds true with [S, T ]×BR0
in place of G, and the
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second assertion holds with s0 = S and t0 = T , and with ζ ∈ C∞
0 (BR0

) that equals one
in a neighborhood of sBr if we add to the right-hand side of (2.5) a constant (independent
of u) times ‖ζuS‖2Hl+1

2

.

Remark 2.5. The reader will see that Assumption 2.1 (iv) will be used only in the proof
of the second assertion of Theorem 2.4 for S = 0.

§3. On linear stochastic equations

Let zt be a (d× d) matrix-valued continuous Ft-adapted process satisfying

zt = I +

∫ t

0

αk
szs dw

k
s +

∫ t

0

βszs ds, s ≥ 0,

where the αk
s , k = 1, . . . , d1, and βs are bounded predictable (d × d) matrix-valued

processes and I is the identity (d × d) matrix. Our goal in this section is to give a
compact proof of the following known result (see, for instance, [19]), which we need.

Lemma 3.1. For s ≥ 0,

(3.1) det zt = exp

(∫ t

0

trαk
s dw

k
s +

∫ t

0

[
trβs −

1

2

d1∑
k=1

tr((αk
s )

2)

]
ds

)
.

Proof. Take a (d×d)-nonsingular matrix A = (Aij) and view it as a function of its entries
Aij , i, j = 1, . . . , d. Then detA is also a function of the Aij . It is know that (we write fx
to denote the derivative of f with respect to x)

(detA)Aij = Bji detA,

where B = A−1. Also, as with derivatives with respect to any parameter,

BArp = −BAArpB.

Observe that Anm
Arp = δrnδpm. It follows that

Bji
Arp = −BjnδrnδpmBmi = −BjrBpi,

(detA)AijArp = −BjrBpi detA+BjiBpr detA.

Now we can use Itô’s formula. Denote xt = z−1
t . Then

d det zt = xji
t α

ink
t znjt det zt dw

k
t + xji

t β
in
t znjt det zt dt

+
1

2

[
xji
t x

pr
t − xjr

t xpi
t ]αink

t znjt αrmk
t zmp

t det zt dt.

Observing that

xji
t z

nj
t = δin, xpr

t zmp
t = δrm, xjr

t znjt = δrn, xpi
t zmp

t = δim,

we obtain

d det zt = det zt

[
trαk

t dw
k
t + trβt dt+

1

2

d1∑
k=1

(
(trαk

t )
2 − tr((αk

t )
2)

)
dt

]
.

We see that det zt satisfies a linear equation as long as it stays strictly positive. A unique
solution of this equation which equals one at t = 0 is given by the right-hand side of (3.1),
which does not vanish for t ≥ 0. This shows that (3.1) is true for all t ≥ 0, proving the
lemma. �
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§4. On stochastic integrals

of Hilbert-space valued processes

Let H be a separable Hilbert space (in our applications H is one of the H−n
2 with

large n > 0). Take a predictable H-valued process ht, t ∈ [0, T ], such that (a.s.)∫ T

0

‖ht‖2H dt < ∞

for any ω and set wt = w1
t .

Lemma 4.1. The stochastic integral ∫ t

0

hs dws

has a (continuous) modification such that if there are φ ∈ H, (s0, t0) ⊂ (0, T ), and ω ∈ Ω
for which (φ, hr(ω))H = 0 for r ∈ (s0, t0), then(

φ,

∫ t

0

hs dws

)
H

is constant on that ω for t ∈ [s0, t0].

The proof of this lemma is achieved immediately after one recalls that there exists a
sequence nk → ∞ and a c ∈ (0, 1) such that (a.s.) uniformly on [0, T ]
∫ t

0

hκ(nk,s+c)−c dws :=
∞∑

m=1

Is≤thtmk−cItmk≤s+c<tm+1,k
(wtm+1,k−c−wtmk−c) →

∫ t

0

hs dws,

in H, where tmk = m2−nk , κ(n, s) = 2−n[2ns], and ht is extended as zero outside [0, T ].

§5. On some random mappings

Here we suppose that Assumption 2.1 (i) is satisfied with R0 = ∞ and, moreover,
there is R ∈ (0,∞) such that, for any k = 0, 1, . . . , d1 and ω, t, we have σk

t (x) = 0 if
|x| ≥ R.

Consider the equation

(5.1) xt = x−
∫ t

0

σk
s (xs) dw

k
s −

∫ t

0

bs(xs) ds,

where

bt(x) = σ0
t (x)−

1

2

d1∑
k=1

Dσk
t (x)σ

k
t (x).

As follows from [3] (see [14] for a more advanced treatment of the subject), there exists
a function Xt(x) on Ω× [0, T ]× R

d such that
(i) it is continuous in (t, x) for any ω along with each derivative of Xt(x) of any order

with respect to x;
(ii) it is Ft-adapted for any (t, x);
(iii) for each x, with probability one it satisfies (5.1) for all t ∈ [0, T ];
(iv) for any x, the matrix DXt(x) with probability one satisfies

DXt(x) = I −
∫ t

0

Dσk
s (Xs(x))DXs(x) dw

k
s −

∫ t

0

Dbs(Xs(x))DXs(x) ds

for all t ∈ [0, T ].
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From Lemma 3.1 we see that for any x with probability one

detDXt(x) = exp

(
−
∫ t

0

trDσk
s (Xs(x)) dw

k
s−

∫ t

0

[
trDbs−

1

2

d1∑
k=1

tr((Dσk
s )

2)

]
(Xs(x)) ds

)

for all t ∈ [0, T ]. By formally considering the system consisting of equation (5.1) and the
“equation”

yt = y +

∫ t

0

trDσk
s (xs) dw

k
s

and applying the said above, we conclude that there exists a function It(x) = It(ω, x)
that is continuous with respect to (t, x) ∈ [0, T ] × R

d for each ω and is such that, for
each x,

It(x) =

∫ t

0

trDσk
s (Xs(x)) dw

k
s

with probability one for all t ∈ [0, T ]. Then for each (t, x), with probability one

detDXt(x) = exp

(
− It(x)−

∫ t

0

[
trDbs −

1

2

d1∑
k=1

tr((Dσk
s )

2)

]
(Xs(x)) ds

)

and since both parts are continuous with respect to (t, x), the identity holds for all (t, x)
at once with probability one.

It follows that, perhaps after modifying Xt(x) on a set of probability zero, we may
assume that detDXt(x) > 0 for all (ω, t, x). Also observe that obviously Xt(x) = x for
|x| ≥ R and |Xt(x)| ≤ R for |x| ≤ R. Hence, there is a random variable ε = ε(ω) > 0
such that detDXt ≥ ε and

det[(DXt)
∗DXt] ≥ ε

for all (ω, t, x). Combining this with the fact that DXt(x) is a bounded function of (t, x)
for each ω, we see that the smallest eigenvalue of the symmetric matrix (DXt)

∗DXt is
bounded from below by a δ = δ(ω) > 0, that is

(5.2) |DXtξ|2 ≥ δ|ξ|2

for all (ω, t, x) and ξ ∈ R
d.

Now we need the following consequence of (5.2), which is proved in a much more
general case of quasi-isometric mappings of Banach spaces in Corollary to Theorem II
of [10] (see also [11]).

Lemma 5.1. For all (ω, t), the mapping Xt(x) of R
d is one-to-one and onto R

d.

Kunita [13] gave a different proof of Lemma 5.1 in a much more general case, based
on the fact that the mapping Xt(x) is obviously homotopic to the identity mapping (but
still in his case an additional effort is applied because R

d is not compact). Yet another
proof provides the following result, in which the nondegeneracy of the Jacobian is not
required and which may be of an independent interest.

Lemma 5.2. Let D be a connected bounded domain in R
d and X : sD → sD a continuous

mapping that has bounded and continuous first-order derivatives in D. Assume the fol-
lowing: X(x) = x if x ∈ ∂D, detDX(x) is either nonpositive or nonnegative in D, and
for any x0 ∈ D the mapping X(x) is a homeomorphism if restricted to a neighborhood of
x0 (for instance, detDX(x) > 0 on D). Then the mapping X is one-to-one and onto sD
and one-to-one and onto D.
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Proof. Since X is a local homeomorphism, X(D) is an open subset of D. Furthermore,
if y ∈ ∂X(D), then there are points xn ∈ D such that X(xn) → y. Assuming without
loss of generality that the sequence xn converges, say, to x0, we see that X(x0) = y,
which implies that x0 ∈ ∂D, so that ∂X(D) ⊂ X(∂D) = ∂D. On the other hand, if
y ∈ ∂D = X(∂D), then y �∈ X(D) but there is a sequence xn ∈ D such that X(xn) → y,
so that y ∈ ∂X(D). Now we see that ∂X(D) = X(∂D) = ∂D. Since X(D) ⊂ D, we
conclude that X(D) = D and X( sD) = sD.

To prove that X is one-to-one, for n = 1, 2, . . . , i = (i1, . . . , id) and ik = 0,±1, . . . , we
introduce

Ci,n = (i1/2
n, (i1 + 1)/2n]× · · · × (id/2

n, (id + 1)/2n].

Take a domain D′ ⊂ sD′ ⊂ D and observe that, because of our assumption that X is a
local homeomorphism, there exists n such that X restricted to Ci,n ∩ D′ is one-to-one
whenever this intersection is nonempty. In that case, also

VolX(Ci,n ∩D′) =

∫
Ci,n∩D′

| detDX(x)| dx.

Summing up these identities and then letting D′ ↑ D, we obtain

(5.3) VolD = VolX(D) ≤
∫
D

| detDX(x)| dx.

At this point we cannot replace ≤ with = because we do not know yet that the sets
X(Ci,n ∩D′) are disjoint.

Note that (5.3) holds without the assumption that X does not move the points on the
boundary of D. We have only used the fact that X(D) = D. Also note for the future
that X is Lipschitz continuous in sD. Indeed, if x1, x2 ∈ sD and the open straight segment
connecting x1 and x2 belongs to D, then |X(x1) − X(x2)| ≤ N0|x1 − x2|, where N0 is
the supremum of ‖DX‖ over D. If the entire segment lies not entirely in D, then denote
by y1 ∈ ∂D and y2 ∈ ∂D the points closest to x1 and x2, respectively, on the closure of
this segment. Then

|X(x1)−X(x2)| ≤ N0|x1 − y1|+ |y1 − y2|+N0|y2 − x2| ≤ (N0 + 1)|x1 − x2|.

Next, we concentrate on the case where detDX(x) ≥ 0. The other case is treated
similarly. It turns out that if t ∈ [0, 1] is sufficiently close to 1, then

(5.4)

∫
D

det(tI + (1− t)DX(x)) dx = VolD.

To prove this, observe that, for t ∈ [0, 1] sufficiently close to 1, the Jacobian of the
mapping Xt(x) := tx + (1 − t)X(x) is positive on D (because for t = 1 the Jacobian
equals one) and, therefore, the image Dt of D under Xt is a domain. For t close to one
also Dt ∩D �= ∅ and the mapping Xt is invertible (because X(x) is Lipschitz continuous
in sD). Take such a point t.

Notice that if y0 ∈ ∂Dt, then there exist yn → y0, yn ∈ Dt. Then there exist xn ∈ D
such that yn = Xt(xn) and for any convergent subsequence of xn its limit, say x0, is not
in D, because y0 = Xt(x0) �∈ Dt. Hence, x0 ∈ ∂D, y0 = x0, and ∂Dt ⊂ ∂D.

Similarly, if x0 ∈ ∂D, then there exist xn → x0, xn ∈ D. Then yn := Xt(yn) ∈ Dt and
yn → y0 = Xt(x0) = x0. If y0 ∈ Dt, then there is z ∈ D such that y0 = Xt(z) = Xt(x0),
which is impossible because ∂D � x0 �= z and Xt is a one-to-one mapping in sD. Hence,
x0 = y0 ∈ ∂Dt, ∂D ⊂ ∂Dt, and ∂Dt = ∂D.

Combining this with the fact that D is connected and Dt ∩D �= ∅, we easily see that
Dt = D for t close to one. Now (5.4) follows. Being true for t close to 1, formula (5.4)
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is true for all t ∈ R, because the left-hand side is a polynomial with respect to t. By
plugging t = 0, we obtain

(5.5) VolD =

∫
D

detDX(x) dx.

Now assume that there are points x0, y0 ∈ D such that x0 �= y0 and z0 := X(x0) =
X(y0). Then there exists a (small) ball B centered at x0 that is mapped to an open set
containing z0 such that this set is also covered by an image of a neighborhood of y0. It
follows that the image of D \ B under the mapping X is still D. Then (5.3) applied to
D \B in place of D shows that VolD does not exceed the integral of detDX over D \B,
which is strictly less than the right hand side of (5.5) since detDX �≡ 0 in B, because
the said neighborhood of z0 has nonzero volume. This is a desired contradiction, and the
lemma is proved. �

Now we know that, for each (ω, t) ∈ Ω× [0, T ], the mapping x → Xt(x) is one-to-one
and onto and there exists an inverse mapping X−1

t (x), which is infinitely differentiable in
x by the implicit function theorem. Moreover, from formulas for derivatives of X−1

t (x)
we conclude that these derivatives are continuous and bounded as functions of (t, x) for
each ω.

Next, we define the operations “hat” and “check” that transform any function φt(x)
into

(5.6) pφt(x) := φt(Xt(x)), qφ = φt(X
−1
t (x)).

Also, define ρt(x) from the equation

ρt(Xt(y)) detDXt(y) = 1

and observe that, by the change of variables formula (notice that detDXt > 0, ρt > 0),
we have

(5.7)

∫
Rd

F (Xt(y))φ(y) dy =

∫
Rd

F (x)qφt(x)ρt(x) dx,

whenever at least one side of the equation makes sense.
We are going to make the change of variables x → Xt(x) in (1.2); therefore, we need to

understand how the equation transforms under this change. Define the mapping “bar”
that transforms any R

d-valued function σt(x) into

(5.8) sσt(x) = Yt(x)pσt(x) = Yt(x)σt(Xt(x)),

where

Y = (DX)−1.

Observe that, for real-valued functions,

Dj
pφt(x) = Dj [φt(Xt(x))] = yDiφt(x)DjX

i
t(x), Dpφ = yDφDX, yDφ = DpφY.

It follows that

(5.9) zLσku = Dpusσk = L
sσk pu

for k = 0, 1, . . . , d1 + d2.
One more standard fact is the following.

Lemma 5.3. For any smooth R
d-valued functions α and β on R

d, for all values of
arguments we have

(5.10) [α, β] = [sα, sβ].
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Proof. Dropping the obvious values of arguments, we see that, by definition, the right-
hand side of (5.10) equals

Dsβsα−Dsαsβ = Y [yDβDXsα− yDαDX sβ] +DiY sαi
pβ −DjY sβj

pα.

Furthermore, since Y DX = I,

DiY sαiDX + Y DDiXsai = 0, DiY sαi = −Y DDiXsaiY,

DiY sαi
pβ = −Y DDiXsαi

sβ = −Y DijXsαi
sβj = DjY sβj

pα.

This and the facts that DXsα = pα and DX sβ = pβ prove the lemma. �

§6. Itô–Wentzell formula

Here we suppose that Assumption 2.1 (i) is satisfied with R0 = ∞ and define CT =
CT,∞. In this section we show what happens to the stochastic differential of a D-valued
process under a random change of variables.

We make the following assumption, which is justified in the situation of §5 but cer-
tainly not justified in a much more general setting in [14]. This assumption is adopted
throughout the section.

Assumption 6.1. There exists a function Xt(x) on Ω× [0, T ]×R
d that has properties

(i)–(iv) listed in §5 and such that, for any (ω, t), detDXt(x) > 0 for any x and the
mapping x → Xt(x) is one-to-one and onto, so that there exists an inverse mapping
X−1

t (x), and for any R ∈ (0,∞) we have

sup
ω

sup
t∈[0,T ]

sup
|x|≤R

|Xt(x)| < ∞.

We start by discussing Definition 2.1 (recall that R0 = ∞).

Remark 6.1. Since ‖ · ‖Hn
2
≤ ‖ · ‖Hm

2
for n ≤ m, one can always assume that (2.1) is

true for any n ≤ m. Also note that, as is well known and easily derived by using the
Fourier transform, for any r ∈ {0, 1, . . . } there is a constant N depending only on r and
d such that

‖φ‖H2r
2

:= ‖(1−Δ)rφ‖L2
≤ N

∑
|α|≤2r

‖Dαφ‖L2
,

∑
|α|≤2r

‖Dαφ‖L2
≤ N‖φ‖H2r

2

for any φ ∈ H2r
2 .

Remark 6.2. Let u ∈ D−∞
p (CT ), and let M be a set of F ⊗ B(0, T )⊗ B(Rd)-measurable

functions φt = φt(x) = φt(ω, x) on Ω× (0, T )× R
d such that

(i) for any φ ∈ M and ω and any t, φt ∈ C∞
0 (Rd), and there exists R1 ∈ (0,∞) such

that, for any t ∈ (0, T ), any φ ∈ M, and any ω, we have φt(x) = 0 if |x| ≥ R1;
(ii) there is r ∈ {0, 1, . . . } such that, for φ ∈ M and ω ∈ Ω, the L2-norm of any

derivative of φt(x) with respect to x up to the order 2r is bounded on (0, T ) uniformly
with respect to φ ∈ M.

Then it turns out that for any ω and any ζ ∈ C∞
0 (Rd) that equals one for |x| ≤ R1

there is a constant N such that for all t ∈ (0, T ) we have

sup
φ∈M

|(ut, φt)| ≤ N‖ζut‖H−2r
2

.

In particular, if m is such that (2.1) holds and −r ≤ m/2, then∫ T

0

sup
φ∈M

|(ut, φt)|p dt < ∞.
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Indeed, by Remark 6.1,

sup
φ∈M

|(ut, φt)| = sup
φ∈M

|(ζut, φt)| ≤ N‖ζut‖H−2r
2

sup
φ∈M

‖φt‖H2r
2
.

Using the notation of §5, we observe that ρt(x) is infinitely differentiable with respect
to x, and for any ω any its derivatives is bounded on [0, T ] × BR for any R ∈ (0,∞).
Hence, the following definition makes sense: for ut ∈ D, φ ∈ C∞

0 (Rd), and t ∈ [0, T ], let

(6.1) (put, φ) := (ut, qφtρt).

Observe that if ut is a locally integrable function, this definition coincides with that given
in (5.6), due to (5.7).

Lemma 6.3. If u ∈ D and t ∈ [0, T ], then φ → (u, qφtρt) is a generalized function for
each ω. Furthermore, if u ∈ D−∞

p (CT ), then pu ∈ D−∞
p (CT ).

Proof. To prove the first assertion, observe that if φn converge to φ as test functions,
then their supports are in one and the same compact set and φn → φ uniformly on R

d

along with each derivative in x. From calculus we conclude that the same is true for
qφn
t ρt(x) with every t and ω, and then by definition (u, qφn

t ρt) → (u, qφtρt).
To prove the second assertion, first we take ζ ∈ C∞

0 (Rd) with unit integral, define
ζn(x) = ndζ(nx), and put un

t = ut ∗ ζn. It is known that un
t (x) is an infinitely differen-

tiable function of x for each n, t, and ω, and that un
t → ut as n → ∞ in the sense of

generalized functions for each t and ω. In particular,

(ut, qφtρt) = lim
n→∞

(un
t ,

qφtρt) = lim
n→∞

∫
Rd

un
t (x)

qφt(x)ρt(x) dx.

Using this formula and the fact that, for each x, the function un
t (x), continuous in x, is

predictable by definition, we see that put possesses the measurability properties required
in Definition 2.1.

Next, take an open ball B ⊂ R
d and a function φ ∈ C∞

0 (B). Observe that, by
assumption, there is R ∈ (0,∞) such that Xt(x) ∈ BR for all t ∈ [0, T ], x ∈ B, and ω.
Take an r ∈ {0, 1, . . . } such that −r ≤ m/2, where m is as in Definition 2.1 corresponding
to the ball B2R, and let

N = {ψ ∈ C∞
0 (Rd) : ‖ψ‖H2r

2
= 1}.

Since the inequality qφt(x) �= 0 implies that X−1
t (x) ∈ B, that is x ∈ Xt(B) and

x ∈ BR, the supports of qφt
qψt lie in sBR for all t ∈ (0, T ) and ψ ∈ M. Remark 6.2 shows

that
‖putφ‖H−2r

2
= sup

ψ∈N

|(put, φψ)| = sup
ψ∈N

|(ut, qφt
qψtρt)| ≤ N‖ζut‖H−2r

2
,

where N is independent of t, and ζ is any function of class C∞
0 (B2R) that equals one on

BR. This obviously implies that put satisfies the condition related to (2.1) if ut does, and
the lemma is proved. �

Here is the version of Itô–Wentzell formula we need.

Theorem 6.4. Suppose f ∈ D
−∞
1 (CT ) and u, gk ∈ D

−∞
2 (CT ), k = 1, . . . , d1, and

assume that (2.2) holds (in the sense of distributions). Then

(6.2) dput = [ pft + paijt zDijut −pbit yDiut − zDigkt pσik
t ] dt+ [pgkt − yDiutpσ

ik
t ] dwk

t , t ≤ T,

(in the sense of distributions), where

aijt =
1

2

d1∑
k=1

σik
t σjk

t .
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Proof. Take η ∈ C∞
0 (Rd) and fix y ∈ R

d. Then by [7, Theorem 1.1] we have

d
(
ut, η( · +Xt(y))

)
=

(
[gkt −Diutσ

ik
t (Xt(y))], η( · +Xt(y))

)
dwk

t

+
([
ft+ aijt (Xt(y))Dijut− bit(Xt(y))Diut−Dig

k
t σ

ik
t (Xt(y))

]
, η( · +Xt(y))

)
dt,

(6.3)

in the sense that (a.s.) the integrals of both parts of this equation over [0, t] coincide for
all t ∈ [0, T ].

Then we take a φ ∈ C∞
0 (Rd), multiply the two parts of (6.3) by φ(y), and apply the

usual and the stochastic Fubini theorems (see, for instance, [7]). Since the set{Xt(y) :
t ∈ [0, T ], |y| ≤ R} is bounded for each ω and R > 0, in order to be able to apply Fubini’s
theorems it suffices to show that for any R > 0 (a.s.)∫ T

0

sup
|x|≤R

(
|Gt(x)|+

∑
k

|Hk
t (x)|2

)
dt < ∞,

where

Gt(x) =
([
ft + aijt (x)Dijut − bit(x)Diut −Dig

k
t σ

ik
t (x)

]
, η( · + x)

)
,

Hk
t (x) =

(
[gkt −Diutσ

ik
t (x)], η( · + x)

)
.

The fact that all terms in G and H apart from one admit the needed estimates easily
follows from Remark 6.2. The remaining one is

∑
k

∫ T

0

sup
|x|≤R

(
Diutσ

ik
t (x), η( · + x)

)2
dt ≤ N sup

t≤T,|x|≤R

(
Dut, η( · + x)

)2
,

where N < ∞, and the last supremum is finite (a.s.) by Lemma 4.1 in [7].
Thus, we are in a position to apply Fubini’s theorems. We also use (5.7), obtaining

d

∫
Rd

(ut, η( · + x))qφt(x)ρt(x) dx

=

∫
Rd

(
[gkt −Diutσ

ik
t (x), η( · + x)

)
qφt(x)ρt(x) dx dw

k
t

+

∫
Rd

([
ft+aijt (x)Dijut−bit(x)Diut−Dig

k
t σ

ik
t (x)

]
, η( ·+x)

)
qφt(x)ρt(x) dx dt.

(6.4)

Here we substitute ηn in place of η, where ηn tend to the delta-function as n → ∞
in the sense of distributions. Then we use the simple fact (having very little to do with
Fubini’s theorem) that∫

Rd

(ut, η
n( · + x))qφt(x)ρt(x) dx =

(
ut,

∫
Rd

ηn( · + x))qφt(x)ρt(x) dx

)
,

where, for each ω, the test functions∫
Rd

ηn(y + x))qφt(x)ρt(x) dx,

viewed as functions of y, vanish outside of one and the same ball and converge to
qφt(y)ρt(y) uniformly on R

d along with each derivative. Similar statements are true
about the other terms in (6.4), for instance,∫

Rd

(
Diutσ

ik
t (x), ηn( · + x)

)
qφt(x)ρt(x) dx =

(
Diut,

∫
Rd

ηn( · + x)σik
t (x)qφt(x)ρt(x) dx

)
.

We want to use the dominated convergence theorem to pass to the limit in (6.4) with

ηn in place of η. Notice that the supports of qφt(y) and

(6.5)

∫
Rd

ηn(y + x)σik
t (x)qφt(x)ρt(x) dx
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lie in the same ball for all ω, t, n. By Remark 6.2, for any ω we have

(6.6)

∣∣∣∣
(
ut, Di

∫
Rd

ηn( · + x)σik
t (x)qφt(x)ρt(x) dx

)∣∣∣∣
2

≤ N‖ζut‖2H−2r
2

with N independent of t and n if ζ ∈ C∞
0 (Rd) equals one on the supports of (6.5).

Since u ∈ D
−∞
2 (CT ), the right-hand side of (6.6) has finite integral over [0, T ] if r is

chosen appropriately, and this allows us to pass to the limit in the stochastic integral
containing Diut. The other integrals can be treated similarly, which leads to

d
(
ut, qφtρt

)
=

(
[gkt −Diutσ

ik
t ], qφtρt

)
dwk

t

+
([
ft + aijt Dijut − bitDiut −Dig

k
t σ

ik
t

]
, qφtρt

)
dt.

(6.7)

This yields (6.2) by definition; and the theorem is proved. �

Corollary 6.5. Assume that u satisfies (1.2) in CT . Then

dput =

[ d2∑
k=1

L2

sσ
d1+k
t

put + pctput + pft − zDigkt pσik
t

]
dt+ [putpν

k
t + pgkt ] dw

k
t .

Indeed, it is easily seen that

aijt Dijut − bitDiut =
1

2

d1∑
k=1

L2
σk
t
ut − Lσ0

t
ut,

−DiLσk
t
uσik = −

d1∑
k=1

L2
σk
t
ut, Lσk

t
ut −Diutσ

ik
t = 0,

and, by (5.9),

{L2

σ
d1+k
t

ut = L2

sσ
d1+k
t

put.

§7. Proof of Theorem 2.3

Remark 7.1. While proving Theorem 2.3 we may assume that uS = 0. Indeed, take
s0 ∈ (S, T ) and an infinitely differentiable function χt, t ≥ 0, such that χt = 0 on [0, S]
and χt = 1 for t ≥ s0. Then the function χtut satisfies an easily derived equation and
equals zero at t = S. Furthermore, ft and gkt remain unchanged for t ≥ s0 under this
change of u; hence, if the theorem is true when uS = 0, then in the general case its
assertions are true if we replace S in them with s0. Due to the arbitrariness of s0, then
the theorem is true as it is stated.

Our next observation is that, while proving Theorem 2.3, we may assume that S = 0.
Indeed, if not, we can always make an appropriate shift of the origin on the time axis.

Remark 7.1 allows us to assume that S = 0 and u0 = 0. The rest of the proof will be
split into a few steps.

Step 1. First, suppose that, for k = 1, . . . , d1, g
k
t (x) = 0 if |x| < R0 and νkt ≡ 0.

Also suppose that, for any k = 0, 1, . . . , d1, we have σk
t (x) = 0 if |x| ≥ 2R0 and ft(x) =

ut(x) = 0 if |x| > R0 − ε, where ε > 0. Then equation (1.2) is satisfied on CT in the
sense of Definition 2.2 with νkt ≡ gkt ≡ 0 for k = 1, . . . , d1.

By Corollary 6.5,

(7.1) (put, φ) =

∫ t

0

( d2∑
k=1

L2

sσ
d1+k
s

pus + pcspus + pfs, φ

)
ds
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for any φ ∈ C∞
0 (Rd) with probability one for all t ∈ [0, T ]. Let Φ be a countable subset

of C∞
0 (Rd) that is everywhere dense in Hn

2 for any n ∈ R
d. Then there exists a set Ω′

of full probability such that for any ω ∈ Ω′ and any φ ∈ Φ relation (7.1) is valid for all
t ∈ [0, T ]. By setting u and f to be zero if necessary for ω �∈ Ω′, we may assume that
(7.1) holds for any φ ∈ Φ, t ∈ [0, T ], and ω. Furthermore, observe that, by assumption,
ut(x) = 0 if |x| ≥ R0 − ε. Hence, (2.1) holds with φ ≡ 1 with probability one for an
appropriate m. By redefining u once again (if necessary), we may assume that for any ω
there exists an integer r such that

(7.2)

∫ T

0

‖ut‖2H−2r
2

dt < ∞,

∫ T

0

‖put‖2H−2r
2

dt < ∞.

Having this and similar relations for f and remembering that Φ is dense in H2r
2 , we easily

conclude that (7.1) is true for any φ ∈ C∞
0 (Rd), t ∈ [0, T ], and ω.

The next argument is conducted for a fixed ω ∈ Ω0. Introduce

pG = {(t, x) : t ∈ (0, T ), x ∈ X−1
t (BR0

)}.
Since Xt(x) is a diffeomorphism continuous with respect to t, pG is a domain. Further-

more, from the assumptions of the theorem it follows that for any ζ ∈ C∞
0 ( pG) and any

n = 1, 2, . . . , we have ∫ T

0

‖ pftζ‖2Hn
2
dt < ∞.

Next, put sL0 = {sσd1+1, . . . , sσd1+d2},
sLn+1 = sLn ∪ {[sσd1+k,M ] : k = 1, . . . , d2,M ∈ sLn}, n ≥ 0.

Note that, by Lemma 5.3, if σ ∈ Ln, then sσ ∈ sLn.

Now, take ζ ∈ C∞
0 ( pG) and ζ1 ∈ C∞

0 (G) so that ζ1 = 1 on supp qζ. By Assumption 2.2,
there exists n ∈ {0, 1, . . . } such that for any i = 1, 2, . . . , d there exist r ∈ {0, 1, . . . },
elements σ(i1), . . . , σ(ir) ∈ Ln, and real-valued functions γ(i1), . . . , γ(ir) of class BC∞

b

such that
ζ1ei = γ(i1)σ(i1) + · · ·+ γ(ir)σ(ir).

Obviously, we may assume that r is common for all i = 1, 2, . . . , d. It follows that

pζ1Y ei = pγ(i1)
sσ(i1) + · · ·+ pγ(ir)

sσ(ir),

which after multiplying by ζ yields

ζY ei = ζpγ(i1)
sσ(i1) + · · ·+ ζpγ(ir)

sσ(ir).

Observe that for ξ ∈ R
d and λ = DXξ we have Y eiλ

i = ξ, so that

ζξ = λi
pγ(i1)

sσ(i1) + · · ·+ λi
pγ(ir)

sσ(ir).

Hence, for any ξ ∈ R
d and ζ ∈ C∞

0 ( pG), ζξ is represented as a linear combination of
elements of sLn with coefficients of class BC∞

b .
We have checked the assumptions of Theorem 2.7 in [8]; that theorem implies that

put(x) is infinitely differentiable with respect to x for (t, x) ∈ pG, each of its derivatives

is a continuous function in pG, and an estimate similar to (2.5) holds. Changing back
the coordinates, we get the first assertion of our theorem and, moreover, the fact that
in (2.4) the right-hand side can be taken to be d in place of d+ 1.

Step 2. We keep the assumption of Step 1 that, for k = 1, . . . , d1, g
k
t (x) = 0 if |x| < R0

and νkt ≡ 0. We will cut-off ut for x near the boundary of BR0
, so that the new function

will satisfy an equation in CT to which we can then apply the Itô–Wentzell formula.
The only difficulty which appears after that is that we will get a new gkt which does
not vanish in CT,R0

. Partial help comes from the fact that if we cut-off close to the
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boundary, then the new gkt will be not vanishing only near the boundary. Due to this
fact, the transformations made in Step 1 will not lead exactly to a deterministic equation
like (7.1) with random coefficients, but to an equation involving the stochastic integral
of pgkt dw

k
t . This integral can be, so to speak, locally in time neglected near the lateral

boundary of a domain like pG. This yields a deterministic situation where we apply [8,
Theorem 2.7].

We take a sequence ζn ∈ C∞
0 (BR0

) such that ζn = 1 on BR0−1/n and ζn = 0 on
BR0−1/(n+1) and define un

t = utζ
n. Then it is easy to show that

(7.3) dun
t = (Ltu

n
t + ctu

n
t + fn

t ) dt+ (Lσk
t
un
t + gnkt ) dwk

t

in CT , where

fn
t = ftζ

n − utLtζ
n − (Lσk

t
ut)Lσk

t
ζn, gnkt = −utLσk

t
ζn.

Also, take ζ ∈ C∞
0 (Rd) such that ζ = 1 on BR0

and ζ = 0 outside B2R0
. Obviously,

in (7.3) we can replace the operator Lt with the one denoted by rLt and constructed on
the basis of rσk

t := ζσk
t . Thus,

(7.4) dun
t = (rLtu

n
t + ctu

n
t + fn

t ) dt+ (L
rσk
t
un
t + gnkt ) dwk

t .

Next, we change the coordinates by defining Xt(x) as a unique solution of

(7.5) xt = −
∫ t

0

rσk
s (xs) dw

k
s −

∫ t

0

rbt(xs) ds,

where

rbt(x) = rσ0
t (x)−

1

2

d1∑
k=1

Drσk
t (x)rσ

k
t (x).

We also recall that u ∈ D
−∞
2 (CT,R0

), so that the stochastic integral

mn
t :=

∫ t

0

put
{Ln
σk
s
ζn dwk

s

is well defined as a stochastic integral of a Hilbert-space valued function and is continuous
with respect to t for all ω. Then, as in (7.1), we arrive at the conclusion that for any
φ ∈ C∞

0 (Rd) with probability one we have

(7.6) (pun
t , φ) = (pu0, φ) +

∫ t

0

( d2∑
k=1

L2

sσ
d1+k
s

pun
s + pcspun

s + pfn
s , φ

)
ds− (φ,mn

t )

for all t ∈ [0, T ], where sσk
s are constructed from rσk

s as in (5.8), starting with (7.5) instead
of (5.1).

After that, by doing the same manipulations as below (7.1), we show that there is no
loss of generality in assuming that (7.6) holds for all φ ∈ C∞

0 (Rd), t ∈ [0, T ], and ω. This
and our result about sLn are the only facts that we need from the arguments of Step 1.

Then we again argue with ω ∈ Ω0 fixed. Take t0 ∈ (0, T ) and y0 ∈ BR0−2/n. Then

there is ε > 0 such that for x0 = X−1
t0 (y0) we have

Xt(Bε(x0)) ⊂ BR0−1/n

for any t ∈ (t0 − ε, t0 + ε). For φ ∈ C∞
0 (Bε(x0)) and t ∈ (t0 − ε, t0 + ε) we have

(φ,mn
t ) = (φ,mn

t0−ε) by Lemma 4.1 because, for those t, Lσk
t
ζn = 0 in BR0−1/n, qφ = 0

outside BR0−1/n, qφLσk
t
ζn ≡ 0, and

(φ, put
{Lσk

t
ζn) = (ut, ρtqφLσk

t
ζn) = 0.
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It follows that, for φ ∈ C∞
0 (Bε(x

n
0 )) and t ∈ (t0 − ε, t0 + ε),

(pun
t , φ) = (put0−ε, φ) +

∫ t

t0−ε

( d2∑
k=1

L2

sσ
d1+k
n,s

pun
s + pcspun

s + pftpζns , φ

)
ds.

As at Step 1, we use [8, Theorem 2.7] to conclude that pun
t (x) is infinitely differentiable

with respect to x for (t, x) ∈ Gε := (t0 − ε, t0 + ε) × Bε(x0) and each derivative is a
continuous function in Gε. Furthermore, an estimate similar to (2.5) is available for any
closed cylinder inside Gε. Actually, Theorem 2.7 in [8] is formally applicable only if
t0 − ε = 0 and put0−ε = 0. Our explanations given in Remark 7.1 take care of the general
case.

Changing back the coordinates, we see that un
t (y) is infinitely differentiable with re-

spect to y provided y is in a neighborhood of y0 and t is in a neighborhood of t0, and
that each derivative is a continuous function of (t, y) for those (t, y). Estimate (2.5) is
also valid in any closed cylinder lying in that neighborhood. Since y0 ∈ BR0−2/n, this
neighborhood of y0 can be taken to lie in BR0−1/n, where un

t = ut and fn
t = ft. Now

the claim of the theorem follows from the arbitrariness of y0, which is provided by the
possibility to take n as large as we wish. Again as at Step 1, it suffices that condition
(2.4) be satisfied with d in place of d+ 1.

Step 3. Now we abandon the assumption of Step 2 that νkt ≡ 0 for k = 1, . . . , d1,
but still assume that gkt (x) = 0 if |x| < R0 for k = 1, . . . , d1. Introduce the function
vt(x, y) = yut(x) and the (d+ 1)-dimensional vectors

σ̈k
t (x, y) =

(
σk
t (x)

yνkt (x)

)
, k ≤ d1, σ̇k

t (x, y) =

(
σk
t (x)
0

)
, k ≤ d1 + d2,

σ̇d1+d2+1
t (x, y) =

(
0
1

)
.

Obviously, Assumption 2.2 is satisfied if we replace G, d, and d2 with G× (0, 1), d + 1,
and d2 + 1, respectively. Also, routine computations show that vt satisfies

dvt =

(
1

2

d1∑
k=1

[L2
σ̈k
t
vt − νkt Lσ̇k

t
vt − Lσ̇k

t
(νkt vt)− νkt ν

k
t vt]

+
1

2

d2+1∑
k=1

L2

σ̇
d1+k
t

vt + Lσ̇0
t
vt + ctvt + yft

)
dt+ Lσ̈k

t
vt dw

k
t .

The result of Step 2 implies that vt is infinitely differentiable with respect to (x, y) in
BR0

× (0, 1) for any t ∈ (0, T ) and the derivatives are continuous with respect to (t, x, y).
Also, the corresponding counterpart of (2.5) holds for vt under condition (2.4). This
obviously proves the theorem in this particular case.

Step 4. Now we consider the general case. Take R′
0 ∈ (0, R0) and ζ ∈ C∞

0 (BR0
)

such that ζ = 1 on BR′
0
. Then, in accordance with classical results, for sufficiently large

constant K > 0, there exists a function v ∈ D
−∞
2 (CT ) such that v0 = 0,∫ T

0

‖vt‖2Hn
2
dt < ∞

(a.s.) for any n, and

dvt = KΔvt dt+ (Lζσk
t
vt + ζνkt vt + ζgkt ) dw

k
t .

Then the function wt = ut − vt satisfies an equation that falls into the scheme of
Step 3 with R′

0 in place of R0 and a different f but still satisfying the assumption of
Theorem 2.3. The assertion of the theorem now follows, and the theorem is proved.
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§8. Proof of Theorem 2.4

The idea of the proof is to find a neighborhood of [S, T ]×Br to which Theorem 2.3 is
applicable. First, we extend ut beyond T . For that, we take R1 ∈ (0, R0) and a function
ζ ∈ C∞

0 (BR0
) equal one in BR1

and consider the function vt = ζut for t ∈ [0, T ]. By
Remark 2.2, there is m ∈ R such that, with probability one, vt is a continuous Hm

2 -valued
process.

It follows that vT ∈ Hm
2 (a.s.), so that solving the heat equation

dvt = Δvt dt, t > T, x ∈ R
d,

with initial data vT , which is possible by classical results, allows us to extend vt beyond
T as an Hm

2 -valued continuous functions of t. If we now accordingly define c, f, ν, g, σ
for t ≥ T , then the assumptions of Theorem 2.3 will be satisfied with (S, T + 1) × BR1

in place of G. This proves the first assertion of Theorem 2.4.
Passing to the second assertion, we assume that uS is infinitely differentiable in BR0

for every ω ∈ Ω0. Then we want to reduce the general case to the one in which uS = 0
in BR0

for ω ∈ Ω0. To achieve that, we take R1 ∈ (r, R0) and ζ ∈ C∞
0 (BR0

) as at the
beginning of the proof and solve the equation

(8.1) dvt =

[
Δvt +

1

2

d1∑
k=1

L2
ζσk

t
vt

]
dt+ Lζσk

t
vt dw

k
t , t ∈ (S, T ), x ∈ R

d,

with the initial data vS = ζuS . After making an appropriate random change of co-
ordinates in accordance with Corollary 6.5, we reduce this SPDE to a usual parabolic
equation with random coefficients that is uniformly nondegenerate for any ω ∈ Ω (we
said more about this at the beginning of §7). By classical results, there is a solution
vt of this new equation with the initial data ζuS , which, for any ω ∈ Ω0, is continuous
in [S, T ] × R

d, along with each its derivative of any order with respect to x. This is
true because ζuS ∈ C∞

0 (Rd) for ω ∈ Ω0. The same can be said about equation (8.1).
Furthermore,

(8.2) sup
(t,x)∈[S,T ]×Rd

|Dαvt(x)|2 +
∫ T

S

‖vt‖2Hl+2
2

dt ≤ N‖ζuS‖2Hl+1
2

,

provided that 2(l + 1− |α|) > d and ω ∈ Ω0.
We set vt = ζut for t ∈ [0, S], and then, in [0, T ]× BR1

, the function ut − vt satisfies
the same equation as ut with gkt I(S,T ) in place of gkt and with a new ft whose norms for
ω ∈ Ω0 admit obvious estimates in terms of the norms of the old one and the right-hand
side of (8.2). Hence, the assumptions of the present theorem are satisfied with BR1

in
place of BR0

.
By replacing ut and R0 with ut − vt and R1, we see that without loosing generality

we may assume that ut = ft = gkt = 0 for t ∈ [0, S] on BR0
. In that case, we define

ut = ft = gkt = 0, σk
t = 0, k = 0, 1, . . . , d1 + d2, for t ∈ [−1, S). We also introduce new

σk
t for k = d1 + d2 + i, i = 1, . . . , d, by setting σk

t = eiI[−1,S)(t), where the ei’s form the

standard orthonormal basis in R
d. After that we define Lt for t ∈ [−1, S) in accordance

with (1.1), where we replace d1 + d2 with d1 + d2 + d and observe that the new ut now
satisfies (1.2) in (−1, T )× BR0

. The reader may object that the wk
t are not defined for

negative t, but since dwk
t for negative t are multiplied by zeros, one can simply take

independent Wiener processes and glue them to wk
t from −1 to 0. It is easily seen that

the first assumption of the present theorem is satisfied with I[−1,T ] in place of I[S,T ], and
this completes the proof.
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