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NARROW DOMAINS AND THE HARNACK

INEQUALITY FOR ELLIPTIC EQUATIONS

M. V. SAFONOV

Dedicated to Nina N. Ural’tseva

Abstract. We present a direct proof of Moser’s Harnack inequality that does not
involve iterations. The method is based on a recursive estimate for solutions in
domains of small measure. Such estimates can also be useful for other applications.

§1. Introduction

We consider second order elliptic operators L in the divergence form

(D) Lu := (D, aDu) := Di(aijDju).

Here and throughout the paper, the summation convention over repeated indices is en-
forced, D denotes a symbolic vector with components Di := ∂/∂xi, and a := [aij ] is an
(n× n)-matrix of real measurable coefficients satisfying the uniform ellipticity condition

(U) (aξ, ξ) := aijξiξj ≥ ν |ξ|2 ∀ξ ∈ R
n, and

∑
i,j

|aij |2 ≤ ν−2n,

with an ellipticity constant ν ∈ (0, 1]. It is easily seen that ν = 1 corresponds to L = Δ.
In the classical theory (see [LU, 1.2] or [GT, 8.1]), the equations Lu = 0 or inequalities

Lu ≥ 0, Lu ≤ 0 in an open set Ω ⊂ R
n are understood in an integral sense, and the

operators L (which can also include lower order terms) are applied to functions u in the
Sobolev space W 1,2(Ω), i.e., u,Diu ∈ L2(Ω). The pointwise estimates for such functions,
such as the estimates for Hölder constants and the Harnack inequality, hold true under
an implicit assumption that the values of u are appropriately modified on a set of zero
measure. Fortunately, the most difficult part is to establish such kind of estimates under
the additional assumption that all the functions aij and u are smooth. It is important
only that the key estimates depend only on the prescribed constants, such as n and ν,
and do not depend on the “additional” smoothness of aij and u. We shall make this point
clearer below, in §6. For this reason, in order to make the exposition of our method more
transparent, we always assume u ∈ C(sΩ), and, in the main part of the text, u ∈ C1(sΩ)
(this is really important in the proof of Theorem 3.4).

In the pioneering work by De Giorgi [DG57], as an intermediate step in the proof
of the Hölder continuity of solutions of Lu = 0, the following pointwise estimate was
derived (in an equivalent formulation).

Theorem 1.1. Let BR := BR(x0) be a ball of radius R > 0 centered at some point
x0 ∈ R

n. Suppose that u is a function in W 1,2(BR) ∩ C( ĎBR) satisfying u ≥ 0 and
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Lu := (D, aDu) ≥ 0 in BR. Then

(1.1) M := sup
BR/2

u ≤ N ·
(

1

|BR|

∫
BR

u2 dx

)1/2

, where N = N(n, ν).

The approach in [DG57] takes into consideration the sets

Ak,r := {x ∈ Br : u(x) > k}, where k > 0 and r ∈ (R/2, R].

It was shown there that for some sequences kj ↗ M and rj ↘ R/2, the measures

(1.2)
∣∣Akj ,rj

∣∣ = ∣∣Brj ∩ {u > kj}
∣∣ tend to 0 as j → ∞,

which obviously implies u ≤ M on BR/2.
Loosely speaking, (1.2) means that the sets Akj ,rj become narrow for large j.
In the general theory of linear and quasilinear elliptic and parabolic equation, which

was created by Ladyzhenskaya and Ural′tseva (see [LU, LSU] and the references therein),
the key estimates for solutions are given in terms of the measures |Ak,r|. It was pointed
out in [LU, II.6] that the authors considered their general technique as a further devel-
opment of De Giorgi’s method.

Estimate (1.1) also appears as a byproduct of the original proof of Moser’s Harnack
inequality [M60, M61, M64]. Namely, in Moser’s approach, there exist sequences pj ↗ ∞
and rj ↘ R/2, such that

(1.3) ‖u‖Lpj (Brj
) ≤ M for all j,

so that the norm of u in L∞(BR/2) does not exceed M .
The reader can also find a direct exposition of the methods by De Giorgi and Moser

in application to (1.1), the Hölder estimates, and the Harnack inequality in the book by
Han and Lin [HL, Chapter 4].

A different kind of iterations appears in the proof of similar results for operators L in
the nondivergence form

(ND) Lu := (aD,Du) := aijDiDju

with measurable aij satisfying (U). As in (D), for simplicity we do not include lower
order terms, and also we do not consider more general parabolic operators. In our joint
work with Krylov [KS80, S80] (see also [K85, Chapter 4]), we proved the Hölder estimates
and the Harnack inequality in the (ND) case on the grounds of the following facts.

Theorem 1.2. Let an open set Ω ⊂ R
n, x0 ∈ Ω, and R > 0 be such that

(1.4) |ΩR| := |Ω ∩BR(x0)| ≤ μ · |BR|, where μ = const ∈ (0, 1).

(i) Let u ∈ W 2,n(Ω) ∩ C(sΩ) satisfy

(1.5) u ≥ 0, Lu := (aDu,Du) ≥ 0 in Ω,

and u = 0 on (∂Ω) ∩BR(x0). Then

(1.6) u(x0) ≤ β · sup
ΩR

u, where β = β(n, ν, μ) ∈ (0, 1).

(ii) (Estimate for narrow domains). Moreover,

(1.7) β(n, ν, μ) → 0+ as μ → 0+.

Such estimates (also called growth lemmas) have been introduced by Landis [La71]
for an alternative proof of the results by De Giorgi and Moser mentioned above. In this
theorem, part (ii) is proved first: it follows easily from Aleksandrov’s estimate in [A63]
(see also [GT, Theorem 9.1]). Then the more difficult part (i) follows by iteration, by
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using a special covering lemma in order to increase the “critical” value of μ for which (i)
holds true.

It was shown in [FS01] that this approach also works in the case of (D), only instead of
Aleksandrov’s estimate one should use the energy estimate. Note that (1.7) also follows
immediately from (1.1). Indeed, by extending u ≡ 0 to BR \ Ω, we get a function u
satisfying all the assumptions of Theorem 1.1. Hence,

(1.8) u(x0) ≤ M ≤ N ·
(

1

|BR|

∫
BR

u2 dx

)1/2

≤ N ·
(
|ΩR|
|BR|

)1/2

· sup
ΩR

u,

and (1.4) implies (1.7) with β := Nμ1/2. This argument is especially simple in the case
where L = Δ, the Laplace operator. Then the extended function is subharmonic in BR,
by the mean value theorem we have

u(x0) ≤
1

|BR|

∫
ΩR

u dx ≤ |ΩR|
|BR|

· sup
ΩR

u,

and (1.7) follows with β = μ.
Note that though β = μ looks “better” than β = Nμ1/2 for small μ, both these

expressions are far from being optimal. In §2, we use an elementary “scaling” argument
to show that from the strict inequality β(n, ν, μ0) < 1 for some μ0 ∈ (0, 1) it follows that
in fact convergence in (1.7) is much faster:

(1.9) β ≤ exp
(
− c0μ

−1/n
)
with c0 = const > 0.

In its turn, (1.9) follows from a simple recurrent relation β(n, ν, 2−nμ) ≤ β2(n, ν, μ). This
relation is the core of our approach, it allows us to prove the Harnack inequality and
other related facts without using iterations. It only requires a mild technical assumption
u ∈ C1. In §3, we prove a version of estimate (1.7) (Theorem 3.4) and show that it
is equivalent to (1.1) (Theorem 3.5). The proof of this equivalence follows the lines of
[FS01, Theorem 3.4], we only put aside the crucial part in Lemma 3.6, which is needed
again in the proof of the Harnack inequality. Theorem 4.2 in §4 can be treated as a
version of Theorem 1.2 after replacing u by (1− u)+ and taking β := 1 − β1. In §5, we
prove the Harnack inequality along with its standard applications. The proof is short,
because all the essential elements are scattered among the previous sections. Finally,
in §6 we show how to get rid of an a priori assumption u ∈ C1 and extend the main
results to u ∈ W 1,2.

Notation. The notation A := B, or B =: A, means “A = B by definition”.
x = (x1, . . . , xn) are vectors or points in R

n, (x, y) := xiyi is the scalar product of
x, y ∈ R

n (the summation convention is implied), and |x| := (x, x)1/2 is the length of
x ∈ R

n.
BR(x) := {y ∈ R

n : |y − x| < R} is a ball of radius R > 0 centered at x ∈ R
n.

Ω is an open set in R
n with boundary ∂Ω and Lebesgue measure |Ω|. For fixed x0 ∈ R

n

and R > 0, ΩR := ΩR(x0) := Ω ∩BR(x0).
Ωδ := {x ∈ Ω : dist(x, ∂Ω) > δ}.
a+ := max{a, 0}. N (with or without indices) is a generic notation for various con-

stants depending only on the given quantities, such as n, ν, etc. This dependence is
indicated in the parentheses, e.g., N = N(n, ν, . . . ).

§2. Preliminary results

We exploit the fact that the constant β in (1.6) depends only on n, ν, μ, and does not
depend on the other characteristics of Ω, the aij , and u, so that we can “optimize” the
choice in a certain way.
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Lemma 2.1. For fixed n and ν, the constants β(μ) = β(n, ν, μ) in Theorem 1.2 satisfy

(2.1) β
(
2−nμ

)
≤ β2(μ) for μ ∈ (0, 1).

Proof. Let u satisfy (1.6), and suppose that (1.4) holds true with 2−nμ in place of μ, i.e.,

(2.2) x0 ∈ Ω, and |ΩR| ≤ 2−nμ · |BR|.

Since 2−n · |BR| = |BR/2|, we can use (1.6) with R/2 in place of R:

(2.3) u(x0) ≤ β(μ) · sup
ΩR/2(x0)

u.

By the maximum principle, the supremum on the right-hand side is attained at some
point y0 ∈ Ω ∩ ∂BR/2(x0), which also satisfies BR/2(y0) ⊂ BR(x0), whence by (2.2)

|ΩR/2(y0)| ≤ |ΩR(x0)| ≤ 2−nμ · |BR| = μ · |BR/2|.

Using (2.3) and once again (1.6) with y0, R/2 in place of x0, R (respectively), we get

u(x0) ≤ β(μ) · u(y0) ≤ β2(μ) · sup
ΩR/2(y0)

u ≤ β2(μ) · sup
ΩR(x0)

u.

The lemma is proved. �

By itself, estimate (2.1) does not guarantee the convergence β(μ) → 0+ as μ → 0+,
because it holds true for β ≡ 1. We really need β(μ0) < 1 for some μ0 ∈ (0, 1).

Corollary 2.2. Let β(μ) be a positive monotone nondecreasing function on (0, 1) such
that β(μ0) ∈ (0, 1) for some μ0 ∈ (0, 1). Then from (2.1) it follows that

(2.4) β(μ) ≤ β0(μ) := exp
(
− c0 · μ−1/n

)
on (0, μ0],

where

(2.5) c0 := −1

2
· μ1/n

0 lnβ(μ0) > 0.

Proof. Obviously,

(0, μ0] =
∞⋃
j=0

Δj , where Δj :=
[
2−n(j+1)μ0, 2

−njμ0

]
.

We have

β0

(
2−nμ

)
= exp

(
− 2c0μ

−1/n
)
= β2

0(μ) on (0, μ0],

and by the choice of c0 in (2.5),

β0

(
2−nμ0

)
= exp

(
− 2c0μ

−1/n
0

)
= exp

(
ln(β(μ0))

)
= β(μ0).

Since both functions β(μ) and β0(μ) are monotone nondecreasing, it follows that

β(μ) ≤ β(μ0) = β0

(
2−nμ0

)
≤ β0(μ) on Δ0 :=

[
2−nμ0, μ0

]
.

Suppose that β(μ) ≤ β0(μ) on Δj for some integer j ≥ 0. For such μ, we have

β(2−nμ) ≤ β2(μ) ≤ β2
0(μ) = β0(2

−nμ).

Since each point in Δj+1 can be represented as 2−nμ with μ ∈ Δj , we have β ≤ β0 on
Δj+1. By induction, β ≤ β0 on Δj for each integer j ≥ 0, which completes the proof
of (2.4). �
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§3. Estimates for subsolutions

Throughout this section, we fix an open set Ω ⊂ R
n, a point x0 ∈ Ω, a constant R > 0,

and denote BR := BR(x0), ΩR := Ω∩BR. Here we derive local estimates for functions u
satisfying the inequality Lu := (D, aDu) ≥ 0 in Ω ⊂ R

n in a weak sense, i.e., by formal
integration by parts,

(3.1)

∫
Ω

(aDu,Dη) dx ≤ 0 ∀η ∈ C∞
0 (Ω), η ≥ 0.

By approximation, this property is easily extended to functions η ∈ C1(sΩ) satisfying
u = 0 on ∂Ω. In the classical theory (see [LU, III.4], [GT, Chapter 8]), these relations
are considered for u ∈ W 1,2(Ω), so that Du ∈ L2(Ω). For the simplicity of presentation,
especially for the proof of Theorem 3.4, we impose the technical restriction u ∈ C1(sΩ).
The extension of main results to u ∈ W 1,2(Ω) is pretty standard. For completeness and
the reader’s convenience, we provide more details at the end, in §6.

We start with an energy estimate, which is well known even for more general para-
bolic equations (see estimate (III.2.18) in [LSU]). It served as an initial step in Moser’s
iterations (see [M61, Lemma 4], and also estimate (IX.5.7) in [LU]).

Lemma 3.1 (Energy estimate). Let u be a functions in C1(sΩ) satisfying

(3.2) u ≥ 0, Lu := (D, aDu) ≥ 0 in Ω; and u = 0 on (∂Ω) ∩BR.

Take a function ζ ∈ C1(BR) satisfying

(3.3) 0 ≤ ζ ≤ 1, |Dζ| ≤ 4

R
in BR; ζ ≡ 1 on BR/2, ζ = 0 on ∂BR.

Then

(3.4)

∫
ΩR

|D(ζu)|2 dx ≤ N

R2

∫
ΩR

u2 dx, where N = N(n, ν).

Proof. The function η ∈ C1(sΩ) satisfies

Dη = ζ2Du+ 2ζuDζ in ΩR, and η = 0 on ∂ΩR.

From (3.1) it follows that

ν

∫
ΩR

ζ2|Du|2 dx ≤
∫
ΩR

ζ2(aDu,Du) dx ≤ −2

∫
ΩR

ζu (aDu,Dζ) dx.

By the Cauchy–Schwarz inequality and the estimate for |Dζ| in (3.3), the last expression
does not exceed

ν

2

∫
ΩR

ζ2|Du|2 dx+
N

R2

∫
ΩR

u2 dx, where N = N(n, ν) > 0.

This yields the esimate ∫
ΩR

ζ2|Du|2 dx ≤ N

R2

∫
ΩR

u2 dx.

Now the desired estimate (3.4) follows from

|D(ζu)|2 = |ζDu+ uDζ|2 ≤ 2ζ2|Du|2 + 2u2|Dζ|2.
The lemma is proved. �

The following lemma is a varsion of estimate (II.2.12) in [LU].

Lemma 3.2. Let u be a function in C1(sΩ) satisfying u = 0 on ∂Ω. Then

(3.5) ‖u‖1,Ω :=

∫
Ω

|u| dx ≤ |Ω| 12+ 1
n ‖Du‖2,Ω.
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Proof. The Gagliardo–Nirenberg–Sobolev inequality (see the proof of Theorem 1 in [E,
5.6] for p = 1) can be written as

(3.6) ‖u‖q,Ω :=

(∫
Ω

|u|q dx
)1/q

≤ ‖Du‖1,Ω, where q :=
n

n− 1
.

In the case where |Ω| = 1, by the Hölder inequality, the norm ‖u‖p,Ω is a monotone
nondecreasing function of p, and (3.5) follows immediately from (3.6).

In the general case, take λ := |Ω|1/n and substitute x = λy, dx = λndy. Then the
function

v(y) := u(λy) in Ω0 := {y ∈ R
n : λy ∈ Ω}

satisfies the above assumptions with |Ω0| = λ−n · |Ω| = 1. Therefore,

‖u‖1,Ω = λn · ‖v‖1,Ω0
≤ λn · ‖Dv‖2,Ω0

= λn+1 · ‖Du(λy)‖2,Ω0
= λ

n
2 +1 · ‖Du‖2,Ω.

By the choice of λ, the last expression coincides with the right-hand side in (3.5). �
Combining Lemmas 3.1 and 3.2, we derive the following useful estimate.

Lemma 3.3. Let u be a function in C1(sΩ) satisfying the assumptions (3.2) in Lemma 3.1.
Suppose that for some positive constants μ, β, and c, we have inequality (1.4) and

(3.7) |ΩR/2 ∩ {u > βM}| ≥ cμ · |BR|, where M := sup
ΩR

u.

Then

(3.8) cβ ≤ N0μ
1
n , where N0 = N0(n, ν) > 0.

Proof. From properties (1.4) and (3.7) it follows that

(3.9) cβM · |ΩR| ≤ cμβM · |BR| ≤
∫
ΩR/2

u dx ≤
∫
ΩR

ζu dx,

where ζ is a function in (3.3). Applying Lemma 3.2 to the function ζu ∈ C1(ΩR), and
then using the energy estimate (3.4), we obtain∫

ΩR

ζu dx =: ‖ζu‖1,ΩR
≤ |ΩR|

1
2+

1
n · ‖D(ζu)‖2,ΩR

≤ N

R
· |ΩR|

1
2+

1
n · ‖u‖2,ΩR

≤ NM

R
· |ΩR|1+

1
n .

Comparing with (3.9) and again using (1.4), we see that

cβ ≤ N

R
· |ΩR|

1
n ≤ N

R
· μ 1

n · |BR|
1
n =: N0μ

1
n .

Thus, the lemma is proved. �
The next theorem includes property (1.7) in Theorem 1.2 (ii) for small μ > 0. Note

that the rate of convergence β → 0 as μ → 0+ can be improved, in accordance with
Lemma 2.1 and Corollary 2.2.

Theorem 3.4. Suppose that the measure of ΩR satisfies (1.4) with a small constant
μ ∈ (0, 1), namely,

(3.10) β := 4n+1N0μ
1
n ≤ 1

2
,

where N0 = N0(n, ν) is a constant in (3.8). Then for any function u ∈ C1(sΩ) satisfying
(3.2), we have the estimate

(3.11) u(x0) ≤ β · sup
ΩR

u.
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Proof. Fix ε > 0. We show that for each ball Br(y) ⊂ BR := BR(x0) and k ≥ 0, from

(3.12) |Ωr(y) ∩ {u > k}| ≤ μ · |Br|

it follows that

(3.13) (u− k)+(y) ≤ ε
√
r + β ·M, where M := sup

Ωr(y)

(u− k)+.

Since the constant β does not depend on ε, the estimate remains valid for ε = 0, and the
desired estimate (3.11) follows by taking k = 0, y = x0, and r = R.

Our assumption u ∈ C1(sΩ) together with (3.12) guarantees that

(u− k)+(y) ≤ r · sup |Du| ≤ ε
√
r

for small r > 0, so that (3.13) is trivial. Therefore, it suffices to prove that (3.12)
implies (3.13) assuming that we already have a similar property with r/4 in place of r,
for arbitrary k, y, and r under consideration.

Based on (3.12), we can apply Lemma 3.3 to the function u − k on the open set
Ωr(y) ∩ {u > k}, which satisfies (1.1) with x0 = y,R = r. By our choice of β in (3.10),
we have

4−n · β
2
> N0μ

1
n ,

i.e., inequality (3.8) fails with c := 4−n and β/2 in place of β. Therefore, (3.7) must fail
as well:

(3.14)
∣∣∣Ωr/2(y) ∩

{
u− k >

βM

2

}∣∣∣ < 4−nμ · |Br| = μ · |Br/4|.

Set k0 := k + βM/2. Inequality (3.14) implies (3.12) with k0, r/4 in place of k, r,
respectively. Since we assume that (3.13) is valid for r/4, we get

(u− k0)
+(y) ≤ ε

√
r

2
+ β · sup

Ωr/4(y)

(u− k0)
+.

Further, note that for each point z ∈ Ωr/4(y), we have Ωr/4(z) ⊂ Ωr/2(y), so by the same
argument, we get a rough estimate

(u− k0)
+(z) ≤ ε

√
r

2
+ β · sup

Ωr/4(z)

(u− k0)
+ <

ε
√
r

2
+ β ·M.

Combining these estimates, we arrive at

(u− k0)
+(y) < ε

√
r + β2M.

Finally, since k0 − k = βM/2 and β ≤ 1/2, we obtain estimate (3.13):

(u− k)+(y) ≤ (u− k0)
+(y) +

βM

2
≤ ε

√
r + β

(
β +

1

2

)
M ≤ ε

√
r + βM.

As has already been pointed out, the desired estimate (3.11) follows. �

Theorem 3.4 automatically yields a pointwise estimate in terms of Lp norms. This is
an “elliptic” varsion of Theorem 3.4 in [FS01] for the parabolic case. Note that one can
apply this theorem with p = 2 and an arbitrary y ∈ ΩR/2 := ΩR/2(x0) in place of x0:

u2(y) ≤ N

|BR|

∫
ΩR/2(y)

u2 dx.

Since ΩR/2(y) ⊂ ΩR, estimate (1.1) in Theorem 1.1 follows.
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Theorem 3.5. Let u ∈ C1(sΩ) satisfy (3.2). Then for arbitrary p > 0 we have

(3.15) up(x0) ≤
N

|BR|

∫
ΩR

up dx, where N = N(n, ν, p) > 0.

If BR ⊂ Ω, then ΩR = BR and there is no boundary condition in (3.2).

The proof of this theorem follows easily from the next claim.

Lemma 3.6. Under the assumptions of the previous theorem, for arbitrary γ > 0, there
is a constant μ0 = μ0(n, ν, γ) ∈ (0, 1) and a ball Bρ(y) ⊂ B2ρ(y) ⊂ BR such that

(3.16) |Ωρ(y) ∩ {u > k}| > μ0 · |Bρ|, where k := 2−γ−1

(
R

ρ

)γ

u(x0).

Proof of Theorem 3.5. Take γ := n/p. Then by (3.16) we have

∫
Ωρ(y)

up dx ≥ μ0 · |Bρ| · kp = 2−n−pμ0 · |BR| · up(x0),

and (3.15) follows with N := 2n+p/μ0. �

Proof of Lemma 3.6. Denote d(x) := R−|x−x0| = dist(x, ∂BR) on ΩR. Then d(x0) = R,
and

(3.17) Rγu(x0) ≤ M := sup
ΩR

dγu.

Since dγu = 0 on ∂ΩR, the supremum here is attained at some point y ∈ ΩR. Set
ρ := d(y)/2, so that M = (2ρ)γu(y). Obviously, d ≥ ρ on Ωρ(y), whence

sup
Ωρ(y)

u ≤ ρ−γ sup
Ωρ(y)

dγu = ρ−γ
(
dγu

)
(y) = 2γu(y),

and the function v(x) := u(x)− u(y)/2 satisfies

(3.18) v(y) = 2−1u(y) ≥ 2−γ−1 sup
Ωρ(y)

u > 2−γ−1 sup
Ωρ(y)

v.

Note that by (3.17),

(3.19) k := 2−γ−1

(
R

ρ

)γ

u(x0) ≤ 2−γ−1ρ−γM =
u(y)

2
.

Now we take μ0 = μ0(n, ν, γ) from the identity

2−γ−1 = 4n+1N0μ
1
n
0 ,

where N0 = N0(n, ν) is a constant in (3.10) in Theorem 3.4, so that (3.10) holds true
with β := 2−γ−1, μ := μ0. On the other hand, inequality (3.18) means that (3.11) fails
for the function v(x) in Ωρ(y) ∩ {v > 0}. Therefore, (1.1) fails as well, i.e.,

|Ωρ(y) ∩ {v > 0}| > μ0 · |Bρ|.

By (3.19), we have {v > 0} ⊂ {u > k}, and estimate (3.16) follows. �
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§4. Estimates for supersolutions

We need the following estimate.

Lemma 4.1. Suppose that an open set Ω and a ball B1 of radius 1 in R
n satisfy

|Ω1| := |Ω ∩B1| ≤ μ · |B1|, where μ ∈ (0, 1).

Then for any function v ∈ C1(sΩ) such that v = 0 on (∂Ω) ∩B1, we have

(4.1)

∫
Ω1

v2 dx ≤ N ·
∫
Ω1

|Dv|2 dx, where N = N(n, μ) > 0.

This lemma follows immediately from [M60, Lemma 2] with N := B1\Ω, (see also [LU,
Lemma II.3.8]).

One can also prove (4.1) by a contradiction argument, which does not provide an
explicit expression for the constant N(n, μ) (see [HL, Lemma 4.8]). The following lemma
is also a version of [HL, Theorem 4.9], see also the proof of (IX.5.15) in [LU].

Theorem 4.2. Let u be a function in C1(ĚB2R) satisfying

u ≥ 0 and Lu := (D, aDu) ≤ 0 in B2R

in a weak sense, i.e.,

(4.2)

∫
B2R

(aDu,Dη0) dx ≥ 0 ∀η0 ∈ C∞
0 (B2R), η0 ≥ 0.

Suppose that

(4.3) |BR ∩ {u < 1}| ≤ μ · |BR|, where μ ∈ (0, 1).

Then

(4.4) u ≥ β1 = β1(n, ν, μ) > 0 on BR/2.

Proof. Step 1. By rescaling x → R−1x, the proof reduces to the case where R = 1. In
addition, without loss of generality, we may assume that u ≥ δ = const > 0 on B2, so
that

v := G(u) := − lnu ∈ C1(ĎB2).

Note that since G′(u) = −u−1 < 0 and G′′(u) = u−2 > 0, we have Lv := (D, aDv) ≥ 0
in B2. Indeed, for an arbitrary 0 ≤ η ∈ C1(ĎB2), η = 0 on ∂B2 we also have 0 ≤ η0 :=
−G′(u)η ∈ C1(ĎB2), η0 = 0 on ∂B2, and

Dη0 = −G′(u)Dη −G′′(u)ηDu, Dv = G′(u)Du.

Therefore,∫
B2

(aDv,Dη) dx =

∫
B2

(aDu,G′(u)Dη) dx

= −
∫
B2

(aDu,Dη0) dx−
∫
B2

G′′(u)η · (aDu,Du) dx ≤ 0,

because of (4.2) and the ellipticity condition (U). By definition, this means that Lv ≥ 0
in B2 in a weak sense. Moreover, since

G′′(u)(aDu,Du) = (aDv,Dv) ≥ ν |Dv|2,
we can write a stronger inequality

(4.5)

∫
B2

(aDv,Dη) dx ≤ −ν

∫
B2

η |Dv|2 dx ∀η ∈ C∞
0 (B2), η ≥ 0.
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Take η := ζ2, where ζ is a standard cut-off function in (3.3) for the ball B2, i.e.,

0 ≤ ζ ≤ 1, |Dζ| ≤ 2 in B2; ζ ≡ 1 on B1.

Then from (4.5) it follows that

ν

∫
B2

ζ2|Dv|2 dx ≤ −2

∫
B2

ζ · (aDv,Dζ) dx ≤ N

∫
B2

ζ |Dv| dx

with N = N(n, ν) > 0. By the Cauchy–Schwarz inequality, the last expression does not
exceed

ν

2

∫
B2

ζ2|Dv|2 dx+N.

Therefore,

(4.6)

∫
B1

|Dv|2 dx ≤
∫
B2

ζ2|Dv|2 dx ≤ N = N(n, ν).

Step 2. Setting Ω := B2 ∩ {u < 1} = B2 ∩ {v > 0}, we observe that

v ≥ 0, Lv ≥ 0 in Ω1 := Ω ∩B1; and v = 0 on (∂Ω) ∩B1.

Moreover, by (4.3), we also have |Ω1| ≤ μ · |B1|. Then we can use Lemma 4.1, which in
combination with (4.6) provides the estimate∫

Ω1

v2 dx ≤ N ·
∫
Ω1

|Dv|2 dx ≤ N = N(n, ν, μ).

Step 3. Finally, for each point y ∈ Ω1/2, we can apply Theorem 3.5 to the function v
on Ω1/2(y) ⊂ Ω1 with p = 2. Then

v2(y) ≤ N

∫
Ω1/2(y)

v2 dx ≤ N

∫
Ω1

v2 dx ≤ N = N(n, ν, μ).

Since this estimate is uniform for y ∈ Ω1/2 := B1/2 ∩ {u < 1}, we have

u = e−v ≥ β1 = β1(n, ν, μ) > 0 on Ω1/2.

On the complementary set B1/2 \ Ω1/2, we have u ≥ 1, so that the inequality u ≥ β1

actually holds true on the entire ball B1/2, i.e., we have (4.4). �

Corollary 4.3. Suppose that u ∈ C1(ĚB4r) satisfies u ≥ 0 and Lu ≤ 0 in B4r. Then

(4.7) m(ρ) := inf
Bρ

u ≤
(2r
ρ

)γ

m(r) for 0 < ρ ≤ r, where γ = γ(n, ν) > 0.

Proof. Fix ρ ∈ (0, r/2] and apply Theorem 4.2 to the function u0(x) := u(x)/m(ρ) with
R = 4ρ ≤ 2r. We have u0 ≥ 1 on BR/4 = Bρ; therefore,

|BR ∩ {u0 < 1}| ≤ |BR \BR/4| = μ · |BR|, where μ := 1− 4−n.

By (4.4) we have u0 ≥ β1 > 0 on BR/2 = B2ρ, where β1 ∈ (0, 1) depends only on n
and ν. Then u ≥ β1m(ρ) on B2ρ, so that m(2ρ) ≥ β1m(ρ), and

(4.8) m(ρ) ≤ 2γm(2ρ), where γ = γ(n, ν) := − log2 β1 > 0.

For each ρ ∈ (0, r], one can write

2−j−1r < ρ ≤ 2−jr, 2j ≤ r

ρ
for some integer j ≥ 0.

Iterating (4.8) gives the desired estimate (4.7):

m(ρ) ≤ m
(
2−j−1r

)
≤ 2(j+1)γm(r) ≤

(2r
ρ

)γ

m(r).

The corollary is proved. �
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§5. The Harnack inequality

Now we show how Lemma 3.6, Theorem 4.2, and Corollary 4.3 work for the proof of
Moser’s Harnack inequality [M61]. The results in this section are true without a priori
assumption u ∈ C1. We discuss this separately in §6.

Theorem 5.1 (Harnack Inequality). Let u ∈ C1(ĘB14R) satisfy

u ≥ 0 and Lu := (D, aDu) = 0 in B14R.

Then for a concentric ball BR,

(5.1) sup
BR

u ≤ N1 · inf
BR

u, where N1 = N1(n, ν) > 1.

Proof. Without loss of generality, we assume that R = 1. Fix an arbitrary point x0 ∈ B1.
Let γ = γ(n, ν) > 0 be a constant in Corollary 4.3. By Lemma 3.6, there is a constant
μ0 = μ0(n, ν) ∈ (0, 1) and a ball Bρ(y) ⊂ B2ρ(y) ⊂ B1(x0) such that

(5.2) |Bρ ∩ {u > k}| > μ0 · |Bρ|, where k := 2−γ−1ρ−γu(x0).

We can rewrite this inequality as

|Bρ ∩ {k−1u < 1}| < μ · |Bρ|, where μ := 1− μ0 ∈ (0, 1),

and apply Theorem 4.2 with R = ρ to the function k−1u on the ball Bρ(y) ⊂ B2ρ(y) ⊂
B1(x0). This implies

u ≥ β1k on Bρ/2(y), where β1 = β1(n, ν) > 0.

Note that B1 ⊂ B3(y) ⊂ B12(y) ⊂ B14, so that we can use Corollary 4.3 with r = 3:

β1k ≤ inf
Bρ/2(y)

u ≤
(12
ρ

)γ

inf
B3(y)

u ≤
(12
ρ

)γ

inf
B1

u.

From the expression for k in (5.2), we conclude that

β1u(x0) ≤ 2 · 24γ · inf
B1

u.

Since x0 is an arbitrary point in B1, inequality (5.1) follows with N1 = N1(n, ν) :=
2 · 24γ/β1.

The theorem is proved. �

One can reformulate the Harnack inequality in the following equivalent way, which is
more convenient for some applications.

Theorem 5.2. Let Ω be a bounded open set in R
n such that diamΩ ≤ Kδ, where K and

δ are positive constants, and let Ωδ := Ω ∩ {dist(x, ∂Ω) > δ} be connected. Suppose that
u ∈ C1(Ω) satisfies u ≥ 0 and Lu = 0 in Ω. Then

(5.3) sup
Ωδ

u ≤ N2 · inf
Ωδ

u, where N2 = N2(n, ν,K) > 1.

Proof. Any two points x, y ∈ Ωδ can be connected in Ωδ by a curve γ of length |γ| ≤ Nδ,
where N = N(n,K). One can choose a finite sequence x0 = x, x1, x2, . . . , xM = y in γ
such that |xj −xj−1| < δ/14 for all j = 1, 2, . . . ,M , where M does not exceed a constant
N0 = N0(n,K). Iterating (3.2) with R := δ/14, we get

u(x) = u(x0) ≤ N1u(x1) ≤ N2
1u(x2) ≤ . . . NM

1 u(xM ) = NM
1 u(y),

and (5.3) follows with N2 = N2(n,K) := NN0
1 . �

Corollary 5.3. In Theorem 5.1, the ball B14R can be replaced by BcR with c = const > 1.
Then (5.1) holds true with N1 = N1(n, ν, c) > 1.
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Proof. In Theorem 5.2, take Ω := BcR and δ := (1− c)R. Then

Ωδ = BR, diamΩ = 2cR+Kδ with K := 2c · (1− c)−1,

and the statement follows from (5.3). �

Another standard consequence of the Harnack inequality is the Hölder continuity of
solutions (see [M61, Section 5]).

Theorem 5.4 (Hölder continuity). Let u ∈ C1(Ω) satisfy Lu = 0 in Ω. Then

(5.4) ω(ρ) := sup
Bρ

u− inf
Bρ

u ≤
(2ρ
r

)
ω(r) for 0 < ρ < r < R, BR ⊂ Ω.

§6. Smooth approximation

Now we show how the results of the preceding sections, which were proved for solutions
u ∈ C1, can be extended to the functions u ∈ W 1,2(Ω) satisfying Lu := (D, aDu) = 0 in
Ω, i.e.,

(6.1)

∫
Ω

(aDu,Dη) = 0 ∀η ∈ C∞
0 (Ω).

Consider approximation of u and aij by standard mollifiers u(ε) := ϕε ∗ u and a
(ε)
ij :=

ϕε ∗ aij , where

0 ≤ ϕ ∈ C∞
0 (Bε),

∫
Bε

ϕε dx = 1.

For 0 < ε ≤ δ, we have u(ε), a
(ε)
ij ∈ C∞(Ωδ),

(6.2) u(ε) → u in W 1,2(Ωδ), a
(ε)
ij → aij a.e. in Ωδ, as ε → 0+.

Moreover, the uniform ellipticity condition U for a = [aij ] is preserved for a(ε) = [a
(ε)
ij ].

See, e.g., Subsection 5.3.1 and Appendix C.5 in [E] for these and other properties of
mollifiers.

We will rely on the existence of smooth solutions of the Dirichlet problem with smooth
data. Namely, if BR+δ ⊂ Ω, then there exists a unique solution uε ∈ C∞( ĎBR) of the
problem

(6.3) Lεuε := (D, a(ε)Duε) = 0 in BR, uε = u(ε) on ∂BR.

For our purposes, it suffices to have uε ∈ C1( ĎBR).

Lemma 6.1. We have uε → u in W 1,2(Ω), i.e.,

(6.4)

∫
BR

|uε − u|2 dx+

∫
BR

|Duε −Du|2 dx → 0 as ε → 0+.

Proof. We use the integral identities corresponding to Lu = 0 and Lεuε = 0 in BR, with
a smooth function ηε := u(ε) − uε that vanishes on ∂BR:∫

BR

(aDu,Dηε) dx = 0 and

∫
BR

(a(ε)Duε, Dηε) dx = 0.

Then

(6.5) ν

∫
BR

|Dηε|2 ≤
∫
BR

(a(ε)ηε, Dηε) dx =

∫
BR

(vε, Dηε) dx,

where vε := a(ε)(Du(ε) − aDu. We write

|vε| ≤ |a(ε)(Du(ε) −Du)|+ |(a(ε) − a)Du| =: F1,ε + F2,ε.
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By (6.2),

F1,ε ≤ N · |Du(ε) −Du| → 0 in L2,

and also by the dominated convergence theorem we have F2,ε → 0 in L2. By the Cauchy–
Schwarz inequality, from (6.5) it follows that |Dηε| → 0 in L2. Using also the Poincaré
inequality, we get ηε → 0 in W 1,2. Together with the convergence u(ε) → u in W 1,2, we
finally get (6.4). �

Lemma 6.2. The functions {uε, 0 < ε ≤ δ} are uniformly bounded on BR−δ.

Proof. It is easy co check that Lε(u
2
ε) ≥ 0 in BR. Indeed, for an arbitrary 0 ≤ η ∈

C∞
0 (BR) we have ∫

BR

(
a(ε)D(u2

ε), Dη
)
=

∫
BR

(
a(ε)Duε, 2uεDη

)
.

Since

2uεDη = Dη0 − 2ηDuε, where η0 := 2ηuε ∈ C∞
0 (BR),

the previous expression is equal to

−2

∫
BR

η
(
a(ε)Duε, Duε

)
≤ 0.

This means that the u2
ε are a nonnegative subsolution uniformly bounded in L1(BR).

Now we can apply Theorem 3.5 with u = u2
ε, p = 1, and δ in place of R:

u2
ε(x0) ≤

N

|Bδ|

∫
Bδ(x0)

u2
ε ≤ N

∫
BR

u2
ε dx ≤ N ∀x0 ∈ BR−δ.

Here N denotes various different constants independent on ε. The lemma is proved. �

Lemma 6.3. The functions uε converge uniformly on BR−2δ as ε → 0+ to a Hölder
continuous function u0 that coincides with u a.e.

Proof. Indeed, estimate (5.4) for uε in balls Bρ with different centers guarantees the

compactness of {uε} in C(BR−2δ) and convergence to a function u0. Since also uε → u
in L2, the limit function u0 coincides with u a.e., and u0 satisfies (5.4). �

On the grounds of Lemmas 6.1–6.3, the extension of results in §5 from uε ∈ C1 to
u ∈ W 1,2 is straightforward. Note that we only used the convergence uε → u in L2,
though Lemma 6.1 provides convergence together with Duε → Du in L2.
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