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SPECTRAL ANALYSIS OF A FOURTH ORDER DIFFERENTIAL

OPERATOR WITH PERIODIC AND ANTIPERIODIC

BOUNDARY CONDITIONS

D. M. POLYAKOV

Abstract. By the method of similar operators, the spectral properties of a fourth
order differential operator are studied under periodic or semiperiodic boundary con-
ditions. The spectrum asymptotics is obtained, together with some estimates for
the spectral resolution for the operator in question. Also, the operator semigroup is
constructed whose generator is equal to minus the operator under study.

§1. Introduction

Let L2[0, 1] stand for the Hilbert space of complex functions square integrable on [0, 1]

with the scalar product (x, y) =
∫ 1

0
x(τ )y(τ ) dτ, x, y ∈ L2[0, 1]. We denote by W 4

2 [0, 1] the
Sobolev space {y ∈ L2[0, 1] → C : y has three continuous derivatives, y′′′ is absolutely
continuous, and yIV ∈ L2[0, 1]}.

We shall consider an operator Lbc : D(Lbc) ⊂ L2[0, 1] → L2[0, 1] determined by the
differential expression

l(y) = yIV − a(t)y′′ − b(t)y, where a, b ∈ L2[0, 1].

The domain D(Lbc) is determined by one of the following boundary conditions bc:
(a) periodic, bc = per : y(j)(0) = y(j)(1), j = 0, 1, 2, 3;
(b) semiperiodic, bc = ap : y(j)(0) = −y(j)(1), j = 0, 1, 2, 3.
Specifically, we put D(Lbc) = {y ∈ W 4

2 [0, 1] : y satisfies bc}. The corresponding
operators will be denoted by Lper, Lap.

If a = b = 0, we use the notation L0
bc or L0

per, L0
ap. The operator L0

bc is said to be
free. It will play the role of a nonperturbed operator when we study Lbc, whereas the
operator B : D(B) = D(Lbc) ⊂ L2[0, 1] → L2[0, 1], By = a(t)y′′ + b(t)y will play the
role of a perturbation. L0

bc is a selfadjoint operator with compact resolvent. Since a,
b ∈ L2[0, 1], they expand into the series a(t) =

∑
l∈Z

ale
i2πlt, b(t) =

∑
l∈Z

ble
i2πlt, where

al and bl are the Fourier coefficients of a and b, respectively. We emphasize that no
additional restrictions on a and b (like smoothness) beyond a, b ∈ L2[0, 1] are imposed.

We describe the spectra σ(L0
bc) and the eigenfunctions of L0

bc, bc ∈ {per, ap}:
(a) σ(L0

per) = {(2πn)4, n ∈ Z+ = N∪ {0}}; for n �= 0, the corresponding eigenspace is

E0
n = Span{e1n, e2n}, where e1n(t) = e−i2πnt, e2n(t) = ei2πnt, t ∈ [0, 1]. For n = 0, we have

E0
0 = {αe0, α ∈ C}, where e0(t) = 1, t ∈ [0, 1];
(b) σ(L0

ap) = {π4(2n + 1)4, n ∈ Z+ = N ∪ {0}}; the corresponding eigenspaces are

given by E0
n = Span{e1n, e2n}, where e1n(t) = e−iπ(2n+1)t, e2n(t) = eiπ(2n+1)t, t ∈ [0, 1].
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We denote by Pn, n ∈ Z+, the Riesz projection corresponding to the singleton
{(2πn)4} or {π4(2n+ 1)4}. For every x ∈ L2[0, 1], we have

(a) Pnx = (x, e1n)e
1
n + (x, e2n)e

2
n, n ∈ N, P0x = (x, e0)e0;

(b) Pnx = (x, e1n)e
1
n + (x, e2n)e

2
n, n ∈ Z+.

Throughout, we assume that b0 =
∫ 1

0
b(t) dt = 0. This is not a restriction because the

shift of the potential by a constant shifts the spectrum by the same constant. However,
we take the value of b0 = 0 into account when we calculate the spectral asymptotics for
the operator in question.

The operators Lbc are interesting because they describe the vibration of beams and
shells as well as of a compressed rod on an elastic base (see, e.g., [1, 2]). Presently, a
considerable interest to this topic emerges from numerous applications to optics, acoustics
(see [3]) and also to the study of nanotubes conductivity (see [4]).

A selfadjoint 4th order differential operator with periodic coefficients was studied in

a series of papers by Badanin and Korotyaev. In [5], the operator d4

dt4 + V with real
periodic potential V in L1 was studied on the real line. In [6], the 4th order operator

H = d4

dt4 +
d
dtp

d
dt+q with real periodic potentials p and q was treated under the assumption

p, p′, q ∈ L1(0, 1). In [7], the same operator was considered in L2(0, 1) with classical
boundary conditions and with p, p′′, q ∈ L1(0, 1). In [8], a general periodic operator
of even order in L2(R) and with coefficients in L1 was studied. In all these papers,
the asymptotic of the spectrum was determined and the spectral bands were explored,
together with the high energy spectral characteristics. The method of the study was
based on the construction of Lyapunov functions.

We also mention the paper [9], in which a differential operator of arbitrary order m
with complex potential was treated and asymptotics formulas for its eigenvalues were
derived.

Mikhăılets and Molyboga (see [10, 11, 12]) obtained asymptotic estimates for the

operator (−1)N d2N

dt2N
+ q with periodic and semiperiodic boundary conditions, where q is

a periodic distribution belonging to a Sobolev space.
Note also that in Năımark’s monograph [13] the eigenvalue asymptotics was described

for an nth order differential operator with regular boundary conditions in the space of
continuous functions and also in the space of vector-valued functions.

The theory of perturbed differential operators determined by boundary conditions
on a finite interval involves various methods. Thus, in the paper [14] by Dzhakov
and Mityagin, the Schrödinger and Dirak operators were studied by resolvent meth-
ods, see [14, 15, 16]. These methods make it possible to calculate the first approximation
for eigenvalues of the perturbed operator and its projections.

In [17], Agranovich obtained certain results about the equiconvergence of spectral
resolutions for a perturbation subordinate to a fractional power of the nonperturbed op-
erator; also, he gave asymptotic estimates for the equiconvergence of spectral resolutions.
However, the results of that paper are applicable only in the case where a is a bounded
function.

In the present paper, we obtain second approximations for the eigenvalues, and also
estimate spectral projections for Lbc. Unlike Theorem V.4.15 in [15], the function a is not
assumed to be bounded. We employ the similar operators method (see [18, 19, 20, 21])
to study Lbc. This method emerged in the construction of an analog of the Bogolyubov–
Krylov substitution for nonlinear equations in a Banach space, see [18, 19, 20, 21]. It
is intimately related to the Friedrichs method (see [16]), which is used for perturbed
operators with continuous spectrum. To develop the method of similar operators, some
patterns of harmonic analysis were invoked.
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The version of the similar operators method employed in the present paper was devel-
oped in [22, 23]. In [23, 24] it was used by the author to study Lbc under other classical
boundary conditions. The main idea of the method is in a similarity transformation
of Lbc to an operator whose spectral properties are close to those of the unperturbed
operator L0

bc. Specifically, it is shown that Lbc is similar to an operator of block-diagonal
form in the basis of eigenvectors for L0

bc (this is an analog of the Jordan theorem for a
linear operator in a finite-dimensional space). This simplifies the study of Lbc a lot.

Among the main results of the paper, we mention Theorem 7, which says that Lbc

is similar to an operator of the form indicated above and having the same eigenvalues
as L0

bc, except a finite set. This statement provides a basis for the deduction of the
eigenvalue asymptotics and the proof of the equiconvergence of spectral resolutions.

The main results of the paper are stated below.

Theorem 1. The differential operator Lbc has compact resolvent and its spectrum has
the form

σ(Lbc) = σ̃m ∪
{
λ̃∓
n , n ≥ m+ 1

}
for some m ∈ N, where σ̃m is a finite set of at most m points. The eigenvalues λ̃∓

n ,
n ≥ m+ 1, of Lper have the following asymptotic representation:

λ̃∓
n =

(
2πn

)4
+ (2πn)2a0 − n2

∞∑
l=1
l �=n

(an+la−n−l + an−lal−n)l
2

l4 − n4

∓ (2πn)2

(
a−2na2n +

1

4π4

( ∞∑
l=1
l �=n

al−na−n−ll
2

l4 − n4

)( ∞∑
l=1
l �=n

al+nan−ll
2

l4 − n4

)

− a−2n

2π2

∞∑
l=1
l �=n

al+nan−ll
2

l4 − n4
− a2n

2π2

∞∑
l=1
l �=n

al−na−n−ll
2

l4 − n4

) 1
2

+ γnn
2, n ≥ m+ 1.

Or, in an abridged form:

λ̃∓
n =

(
2πn

)4
+ (2πn)2a0 + γ∓

n n2, n ≥ m+ 1.

Here (γn) and (γ∓
n ) are sequences summable with the powers 4

3 and 2, respectively, and
the ak, k ∈ Z, are the Fourier coefficients of a.

For Lap, we have the following asymptotic representation:

λ̃∓
n =

(
π(2n+1)

)4
+
(
π(2n+1)

)2
a0 − (2n+1)2

∞∑
l=0
l �=n

(an+l+1a−n−l−1 + an−lal−n)(2l+1)2

(2l + 1)4 − (2n+ 1)4

∓ (π(2n+1))2
(
a−2n−1a2n+1+

4

π4

∞∑
l=0
l �=n

al−na−n−l−1(2l+1)2

(2l + 1)4 − (2n+ 1)4

∞∑
l=0
l �=n

an+l+1an−l(2l+1)2

(2l+1)4−(2n+1)4

− 2a−2n−1

π2

∞∑
l=0
l �=n

an+l+1an−l(2l + 1)2

(2l + 1)4 − (2n+ 1)4
− 2a2n+1

π2

∞∑
l=0
l �=n

al−na−n−l−1(2l + 1)2

(2l + 1)4 − (2n+ 1)4

) 1
2

+ γ̃nn
2,

n ≥ m+ 1.
Or, in an abridged form:

λ̃∓
n =

(
π(2n+ 1)

)4
+ (π(2n+ 1))2a0 + γ̃∓

n n2, n ≥ m+ 1.

Here (γ̃n) and (γ̃∓
n ) are sequences summable with the powers 4

3 and 2, respectively.
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Theorem 2. If a is a function of bounded variation, then

λ̃±
n = (2πn)4 + (2πn)2a0 +O(1)

and

λ̃±
n =

(
π(2n+ 1)

)4
+
(
π(2n+ 1)

)2
a0 +O(1)

for the cases of bc = per and bc = ap, respectively.

In the next theorem, the symbol P̃n, n ≥ m + 1 ( m ∈ N is taken from Theorem 1),

stands for the Riesz projection constructed for the subsets {λ̃∓
n } of the spectrum σ(Lbc).

If Ω is an arbitrary subset of N\{0, . . . ,m}, then P̃ (Ω) =
∑

k∈Ω P̃k is the Riesz projection

constructed for the set {λ̃∓
k , k ∈ Ω}. Similarly, P (Ω) =

∑
k∈Ω Pk. Next, we denote by

P̃(m) the Riesz projection for the operator Lbc that corresponds to the spectral set σ̃m,
and we put P(m) = P1 + · · ·+ Pm.

Theorem 3. The system of projections P̃n, n ∈ N, has the following property:

‖P̃ (Ω)− P (Ω)‖2 ≤ M̃ (ln k(Ω))
1
2

k(Ω)
,

where k(Ω) = mink∈Ω k and M̃ > 0 is a constant independent of k(Ω).

This theorem shows that the eigenfunctions and generalized eigenfunctions of the
operators in question form an unconditional basis. It should be noted that such estimates
cannot be obtained with the help of the resolvent method used in [14, 15, 16], because
the choice of an integration contour presents a problem.

Theorem 3 readily implies the following statement.

Theorem 4. The following equiconvergence estimates are true for the spectral resolutions
for Lbc and L0

bc:∥∥∥∥P̃(m) +
n∑

k=m+1

P̃k − P(m) −
n∑

k=m+1

Pk

∥∥∥∥
2

≤ M̃(lnn)
1
2

n
, n ≥ m+ 1,

where M̃ > 0 is the constant from Theorem 3.

Remark 1. If a is bounded, the estimates of [17] are applicable, yielding the same as

Theorem 4 but without the factor of (lnn)
1
2 . This sharper estimate for bounded a also

can be obtained by the method of similar operators.

Theorem 8 claims that −Lbc is a sectorial operator and generates an analytic semi-
group of operators. Moreover, this semigroup is similar to a semigroup of the form
T(m)(t) ⊕ T (m)(t) acting in L2[0, 1] = H(m) ⊕ H(m), where H(m) = ImP(m), H(m) =

Im(I − P(m)), and T (m)(t) admits a representation of the form

T (m)(t)x =

∞∑
k=m+1

eCktPkx, x ∈ L2[0, 1],

where Ck ∈ EndHk, Hk = ImPk (the matrix of this operator will be described in
Theorem 8).

These results were announced in the short note [25].
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§2. Construction of an admissible triple

The general outline of the method of similar operators (see [22]) requires to start with
the construction of an admissible triple. In this section, we construct an admissible triple
for an abstract operator with the properties most close to those of the operators Lper and
Lap in question. In the next section, this construction will be specified for the operators
Lbc, bc ∈ {per, ap}.

For a complex Banach space X , let EndX denote the Banach algebra of all bounded
linear operators on X . Let A : D(A) ⊂ X → X be a closed linear operator. We denote
by LA(X ) the Banach space of operators acting in X and subordinate to A. Thus, a
linear operator X : D(X) ⊂ X → X belongs to LA(X ) if D(X) ⊇ D(A) and the quantity
‖X‖A = inf{C > 0 : ‖Xx‖ ≤ C(‖x‖+‖Ax‖), x ∈ D(A)} is finite. This quantity is taken
for the norm on LA(X ).

We recall the general notions of the method of similar operators (see [22, 23]).

Definition 1. Two linear operators Ai : D(Ai) ⊂ X → X are said to be similar if there
exists a continuously invertible operator U ∈ EndX such that UD(A2) = D(A1) and
A1Ux = UA2x, x ∈ D(A2). In this case we say that U transforms A1 to A2.

It is well known (see [22, Lemma 1]) that many spectral properties of similar operators
coincide.

Definition 2. Let U be a linear subspace of LA(X ), and let J : U → U and Γ: U → EndX
be transformes, i.e., linear operators acting on linear operators. The triple (U, J,Γ) is
said to be admissible for a (nonperturbed) operator A : D(A) ⊂ X → X (then U is called
the space of admissible perturbations) if the following conditions are fulfilled:

1) U is a Banach space (with its own norm ‖ · ‖∗) embedded in LA(X ) continuously;
2) J and Γ are continuous transformes, moreover, J is a projection;
3) (ΓX)D(A) ⊂ D(A), moreover, A(ΓX)− (ΓX)A = X − JX for all X ∈ U;
4) XΓY, (ΓX)Y ∈ U for all X,Y ∈ U, and there exists a constant γ > 0 such that

‖Γ‖ ≤ γ, max{‖XΓY ‖∗, ‖(ΓX)Y ‖∗} ≤ γ‖X‖∗‖Y ‖∗;

5) for every X ∈ U and ε > 0, there exists λε ∈ ρ(A) with ‖X(A− λεI)
−1‖ < ε.

Theorem 5 (see [22]). Let (U, J,Γ) be a triple admissible for an operator A : D(A) ⊂
X → X , and let B be an operator that belongs to the space U of admissible perturbations
for A. If ‖J‖‖B‖∗‖Γ‖ < 1

4 , then A−B is similar to A−JX∗, where X∗ ∈ U is a solution
of the (nonlinear) equation

(2.1) X = BΓX − (ΓX)(JB)− (ΓX)J(BΓX) +B = Φ(X).

The solutions of (2.1) can be found by the method of simple iterations, taking X0 = 0,
X1 = B, and so on (the mapping Φ: U → U is a contraction on the ball {X ∈ U :
‖X − B‖ ≤ 3‖B‖}). A similarity transformation taking A − B to A − JX∗ is done by
the operator I + ΓX∗ ∈ EndX .

In our case, we take a complex Hilbert space H for X . Let S2(H) be the ideal of
Hilbert–Schmidt operators belonging to EndH (see [26]). We recall the definition.

Definition 3. By a Hilbert–Schmidt operator X ∈ EndH we mean an operator satisfying∑∞
j=0 ‖Xfj‖2 < ∞ for every orthonormal basis f0, f1, . . . in H.

Introducing the matrix (xkj) of X ∈ EndH in the orthonormal basis f0, f1, . . . , i.e.,
xkj = (Xfj , fk), k, j ≥ 0, we can rewrite the above inequality as

∑∞
k,j=0 |xkj |2 < ∞.

This quantity is a norm on the Hilbert–Schmidt ideal S2(H); it will be denoted by ‖ · ‖2.
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Let A : D(A) ⊂ H → H be a selfadjoint operator with compact resolvent R( · , A) :
ρ(A) → EndH and with spectrum σ(A) formed by a sequence of eigenvalues λn,θ, n ∈ Z+,
of the form

λn,θ = π4(2n+ θ)4, n ∈ Z+,

where θ = 0 if A = L0
per and θ = 1 if A = L0

ap.
The eigenvalues of A possess the following property:

(2.2) |λk,θ − λj,θ| ≥
1

c
|k4 − j4|, |λk,θ| ≤ ck4, k, j ≥ 0, k �= j,

where c = (2π)4 for θ = 0 and c = (3π)4 for θ = 1.
Let e0, e

1
n, e

2
n, n ∈ N, be an orthonormal basis. Denote by Pn, n ∈ Z+, the orthogonal

projection corresponding to the set {λn,θ} ⊂ σ(A) and defined by the formula

Pnx = (x, e1n)e
1
n + (x, e2n)e

2
n, n ∈ N, P0x = (x, e0)e0, n = 0, for θ = 0,

Pnx = (x, e1n)e
1
n + (x, e2n)e

2
n, n ∈ Z+, for θ = 1.

We shall consider an operator A such that APn = APn = λn,0Pn, n ∈ N, AP0 = P0,
θ = 0 and APn = APn = λn,1Pn, n ∈ Z+, for θ = 1.

Consider the operator matrix (Xkj) whose entries are the operator blocks Xkj =
PkXPj , k, j ∈ Z+. Given an operator X ∈ LA(H), we consider the blocks of this matrix
separately in the case where θ = 0.

If k = j = 0, then (X00) is a matrix of size 1× 1 with only one entry X00 = (Xe0, e0)
(see [23]). The entries of the matrix (Xk0), k ≥ 1, of size 2× 1 are of the form(

(Xe0, e
1
k)

(Xe0, e
2
k)

)
.

Accordingly, the entries of the matrix (X0j), j ≥ 1, of size 1 × 2 are of the form
((Xe1j , e0), (Xe2j , e0)).

Finally, since dim ImPn = 2 for n ∈ N, the matrix (Xkj), k, j ≥ 1, has the form

(2.3) Xkj =

(
(Xe1j , e

1
k) (Xe2j , e

1
k)

(Xe1j , e
2
k) (Xe2j , e

2
k)

)
.

Note that for θ = 1, the matrix (Xkj), k, j ≥ 0, is also of the form (2.3). In the subsequent
estimates, we use the identities ‖X‖22 =

∑∞
k,j=0 ‖PkXPj‖22.

We introduce the selfadjoint operator A 1
2 : D(A 1

2 ) ⊂ H → H by putting

A 1
2x =

∞∑
n=0

λ
1
2

n,θPnx;

the domain of this operator is D(A 1
2 ) = {x ∈ H :

∑∞
n=0 |λn,θ|‖Pnx‖2 < ∞}.

The Banach space U of admissible perturbations will consist of all X ∈ LA(H) repre-
sentable in the form

X = X0A
1
2 , X0 ∈ S2(H).

The norm of X in U is defined to be the quantity ‖X‖∗ = ‖X0‖2.
Next, in accordance with the general outline described in [23], we construct trans-

formers J , Γ : LA(H) → LA(H). First, we define them on S2(H).
Specifically, for every X ∈ S2(H) we put

(2.4) JX =
∞∑

n=0

PnXPn, ΓX =
∞∑

k,j=0
k �=j

PkXPj

λk,θ − λj,θ
.

The consistency of this definition and the boundedness of the operators JX and ΓX will
be established in the following lemma.
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Lemma 1. The transformers J , Γ: S2(H) → S2(H) are well defined, bounded, and
possess the following properties:

1) J is a projection, ‖J‖ = 1;
2) we have ‖Γ‖ ≤ 1

infk �=j |λk,θ−λj,θ| ≤
c
15 , where c is defined in (2.2).

Proof. We verify 1). By orthogonality, we obtain

‖(JX)x‖2 =

∥∥∥∥ ∞∑
n=0

(PnXPn)x

∥∥∥∥2 =

∞∑
n=0

‖Pn(XPnx)‖2 =

∞∑
n=0

‖PnXPnx‖2 ≤ ‖X‖2‖x‖2,

where x ∈ D(A) and X ∈ S2(H). Therefore, ‖JX‖ ≤ ‖X‖, X ∈ S2(H). Thus, J is well
defined, bounded, and ‖J‖ ≤ 1. Note that ‖J‖ = 1 if and only if X coincides with some
Pn, n ∈ Z+.

We verify 2), i.e., the boundedness of Γ together with the consistency if its definition.
We have

‖ΓX‖22 =

∥∥∥∥ ∞∑
k,j=0
k �=j

PkXPj

λk,θ − λj,θ

∥∥∥∥2
2

≤ 1

infk �=j |λk,θ − λj,θ|2

∥∥∥∥ ∞∑
k,j=0
k �=j

PkXPj

∥∥∥∥2
2

=
1

infk �=j |λk,θ − λj,θ|2
∞∑

k,j=0
k �=j

‖PkXPj‖22 =
1

infk �=j |λk,θ − λj,θ|2
‖X‖22.

Thus,

‖ΓX‖2 ≤ 1

infk �=j |λk,θ − λj,θ|
‖X‖2 ≤ c

15
‖X‖2, X ∈ S2(H).

Consequently, Γ is well defined, bounded, and satisfies

‖Γ‖ ≤ 1

infk �=j |λk,θ − λj,θ|
≤ c

15
. �

The extensions of the transformers J and Γ to the spaces LA(H) and U (denoted below
by the same symbols) will be given as follows:

JX = J(XA−1)A, ΓX = (ΓXA−1)A, X ∈ LA(H),

JX = J(XA− 1
2 )A 1

2 , ΓX = (ΓXA− 1
2 )A 1

2 , X ∈ U.
(2.5)

Lemma 2. Every operator ΓX, X ∈ U, admits an extension to the entire space H up
to an operator belonging to S2(H) (and denoted by the same symbol ΓX) is such a way
that

(2.6) ‖ΓX‖2 ≤ c
3
2

3
‖X‖∗, X ∈ U,

where c is taken from (2.2).

Proof. Since X ∈ U, we have X = X0A
1
2 with X0 ∈ S2(H). Using (2.2), we obtain

‖ΓX‖22 =

∥∥∥∥ ∞∑
k,j=0
k �=j

PkXPj

λk,θ − λj,θ

∥∥∥∥2
2

=

∥∥∥∥ ∞∑
k,j=0
k �=j

(PkX0Pj)λ
1
2

j,θ

λk,θ − λj,θ

∥∥∥∥2
2

≤ c3 sup
k,j≥0
k �=j

j4

(k4 − j4)2

∞∑
k,j=0
k �=j

‖PkX0Pj‖22 ≤ c3 sup
k,j≥0
k �=j

1

(k2 − j2)2
‖X0‖22 ≤ c3

9
‖X‖2∗.

Thus, ΓX is a Hilbert–Schmidt operator. Consequently, ΓX admits a bounded extension
to H that satisfies (2.6). �
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Remark 2. In accordance with Lemma 2, the transformer Γ defined by (2.6) will be
regarded as a linear operator from U to S2(H) and will be denoted by the same symbol.

Furthermore, Lemma 2 shows that ‖Γ‖ ≤ c
3
2

3 .

For every m ∈ N, we introduce two transformers Jm : U → U and Γm : U → S2(H) in
the following way:

JmX = JX − J(P(m)XP(m)) + P(m)XP(m), X ∈ U,(2.7)

ΓmX = ΓX − P(m)(ΓX)P(m), X ∈ U,(2.8)

where P(m) =
∑

k≤m Pk. Note that J1X = JX and Γ1X = ΓX, X ∈ U.
The next statement is an immediate consequence of the definition of Jm and Γm,

Lemma 2, and Remark 2.

Lemma 3. All transformers Jm, Γm, m ∈ N, admit a bounded extension to LA(H)
(consequently, to U). Also, we have

‖Jm‖ = 1, ‖Γm‖ ≤ c
3
2

m
,

where c was defined in (2.2).

Remark 3. Formulas (2.7) and (2.8) show directly that ΓX (respectively, JX), X ∈ U,
differs from ΓmX (respectively, from JmX) by the finite rank operator P(m)(ΓX)P(m)

(respectively, P(m)(JX)P(m)). Therefore, in what follows we shall verify all required
properties for ΓX and JX.

Now we show that (U, Jm,Γm) is an admissible triple.

Lemma 4. The triple (U, Jm,Γm) is admissible for A; moreover, the quantity γ = γm

(see the definition of an admissible triple) obeys the inequality γm ≤ c
3
2

m , where c was
defined in (2.2).

Proof. We verify all properties of an admissible triple. The first two properties follow
from the representation of the space of admissible perturbations, Lemma 3, and formulas
(2.7) and (2.8).

We prove property 3), i.e., the relation (ΓmX)D(A) ⊂ D(A) for every X ∈ U. By

Remark 3, we can consider ΓmX in place of ΓX. We represent X in the form X = X0A
1
2 ,

where X0 ∈ S2(H). Take an arbitrary vector x ∈ D(A), then x = A−1y, where y ∈ H.
We have

(ΓX)A−1y =

∞∑
k,j=0
k �=j

(PkXPj)A−1y

λk,θ − λj,θ
=

∞∑
k,j=0
k �=j

(PkX0A
1
2Pj)y

(λk,θ − λj,θ)λj,θ
=

∞∑
k,j=0
k �=j

(PkX0Pj)y

(λk,θ − λj,θ)λ
1
2

j,θ

.

By (2.2) and the inequality supk,j≥1k �=j
k2

(k−j)2j4 ≤ 4, it follows that∥∥∥A(ΓX)A−1y
∥∥∥2 =

∥∥∥∥A ∞∑
k,j=0
j �=k

(PkX0Pj)y

(λk,θ − λj,θ)λ
1
2

j,θ

∥∥∥∥2 =

∥∥∥∥ ∞∑
k,j=0
j �=k

λk,θ(PkX0Pj)y

(λk,θ − λj,θ)λ
1
2

j,θ

∥∥∥∥2

≤ c3
∥∥∥∥ ∞∑

k,j=0
j �=k

k4(PkX0Pj)y

(k4 − j4)j2

∥∥∥∥2 ≤ c3 sup
k,j≥1
k �=j

k8

(k4 − j4)2j4

∞∑
k,j=1

‖(PkX0Pj)y‖2

≤ c3 sup
k,j≥1
k �=j

k2

(k − j)2j4
‖X0‖22‖y‖2 ≤ 4c3‖X0‖22‖y‖2.
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Thus, (ΓX)A−1x ∈ D(A), and the above estimates show that the operator A(ΓX)A−1

is bounded. Consequently, (ΓX)D(A) ⊂ D(A), whence (ΓmX)D(A) ⊂ D(A). It remains
to show that the operators A(ΓmX) − (ΓmX)A and X − JmX possess equal matrices.
For k �= j, we have(
λk,θx̃kj(1− δkj)

λk,θ − λj,θ

)
−
(
x̃kj(1− δkj)λj,θ

λk,θ − λj,θ

)
=

(
x̃kj(λk,θ − λj,θ)(1− δkj)

λk,θ − λj,θ

)
= x̃kj−δkjx̃kj ,

where (x̃kj) is the matrix of X, and property 3) follows.

We verify property 4). Taking X, Y ∈ U, we write them in the form X = X0A
1
2 and

Y = Y0A
1
2 . Then XΓmY can be written as XΓmY = X0A

1
2ΓmY0A

1
2 = Z0A

1
2 . We show

that Z0 is a Hilbert–Schmidt operator. By Lemma 3, it suffices to prove this for some
m ∈ N. Using (2.2), we obtain

‖Z0‖22 = ‖X0A
1
2ΓY0‖22 =

∥∥∥∥∥X0

( ∞∑
k,j=m
k �=j

(PkY0Pj)λ
1
2

j,θ

λk,θ − λj,θ

)∥∥∥∥∥
2

2

≤ c3 sup
k,j≥m
k �=j

j4

(k4 − j4)2

∥∥∥∥X0

∞∑
k,j=m

PkY0Pj

∥∥∥∥2
2

≤ c3 sup
k,j≥m
k �=j

1

(k2 − j2)2
‖X0‖22

∞∑
k,j=m

‖PkY0Pj‖22 ≤ c3‖X‖2∗‖Y ‖2∗
m2

,

where c is taken from (2.2). Therefore, Z0 ∈ S2(H), and the operator XΓmY belongs

to the space U of admissible perturbations, moreover, ‖XΓmY ‖∗ ≤ c
3
2

m ‖X‖∗‖Y ‖∗. A
similar argument yields a similar estimate for (ΓmX)Y . Now, a direct calculation shows

that ‖Γm‖ ≤ c
3
2

m .

We verify the last property of admissible triples. Let X = X0A
1
2 be an arbitrary

operator in U, and let ε > 0. For the role of λε, we take −cn, n ∈ N, where c > 0 is the

quantity from (2.2) and n ∈ N satisfies 1
2c

3
2n− 1

2 ‖X0‖2 < ε. Then

‖X(A− λεI)
−1‖ ≤ ‖X0‖2‖A

1
2 (A− λεI)

−1‖ = ‖X0‖2 max
k≥1

|λ
1
2

k,θ|
|λk,θ − λε|

≤ c
3
2 ‖X0‖2 max

k≥1

k2

k4 + n
≤ ‖X0‖2c

3
2

2n
1
2

< ε.

Thus, (U, Jm,Γm) is an admissible triple, and the lemma follows. �

§3. A preliminary similarity transformation

We return to the study of the operator Lbc defined in the Introduction. We apply the
abstract method described in the preceding section to the study of the spectral properties
of the operators Lbc, bc ∈ {per, ap}. The role of A will be played by the operators L0

per

and L0
ap defined as follows:

L0
perPn = L0

perPn = λnPn, n ∈ N, L0
perP0 = L0

perP0 = P0,

L0
apPn = L0

apPn = λnPn, n ∈ Z+,

where the orthogonal projections Pn, n ∈ Z+, are those described in the Introduction.
Now, L0

per and L0
ap are selfadjoint operators with compact resolvent and with eigenvalues

satisfying (2.2), where c = (2π)4 in the case of L0
per and c = (3π)4 in the case of L0

ap. In
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what follows, we put H = L2[0, 1] throughout, and we identify this space with the space
L2(R,C) of 1-periodic functions on R that are square integrable on [0, 1].

The perturbation B described in the Introduction belongs to the space LL0
bc
(H), bc ∈

{per, ap}. Consequently, the operators JB, ΓB, JmB, and ΓmB defined by (2.4), (2.7),
(2.8) are well defined.

Since B does not belong to the space of admissible perturbations constructed in the
preceding section, we must do a preliminary similarity transformation (see [22]) of Lbc to

the operator L̃bc = L0
bc − B̃, bc ∈ {per, ap}, where B̃ belongs to U. This is our objective

in this section.
First, we consider the operator B = B1 + B2, where B1y = ay′′ and B2y = by,

y ∈ D(L0
bc), bc ∈ {per, ap} and a, b ∈ H. We represent the perturbation B in the form

B =
(
B(L0

bc)
− 1

2

)
(L0

bc)
1
2 =

(
B1(L

0
bc)

− 1
2

)
(L0

bc)
1
2 +

(
B2(L

0
bc)

− 1
2

)
(L0

bc)
1
2 .

Since a and b belong to H, we have

a(t) =
∑
l∈Z

ale
2iπlt, b(t) =

∑
l∈Z

ble
2iπlt.

Consider the case of bc = per. The numerical block matrices (Aper
kj ), (Bper

kj ), k, j ≥ 0,

are defined in the same way as in the preceding section (in particular, formula (2.3) is
true). We calculate the entries of these matrices. For the operator of multiplication by
a, the entries are found in the following way:(

ae1j , e
1
k

)
=

∫ 1

0

a(t)e1j(t)e
1
k(t) dt =

∫ 1

0

∑
l∈Z

ale
2iπlt · ei2π(k−j)t dt = aj−k.

Arguing similarly, we obtain(
ae2j , e

1
k

)
= a−j−k,

(
ae1j , e

2
k

)
= aj+k,

(
ae2j , e

2
k

)
= a−j+k.

If k = 0, j ≥ 1, or k ≥ 1, j = 0, we have

(ae0, e0) = 0, (ae0, e
1
k) = 0, (ae0, e

2
k) = 0,

(ae1j , e0) = aj , (ae2j , e0) = a−j .

Thus, the matrix of B1 has the following form:

(3.1) A
per
kj = −(2πj)2

⎛⎝0 aj a−j

0 aj−k a−j−k

0 aj+k a−j+k

⎞⎠ , k, j ≥ 1.

Since B2 is multiplication by a function b in H, the matrix (Bper
kj ), k, j ≥ 1 looks like

this:

(3.2) B
per
kj =

⎛⎝ 0 bj b−j

b−k bj−k b−j−k

bk bj+k b−j+k

⎞⎠ .

The matrix entries of Uap
kj for bc = ap are calculated similarly. The matrices (Aap

kj ), (B
ap
kj),

k, j ≥ 0, have the following form:

A
ap
kj = −(π(2j + 1))2

(
aj−k a−j−k−1

aj+k+1 a−j+k

)
,

B
ap
kj =

(
bj−k b−j−k−1

bj+k+1 b−j+k

)
.

(3.3)

Next, we prove several technical lemmas.
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Lemma 5. The operators ΓB and ΓmB, m ∈ N, are Hilbert–Schmidt, and moreover,
we have limm→∞ ‖ΓmB‖22 = 0.

Proof. We show that ΓB is a Hilbert–Schmidt operator. Since B2 is multiplication by a
function b in H, it suffices to consider ΓB1 in place of ΓB. First, we consider the case of
bc = per. By (3.1), we have

‖ΓB1‖22 =

∞∑
j=1

|(ΓB1e
1
j , e0)|2 +

∞∑
j=1

|(ΓB1e
2
j , e0)|2 +

∞∑
k,j=1

∣∣(ΓB1e
1
j , e

1
k)
∣∣2

+

∞∑
k,j=1

∣∣(ΓB1e
1
j , e

2
k)
∣∣2 + ∞∑

k,j=1

∣∣(ΓB1e
2
j , e

1
k)
∣∣2 + ∞∑

k,j=1

∣∣(ΓB1e
2
j , e

2
k)
∣∣2

≤
∞∑
j=1

|aj |2(2πj)4
(2πj)8

+

∞∑
j=1

|a−j |2(2πj)4
(2πj)8

+

∞∑
k,j=1
k �=j

|aj−k|2(2πj)4
((2πk)4 − (2πj)4)2

+
∞∑

k,j=1
k �=j

|a−j−k|2(2πj)4
((2πk)4− (2πj)4)2

+
∞∑

k,j=1
k �=j

|aj+k|2(2πj)4
((2πk)4− (2πj)4)2

+
∞∑

k,j=1
k �=j

|a−j+k|2(2πj)4
((2πk)4− (2πj)4)2

≤ 1

(2π)4

( ∞∑
j=1

|aj |2 + |a−j |2
j4

+
∞∑
k=1

1

k2

∞∑
j=1
j �=k

|aj−k|2
(k − j)2

+
∞∑
k=1

1

k2

∞∑
j=1
j �=k

|a−j−k|2
(k − j)2

+
∞∑
k=1

1

k2

∞∑
j=1
j �=k

|aj+k|2
(k − j)2

+
∞∑
k=1

1

k2

∞∑
j=1
j �=k

|a−j+k|2
(k − j)2

)
< ∞.

Consequently, ΓB ∈ S2(H). By Remark 3, the ΓmB, m ∈ N, are also Hilbert–Schmidt
operators.

Similar arguments based on (3.3) show that ΓB ∈ S2(H) for bc = ap. Thus, ΓmB
belongs to S2(H) also in this case.

Next, from (2.8) we deduce that

lim
m→∞

‖ΓmB‖22 = lim
m→∞

‖ΓB − P(m)(ΓB)P(m)‖22

= lim
m→∞

∞∑
max{k,j}≥m+1

‖Pk(ΓmB)Pj‖22 = 0. �

Lemma 6. The operator JmB belongs to the space U of admissible perturbations.

Proof. By Remark 3, we may consider JB instead. We represent it in the form

JB = (JB(L0
bc)

− 1
2 )(L0

bc)
1
2 = BJB(L

0
bc)

1
2

and show that BJB belongs to S2(H). Using (3.1) and (3.2), for bc = per we obtain

‖JB(L0
per)

− 1
2 ‖22 = |(JB(L0

per)
− 1

2 e0, e0)|2 +
∞∑

n=1

|(JB(L0
per)

− 1
2 e1n, e

1
n)|2

+
∞∑

n=1

|(JB(L0
per)

− 1
2 e1n, e

2
n)|2 +

∞∑
n=1

|(JB(L0
per)

− 1
2 e2n, e

1
n)|2 +

∞∑
n=1

|(JB(L0
per)

− 1
2 e2n, e

2
n)|2

=

∞∑
n=1

|a2n|2(2πn)2
(2πn)2

+

∞∑
n=1

|a−2n|2(2πn)2
(2πn)2

+ 2|a0|2 +
∞∑

n=1

|b2n|2
(2πn)2

+

∞∑
n=1

|b−2n|2
(2πn)2

< ∞.

Arguing similarly on the basis of (3.3), we analyze also the case of bc = ap. Thus,
BJB ∈ S2(H). Therefore, the JmB, m ∈ N, belong to U. �
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Lemma 7. The operators BΓmB and (ΓmB)JmB belong to the space U of admissible
perturbations.

Proof. In accordance with Remark 3, first we prove that BΓB ∈ U. For this, we write

BΓB = (BΓB(L0
bc)

− 1
2 )(L0

bc)
1
2 = B0(L

0
bc)

1
2

and prove that B0 ∈ S2(H). In its turn, B0 can be represented in the form

B0 = B1ΓB1(L
0
bc)

− 1
2 +B1ΓB2(L

0
bc)

− 1
2 +B2ΓB1(L

0
bc)

− 1
2 +B2ΓB2(L

0
bc)

− 1
2 .

We prove that ‖B1ΓB1(L
0
bc)

− 1
2 ‖22 < ∞. First, we consider the case of bc = per. By (3.1)

and (3.2), we have

‖B1ΓB1(L
0
per)

− 1
2 ‖22 =

∞∑
k,j=1

|(B1ΓB1(L
0
per)

− 1
2 e1j , e

1
k)|2

+

∞∑
k,j=1

|(B1ΓB1(L
0
per)

− 1
2 e2j , e

1
k)|2 +

∞∑
k,j=1

|(B1ΓB1(L
0
per)

− 1
2 e1j , e

2
k)|2

+
∞∑

k,j=1

|(B1ΓB1(L
0
per)

− 1
2 e2j , e

2
k)|2 +

∞∑
j=1

|(B1ΓB1(L
0
per)

− 1
2 e1j , e0)|2

+

∞∑
j=1

|(B1ΓB1(L
0
per)

− 1
2 e2j , e0)|2.

We estimate the first summand (the remaining ones are treated similarly):
∞∑

k,j=1

|(B1ΓB1(L
0
per)

− 1
2 e1j , e

1
k)|2

=

∞∑
k,j=1

∣∣∣∣ ∞∑
l=1
l �=j

(al−kaj−l + a−l−kaj+l)(2πj)
2(2πl)2

((2πl)4 − (2πj)4)(2πj)2

∣∣∣∣2

≤ 1

8π4

∞∑
j=1

∞∑
k=1

( ∞∑
l=1
l �=j

|al−k| |aj−l|
|l2 − j2|

)2

+
1

8π4

∞∑
j=1

∞∑
k=1

( ∞∑
l=1
l �=j

|a−l−k| |aj+l|
|l2 − j2|

)2

.

We estimate only one of the two terms on the right (the other one is estimated in the

same way). For definiteness, we choose the term 1
8π4

∑∞
j=1

∑∞
k=1

(∑∞
l=1,l �=j

|al−k| |aj−l|
|l2−j2|

)2
and denote it by γ1. Consider the sequences fj : N → R+ = [0,∞), j ≥ 1, of the form

fj(l) =
|aj−l|
|l2−j2| for l �= j and 0 for l = j and estimate their norms in �1:

‖fj‖�1 =

∞∑
l=1
l �=j

|fj(l)| =
∞∑
l=1
l �=j

|aj−l|
|l2 − j2| ≤

‖a‖�2
j

(
2

∞∑
l=1

1

l2

) 1
2

=
‖a‖�2π
j
√
3

, j ≥ 1.

Since the sequences k �→ |a|k−l|| : N → R+, l ≥ 1, denoted by ãl in the sequel, belong to

�2, we have ∥∥∥∥ ∞∑
l=1

ãlfj(l)

∥∥∥∥
�2

≤
∞∑
l=1

‖ãl‖�2 |fj(l)| ≤ ‖a‖�2
∞∑
l=1

|fj(l)| ≤
‖a‖2�2π
j
√
3

.

Consequently,

γ1 =
1

8π4

∞∑
j=1

∥∥∥∥ ∞∑
l=1

ãlfj(l)

∥∥∥∥2
�2

≤ ‖a‖4�2
24π2

∞∑
j=1

1

j2
=

‖a‖4�2
144

.
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Similar arguments and calculations are applicable in the case where bc = ap. There-
fore, B1ΓB1(L

0
bc)

− 1
2 belongs to S2(H). Since B2 is multiplication by a function b in

H, the operators B1ΓB2(L
0
bc)

− 1
2 , B2ΓB1(L

0
bc)

− 1
2 , B2ΓB2(L

0
bc)

− 1
2 also belong to S2(H).

Consequently, BΓB belongs to U, and so BΓmB ∈ U.
It remains to prove that (ΓmB)JmB ∈ U. By Lemma 5, the operator ΓmB belongs to

S2(H), and Lemma 6 shows that JmB belongs to U. Since the product of two Hilbert–
Schmidt operators is of trace class (see [26]), we see that (ΓmB)JmB belongs to U. �

Lemma 8. There exists m ∈ N such that the operators B, JmB, ΓmB satisfy the
following conditions:

(a) ΓmB ∈ EndH and ‖ΓmB‖2 < 1;
(b) (ΓmB)D(L0

bc) ⊂ D(L0
bc);

(c) BΓmB, (ΓmB)JmB ∈ U, where U is the space of admissible perturbations;
(d) L0

bc(ΓmB)x− (ΓmB)L0
bcx = Bx− (JmB)x, x ∈ D(L0

bc);
(e) for every ε > 0 there exists λε ∈ ρ(L0

bc) with ‖B(L0
bc − λεI)

−1‖ < ε.

Proof. Lemma 5 shows that ΓmB ∈ S2(H) ⊂ EndH; moreover, by (2.8), ‖ΓmB‖2 < 1
for sufficiently large m ∈ N. Thus, (a) is fulfilled.

To verify (b) for ΓB (see Remark 3), we argue as in the proof of property 3 in Lemma 4.
Thus, (ΓmB)D(L0

bc) ⊂ D(L0
bc).

Property (c) follows from Lemma 7.
To verify (d), we argue as in the proof of property 4 in Lemma 4. Furthermore, by

(2.7) and (2.8), for x ∈ D(L0
bc) we have

L0
bc(ΓmB)x = L0

bcΓBx− L0
bcP(m)(ΓB)P(m) = L0

bcΓBx− P(m)(L
0
bcΓB)P(m)

= (B − JB)x+ (ΓB)L0
bcx− P(m)(B − JB)P(m)x− P(m)(ΓB)L0

bcP(m)x

= (B − JmB)x+ (ΓmB)L0
bcx.

Thus, (d) follows.
It remains to establish (e). Consider the case of bc = per. For arbitrary ε > 0, we

choose n ∈ N in such a way that

(3.4)

(
4‖a‖2�2

3
+

‖b‖2�2
1890

) 1
2 3

3
4

4πn
1
4

< ε.

Also, we take −π4n for the role of λε. Direct inspection shows that B(L0
per)

− 3
4 is bounded

and ‖B(L0
per)

− 3
4 ‖22 ≤ 4‖a‖2

�2

3 +
‖b‖2

�2

1890 . Then for every n ∈ N satisfying (3.4) we have

‖B(L0
per − λεI)

−1‖ ≤ ‖B(L0
per)

− 3
4 ‖2 max

k≥1

λ
3
4

k

|λk − λε|

≤
(
4‖a‖2�2

3
+

‖b‖2�2
1890

) 1
2 1

π
max
k≥1

k3

k4 + n
≤

(
4‖a‖2�2

3
+

‖b‖2�2
1890

) 1
2 3

3
4

4πn
1
4

< ε.

This proves (e) for L0
per, and the case of bc = ap is treated similarly. �

Theorem 6. If m ∈ N satisfies

(3.5) ‖ΓmB‖2 < 1,

then the operator Lbc = L0
bc −B is similar to the operator L̃bc = L0

bc − B̃, where

(3.6) B̃ = JmB1 + (I + ΓmB)−1(B1ΓmB1 − (ΓmB1)JmB1) + C̃.
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The operator C̃ is defined by C̃ = JmB2+(I+ΓmB)−1(B1ΓmB2+B2ΓmB1+B2ΓmB2−
(ΓmB1)JmB2 − (ΓmB2)JmB1 − (ΓmB2)JmB2), and moreover,

(3.7) (L0
bc −B)(I + ΓmB) = (I + ΓmB)(L0

bc − B̃).

The operator B̃ in (3.7) is representable in the form

(3.8) B̃ = JB1 +B1ΓB1 − (ΓB1)JB1 + C ∈ U,

where C = C0(L
0
bc)

1
2 , C0 belongs to the trace class S1(H) on L2[0, 1] (see [26]).

Proof. The existence of m ∈ N satisfying (3.5) was proved in Lemma 5. By Theorem 2

in [22] and Lemma 8, the operator Lbc = L0
bc −B is similar to L̃bc = L0

bc − B̃ and (3.6),
(3.7) hold true. The operator C in (3.8) has the form

C = −(I + ΓmB)−1(ΓmB)(B1ΓmB1 − (ΓmB1)JmB1) + C1 + C̃,

where

C1 = B1ΓmB1 −B1ΓB1 − (ΓmB1)JmB1 + (ΓB1)JB1 + JmB1 − JB1

is of finite rank and, consequently, belongs to S1(H).
From Lemma 7, it follows that the operators (ΓmB)JmB and BΓmB belong to U.

Consequently, C̃ ∈ U and B1ΓmB1, (ΓmB1)JmB1 ∈ U. Thus, C is representable in the

form C = C0(L
0
bc)

1
2 , where C0 belongs to S1(H) (as the sum of a finite rank operator

and the product of two Hilbert–Schmidt operators, see [26])). Thus, B̃ ∈ U. �

§4. Proofs of the main results

Theorem 6 allows us to reduce the study of Lbc to the study of L̃bc, and the latter will
be done on the basis of Theorem 5 by the method of similar operators.

In the next statement, the number m is chosen in such a way that

(4.1) ‖ΓmB‖2 < 1,
c

3
2 ‖B‖∗
m

<
1

4
,

where c = (2π)4 if bc = per and c = (3π)4 if bc = ap. This statement is a principal result
of the paper.

Theorem 7. Let m ∈ N satisfy (4.1). Then the operator Lbc = L0
bc − B (consequently,

also L̃bc) is similar to an operator of the form

(4.2) L0
bc − JmX∗ = L0

bc − P(m)X∗P(m) −
∑

j≥m+1

PjX∗Pj .

The operator X∗ ∈ U is a solution of the equation

(4.3) X = B̃ΓmX − (ΓmX)(JmB̃)− (ΓmX)Jm(B̃ΓmX) + B̃,

in U. The operator I + ΓmX∗ is invertible, and the similarity transformation taking
Lbc = L0

bc −B to L0
bc − JmX∗ is done with the help of the operator

(4.4) Um = (I + ΓmB)(I + ΓmX∗) = I + Vm,

where Vm ∈ S2(H). Moreover, JmX∗ is representable in the form

(4.5) JmX∗ = JB̃ + J(B̃ΓB̃) + T0,

where T0 = T ′
0(L

0
bc)

1
2 , T ′

0 ∈ S1(H).
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Proof. By (3.5) (see the first condition in (4.1)), the operator I + ΓmB is invertible.

Theorem 6 shows that Lbc = L0
bc − B is similar to L̃bc = L0

bc − B̃, where B̃ is given by

(3.8). Since B̃ belongs to U (by Theorem 6), we see that L̃bc = L0
bc−B̃ (consequently, also

Lbc = L0
bc −B) is similar to an operator L0

bc − JmX∗ of the form (4.2), where X∗ ∈ U is
a solution of equation (4.3). Applying Jm to the two sides of this equation, we obtain

JmX∗ = Jm(B̃ΓmX∗) + JmB̃

= JmB̃ + Jm(B̃ΓmB̃) + Jm(B̃Γm(X∗ − B̃)) = JB̃ + J(B̃ΓB̃) + T0,

where T0 = T ′
0(L

0
bc)

1
2 , T ′

0 ∈ S1(H). We have used the fact that the product of two
Hilbert–Schmidt operators is of trace class and that the operators JmX−JX, ΓmX−ΓX,
X ∈ U, m ∈ N, are of finite rank.

Clearly, the operator establishing similarity between Lbc and L0
bc − JmX∗ coincides

with the operator Um in (4.4). Since ΓmB, ΓmX∗ ∈ S2(H), we see that the operator Vm

in (4.4) belongs to S2(H). �

Below �p, p ≥ 1, stands for the space of sequences summable with power p. Before
proving the main results, we state a lemma.

Lemma 9. The eigenvalues μ̃±
n , n ∈ N, of the matrix(

c1(n) c2(n)
c3(n) c4(n)

)
+

(
d1(n) d2(n)
d3(n) d4(n)

)
,

where cj ∈ �2, dj ∈ �1, 1 ≤ j ≤ 4, admit a representation of the form

μ̃±
n =

c1(n) + c4(n)

2
± 1

2

√
(c1(n)− c4(n))2 + 4c2(n)c3(n) + ε±n ,

where the sequences (ε±n ) belong to �
4
3 , i.e.,

∑∞
n=1 |ε±n |

4
3 < ∞.

We proceed to the proof of the main results.

Proof of Theorem 1. Theorem 7 (already proved) makes it possible to establish the asym-
ptotics for the eigenvalues of Lbc. Lemma 1 in [22] and Theorem 7 show that the operator
L0
bc − JmX∗ of the form (4.2) commutes with all projections P(m), Pk, k ≥ m + 1 (see

the Introduction). Consequently, the spaces H(m) = ImP(m) (where P(m) =
∑

j≤m Pj)

and Hj = ImPj , j ≥ m+ 1, are invariant for L0
bc − JmX∗. Since the operators Lbc and

L0
bc−JmX∗ are similar, we have σ(Lbc) = σ(L̃bc) = σ(L0

bc−JmX∗). It can easily be shown
that Lbc = L0

bc−B (like L0
bc−JmX∗) has compact resolvent. Thus, if λ0 ∈ σ(L0

bc−JmX∗),
then there exists a vector x0 ∈ D(L0

bc) with (L0
bc − JmX∗)x0 = λ0x0. Now, the form of

JmX∗ implies

(4.6) A(m)P(m)x0 = λ0P(m)x0, AjPjx0 = λ0Pjx0, j ≥ m+ 1,

where

A(m) =
(
L0
bc − JmX∗

∣∣H(m)

)
is the restriction of L0

bc − JmX∗ to H(m);

Aj =
(
L0
bc − JmX∗

∣∣Hj

)
is the restriction of L0

bc − JmX∗ to Hj , j ≥ m + 1. Since I = P(m) +
∑∞

j=m+1 Pj (the

projections Pj , j ≥ m+ 1, constitute a partition of unity), by (4.6) we see that at least
one of the vectors Pjx0, j ≥ m + 1, P(m)x0, is nonzero. Thus, λ0 is an eigenvalue of
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the corresponding operator among Aj , j ≥ m+ 1, and A(m). Thus, we have proved the
inclusion

σ(Lbc) = σ(L̃bc) = σ(L0
bc − JmX∗) ⊂ σ(A(m)) ∪

( ⋃
j≥m+1

σ(Aj)

)
.

The reverse inclusion is obvious. Consequently,

(4.7) σ(Lbc) = σ(L̃bc) = σ(L0
bc − JmX∗) = σ(A(m)) ∪

( ⋃
j≥m+1

σ(Aj)

)
.

SinceH(m) is finite-dimensional, dimH(m) = m, (4.7) implies that the set σ(A(m)) = σ(m)

is finite. Also, the spaces Hj , j ≥ m+1, are two-dimensional. Thus, the operators A(m)

and Aj , j ≥ m+ 1, are well defined.

Since each Lbc is similar to the corresponding operator L̃bc, all subsequent calculations

will be done for L̃bc.
We calculate the eigenvalues of Lbc. For this, we use the representation (3.1), (3.2) of

matrices, and also the Fourier series expansions for a and b:

a(t) =
∑
l∈Z

ale
2iπlt, b(t) =

∑
l∈Z

ble
2iπlt.

Suppose that bc = per. Formula (3.1) shows that the block matrix (Aper
nn ), n ∈ N, of

B1 has the form

Aper
nn = −(2πn)2

⎛⎝0 an a−n

0 a0 a−2n

0 a2n a0

⎞⎠ .

Accordingly, for bc = ap the block matrix (Aap
nn), n ∈ N, has the form

A
ap
nn = −(π(2n+ 1))2

(
a0 a−2n−1

a2n+1 a0

)
.

The block-diagonal entries Cper
nn , n ∈ N, of the matrix of the operator BΓB in the case

of bc = per have the form

Cper
nn = n2

∞∑
l=1
l �=n

l2

l4 − n4

⎛⎝0 alan−l + a−lan+l ala−n−l + a−la−n+l

0 an−lal−n + an+la−n−l 2al−na−n−l

0 2an+lan−l an+la−n−l + an−lal−n

⎞⎠ .

Accordingly, for bc = ap, the matrix has the form

Cap
nn = (2n+ 1)2

∞∑
l=0
l �=n

(2l + 1)2

(2l + 1)4 − (2n+ 1)4

×
(
an−lal−n + an+l+1a−n−l−1 2al−na−n−l−1

2an+l+1an−l an+l+1a−n−l−1 + an−lal−n

)
.

Using Theorem 7, formula (4.5), and Lemma 9, we deduce that the remainder has the
form γnn

2, where
∞∑

n=m+1

|γn|
4
3 < ∞.
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Thus, for n ≥ m+ 1 the eigenvalues of Lper have the following asymptotics:

λ̃∓
n =

(
2πn

)4
+ (2πn)2a0 − n2

∞∑
l=1
l �=n

(an+la−n−l + an−lal−n)l
2

l4 − n4

∓ (2πn)2

(
a−2na2n +

1

4π4

( ∞∑
l=1
l �=n

al−na−n−ll
2

l4 − n4

)( ∞∑
l=1
l �=n

al+nan−ll
2

l4 − n4

)

− a−2n

2π2

∞∑
l=1
l �=n

al+nan−ll
2

l4 − n4
− a2n

2π2

∞∑
l=1
l �=n

al−na−n−ll
2

l4 − n4

) 1
2

+ γnn
2,

n ≥ m+ 1.

This can also be written in the form

(4.8) λ̃∓
n =

(
2πn

)4
+ (2πn)2a0 + γ∓

n n2,

where (γ∓
n ) belongs to �2. Indeed, we have∣∣∣∣∣

∞∑
l=1
l �=n

al+nan−ll
2

l4 − n4

∣∣∣∣∣ ≤
∞∑
k=1

|ak| |a2n+k|
k(k + 2n)

=

∞∑
k=1

ξ̃k
k + 2n

=

∞∑
k=1

ξ̃kξk+2n,

where the sequence (ξ̃k) belongs to �1 and the sequence ξk+2n is summable with a power
greater than 1. Then ∥∥∥∥ ∞∑

k=1

ξ̃kξk+2n

∥∥∥∥
�2

≤
∞∑
k=1

|ξ̃k|‖ξ‖�2 < ∞.

Estimating all summands in the asymptotic formula for eigenvalues in a similar way, we
arrive at (4.8).

In the case of bc = ap, we argue much as above to obtain the following asymptotic
formula for the eigenvalues of Lap:

λ̃∓
n =

(
π(2n+1)

)4
+ (π(2n+1))2a0 − (2n+1)2

∞∑
l=0
l �=n

(an+l+1a−n−l−1 + an−lal−n)(2l+1)2

(2l + 1)4 − (2n+ 1)4

∓ (π(2n+1))2

(
a−2n−1a2n+1 +

4

π4

∞∑
l=0
l �=n

al−na−n−l−1(2l+1)2

(2l+1)4−(2n+1)4

∞∑
l=0
l �=n

an+l+1an−l(2l+1)2

(2l+1)4−(2n+1)4

− 2a−2n−1

π2

∞∑
l=0
l �=n

an+l+1an−l(2l+1)2

(2l+1)4−(2n+1)4
− 2a2n+1

π2

∞∑
l=0
l �=n

al−na−n−l−1(2l+1)2

(2l+1)4−(2n+1)4

) 1
2

+ γ̃nn
2,

n ≥ m+ 1,

where
∑∞

n=m+1 |γ̃n|
4
3 < ∞. We also have the following abridged asymptotic formula:

λ̃∓
n =

(
π(2n+ 1)

)4
+
(
π(2n+ 1)

)2
a0 + γ̃∓

n n2,

where (γ̃∓
n ) belongs to �2. This completes the proof of the theorem. �

Proof of Theorem 2. If a is a function of bounded variation, then its Fourier coefficients
admit the estimate |an| ≤ c0

|n| , where c0 is some constant (see [27]). Now, arguing as in

the proof of Theorem 1, we establish the claim. �
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Corollary 1. The operator Lbc = L0
bc − B, bc ∈ {per, ap} is spectral in the sense of

Dunford (see [16]).

In what follows, we consider the spectral projections described in the Introduction.
Note that we have the following partition of unity:

I =
∑

k≥m+1

Pk + P(m), I =
∑

k≥m+1

P̃k + P̃(m),

where P̃(m) = (I + Vm)P(m)(I + Vm)−1.

Proof of Theorem 3. Theorem 7 implies that Lbc is similar to L0
bc − JmX∗ (see formula

(4.2)) and the corresponding transformation is done by the operator Um described in
(4.4). The operator Vm in (4.4) has the form Vm = ΓmB+ΓmX∗+(ΓmB)(ΓmX∗). Since
L0
bc−B = (I+Vm)(L0

bc−JmX∗)(I+Vm)−1, by Lemma 1 in [22] the spectral projections

P̃ (Ω) and P (Ω) are similar, moreover, P̃ (Ω) admits the representation P̃ (Ω) = (I +

Vm)P (Ω)(I + Vm)−1. Consequently, P̃ (Ω)− P (Ω) is representable in the form

P̃ (Ω)− P (Ω) = (I + Vm)P (Ω)(I + Vm)−1 − P (Ω) =
(
VmP (Ω)− P (Ω)Vm

)
(I + Vm)−1.

First, we consider the case of bc = per. For further use, we need to estimate the
quantities ‖ΓmX∗P (Ω)‖2, ‖P (Ω)ΓmX∗‖2, ‖ΓmBP (Ω)‖2, and ‖P (Ω)ΓmB‖2. By (3.1)
and Remark 3, we have

‖ΓmX∗P (Ω)‖22 = ‖ΓmX0(L
0
bc)

1
2P (Ω)‖22 =

∥∥∥∥∥
∞∑

p≥0, j≥k(Ω)
p�=j

(PpX0Pj)λ
1
2
j

λp − λj

∥∥∥∥∥
2

2

≤ c3 max
p≥0, j≥k(Ω)

p�=j

j4

(p4 − j4)2

∞∑
p≥0, j≥k(Ω)

p�=j

‖PpX0Pj‖22

≤ c3 max
p≥0, j≥k(Ω)

p�=j

1

(p2 − j2)2
‖X0‖22 ≤ c3

(2k(Ω)− 1)2
‖X0‖22.

Thus,

‖ΓmX∗P (Ω)‖2 ≤ c
3
2 ‖X0‖2

2k(Ω)− 1
,

where X0 ∈ S2(H) is taken from the representation X∗ = X0(L
0
bc)

1
2 , and c = (2π)4 for

bc = per, c = (3π)4 for bc = ap.
Similarly, we prove the estimate

‖P (Ω)ΓmX∗‖2 ≤ c
3
2 ‖X0‖2

2k(Ω)− 1
.

Next, we estimate the quantity ‖ΓmBP (Ω)‖2. Since B2 is multiplication by the function
b in H, it suffices to estimate the quantities ‖ΓmB1P (Ω)‖2 and ‖P (Ω)ΓmB1‖2. Using
the matrix representations (3.1), (3.2), and Remark 3, in the case of bc = per we obtain

‖ΓB1P (Ω)‖22 =
∞∑

j≥k(Ω)

|(ΓB1e
1
j , e0)|2 +

∞∑
j≥k(Ω)

|(ΓB1e
2
j , e0)|2 +

∞∑
p=1

p�=j,j≥k(Ω)

|(ΓB1e
1
j , e

1
p)|2

+
∞∑
p=1

p�=j,j≥k(Ω)

|(ΓB1e
2
j , e

1
p)|2 +

∞∑
p=1

p�=j,j≥k(Ω)

|(ΓB1e
1
j , e

2
p)|2 +

∞∑
p=1

p�=j,j≥k(Ω)

|(ΓB1e
2
j , e

2
p)|2
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=

∞∑
j≥k(Ω)

|aj |2(2πj)4
(2πj)8

+

∞∑
j≥k(Ω)

|a−j |2(2πj)4
(2πj)8

+

∞∑
p=1

p�=j,j≥k(Ω)

|aj−p|2(2πj)4
((2πp)4 − (2πj)4)2

+

∞∑
p=1

p�=j,j≥k(Ω)

|a−j−p|2(2πj)4
((2πp)4−(2πj)4)2

+

∞∑
p=1

p�=j,j≥k(Ω)

|aj+p|2(2πj)4
((2πp)4−(2πj)4)2

+

∞∑
p=1

p�=j,j≥k(Ω)

|a−j+p|2(2πj)4
((2πp)4−(2πj)4)2

≤ 1

(2π)4

∞∑
j≥k(Ω)

|aj |2
j4

+
1

(2π)4

∞∑
j≥k(Ω)

|a−j |2
j4

+
1

(2π)4

∞∑
p=1

p�=j,j≥k(Ω)

|aj−p|2
(p2 − j2)2

+
1

(2π)4

∞∑
p=1

p�=j,j≥k(Ω)

|a−j−p|2
(p2 − j2)2

+
1

(2π)4

∞∑
p=1

p�=j,j≥k(Ω)

|aj+p|2
(p2 − j2)2

+
1

(2π)4

∞∑
p=1

p�=j,j≥k(Ω)

|a−j+p|2
(p2 − j2)2

≤ 1

2π4
‖a‖2�2

( k(Ω)−1∑
p=1

1

(p+ k(Ω))2(k(Ω)− p)
+

∞∑
p=k(Ω)+1

1

(p+ k(Ω))2(p− k(Ω))

)

≤ ‖a‖2�2c21
k2(Ω)

ln

(
(k(Ω)− 1)(2k(Ω) + 1)

k(Ω) + 1

)
,

where c1 > 0 is a constant. Consequently,

‖ΓmBP (Ω)‖2 ≤ c1‖a‖�2
k(Ω)

(
ln

(
(k(Ω)− 1)(2k(Ω) + 1)

k(Ω) + 1

)) 1
2

.

Similar arguments yield the same estimate (with a constant c2 > 0) in the case of bc = ap.
Similar inequalities hold for ‖P (Ω)ΓmB‖2 in both cases.

Using the above estimates, inequality (3.5), and also the representation of the opera-
tor Vm, we arrive at

‖P̃ (Ω)− P (Ω)‖2 ≤ ‖VmP (Ω)‖2 + ‖P (Ω)Vm‖2
≤ ‖ΓmB1P (Ω)‖2 + ‖ΓmX∗P (Ω)‖2 + ‖P (Ω)ΓmB1‖2 + ‖P (Ω)ΓmX∗‖2

+ ‖ΓmX∗P (Ω)‖2 + ‖P (Ω)ΓmB1‖2

≤ 3c1‖a‖�2
k(Ω)

(
ln

(
(k(Ω)− 1)(2k(Ω) + 1)

k(Ω) + 1

)) 1
2

+
3c

3
2 ‖X0‖2

2k(Ω)− 1
≤

M̃
(
ln k(Ω)

) 1
2

k(Ω)
,

where M̃ > 0 is a constant independent of k(Ω), with c = (2π)4 for bc = per, and
c = (3π)4 for bc = ap. �

Corollary 2. Under the assumptions of Theorem 3, we have

‖P̃n − Pn‖2 ≤ M1

n
, n ∈ N,

where M1 > 0 is a constant. In this case Ω is a singleton {n} and there is no summation
on j.

Corollary 3. Under the assumptions of Theorem 3, we have

∞∑
n=m+1

‖P̃n − Pn‖22 <
M2

1

m2
.
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Proof of Theorem 4. The partition of unity formulas and Theorem 3 imply∥∥∥∥P̃(m) +
n∑

k=m+1

P̃k − P(m) −
n∑

k=m+1

Pk

∥∥∥∥
2

=

∥∥∥∥P̃(m) +

∞∑
k=m+1

P̃k −
∞∑

k=n+1

P̃k − P(m) −
∞∑

k=m+1

Pk +

∞∑
k=n+1

Pk

∥∥∥∥
2

=

∥∥∥∥ ∞∑
k=n+1

P̃k −
∞∑

k=n+1

Pk

∥∥∥∥
2

≤
M̃

(
lnn

) 1
2

n
,

and the proof is complete. �

Corollary 4. The spectral resolutions for Lbc = L0
bc −B and L0

bc converge uniformly:

lim
n→∞

∥∥∥∥P̃(m) +

n∑
k=m+1

P̃k − P(m) −
n∑

k=m+1

Pk

∥∥∥∥
2

= 0.

§5. Construction of an analytic semigroup of operators

In this section, the results about the spectral properties of Lbc = L0
bc − B obtained

above (especially, Theorem 7), will be used to show that the operator −Lbc = −L0
bc +B

is sectorial and to construct the analytic semigroup whose generator is this operator.

Definition 4 (see [28]). A linear operator

C : D(C) ⊂ X → X
in a Banach space X is said to be sectorial if it is closed and densely defined and, moreover,
for some ϕ ∈ (π2 , π), M ≥ 1, and real a, the sector Sa,ϕ = {λ ∈ C : | arg (λ − a)| <
ϕ, λ �= a} is included in the resolvent set for C and ‖(λ−C)−1‖ ≤ M

|λ−a| for all λ ∈ Sa,ϕ.

In the next theorem and its proof, we use the notation of Theorem 7.

Theorem 8. The differential operator −Lbc = −L0
bc + B is sectorial and generates an

analytic semigroup of operators T : R+ → EndH. Furthermore,

T (t) = UmT̃ (t)U−1
m ,

where Um = (I + ΓmB)(I + ΓmX∗) and T̃ : R+ → EndH is the semigroup generated by
−L0

bc + JmX∗. Moreover, this semigroup is similar to a semigroup of the form T(m)(t)⊕
T (m)(t) acting on L2[0, 1] = H(m)⊕H(m), where H(m) = ImP(m), H(m) = Im(I−P(m)),

and T (m)(t) is representable in the form

T (m)(t)x =
∞∑

k=m+1

eCktPkx, x ∈ L2[0, 1],

where Ck ∈ EndHk, Hk = ImPk. The natural number m is chosen so that the claim of
Theorem 7 be true.

Proof. By Theorem 7 and formula (4.7), the operator Lbc (respectively, −Lbc) is similar

to L0
bc − JmX∗ (respectively, to −L0

bc + JmX∗), where X∗ = X0(L
0
bc)

1
2 , X0 ∈ S2(H).

Consequently,

1) σ(−Lbc) = σ(−L0
bc + JmX∗) = σm ∪

( ⋃
j≥m+1

σj

)
,
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where σm is a finite set;

2) R(λ,−Lbc) = UmR(λ,−L0
bc + JmX∗)U

−1
m ,

where Um is the transformation operator, λ ∈ ρ(−Lbc) = ρ(−L0
bc+JmX∗), λ /∈ σ(−Lbc).

To estimate the resolvent of −L0
bc + JmX∗ we consider the identities

−L0
bc + JmX∗ − λI = (I + JmX∗(−L0

bc − λI)−1)(−L0
bc − λI)

= (I + JmX0(L
0
bc)

1
2 (−L0

bc − λI)−1)(−L0
bc − λI).

We exhibit a sector containing the spectrum of −L0
bc+JmX∗ and such that the operator

I + JmX0(L
0
bc)

1
2 (−L0

bc − λI)−1 is invertible. By 1), the spectrum of −L0
bc + JmX∗ is

the union of a finite set and the sets σj , j ≥ m+ 1, where σj = {−λ̃j}. All eigenvalues
of −L0

bc + JmX∗ belong to the sector γ = γ0 + 2‖X0‖22, where γ0 is the sector with
vertex at zero such that the argument obeys the condition 3π

4 ≤ arg z ≤ 5π
4 . For

every λ in γ, the operator I + JmX0(L
0
bc)

1
2 (−L0

bc − λI)−1 is invertible and we have

‖JmX0(L
0
bc)

1
2 (−L0

bc−λI)−1‖ ≤ 1
2 . A direct calculation shows that the resolvent satisfies

the inequality

‖R(λ,−L0
bc + JmX∗)‖ ≤ 2

|π4 + λ| ≤
2

|λ− 2‖X0‖22|
.

Consequently, the operator −L0
bc + JmX∗ (thus, also −Lbc) is sectorial. By Theo-

rem II.4.6 in [29], the operator −Lbc is the generator of an analytic semigroup T (t) =

UmT̃ (t)U−1
m (because −Lbc and −L0

bc + JmX∗ are similar), where

T̃ (t) =
1

2πi

∫
Γ

eλtR(λ,−L0
bc + JmX∗) dλ.

Consider the orthogonal decomposition

H = H(m) ⊕H(m), where H(m) = ImP(m), H(m) = Im

( ∑
k≥m+1

Pk

)
.

Accordingly, the operator −L0
bc + JmX∗ decomposes as follows:

−L0
bc + JmX∗ =

(
− Ã(m) + P(m) | H(m)

)
⊕ Ã(m),

where Ã(m) is the restriction of L0
bc − JmX∗ to H(m) and Ã(m) is the restriction of

−L0
bc+JmX∗ to H(m). By [29], the semigroup T (t) is similar to T(m)(t)⊕T (m)(t), where

T (m)(t) is representable in the form

T (m)(t)x =

∞∑
k=m+1

eCktPkx, x ∈ H,

with Ck ∈ EndHk, Hk = ImPk. Using the calculations made in the proof of Theorem 1,
we obtain the following formula for the matrix of Ck in the case of Lper:

−(2πk)4I −

⎛⎝0 ak − alak−l − a−lak+l a−k − ala−k−l − a−la−k+l

0 vper1 (k) + k2ξ1n vper2 (k) + k2ξ2n
0 vper3 (k) + k2ξ3n vper4 (k) + k2ξ4n

⎞⎠ ,



810 D. M. POLYAKOV

where I is the unit matrix and

vper1 (k) = (2πk)2a0 − k2
∞∑
l=1
l �=k

(ak−lal−k + ak+la−k−l)l
2

l4 − k4
,

vper2 (k) = (2πk)2a−2k − 2k2
∞∑
l=1
l �=k

al−ka−l−kl
2

l4 − k4
,

vper3 (k) = (2πk)2a2k − 2k2
∞∑
l=1
l �=k

ak−lal+kl
2

l4 − k4
,

vper4 (k) = (2πk)2a0 − k2
∞∑
l=1
l �=k

(ak+la−l−k + ak−lal−k)l
2

l4 − k4
,

with (ξ1n), (ξ
2
n), (ξ

3
n), (ξ

4
n) ∈ �1.

Accordingly, for Lap this matrix has the following form:

−(π(2k + 1))4I −
(
vap1 (k) + (2k + 1)2ξ5n vap2 (k) + (2k + 1)2ξ6n
vap3 (k) + (2k + 1)2ξ7n vap4 (k) + (2k + 1)2ξ8n

)
,

where I is the unit matrix and

vap1 (k) = (π(2k + 1))2a0 − (2k + 1)2
∞∑
l=0
l �=k

(al−kak−l + ak+l+1a−k−l−1)(2l+ 1)2

(2l + 1)4 − (2k + 1)4
,

vap2 (k) = (π(2k + 1))2a−2k−1 − 2(2k + 1)2
∞∑
l=0
l �=k

al−ka−l−k−1(2l + 1)2

(2l + 1)4 − (2k + 1)4
,

vap3 (k) = (π(2k + 1))2a2k+1 − 2(2k + 1)2
∞∑
l=0
l �=k

ak−lal+k+1(2l + 1)2

(2l + 1)4 − (2k + 1)4
,

vap4 (k) = (π(2k + 1))2a0 − (2k + 1)2
∞∑
l=0
l �=k

(ak+l+1a−l−k−1 + ak−lal−k)(2l + 1)2

(2l + 1)4 − (2k + 1)4
,

with (ξ5n), (ξ
6
n), (ξ

7
n), (ξ

8
n) ∈ �1. This proves the theorem. �

The author is grateful to the referee for useful remarks and for attention to this work.
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