SPECTRAL ANALYSIS OF A FOURTH ORDER DIFFERENTIAL OPERATOR WITH PERIODIC AND ANTIPERIODIC BOUNDARY CONDITIONS

D. M. POLYAKOV

Abstract

By the method of similar operators, the spectral properties of a fourth order differential operator are studied under periodic or semiperiodic boundary conditions. The spectrum asymptotics is obtained, together with some estimates for the spectral resolution for the operator in question. Also, the operator semigroup is constructed whose generator is equal to minus the operator under study.

§1. Introduction

Let $\mathrm{L}_{2}[0,1]$ stand for the Hilbert space of complex functions square integrable on $[0,1]$ with the scalar product $(x, y)=\int_{0}^{1} x(\tau) \overline{y(\tau)} \mathrm{d} \tau, x, y \in \mathrm{~L}_{2}[0,1]$. We denote by $W_{2}^{4}[0,1]$ the Sobolev space $\left\{y \in \mathrm{~L}_{2}[0,1] \rightarrow \mathbb{C}: y\right.$ has three continuous derivatives, $y^{\prime \prime \prime}$ is absolutely continuous, and $\left.y^{I V} \in \mathrm{~L}_{2}[0,1]\right\}$.

We shall consider an operator $L_{b c}: \mathrm{D}\left(L_{b c}\right) \subset \mathrm{L}_{2}[0,1] \rightarrow \mathrm{L}_{2}[0,1]$ determined by the differential expression

$$
l(y)=y^{I V}-a(t) y^{\prime \prime}-b(t) y, \text { where } a, b \in \mathrm{~L}_{2}[0,1] .
$$

The domain $\mathrm{D}\left(L_{b c}\right)$ is determined by one of the following boundary conditions $b c$:
(a) periodic, $b c=$ per : $y^{(j)}(0)=y^{(j)}(1), j=0,1,2,3$;
(b) semiperiodic, $b c=a p: y^{(j)}(0)=-y^{(j)}(1), j=0,1,2,3$.

Specifically, we put $\mathrm{D}\left(L_{b c}\right)=\left\{y \in W_{2}^{4}[0,1]: y\right.$ satisfies $\left.b c\right\}$. The corresponding operators will be denoted by $L_{\mathrm{per}}, L_{a p}$.

If $a=b=0$, we use the notation $\mathcal{L}_{b c}^{0}$ or $\mathcal{L}_{\text {per }}^{0}, \mathcal{L}_{a p}^{0}$. The operator $\mathcal{L}_{b c}^{0}$ is said to be free. It will play the role of a nonperturbed operator when we study $L_{b c}$, whereas the operator $B: \mathrm{D}(B)=\mathrm{D}\left(L_{b c}\right) \subset \mathrm{L}_{2}[0,1] \rightarrow \mathrm{L}_{2}[0,1], B y=a(t) y^{\prime \prime}+b(t) y$ will play the role of a perturbation. $\mathcal{L}_{b c}^{0}$ is a selfadjoint operator with compact resolvent. Since a, $b \in \mathrm{~L}_{2}[0,1]$, they expand into the series $a(t)=\sum_{l \in \mathbb{Z}} a_{l} \mathrm{e}^{i 2 \pi l t}, b(t)=\sum_{l \in \mathbb{Z}} b_{l} \mathrm{e}^{i 2 \pi l t}$, where a_{l} and b_{l} are the Fourier coefficients of a and b, respectively. We emphasize that no additional restrictions on a and b (like smoothness) beyond $a, b \in \mathrm{~L}_{2}[0,1]$ are imposed.

We describe the spectra $\sigma\left(\mathcal{L}_{b c}^{0}\right)$ and the eigenfunctions of $\mathcal{L}_{b c}^{0}, b c \in\{$ per, $a p\}$:
(a) $\sigma\left(\mathcal{L}_{\text {per }}^{0}\right)=\left\{(2 \pi n)^{4}, n \in \mathbb{Z}_{+}=\mathbb{N} \cup\{0\}\right\}$; for $n \neq 0$, the corresponding eigenspace is $E_{n}^{0}=\operatorname{Span}\left\{e_{n}^{1}, e_{n}^{2}\right\}$, where $e_{n}^{1}(t)=\mathrm{e}^{-i 2 \pi n t}, e_{n}^{2}(t)=\mathrm{e}^{i 2 \pi n t}, t \in[0,1]$. For $n=0$, we have $E_{0}^{0}=\left\{\alpha e_{0}, \alpha \in \mathbb{C}\right\}$, where $e_{0}(t)=1, t \in[0,1]$;
(b) $\sigma\left(\mathcal{L}_{a p}^{0}\right)=\left\{\pi^{4}(2 n+1)^{4}, n \in \mathbb{Z}_{+}=\mathbb{N} \cup\{0\}\right\}$; the corresponding eigenspaces are given by $E_{n}^{0}=\operatorname{Span}\left\{e_{n}^{1}, e_{n}^{2}\right\}$, where $e_{n}^{1}(t)=\mathrm{e}^{-i \pi(2 n+1) t}, e_{n}^{2}(t)=\mathrm{e}^{i \pi(2 n+1) t}, t \in[0,1]$.

[^0]We denote by $P_{n}, n \in \mathbb{Z}_{+}$, the Riesz projection corresponding to the singleton $\left\{(2 \pi n)^{4}\right\}$ or $\left\{\pi^{4}(2 n+1)^{4}\right\}$. For every $x \in \mathrm{~L}_{2}[0,1]$, we have
(a) $P_{n} x=\left(x, e_{n}^{1}\right) e_{n}^{1}+\left(x, e_{n}^{2}\right) e_{n}^{2}, n \in \mathbb{N}, \quad P_{0} x=\left(x, e_{0}\right) e_{0}$;
(b) $P_{n} x=\left(x, e_{n}^{1}\right) e_{n}^{1}+\left(x, e_{n}^{2}\right) e_{n}^{2}, n \in \mathbb{Z}_{+}$.

Throughout, we assume that $b_{0}=\int_{0}^{1} b(t) \mathrm{d} t=0$. This is not a restriction because the shift of the potential by a constant shifts the spectrum by the same constant. However, we take the value of $b_{0}=0$ into account when we calculate the spectral asymptotics for the operator in question.

The operators $L_{b c}$ are interesting because they describe the vibration of beams and shells as well as of a compressed rod on an elastic base (see, e.g., [1, 2]). Presently, a considerable interest to this topic emerges from numerous applications to optics, acoustics (see [3]) and also to the study of nanotubes conductivity (see [4).

A selfadjoint 4th order differential operator with periodic coefficients was studied in a series of papers by Badanin and Korotyaev. In [5], the operator $\frac{d^{4}}{d t^{4}}+V$ with real periodic potential V in L_{1} was studied on the real line. In [6], the 4th order operator $H=\frac{d^{4}}{d t^{4}}+\frac{d}{d t} p \frac{d}{d t}+q$ with real periodic potentials p and q was treated under the assumption $p, p^{\prime}, q \in L_{1}(0,1)$. In [7], the same operator was considered in $L_{2}(0,1)$ with classical boundary conditions and with $p, p^{\prime \prime}, q \in L_{1}(0,1)$. In [8], a general periodic operator of even order in $L_{2}(\mathbb{R})$ and with coefficients in L_{1} was studied. In all these papers, the asymptotic of the spectrum was determined and the spectral bands were explored, together with the high energy spectral characteristics. The method of the study was based on the construction of Lyapunov functions.

We also mention the paper [9], in which a differential operator of arbitrary order m with complex potential was treated and asymptotics formulas for its eigenvalues were derived.

Mikhaĭlets and Molyboga (see [10, 11, [12]) obtained asymptotic estimates for the operator $(-1)^{N} \frac{d^{2 N}}{d t^{2 N}}+q$ with periodic and semiperiodic boundary conditions, where q is a periodic distribution belonging to a Sobolev space.

Note also that in Naimark's monograph [13] the eigenvalue asymptotics was described for an nth order differential operator with regular boundary conditions in the space of continuous functions and also in the space of vector-valued functions.

The theory of perturbed differential operators determined by boundary conditions on a finite interval involves various methods. Thus, in the paper [14 by Dzhakov and Mityagin, the Schrödinger and Dirak operators were studied by resolvent methods, see [14, 15, 16]. These methods make it possible to calculate the first approximation for eigenvalues of the perturbed operator and its projections.

In [17], Agranovich obtained certain results about the equiconvergence of spectral resolutions for a perturbation subordinate to a fractional power of the nonperturbed operator; also, he gave asymptotic estimates for the equiconvergence of spectral resolutions. However, the results of that paper are applicable only in the case where a is a bounded function.

In the present paper, we obtain second approximations for the eigenvalues, and also estimate spectral projections for $L_{b c}$. Unlike Theorem V.4.15 in [15], the function a is not assumed to be bounded. We employ the similar operators method (see [18, 19, 20, 21) to study $L_{b c}$. This method emerged in the construction of an analog of the BogolyubovKrylov substitution for nonlinear equations in a Banach space, see [18, 19, 20, 21. It is intimately related to the Friedrichs method (see [16), which is used for perturbed operators with continuous spectrum. To develop the method of similar operators, some patterns of harmonic analysis were invoked.

The version of the similar operators method employed in the present paper was developed in [22, 23]. In [23, 24] it was used by the author to study $L_{b c}$ under other classical boundary conditions. The main idea of the method is in a similarity transformation of $L_{b c}$ to an operator whose spectral properties are close to those of the unperturbed operator $\mathcal{L}_{b c}^{0}$. Specifically, it is shown that $L_{b c}$ is similar to an operator of block-diagonal form in the basis of eigenvectors for $\mathcal{L}_{b c}^{0}$ (this is an analog of the Jordan theorem for a linear operator in a finite-dimensional space). This simplifies the study of $L_{b c}$ a lot.

Among the main results of the paper, we mention Theorem 7. which says that $L_{b c}$ is similar to an operator of the form indicated above and having the same eigenvalues as $\mathcal{L}_{b c}^{0}$, except a finite set. This statement provides a basis for the deduction of the eigenvalue asymptotics and the proof of the equiconvergence of spectral resolutions.

The main results of the paper are stated below.
Theorem 1. The differential operator $L_{b c}$ has compact resolvent and its spectrum has the form

$$
\sigma\left(L_{b c}\right)=\widetilde{\sigma}_{m} \cup\left\{\widetilde{\lambda}_{n}^{\mp}, n \geq m+1\right\}
$$

for some $m \in \mathbb{N}$, where $\widetilde{\sigma}_{m}$ is a finite set of at most m points. The eigenvalues $\widetilde{\lambda}_{n}^{\mp}$, $n \geq m+1$, of $L_{\text {per }}$ have the following asymptotic representation:

$$
\begin{aligned}
\widetilde{\lambda}_{n}^{\mp}=(2 \pi n)^{4} & +(2 \pi n)^{2} a_{0}-n^{2} \sum_{\substack{l=1 \\
l \neq n}}^{\infty} \frac{\left(a_{n+l} a_{-n-l}+a_{n-l} a_{l-n}\right) l^{2}}{l^{4}-n^{4}} \\
& \mp(2 \pi n)^{2}\left(a_{-2 n} a_{2 n}+\frac{1}{4 \pi^{4}}\left(\sum_{\substack{l=1 \\
l \neq n}}^{\infty} \frac{a_{l-n} a_{-n-l} l^{2}}{l^{4}-n^{4}}\right)\left(\sum_{\substack{l=1 \\
l \neq n}}^{\infty} \frac{a_{l+n} a_{n-l} l^{2}}{l^{4}-n^{4}}\right)\right. \\
& \left.-\frac{a_{-2 n}}{2 \pi^{2}} \sum_{\substack{l=1 \\
l \neq n}}^{\infty} \frac{a_{l+n} a_{n-l} l^{2}}{l^{4}-n^{4}}-\frac{a_{2 n}}{2 \pi^{2}} \sum_{\substack{l=1 \\
l \neq n}}^{\infty} \frac{a_{l-n} a_{-n-l} l^{2}}{l^{4}-n^{4}}\right)^{\frac{1}{2}}+\gamma_{n} n^{2}, \quad n \geq m+1 .
\end{aligned}
$$

Or, in an abridged form:

$$
\tilde{\lambda}_{n}^{\mp}=(2 \pi n)^{4}+(2 \pi n)^{2} a_{0}+\gamma_{n}^{\mp} n^{2}, \quad n \geq m+1 .
$$

Here $\left(\gamma_{n}\right)$ and $\left(\gamma_{n}^{\mp}\right)$ are sequences summable with the powers $\frac{4}{3}$ and 2 , respectively, and the $a_{k}, k \in \mathbb{Z}$, are the Fourier coefficients of a.

For $L_{a p}$, we have the following asymptotic representation:

$$
\begin{aligned}
\widetilde{\lambda}_{n}^{\mp} & =(\pi(2 n+1))^{4}+(\pi(2 n+1))^{2} a_{0}-(2 n+1)^{2} \sum_{\substack{l=0 \\
l \neq n}}^{\infty} \frac{\left(a_{n+l+1} a_{-n-l-1}+a_{n-l} a_{l-n}\right)(2 l+1)^{2}}{(2 l+1)^{4}-(2 n+1)^{4}} \\
& \mp(\pi(2 n+1))^{2}\left(a_{-2 n-1} a_{2 n+1}+\frac{4}{\pi^{4}} \sum_{\substack{l=0 \\
l \neq n}}^{\infty} \frac{a_{l-n} a_{-n-l-1}(2 l+1)^{2}}{(2 l+1)^{4}-(2 n+1)^{4}} \sum_{\substack{l=0 \\
l \neq n}}^{\infty} \frac{a_{n+l+1} a_{n-l}(2 l+1)^{2}}{(2 l+1)^{4}-(2 n+1)^{4}}\right. \\
& \left.-\frac{2 a_{-2 n-1}}{\pi^{2}} \sum_{\substack{l=0 \\
l \neq n}}^{\infty} \frac{a_{n+l+1} a_{n-l}(2 l+1)^{2}}{(2 l+1)^{4}-(2 n+1)^{4}}-\frac{2 a_{2 n+1}}{\pi^{2}} \sum_{\substack{l=0 \\
l \neq n}}^{\infty} \frac{a_{l-n} a_{-n-l-1}(2 l+1)^{2}}{(2 l+1)^{4}-(2 n+1)^{4}}\right)^{\frac{1}{2}}+\widetilde{\gamma}_{n} n^{2},
\end{aligned}
$$

$n \geq m+1$.
Or, in an abridged form:

$$
\tilde{\lambda}_{n}^{\mp}=(\pi(2 n+1))^{4}+(\pi(2 n+1))^{2} a_{0}+\widetilde{\gamma}_{n}^{\mp} n^{2}, \quad n \geq m+1 .
$$

Here $\left(\widetilde{\gamma}_{n}\right)$ and $\left(\widetilde{\gamma}_{n}^{\mp}\right)$ are sequences summable with the powers $\frac{4}{3}$ and 2 , respectively.

Theorem 2. If a is a function of bounded variation, then

$$
\widetilde{\lambda}_{n}^{ \pm}=(2 \pi n)^{4}+(2 \pi n)^{2} a_{0}+O(1)
$$

and

$$
\tilde{\lambda}_{n}^{ \pm}=(\pi(2 n+1))^{4}+(\pi(2 n+1))^{2} a_{0}+O(1)
$$

for the cases of $b c=$ per and $b c=a p$, respectively.
In the next theorem, the symbol $\widetilde{P}_{n}, n \geq m+1(m \in \mathbb{N}$ is taken from Theorem (1), stands for the Riesz projection constructed for the subsets $\left\{\widetilde{\lambda}_{n}^{\mp}\right\}$ of the spectrum $\sigma\left(L_{b c}\right)$. If Ω is an arbitrary subset of $\mathbb{N} \backslash\{0, \ldots, m\}$, then $\widetilde{P}(\Omega)=\sum_{k \in \Omega} \widetilde{P}_{k}$ is the Riesz projection constructed for the set $\left\{\tilde{\lambda}_{k}^{\mp}, k \in \Omega\right\}$. Similarly, $P(\Omega)=\sum_{k \in \Omega} P_{k}$. Next, we denote by $\widetilde{P}_{(m)}$ the Riesz projection for the operator $L_{b c}$ that corresponds to the spectral set $\widetilde{\sigma}_{m}$, and we put $P_{(m)}=P_{1}+\cdots+P_{m}$.

Theorem 3. The system of projections $\widetilde{P}_{n}, n \in \mathbb{N}$, has the following property:

$$
\|\widetilde{P}(\Omega)-P(\Omega)\|_{2} \leq \frac{\widetilde{M}(\ln k(\Omega))^{\frac{1}{2}}}{k(\Omega)}
$$

where $k(\Omega)=\min _{k \in \Omega} k$ and $\widetilde{M}>0$ is a constant independent of $k(\Omega)$.
This theorem shows that the eigenfunctions and generalized eigenfunctions of the operators in question form an unconditional basis. It should be noted that such estimates cannot be obtained with the help of the resolvent method used in [14, 15, 16], because the choice of an integration contour presents a problem.

Theorem 3 readily implies the following statement.
Theorem 4. The following equiconvergence estimates are true for the spectral resolutions for $L_{b c}$ and $\mathcal{L}_{b c}^{0}$:

$$
\left\|\widetilde{P}_{(m)}+\sum_{k=m+1}^{n} \widetilde{P}_{k}-P_{(m)}-\sum_{k=m+1}^{n} P_{k}\right\|_{2} \leq \frac{\widetilde{M}(\ln n)^{\frac{1}{2}}}{n}, \quad n \geq m+1
$$

where $\widetilde{M}>0$ is the constant from Theorem 3.
Remark 1. If a is bounded, the estimates of [17] are applicable, yielding the same as Theorem 4 but without the factor of $(\ln n)^{\frac{1}{2}}$. This sharper estimate for bounded a also can be obtained by the method of similar operators.

Theorem 8 claims that $-L_{b c}$ is a sectorial operator and generates an analytic semigroup of operators. Moreover, this semigroup is similar to a semigroup of the form $T_{(m)}(t) \oplus T^{(m)}(t)$ acting in $\mathrm{L}_{2}[0,1]=\mathcal{H}_{(m)} \oplus \mathcal{H}^{(m)}$, where $\mathcal{H}_{(m)}=\operatorname{Im} P_{(m)}, \mathcal{H}^{(m)}=$ $\operatorname{Im}\left(I-P_{(m)}\right)$, and $T^{(m)}(t)$ admits a representation of the form

$$
T^{(m)}(t) x=\sum_{k=m+1}^{\infty} \mathrm{e}^{C_{k} t} P_{k} x, \quad x \in \mathrm{~L}_{2}[0,1],
$$

where $C_{k} \in \operatorname{End} \mathcal{H}_{k}, \mathcal{H}_{k}=\operatorname{Im} P_{k}$ (the matrix of this operator will be described in Theorem (8).

These results were announced in the short note [25].

§2. Construction of An ADMISSIBLE TRIPLE

The general outline of the method of similar operators (see [22]) requires to start with the construction of an admissible triple. In this section, we construct an admissible triple for an abstract operator with the properties most close to those of the operators L_{per} and $L_{a p}$ in question. In the next section, this construction will be specified for the operators $L_{b c}, b c \in\{$ per, $a p\}$.

For a complex Banach space \mathcal{X}, let End \mathcal{X} denote the Banach algebra of all bounded linear operators on \mathcal{X}. Let $A: \mathrm{D}(A) \subset \mathcal{X} \rightarrow \mathcal{X}$ be a closed linear operator. We denote by $\mathfrak{L}_{A}(\mathcal{X})$ the Banach space of operators acting in \mathcal{X} and subordinate to A. Thus, a linear operator $X: \mathrm{D}(X) \subset \mathcal{X} \rightarrow \mathcal{X}$ belongs to $\mathfrak{L}_{A}(\mathcal{X})$ if $\mathrm{D}(X) \supseteq \mathrm{D}(A)$ and the quantity $\|X\|_{A}=\inf \{C>0:\|X x\| \leq C(\|x\|+\|A x\|), x \in \mathrm{D}(A)\}$ is finite. This quantity is taken for the norm on $\mathfrak{L}_{A}(\mathcal{X})$.

We recall the general notions of the method of similar operators (see [22, 23]).
Definition 1. Two linear operators $A_{i}: \mathrm{D}\left(A_{i}\right) \subset \mathcal{X} \rightarrow \mathcal{X}$ are said to be similar if there exists a continuously invertible operator $U \in$ End \mathcal{X} such that $U \mathrm{D}\left(A_{2}\right)=\mathrm{D}\left(A_{1}\right)$ and $A_{1} U x=U A_{2} x, x \in \mathrm{D}\left(A_{2}\right)$. In this case we say that U transforms A_{1} to A_{2}.

It is well known (see [22, Lemma 1]) that many spectral properties of similar operators coincide.

Definition 2. Let \mathfrak{U} be a linear subspace of $\mathfrak{L}_{A}(\mathcal{X})$, and let $J: \mathfrak{U} \rightarrow \mathfrak{U}$ and $\Gamma: \mathfrak{U} \rightarrow$ End \mathcal{X} be transformes, i.e., linear operators acting on linear operators. The triple $(\mathfrak{U}, J, \Gamma)$ is said to be admissible for a (nonperturbed) operator $A: \mathrm{D}(A) \subset \mathcal{X} \rightarrow \mathcal{X}$ (then \mathfrak{U} is called the space of admissible perturbations) if the following conditions are fulfilled:

1) \mathfrak{U} is a Banach space (with its own norm $\|\cdot\|_{*}$) embedded in $\mathfrak{L}_{A}(\mathcal{X})$ continuously;
2) J and Γ are continuous transformes, moreover, J is a projection;
3) $(\Gamma X) \mathrm{D}(A) \subset \mathrm{D}(A)$, moreover, $A(\Gamma X)-(\Gamma X) A=X-J X$ for all $X \in \mathfrak{U}$;
4) $X \Gamma Y,(\Gamma X) Y \in \mathfrak{U}$ for all $X, Y \in \mathfrak{U}$, and there exists a constant $\gamma>0$ such that

$$
\|\Gamma\| \leq \gamma, \max \left\{\|X \Gamma Y\|_{*},\|(\Gamma X) Y\|_{*}\right\} \leq \gamma\|X\|_{*}\|Y\|_{*}
$$

5) for every $X \in \mathfrak{U}$ and $\varepsilon>0$, there exists $\lambda_{\varepsilon} \in \rho(A)$ with $\left\|X\left(A-\lambda_{\varepsilon} I\right)^{-1}\right\|<\varepsilon$.

Theorem 5 (see [22]). Let $(\mathfrak{U}, J, \Gamma)$ be a triple admissible for an operator $A: \mathrm{D}(A) \subset$ $\mathcal{X} \rightarrow \mathcal{X}$, and let B be an operator that belongs to the space \mathfrak{U} of admissible perturbations for A. If $\|J\|\|B\|_{*}\|\Gamma\|<\frac{1}{4}$, then $A-B$ is similar to $A-J X_{*}$, where $X_{*} \in \mathfrak{U}$ is a solution of the (nonlinear) equation

$$
\begin{equation*}
X=B \Gamma X-(\Gamma X)(J B)-(\Gamma X) J(B \Gamma X)+B=\Phi(X) . \tag{2.1}
\end{equation*}
$$

The solutions of (2.1) can be found by the method of simple iterations, taking $X_{0}=0$, $X_{1}=B$, and so on (the mapping $\Phi: \mathfrak{U} \rightarrow \mathfrak{U}$ is a contraction on the ball $\{X \in \mathfrak{U}$: $\|X-B\| \leq 3\|B\|\})$. A similarity transformation taking $A-B$ to $A-J X_{*}$ is done by the operator $I+\Gamma X_{*} \in \operatorname{End} \mathcal{X}$.

In our case, we take a complex Hilbert space \mathcal{H} for \mathcal{X}. Let $\mathfrak{S}_{2}(\mathcal{H})$ be the ideal of Hilbert-Schmidt operators belonging to End \mathcal{H} (see [26]). We recall the definition.

Definition 3. By a Hilbert-Schmidt operator $X \in$ End \mathcal{H} we mean an operator satisfying $\sum_{j=0}^{\infty}\left\|X f_{j}\right\|^{2}<\infty$ for every orthonormal basis f_{0}, f_{1}, \ldots in \mathcal{H}.

Introducing the matrix $\left(x_{k j}\right)$ of $X \in$ End \mathcal{H} in the orthonormal basis f_{0}, f_{1}, \ldots, i.e., $x_{k j}=\left(X f_{j}, f_{k}\right), k, j \geq 0$, we can rewrite the above inequality as $\sum_{k, j=0}^{\infty}\left|x_{k j}\right|^{2}<\infty$. This quantity is a norm on the Hilbert-Schmidt ideal $\mathfrak{S}_{2}(\mathcal{H})$; it will be denoted by $\|\cdot\|_{2}$.

Let $A: \mathrm{D}(A) \subset \mathcal{H} \rightarrow \mathcal{H}$ be a selfadjoint operator with compact resolvent $R(\cdot, A)$: $\rho(A) \rightarrow$ End \mathcal{H} and with spectrum $\sigma(A)$ formed by a sequence of eigenvalues $\lambda_{n, \theta}, n \in \mathbb{Z}_{+}$, of the form

$$
\lambda_{n, \theta}=\pi^{4}(2 n+\theta)^{4}, \quad n \in \mathbb{Z}_{+},
$$

where $\theta=0$ if $A=\mathcal{L}_{\text {per }}^{0}$ and $\theta=1$ if $A=\mathcal{L}_{a p}^{0}$.
The eigenvalues of A possess the following property:

$$
\begin{equation*}
\left|\lambda_{k, \theta}-\lambda_{j, \theta}\right| \geq \frac{1}{c}\left|k^{4}-j^{4}\right|, \quad\left|\lambda_{k, \theta}\right| \leq c k^{4}, \quad k, j \geq 0, \quad k \neq j \tag{2.2}
\end{equation*}
$$

where $c=(2 \pi)^{4}$ for $\theta=0$ and $c=(3 \pi)^{4}$ for $\theta=1$.
Let $e_{0}, e_{n}^{1}, e_{n}^{2}, n \in \mathbb{N}$, be an orthonormal basis. Denote by $P_{n}, n \in \mathbb{Z}_{+}$, the orthogonal projection corresponding to the set $\left\{\lambda_{n, \theta}\right\} \subset \sigma(A)$ and defined by the formula

$$
\begin{aligned}
& P_{n} x=\left(x, e_{n}^{1}\right) e_{n}^{1}+\left(x, e_{n}^{2}\right) e_{n}^{2}, \quad n \in \mathbb{N}, \quad P_{0} x=\left(x, e_{0}\right) e_{0}, \quad n=0, \text { for } \theta=0, \\
& P_{n} x=\left(x, e_{n}^{1}\right) e_{n}^{1}+\left(x, e_{n}^{2}\right) e_{n}^{2}, n \in \mathbb{Z}_{+}, \text {for } \theta=1 .
\end{aligned}
$$

We shall consider an operator \mathcal{A} such that $\mathcal{A} P_{n}=A P_{n}=\lambda_{n, 0} P_{n}, n \in \mathbb{N}, \mathcal{A} P_{0}=P_{0}$, $\theta=0$ and $\mathcal{A} P_{n}=A P_{n}=\lambda_{n, 1} P_{n}, n \in \mathbb{Z}_{+}$, for $\theta=1$.

Consider the operator matrix $\left(\mathcal{X}_{k j}\right)$ whose entries are the operator blocks $\mathcal{X}_{k j}=$ $P_{k} X P_{j}, k, j \in \mathbb{Z}_{+}$. Given an operator $X \in \mathfrak{L}_{\mathcal{A}}(\mathcal{H})$, we consider the blocks of this matrix separately in the case where $\theta=0$.

If $k=j=0$, then $\left(\mathcal{X}_{00}\right)$ is a matrix of size 1×1 with only one entry $\mathcal{X}_{00}=\left(X e_{0}, e_{0}\right)$ (see [23]). The entries of the matrix $\left(\mathcal{X}_{k 0}\right), k \geq 1$, of size 2×1 are of the form

$$
\binom{\left(X e_{0}, e_{k}^{1}\right)}{\left(X e_{0}, e_{k}^{2}\right)} .
$$

Accordingly, the entries of the matrix $\left(\mathcal{X}_{0 j}\right), j \geq 1$, of size 1×2 are of the form $\left(\left(X e_{j}^{1}, e_{0}\right),\left(X e_{j}^{2}, e_{0}\right)\right)$.

Finally, since $\operatorname{dim} \operatorname{Im} P_{n}=2$ for $n \in \mathbb{N}$, the matrix $\left(\mathcal{X}_{k j}\right), k, j \geq 1$, has the form

$$
\mathcal{X}_{k j}=\left(\begin{array}{ll}
\left(X e_{j}^{1}, e_{k}^{1}\right) & \left(X e_{j}^{2}, e_{k}^{1}\right) \tag{2.3}\\
\left(X e_{j}^{1}, e_{k}^{2}\right) & \left(X e_{j}^{2}, e_{k}^{2}\right)
\end{array}\right) .
$$

Note that for $\theta=1$, the matrix $\left(\mathcal{X}_{k j}\right), k, j \geq 0$, is also of the form (2.3). In the subsequent estimates, we use the identities $\|X\|_{2}^{2}=\sum_{k, j=0}^{\infty}\left\|P_{k} X P_{j}\right\|_{2}^{2}$.

We introduce the selfadjoint operator $\mathcal{A}^{\frac{1}{2}}: \mathrm{D}\left(\mathcal{A}^{\frac{1}{2}}\right) \subset \mathcal{H} \rightarrow \mathcal{H}$ by putting

$$
\mathcal{A}^{\frac{1}{2}} x=\sum_{n=0}^{\infty} \lambda_{n, \theta}^{\frac{1}{2}} P_{n} x
$$

the domain of this operator is $\mathrm{D}\left(\mathcal{A}^{\frac{1}{2}}\right)=\left\{x \in \mathcal{H}: \sum_{n=0}^{\infty}\left|\lambda_{n, \theta}\right|\left\|P_{n} x\right\|^{2}<\infty\right\}$.
The Banach space \mathfrak{U} of admissible perturbations will consist of all $X \in \mathfrak{L}_{\mathcal{A}}(\mathcal{H})$ representable in the form

$$
X=X_{0} \mathcal{A}^{\frac{1}{2}}, \quad X_{0} \in \mathfrak{S}_{2}(\mathcal{H})
$$

The norm of X in \mathfrak{U} is defined to be the quantity $\|X\|_{*}=\left\|X_{0}\right\|_{2}$.
Next, in accordance with the general outline described in [23], we construct transformers $J, \Gamma: \mathfrak{L}_{\mathcal{A}}(\mathcal{H}) \rightarrow \mathfrak{L}_{\mathcal{A}}(\mathcal{H})$. First, we define them on $\mathfrak{S}_{2}(\mathcal{H})$.

Specifically, for every $X \in \mathfrak{S}_{2}(\mathcal{H})$ we put

$$
\begin{equation*}
J X=\sum_{n=0}^{\infty} P_{n} X P_{n}, \quad \Gamma X=\sum_{\substack{k, j=0 \\ k \neq j}}^{\infty} \frac{P_{k} X P_{j}}{\lambda_{k, \theta}-\lambda_{j, \theta}} . \tag{2.4}
\end{equation*}
$$

The consistency of this definition and the boundedness of the operators $J X$ and ΓX will be established in the following lemma.

Lemma 1. The transformers $J, \Gamma: \mathfrak{S}_{2}(\mathcal{H}) \rightarrow \mathfrak{S}_{2}(\mathcal{H})$ are well defined, bounded, and possess the following properties:

1) J is a projection, $\|J\|=1$;
2) we have $\|\Gamma\| \leq \frac{1}{{\operatorname{}{ }^{\inf }}_{k \neq j}\left|\lambda_{k, \theta}-\lambda_{j, \theta}\right|} \leq \frac{c}{15}$, where c is defined in (2.2).

Proof. We verify 1). By orthogonality, we obtain

$$
\|(J X) x\|^{2}=\left\|\sum_{n=0}^{\infty}\left(P_{n} X P_{n}\right) x\right\|^{2}=\sum_{n=0}^{\infty}\left\|P_{n}\left(X P_{n} x\right)\right\|^{2}=\sum_{n=0}^{\infty}\left\|P_{n} X P_{n} x\right\|^{2} \leq\|X\|^{2}\|x\|^{2},
$$

where $x \in \mathrm{D}(\mathcal{A})$ and $X \in \mathfrak{S}_{2}(\mathcal{H})$. Therefore, $\|J X\| \leq\|X\|, X \in \mathfrak{S}_{2}(\mathcal{H})$. Thus, J is well defined, bounded, and $\|J\| \leq 1$. Note that $\|J\|=1$ if and only if X coincides with some $P_{n}, n \in \mathbb{Z}_{+}$.

We verify 2), i.e., the boundedness of Γ together with the consistency if its definition. We have

$$
\begin{aligned}
\|\Gamma X\|_{2}^{2} & =\left\|\sum_{\substack{k, j=0 \\
k \neq j}}^{\infty} \frac{P_{k} X P_{j}}{\lambda_{k, \theta}-\lambda_{j, \theta}}\right\|_{2}^{2} \leq \frac{1}{\inf _{k \neq j}\left|\lambda_{k, \theta}-\lambda_{j, \theta}\right|^{2}}\left\|\sum_{\substack{k, j=0 \\
k \neq j}}^{\infty} P_{k} X P_{j}\right\|_{2}^{2} \\
& =\frac{1}{\inf _{k \neq j}\left|\lambda_{k, \theta}-\lambda_{j, \theta}\right|^{2}} \sum_{\substack{k, j=0 \\
k \neq j}}^{\infty}\left\|P_{k} X P_{j}\right\|_{2}^{2}=\frac{1}{\inf _{k \neq j}\left|\lambda_{k, \theta}-\lambda_{j, \theta}\right|^{2}}\|X\|_{2}^{2} .
\end{aligned}
$$

Thus,

$$
\|\Gamma X\|_{2} \leq \frac{1}{\inf _{k \neq j}\left|\lambda_{k, \theta}-\lambda_{j, \theta}\right|}\|X\|_{2} \leq \frac{c}{15}\|X\|_{2}, \quad X \in \mathfrak{S}_{2}(\mathcal{H})
$$

Consequently, Γ is well defined, bounded, and satisfies

$$
\|\Gamma\| \leq \frac{1}{\inf _{k \neq j}\left|\lambda_{k, \theta}-\lambda_{j, \theta}\right|} \leq \frac{c}{15}
$$

The extensions of the transformers J and Γ to the spaces $\mathfrak{L}_{\mathcal{A}}(\mathcal{H})$ and \mathfrak{U} (denoted below by the same symbols) will be given as follows:

$$
\begin{align*}
& J X=J\left(X \mathcal{A}^{-1}\right) \mathcal{A}, \quad \Gamma X=\left(\Gamma X \mathcal{A}^{-1}\right) \mathcal{A}, \quad X \in \mathfrak{L}_{\mathcal{A}}(\mathcal{H}), \\
& J X=J\left(X \mathcal{A}^{-\frac{1}{2}}\right) \mathcal{A}^{\frac{1}{2}}, \quad \Gamma X=\left(\Gamma X \mathcal{A}^{-\frac{1}{2}}\right) \mathcal{A}^{\frac{1}{2}}, \quad X \in \mathfrak{U} . \tag{2.5}
\end{align*}
$$

Lemma 2. Every operator $\Gamma X, X \in \mathfrak{U}$, admits an extension to the entire space \mathcal{H} up to an operator belonging to $\mathfrak{S}_{2}(\mathcal{H})$ (and denoted by the same symbol ΓX) is such a way that

$$
\begin{equation*}
\|\Gamma X\|_{2} \leq \frac{c^{\frac{3}{2}}}{3}\|X\|_{*}, \quad X \in \mathfrak{U}, \tag{2.6}
\end{equation*}
$$

where c is taken from (2.2).
Proof. Since $X \in \mathfrak{U}$, we have $X=X_{0} \mathcal{A}^{\frac{1}{2}}$ with $X_{0} \in \mathfrak{S}_{2}(\mathcal{H})$. Using (2.2), we obtain

$$
\begin{aligned}
\|\Gamma X\|_{2}^{2} & =\left\|\sum_{\substack{k, j=0 \\
k \neq j}}^{\infty} \frac{P_{k} X P_{j}}{\lambda_{k, \theta}-\lambda_{j, \theta}}\right\|_{2}^{2}=\left\|\sum_{\substack{k, j=0 \\
k \neq j}}^{\infty} \frac{\left(P_{k} X_{0} P_{j}\right) \lambda_{j, \theta}}{\lambda_{k, \theta}-\lambda_{j, \theta}}\right\|_{2}^{2} \\
& \leq c^{3} \sup _{\substack{k, j \geq 0 \\
k \neq j}} \frac{j^{4}}{\left(k^{4}-j^{4}\right)^{2}} \sum_{\substack{k, j=0 \\
k \neq j}}^{\infty}\left\|P_{k} X_{0} P_{j}\right\|_{2}^{2} \leq c^{3} \sup _{\substack{k, j \geq 0 \\
k \neq j}} \frac{1}{\left(k^{2}-j^{2}\right)^{2}}\left\|X_{0}\right\|_{2}^{2} \leq \frac{c^{3}}{9}\|X\|_{*}^{2} .
\end{aligned}
$$

Thus, ΓX is a Hilbert-Schmidt operator. Consequently, ΓX admits a bounded extension to \mathcal{H} that satisfies (2.6).

Remark 2. In accordance with Lemma 2, the transformer Γ defined by (2.6) will be regarded as a linear operator from \mathfrak{U} to $\mathfrak{S}_{2}(\mathcal{H})$ and will be denoted by the same symbol. Furthermore, Lemma 2 shows that $\|\Gamma\| \leq \frac{c^{\frac{3}{2}}}{3}$.

For every $m \in \mathbb{N}$, we introduce two transformers $J_{m}: \mathfrak{U} \rightarrow \mathfrak{U}$ and $\Gamma_{m}: \mathfrak{U} \rightarrow \mathfrak{S}_{2}(\mathcal{H})$ in the following way:

$$
\begin{align*}
J_{m} X & =J X-J\left(P_{(m)} X P_{(m)}\right)+P_{(m)} X P_{(m)}, \quad X \in \mathfrak{U}, \tag{2.7}\\
\Gamma_{m} X & =\Gamma X-P_{(m)}(\Gamma X) P_{(m)}, \quad X \in \mathfrak{U}, \tag{2.8}
\end{align*}
$$

where $P_{(m)}=\sum_{k \leq m} P_{k}$. Note that $J_{1} X=J X$ and $\Gamma_{1} X=\Gamma X, X \in \mathfrak{U}$.
The next statement is an immediate consequence of the definition of J_{m} and Γ_{m}, Lemma 2, and Remark 2,

Lemma 3. All transformers $J_{m}, \Gamma_{m}, m \in \mathbb{N}$, admit a bounded extension to $\mathfrak{L}_{\mathcal{A}}(\mathcal{H})$ (consequently, to \mathfrak{U}). Also, we have

$$
\left\|J_{m}\right\|=1, \quad\left\|\Gamma_{m}\right\| \leq \frac{c^{\frac{3}{2}}}{m}
$$

where c was defined in (2.2).
Remark 3. Formulas (2.7) and (2.8) show directly that ΓX (respectively, $J X$), $X \in \mathfrak{U}$, differs from $\Gamma_{m} X$ (respectively, from $J_{m} X$) by the finite rank operator $P_{(m)}(\Gamma X) P_{(m)}$ (respectively, $\left.P_{(m)}(J X) P_{(m)}\right)$. Therefore, in what follows we shall verify all required properties for ΓX and $J X$.

Now we show that $\left(\mathfrak{U}, J_{m}, \Gamma_{m}\right)$ is an admissible triple.
Lemma 4. The triple $\left(\mathfrak{U}, J_{m}, \Gamma_{m}\right)$ is admissible for \mathcal{A}; moreover, the quantity $\gamma=\gamma_{m}$ (see the definition of an admissible triple) obeys the inequality $\gamma_{m} \leq \frac{c^{\frac{3}{2}}}{m}$, where c was defined in (2.2).
Proof. We verify all properties of an admissible triple. The first two properties follow from the representation of the space of admissible perturbations, Lemma3 and formulas (2.7) and (2.8).

We prove property 3), i.e., the relation $\left(\Gamma_{m} X\right) \mathrm{D}(\mathcal{A}) \subset \mathrm{D}(\mathcal{A})$ for every $X \in \mathfrak{U}$. By Remark 3, we can consider $\Gamma_{m} X$ in place of ΓX. We represent X in the form $X=X_{0} \mathcal{A}^{\frac{1}{2}}$, where $X_{0} \in \mathfrak{S}_{2}(\mathcal{H})$. Take an arbitrary vector $x \in \mathrm{D}(\mathcal{A})$, then $x=\mathcal{A}^{-1} y$, where $y \in \mathcal{H}$. We have

$$
(\Gamma X) \mathcal{A}^{-1} y=\sum_{\substack{k, j=0 \\ k \neq j}}^{\infty} \frac{\left(P_{k} X P_{j}\right) \mathcal{A}^{-1} y}{\lambda_{k, \theta}-\lambda_{j, \theta}}=\sum_{\substack{k, j=0 \\ k \neq j}}^{\infty} \frac{\left(P_{k} X_{0} \mathcal{A}^{\frac{1}{2}} P_{j}\right) y}{\left(\lambda_{k, \theta}-\lambda_{j, \theta}\right) \lambda_{j, \theta}}=\sum_{\substack{k, j=0 \\ k \neq j}}^{\infty} \frac{\left(P_{k} X_{0} P_{j}\right) y}{\left(\lambda_{k, \theta}-\lambda_{j, \theta}\right) \lambda_{j, \theta}^{\frac{1}{2}}} .
$$

By (2.2) and the inequality $\sup _{k, j \geq 1 k \neq j} \frac{k^{2}}{(k-j)^{2} j^{4}} \leq 4$, it follows that

$$
\begin{aligned}
& \left\|\mathcal{A}(\Gamma X) \mathcal{A}^{-1} y\right\|^{2}=\left\|\mathcal{A} \sum_{\substack{k, j=0 \\
j \neq k}}^{\infty} \frac{\left(P_{k} X_{0} P_{j}\right) y}{\left(\lambda_{k, \theta}-\lambda_{j, \theta}\right) \lambda_{j, \theta}^{\frac{1}{2}}}\right\|^{2}=\left\|\sum_{\substack{k, j=0 \\
j \neq k}}^{\infty} \frac{\lambda_{k, \theta}\left(P_{k} X_{0} P_{j}\right) y}{\left(\lambda_{k, \theta}-\lambda_{j, \theta}\right) \lambda_{j, \theta}^{\frac{1}{2}}}\right\|^{2} \\
& \quad \leq c^{3}\left\|\sum_{\substack{k, j=0 \\
j \neq k}}^{\infty} \frac{k^{4}\left(P_{k} X_{0} P_{j}\right) y}{\left(k^{4}-j^{4}\right) j^{2}}\right\|^{2} \leq c^{3} \sup _{\substack{k, j \geq 1 \\
k \neq j}} \frac{k^{8}}{\left(k^{4}-j^{4}\right)^{2} j^{4}} \sum_{k, j=1}^{\infty}\left\|\left(P_{k} X_{0} P_{j}\right) y\right\|^{2} \\
& \quad \leq c^{3} \sup _{\substack{k, j \geq 1 \\
k \neq j}} \frac{k^{2}}{(k-j)^{2} j^{4}}\left\|X_{0}\right\|_{2}^{2}\|y\|^{2} \leq 4 c^{3}\left\|X_{0}\right\|_{2}^{2}\|y\|^{2} .
\end{aligned}
$$

Thus, $(\Gamma X) \mathcal{A}^{-1} x \in \mathrm{D}(\mathcal{A})$, and the above estimates show that the operator $\mathcal{A}(\Gamma X) \mathcal{A}^{-1}$ is bounded. Consequently, $(\Gamma X) \mathrm{D}(\mathcal{A}) \subset \mathrm{D}(\mathcal{A})$, whence $\left(\Gamma_{m} X\right) \mathrm{D}(\mathcal{A}) \subset \mathrm{D}(\mathcal{A})$. It remains to show that the operators $\mathcal{A}\left(\Gamma_{m} X\right)-\left(\Gamma_{m} X\right) \mathcal{A}$ and $X-J_{m} X$ possess equal matrices. For $k \neq j$, we have
$\left(\frac{\lambda_{k, \theta} \widetilde{x}_{k j}\left(1-\delta_{k j}\right)}{\lambda_{k, \theta}-\lambda_{j, \theta}}\right)-\left(\frac{\widetilde{x}_{k j}\left(1-\delta_{k j}\right) \lambda_{j, \theta}}{\lambda_{k, \theta}-\lambda_{j, \theta}}\right)=\left(\frac{\widetilde{x}_{k j}\left(\lambda_{k, \theta}-\lambda_{j, \theta}\right)\left(1-\delta_{k j}\right)}{\lambda_{k, \theta}-\lambda_{j, \theta}}\right)=\widetilde{x}_{k j}-\delta_{k j} \widetilde{x}_{k j}$, where $\left(\widetilde{x}_{k j}\right)$ is the matrix of X, and property 3) follows.

We verify property 4). Taking $X, Y \in \mathfrak{U}$, we write them in the form $X=X_{0} \mathcal{A}^{\frac{1}{2}}$ and $Y=Y_{0} \mathcal{A}^{\frac{1}{2}}$. Then $X \Gamma_{m} Y$ can be written as $X \Gamma_{m} Y=X_{0} \mathcal{A}^{\frac{1}{2}} \Gamma_{m} Y_{0} \mathcal{A}^{\frac{1}{2}}=Z_{0} \mathcal{A}^{\frac{1}{2}}$. We show that Z_{0} is a Hilbert-Schmidt operator. By Lemma 3, it suffices to prove this for some $m \in \mathbb{N}$. Using (2.2), we obtain

$$
\begin{aligned}
\left\|Z_{0}\right\|_{2}^{2} & =\left\|X_{0} \mathcal{A}^{\frac{1}{2}} \Gamma Y_{0}\right\|_{2}^{2}=\left\|X_{0}\left(\sum_{\substack{k, j=m \\
k \neq j}}^{\infty} \frac{\left(P_{k} Y_{0} P_{j}\right) \lambda_{j, \theta}^{\frac{1}{2}}}{\lambda_{k, \theta}-\lambda_{j, \theta}}\right)\right\|_{2}^{2} \\
& \leq c^{3} \sup _{\substack{k, j \geq m \\
k \neq j}} \frac{j^{4}}{\left(k^{4}-j^{4}\right)^{2}}\left\|X_{0} \sum_{k, j=m}^{\infty} P_{k} Y_{0} P_{j}\right\|_{2}^{2} \\
& \leq c^{3} \sup _{\substack{k, j \geq m \\
k \neq j}} \frac{1}{\left(k^{2}-j^{2}\right)^{2}}\left\|X_{0}\right\|_{2}^{2} \sum_{k, j=m}^{\infty}\left\|P_{k} Y_{0} P_{j}\right\|_{2}^{2} \leq \frac{c^{3}\|X\|_{*}^{2}\|Y\|_{*}^{2}}{m^{2}},
\end{aligned}
$$

where c is taken from (2.2). Therefore, $Z_{0} \in \mathfrak{S}_{2}(\mathcal{H})$, and the operator $X \Gamma_{m} Y$ belongs to the space \mathfrak{U} of admissible perturbations, moreover, $\left\|X \Gamma_{m} Y\right\|_{*} \leq \frac{c^{\frac{3}{2}}}{m}\|X\|_{*}\|Y\|_{*}$. A similar argument yields a similar estimate for $\left(\Gamma_{m} X\right) Y$. Now, a direct calculation shows that $\left\|\Gamma_{m}\right\| \leq \frac{c^{\frac{3}{2}}}{m}$.

We verify the last property of admissible triples. Let $X=X_{0} \mathcal{A}^{\frac{1}{2}}$ be an arbitrary operator in \mathfrak{U}, and let $\varepsilon>0$. For the role of λ_{ε}, we take $-c n, n \in \mathbb{N}$, where $c>0$ is the quantity from (2.2) and $n \in \mathbb{N}$ satisfies $\frac{1}{2} c^{\frac{3}{2}} n^{-\frac{1}{2}}\left\|X_{0}\right\|_{2}<\varepsilon$. Then

$$
\begin{aligned}
\left\|X\left(\mathcal{A}-\lambda_{\varepsilon} I\right)^{-1}\right\| & \leq\left\|X_{0}\right\|_{2}\left\|\mathcal{A}^{\frac{1}{2}}\left(\mathcal{A}-\lambda_{\varepsilon} I\right)^{-1}\right\|=\left\|X_{0}\right\|_{2} \max _{k \geq 1} \frac{\left|\lambda_{k, \theta}^{\frac{1}{2}}\right|}{\left|\lambda_{k, \theta}-\lambda_{\varepsilon}\right|} \\
& \leq c^{\frac{3}{2}}\left\|X_{0}\right\|_{2} \max _{k \geq 1} \frac{k^{2}}{k^{4}+n} \leq \frac{\left\|X_{0}\right\|_{2} c^{\frac{3}{2}}}{2 n^{\frac{1}{2}}}<\varepsilon .
\end{aligned}
$$

Thus, $\left(\mathfrak{U}, J_{m}, \Gamma_{m}\right)$ is an admissible triple, and the lemma follows.

§3. A Preliminary similarity transformation

We return to the study of the operator $L_{b c}$ defined in the Introduction. We apply the abstract method described in the preceding section to the study of the spectral properties of the operators $L_{b c}, b c \in\{$ per, $a p\}$. The role of \mathcal{A} will be played by the operators $L_{\text {per }}^{0}$ and $L_{a p}^{0}$ defined as follows:

$$
\begin{aligned}
L_{\mathrm{per}}^{0} P_{n} & =\mathcal{L}_{\text {per }}^{0} P_{n}=\lambda_{n} P_{n}, \quad n \in \mathbb{N}, \quad L_{\mathrm{per}}^{0} P_{0}=\mathcal{L}_{\text {per }}^{0} P_{0}=P_{0}, \\
L_{a p}^{0} P_{n} & =\mathcal{L}_{a p}^{0} P_{n}=\lambda_{n} P_{n}, n \in \mathbb{Z}_{+},
\end{aligned}
$$

where the orthogonal projections $P_{n}, n \in \mathbb{Z}_{+}$, are those described in the Introduction. Now, L_{per}^{0} and $L_{a p}^{0}$ are selfadjoint operators with compact resolvent and with eigenvalues satisfying (2.2), where $c=(2 \pi)^{4}$ in the case of L_{per}^{0} and $c=(3 \pi)^{4}$ in the case of $L_{a p}^{0}$. In
what follows, we put $\mathcal{H}=\mathrm{L}_{2}[0,1]$ throughout, and we identify this space with the space $\mathrm{L}_{2}(\mathbb{R}, \mathbb{C})$ of 1-periodic functions on \mathbb{R} that are square integrable on $[0,1]$.

The perturbation B described in the Introduction belongs to the space $\mathfrak{L}_{L_{b c}^{0}}(\mathcal{H}), b c \in$ $\{$ per, $a p\}$. Consequently, the operators $J B, \Gamma B, J_{m} B$, and $\Gamma_{m} B$ defined by (2.4), (2.7), (2.8) are well defined.

Since B does not belong to the space of admissible perturbations constructed in the preceding section, we must do a preliminary similarity transformation (see [22]) of $L_{b c}$ to the operator $\widetilde{L}_{b c}=L_{b c}^{0}-\widetilde{B}, b c \in\{$ per, $a p\}$, where \widetilde{B} belongs to \mathfrak{U}. This is our objective in this section.

First, we consider the operator $B=B_{1}+B_{2}$, where $B_{1} y=a y^{\prime \prime}$ and $B_{2} y=b y$, $y \in \mathrm{D}\left(L_{b c}^{0}\right), b c \in\{$ per, $a p\}$ and $a, b \in \mathcal{H}$. We represent the perturbation B in the form

$$
B=\left(B\left(L_{b c}^{0}\right)^{-\frac{1}{2}}\right)\left(L_{b c}^{0}\right)^{\frac{1}{2}}=\left(B_{1}\left(L_{b c}^{0}\right)^{-\frac{1}{2}}\right)\left(L_{b c}^{0}\right)^{\frac{1}{2}}+\left(B_{2}\left(L_{b c}^{0}\right)^{-\frac{1}{2}}\right)\left(L_{b c}^{0}\right)^{\frac{1}{2}} .
$$

Since a and b belong to \mathcal{H}, we have

$$
a(t)=\sum_{l \in \mathbb{Z}} a_{l} \mathrm{e}^{2 i \pi l t}, \quad b(t)=\sum_{l \in \mathbb{Z}} b_{l} \mathrm{e}^{2 i \pi l t} .
$$

Consider the case of $b c=$ per. The numerical block matrices $\left(\mathfrak{A}_{k j}^{\text {per }}\right),\left(\mathfrak{B}_{k j}^{\text {per }}\right), k, j \geq 0$, are defined in the same way as in the preceding section (in particular, formula (2.3) is true). We calculate the entries of these matrices. For the operator of multiplication by a, the entries are found in the following way:

$$
\left(a e_{j}^{1}, e_{k}^{1}\right)=\int_{0}^{1} a(t) e_{j}^{1}(t) \overline{e_{k}^{1}(t)} \mathrm{d} t=\int_{0}^{1} \sum_{l \in \mathbb{Z}} a_{l} \mathrm{e}^{2 i \pi l t} \cdot \mathrm{e}^{i 2 \pi(k-j) t} \mathrm{~d} t=a_{j-k}
$$

Arguing similarly, we obtain

$$
\left(a e_{j}^{2}, e_{k}^{1}\right)=a_{-j-k}, \quad\left(a e_{j}^{1}, e_{k}^{2}\right)=a_{j+k}, \quad\left(a e_{j}^{2}, e_{k}^{2}\right)=a_{-j+k}
$$

If $k=0, j \geq 1$, or $k \geq 1, j=0$, we have

$$
\begin{aligned}
& \left(a e_{0}, e_{0}\right)=0, \quad\left(a e_{0}, e_{k}^{1}\right)=0, \quad\left(a e_{0}, e_{k}^{2}\right)=0 \\
& \left(a e_{j}^{1}, e_{0}\right)=a_{j}, \quad\left(a e_{j}^{2}, e_{0}\right)=a_{-j}
\end{aligned}
$$

Thus, the matrix of B_{1} has the following form:

$$
\mathfrak{A}_{k j}^{\text {per }}=-(2 \pi j)^{2}\left(\begin{array}{ccc}
0 & a_{j} & a_{-j} \tag{3.1}\\
0 & a_{j-k} & a_{-j-k} \\
0 & a_{j+k} & a_{-j+k}
\end{array}\right), \quad k, j \geq 1 .
$$

Since B_{2} is multiplication by a function b in \mathcal{H}, the matrix $\left(\mathfrak{B}_{k j}^{\text {per }}\right), k, j \geq 1$ looks like this:

$$
\mathfrak{B}_{k j}^{\text {per }}=\left(\begin{array}{ccc}
0 & b_{j} & b_{-j} \tag{3.2}\\
b_{-k} & b_{j-k} & b_{-j-k} \\
b_{k} & b_{j+k} & b_{-j+k}
\end{array}\right) .
$$

The matrix entries of $\mathfrak{U}_{k j}^{a p}$ for $b c=a p$ are calculated similarly. The matrices $\left(\mathfrak{A}_{k j}^{a p}\right),\left(\mathfrak{B}_{k j}^{a p}\right)$, $k, j \geq 0$, have the following form:

$$
\begin{align*}
\mathfrak{A}_{k j}^{a p} & =-(\pi(2 j+1))^{2}\left(\begin{array}{cc}
a_{j-k} & a_{-j-k-1} \\
a_{j+k+1} & a_{-j+k}
\end{array}\right), \\
\mathfrak{B}_{k j}^{a p} & =\left(\begin{array}{cc}
b_{j-k} & b_{-j-k-1} \\
b_{j+k+1} & b_{-j+k}
\end{array}\right) . \tag{3.3}
\end{align*}
$$

Next, we prove several technical lemmas.

Lemma 5. The operators ΓB and $\Gamma_{m} B, m \in \mathbb{N}$, are Hilbert-Schmidt, and moreover, we have $\lim _{m \rightarrow \infty}\left\|\Gamma_{m} B\right\|_{2}^{2}=0$.
Proof. We show that ΓB is a Hilbert-Schmidt operator. Since B_{2} is multiplication by a function b in \mathcal{H}, it suffices to consider ΓB_{1} in place of ΓB. First, we consider the case of $b c=$ per. By (3.1), we have

$$
\begin{aligned}
\left\|\Gamma B_{1}\right\|_{2}^{2}= & \sum_{j=1}^{\infty}\left|\left(\Gamma B_{1} e_{j}^{1}, e_{0}\right)\right|^{2}+\sum_{j=1}^{\infty}\left|\left(\Gamma B_{1} e_{j}^{2}, e_{0}\right)\right|^{2}+\sum_{k, j=1}^{\infty}\left|\left(\Gamma B_{1} e_{j}^{1}, e_{k}^{1}\right)\right|^{2} \\
& +\sum_{k, j=1}^{\infty}\left|\left(\Gamma B_{1} e_{j}^{1}, e_{k}^{2}\right)\right|^{2}+\sum_{k, j=1}^{\infty}\left|\left(\Gamma B_{1} e_{j}^{2}, e_{k}^{1}\right)\right|^{2}+\sum_{k, j=1}^{\infty}\left|\left(\Gamma B_{1} e_{j}^{2}, e_{k}^{2}\right)\right|^{2} \\
\leq & \sum_{j=1}^{\infty} \frac{\left|a_{j}\right|^{2}(2 \pi j)^{4}}{(2 \pi j)^{8}}+\sum_{j=1}^{\infty} \frac{\left|a_{-j}\right|^{2}(2 \pi j)^{4}}{(2 \pi j)^{8}}+\sum_{\substack{k, j=1 \\
k \neq j}}^{\infty} \frac{\left|a_{j-k}\right|^{2}(2 \pi j)^{4}}{\left((2 \pi k)^{4}-(2 \pi j)^{4}\right)^{2}} \\
& +\sum_{\substack{k, j=1 \\
k \neq j}}^{\infty} \frac{\left|a_{-j-k}\right|^{2}(2 \pi j)^{4}}{\left((2 \pi k)^{4}-(2 \pi j)^{4}\right)^{2}}+\sum_{\substack{k, j=1 \\
k \neq j}}^{\infty} \frac{\left|a_{j+k}\right|^{2}(2 \pi j)^{4}}{\left((2 \pi k)^{4}-(2 \pi j)^{4}\right)^{2}}+\sum_{\substack{k, j=1 \\
k \neq j}}^{\infty} \frac{\left|a_{-j+k}\right|^{2}(2 \pi j)^{4}}{\left((2 \pi k)^{4}-(2 \pi j)^{4}\right)^{2}} \\
\leq & \frac{1}{(2 \pi)^{4}}\left(\sum_{j=1}^{\infty} \frac{\left|a_{j}\right|^{2}+\left|a_{-j}\right|^{2}}{j^{4}}+\sum_{k=1}^{\infty} \frac{1}{k^{2}} \sum_{\substack{j=1 \\
j \neq k}}^{\infty} \frac{\left|a_{j-k}\right|^{2}}{(k-j)^{2}}\right. \\
& \left.+\sum_{k=1}^{\infty} \frac{1}{k^{2}} \sum_{\substack{j=1 \\
j \neq k}}^{\infty} \frac{\left|a_{-j-k}\right|^{2}}{(k-j)^{2}}+\sum_{k=1}^{\infty} \frac{1}{k^{2}} \sum_{\substack{j=1 \\
j \neq k}}^{\infty} \frac{\left|a_{j+k}\right|^{2}}{(k-j)^{2}}+\sum_{k=1}^{\infty} \frac{1}{k^{2}} \sum_{\substack{j=1 \\
j \neq k}}^{\infty} \frac{\left|a_{-j+k}\right|^{2}}{(k-j)^{2}}\right)<\infty .
\end{aligned}
$$

Consequently, $\Gamma B \in \mathfrak{S}_{2}(\mathcal{H})$. By Remark 3, the $\Gamma_{m} B, m \in \mathbb{N}$, are also Hilbert-Schmidt operators.

Similar arguments based on (3.3) show that $\Gamma B \in \mathfrak{S}_{2}(\mathcal{H})$ for $b c=a p$. Thus, $\Gamma_{m} B$ belongs to $\mathfrak{S}_{2}(\mathcal{H})$ also in this case.

Next, from (2.8) we deduce that

$$
\begin{aligned}
\lim _{m \rightarrow \infty}\left\|\Gamma_{m} B\right\|_{2}^{2} & =\lim _{m \rightarrow \infty}\left\|\Gamma B-P_{(m)}(\Gamma B) P_{(m)}\right\|_{2}^{2} \\
& =\lim _{m \rightarrow \infty} \sum_{\max \{k, j\} \geq m+1}^{\infty}\left\|P_{k}\left(\Gamma_{m} B\right) P_{j}\right\|_{2}^{2}=0 .
\end{aligned}
$$

Lemma 6. The operator $J_{m} B$ belongs to the space \mathfrak{U} of admissible perturbations.
Proof. By Remark 3 we may consider $J B$ instead. We represent it in the form

$$
J B=\left(J B\left(L_{b c}^{0}\right)^{-\frac{1}{2}}\right)\left(L_{b c}^{0}\right)^{\frac{1}{2}}=B_{J B}\left(L_{b c}^{0}\right)^{\frac{1}{2}}
$$

and show that $B_{J B}$ belongs to $\mathfrak{S}_{2}(\mathcal{H})$. Using (3.1) and (3.2), for $b c=$ per we obtain

$$
\begin{aligned}
& \left\|J B\left(L_{\mathrm{per}}^{0}\right)^{-\frac{1}{2}}\right\|_{2}^{2}=\left|\left(J B\left(L_{\mathrm{per}}^{0}\right)^{-\frac{1}{2}} e_{0}, e_{0}\right)\right|^{2}+\sum_{n=1}^{\infty}\left|\left(J B\left(L_{\mathrm{per}}^{0}\right)^{-\frac{1}{2}} e_{n}^{1}, e_{n}^{1}\right)\right|^{2} \\
& \quad+\sum_{n=1}^{\infty}\left|\left(J B\left(L_{\mathrm{per}}^{0}\right)^{-\frac{1}{2}} e_{n}^{1}, e_{n}^{2}\right)\right|^{2}+\sum_{n=1}^{\infty}\left|\left(J B\left(L_{\mathrm{per}}^{0}\right)^{-\frac{1}{2}} e_{n}^{2}, e_{n}^{1}\right)\right|^{2}+\sum_{n=1}^{\infty}\left|\left(J B\left(L_{\mathrm{per}}^{0}\right)^{-\frac{1}{2}} e_{n}^{2}, e_{n}^{2}\right)\right|^{2} \\
& \quad=\sum_{n=1}^{\infty} \frac{\left|a_{2 n}\right|^{2}(2 \pi n)^{2}}{(2 \pi n)^{2}}+\sum_{n=1}^{\infty} \frac{\left|a_{-2 n}\right|^{2}(2 \pi n)^{2}}{(2 \pi n)^{2}}+2\left|a_{0}\right|^{2}+\sum_{n=1}^{\infty} \frac{\left|b_{2 n}\right|^{2}}{(2 \pi n)^{2}}+\sum_{n=1}^{\infty} \frac{\left|b_{-2 n}\right|^{2}}{(2 \pi n)^{2}}<\infty .
\end{aligned}
$$

Arguing similarly on the basis of (3.3), we analyze also the case of $b c=a p$. Thus, $B_{J B} \in \mathfrak{S}_{2}(\mathcal{H})$. Therefore, the $J_{m} B, m \in \mathbb{N}$, belong to \mathfrak{U}.

Lemma 7. The operators $B \Gamma_{m} B$ and $\left(\Gamma_{m} B\right) J_{m} B$ belong to the space \mathfrak{U} of admissible perturbations.

Proof. In accordance with Remark 3, first we prove that $B \Gamma B \in \mathfrak{U}$. For this, we write

$$
B \Gamma B=\left(B \Gamma B\left(L_{b c}^{0}\right)^{-\frac{1}{2}}\right)\left(L_{b c}^{0}\right)^{\frac{1}{2}}=B_{0}\left(L_{b c}^{0}\right)^{\frac{1}{2}}
$$

and prove that $B_{0} \in \mathfrak{S}_{2}(\mathcal{H})$. In its turn, B_{0} can be represented in the form

$$
B_{0}=B_{1} \Gamma B_{1}\left(L_{b c}^{0}\right)^{-\frac{1}{2}}+B_{1} \Gamma B_{2}\left(L_{b c}^{0}\right)^{-\frac{1}{2}}+B_{2} \Gamma B_{1}\left(L_{b c}^{0}\right)^{-\frac{1}{2}}+B_{2} \Gamma B_{2}\left(L_{b c}^{0}\right)^{-\frac{1}{2}} .
$$

We prove that $\left\|B_{1} \Gamma B_{1}\left(L_{b c}^{0}\right)^{-\frac{1}{2}}\right\|_{2}^{2}<\infty$. First, we consider the case of $b c=$ per. By (3.1) and (3.2), we have

$$
\begin{aligned}
& \left\|B_{1} \Gamma B_{1}\left(L_{\mathrm{per}}^{0}\right)^{-\frac{1}{2}}\right\|_{2}^{2}=\sum_{k, j=1}^{\infty}\left|\left(B_{1} \Gamma B_{1}\left(L_{\mathrm{per}}^{0}\right)^{-\frac{1}{2}} e_{j}^{1}, e_{k}^{1}\right)\right|^{2} \\
& \quad+\sum_{k, j=1}^{\infty}\left|\left(B_{1} \Gamma B_{1}\left(L_{\mathrm{per}}^{0}\right)^{-\frac{1}{2}} e_{j}^{2}, e_{k}^{1}\right)\right|^{2}+\sum_{k, j=1}^{\infty}\left|\left(B_{1} \Gamma B_{1}\left(L_{\mathrm{per}}^{0}\right)^{-\frac{1}{2}} e_{j}^{1}, e_{k}^{2}\right)\right|^{2} \\
& \quad+\sum_{k, j=1}^{\infty}\left|\left(B_{1} \Gamma B_{1}\left(L_{\mathrm{per}}^{0}\right)^{-\frac{1}{2}} e_{j}^{2}, e_{k}^{2}\right)\right|^{2}+\sum_{j=1}^{\infty}\left|\left(B_{1} \Gamma B_{1}\left(L_{\mathrm{per}}^{0}\right)^{-\frac{1}{2}} e_{j}^{1}, e_{0}\right)\right|^{2} \\
& \quad+\sum_{j=1}^{\infty}\left|\left(B_{1} \Gamma B_{1}\left(L_{\mathrm{per}}^{0}\right)^{-\frac{1}{2}} e_{j}^{2}, e_{0}\right)\right|^{2} .
\end{aligned}
$$

We estimate the first summand (the remaining ones are treated similarly):

$$
\begin{aligned}
& \sum_{k, j=1}^{\infty}\left|\left(B_{1} \Gamma B_{1}\left(L_{\mathrm{per}}^{0}\right)^{-\frac{1}{2}} e_{j}^{1}, e_{k}^{1}\right)\right|^{2} \\
& \quad=\sum_{k, j=1}^{\infty}\left|\sum_{\substack{l=1 \\
l \neq j}}^{\infty} \frac{\left(a_{l-k} a_{j-l}+a_{-l-k} a_{j+l}\right)(2 \pi j)^{2}(2 \pi l)^{2}}{\left((2 \pi l)^{4}-(2 \pi j)^{4}\right)(2 \pi j)^{2}}\right|^{2} \\
& \quad \leq \frac{1}{8 \pi^{4}} \sum_{j=1}^{\infty} \sum_{k=1}^{\infty}\left(\sum_{\substack{l=1 \\
l \neq j}}^{\infty} \frac{\left|a_{l-k}\right|\left|a_{j-l}\right|}{\left|l^{2}-j^{2}\right|}\right)^{2}+\frac{1}{8 \pi^{4}} \sum_{j=1}^{\infty} \sum_{k=1}^{\infty}\left(\sum_{\substack{l=1 \\
l \neq j}}^{\infty} \frac{\left|a_{-l-k}\right|\left|a_{j+l}\right|}{\left|l^{2}-j^{2}\right|}\right)^{2} .
\end{aligned}
$$

We estimate only one of the two terms on the right (the other one is estimated in the same way). For definiteness, we choose the term $\frac{1}{8 \pi^{4}} \sum_{j=1}^{\infty} \sum_{k=1}^{\infty}\left(\sum_{l=1, l \neq j}^{\infty} \frac{\left|a_{l-k}\right|\left|a_{j}-l\right|}{\left|l^{2}-j^{2}\right|}\right)^{2}$ and denote it by γ_{1}. Consider the sequences $f_{j}: \mathbb{N} \rightarrow \mathbb{R}_{+}=[0, \infty), j \geq 1$, of the form $f_{j}(l)=\frac{\left|a_{j-l}\right|}{\left|l^{2}-j^{2}\right|}$ for $l \neq j$ and 0 for $l=j$ and estimate their norms in ℓ^{1} :

$$
\left\|f_{j}\right\|_{\ell^{1}}=\sum_{\substack{l=1 \\ l \neq j}}^{\infty}\left|f_{j}(l)\right|=\sum_{\substack{l=1 \\ l \neq j}}^{\infty} \frac{\left|a_{j-l}\right|}{\left|l^{2}-j^{2}\right|} \leq \frac{\|a\|_{\ell^{2}}}{j}\left(2 \sum_{l=1}^{\infty} \frac{1}{l^{2}}\right)^{\frac{1}{2}}=\frac{\|a\|_{\ell^{2}} \pi}{j \sqrt{3}}, \quad j \geq 1
$$

Since the sequences $k \mapsto\left|a_{|k-l|}\right|: \mathbb{N} \rightarrow \mathbb{R}_{+}, l \geq 1$, denoted by \widetilde{a}_{l} in the sequel, belong to ℓ^{2}, we have

$$
\left\|\sum_{l=1}^{\infty} \widetilde{a}_{l} f_{j}(l)\right\|_{\ell^{2}} \leq \sum_{l=1}^{\infty}\left\|\widetilde{a}_{l}\right\|_{\ell^{2}}\left|f_{j}(l)\right| \leq\|a\|_{\ell^{2}} \sum_{l=1}^{\infty}\left|f_{j}(l)\right| \leq \frac{\|a\|_{\ell^{2}}^{2} \pi}{j \sqrt{3}} .
$$

Consequently,

$$
\gamma_{1}=\frac{1}{8 \pi^{4}} \sum_{j=1}^{\infty}\left\|\sum_{l=1}^{\infty} \widetilde{a}_{l} f_{j}(l)\right\|_{\ell^{2}}^{2} \leq \frac{\|a\|_{\ell^{2}}^{4}}{24 \pi^{2}} \sum_{j=1}^{\infty} \frac{1}{j^{2}}=\frac{\|a\|_{\ell^{2}}^{4}}{144} .
$$

Similar arguments and calculations are applicable in the case where $b c=a p$. Therefore, $B_{1} \Gamma B_{1}\left(L_{b c}^{0}\right)^{-\frac{1}{2}}$ belongs to $\mathfrak{S}_{2}(\mathcal{H})$. Since B_{2} is multiplication by a function b in \mathcal{H}, the operators $B_{1} \Gamma B_{2}\left(L_{b c}^{0}\right)^{-\frac{1}{2}}, B_{2} \Gamma B_{1}\left(L_{b c}^{0}\right)^{-\frac{1}{2}}, B_{2} \Gamma B_{2}\left(L_{b c}^{0}\right)^{-\frac{1}{2}}$ also belong to $\mathfrak{S}_{2}(\mathcal{H})$. Consequently, $B \Gamma B$ belongs to \mathfrak{U}, and so $B \Gamma_{m} B \in \mathfrak{U}$.

It remains to prove that $\left(\Gamma_{m} B\right) J_{m} B \in \mathfrak{U}$. By Lemma 5 the operator $\Gamma_{m} B$ belongs to $\mathfrak{S}_{2}(\mathcal{H})$, and Lemma 6 shows that $J_{m} B$ belongs to \mathfrak{U}. Since the product of two HilbertSchmidt operators is of trace class (see [26]), we see that $\left(\Gamma_{m} B\right) J_{m} B$ belongs to \mathfrak{U}.

Lemma 8. There exists $m \in \mathbb{N}$ such that the operators $B, J_{m} B, \Gamma_{m} B$ satisfy the following conditions:
(a) $\Gamma_{m} B \in \operatorname{End} \mathcal{H}$ and $\left\|\Gamma_{m} B\right\|_{2}<1$;
(b) $\left(\Gamma_{m} B\right) \mathrm{D}\left(L_{b c}^{0}\right) \subset \mathrm{D}\left(L_{b c}^{0}\right)$;
(c) $B \Gamma_{m} B,\left(\Gamma_{m} B\right) J_{m} B \in \mathfrak{U}$, where \mathfrak{U} is the space of admissible perturbations;
(d) $L_{b c}^{0}\left(\Gamma_{m} B\right) x-\left(\Gamma_{m} B\right) L_{b c}^{0} x=B x-\left(J_{m} B\right) x, x \in \mathrm{D}\left(L_{b c}^{0}\right)$;
(e) for every $\varepsilon>0$ there exists $\lambda_{\varepsilon} \in \rho\left(L_{b c}^{0}\right)$ with $\left\|B\left(L_{b c}^{0}-\lambda_{\varepsilon} I\right)^{-1}\right\|<\varepsilon$.

Proof. Lemma 5 shows that $\Gamma_{m} B \in \mathfrak{S}_{2}(\mathcal{H}) \subset$ End \mathcal{H}; moreover, by (2.8), $\left\|\Gamma_{m} B\right\|_{2}<1$ for sufficiently large $m \in \mathbb{N}$. Thus, (a) is fulfilled.

To verify (b) for ΓB (see Remark (3), we argue as in the proof of property 3 in Lemma 4 . Thus, $\left(\Gamma_{m} B\right) \mathrm{D}\left(L_{b c}^{0}\right) \subset \mathrm{D}\left(L_{b c}^{0}\right)$.

Property (c) follows from Lemma 7
To verify (d), we argue as in the proof of property 4 in Lemma 4 Furthermore, by (2.7) and (2.8), for $x \in \mathrm{D}\left(L_{b c}^{0}\right)$ we have

$$
\begin{aligned}
L_{b c}^{0}\left(\Gamma_{m} B\right) x & =L_{b c}^{0} \Gamma B x-L_{b c}^{0} P_{(m)}(\Gamma B) P_{(m)}=L_{b c}^{0} \Gamma B x-P_{(m)}\left(L_{b c}^{0} \Gamma B\right) P_{(m)} \\
& =(B-J B) x+(\Gamma B) L_{b c}^{0} x-P_{(m)}(B-J B) P_{(m)} x-P_{(m)}(\Gamma B) L_{b c}^{0} P_{(m)} x \\
& =\left(B-J_{m} B\right) x+\left(\Gamma_{m} B\right) L_{b c}^{0} x .
\end{aligned}
$$

Thus, (d) follows.
It remains to establish (e). Consider the case of $b c=$ per. For arbitrary $\varepsilon>0$, we choose $n \in \mathbb{N}$ in such a way that

$$
\begin{equation*}
\left(\frac{4\|a\|_{\ell^{2}}^{2}}{3}+\frac{\|b\|_{\ell^{2}}^{2}}{1890}\right)^{\frac{1}{2}} \frac{3^{\frac{3}{4}}}{4 \pi n^{\frac{1}{4}}}<\varepsilon \tag{3.4}
\end{equation*}
$$

Also, we take $-\pi^{4} n$ for the role of λ_{ε}. Direct inspection shows that $B\left(L_{\mathrm{per}}^{0}\right)^{-\frac{3}{4}}$ is bounded and $\left\|B\left(L_{\text {per }}^{0}\right)^{-\frac{3}{4}}\right\|_{2}^{2} \leq \frac{4\|a\|_{\ell^{2}}^{2}}{3}+\frac{\|b\|_{\ell^{2}}^{2}}{1890}$. Then for every $n \in \mathbb{N}$ satisfying (3.4) we have

$$
\begin{aligned}
& \left\|B\left(L_{\mathrm{per}}^{0}-\lambda_{\varepsilon} I\right)^{-1}\right\| \leq\left\|B\left(L_{\mathrm{per}}^{0}\right)^{-\frac{3}{4}}\right\|_{2} \max _{k \geq 1} \frac{\lambda_{k}^{\frac{3}{4}}}{\left|\lambda_{k}-\lambda_{\varepsilon}\right|} \\
& \quad \leq\left(\frac{4\|a\|_{\ell^{2}}^{2}}{3}+\frac{\|b\|_{\ell^{2}}^{2}}{1890}\right)^{\frac{1}{2}} \frac{1}{\pi} \max _{k \geq 1} \frac{k^{3}}{k^{4}+n} \leq\left(\frac{4\|a\|_{\ell^{2}}^{2}}{3}+\frac{\|b\|_{\ell^{2}}^{2}}{1890}\right)^{\frac{1}{2}} \frac{3^{\frac{3}{4}}}{4 \pi n^{\frac{1}{4}}}<\varepsilon
\end{aligned}
$$

This proves (e) for L_{per}^{0}, and the case of $b c=a p$ is treated similarly.
Theorem 6. If $m \in \mathbb{N}$ satisfies

$$
\begin{equation*}
\left\|\Gamma_{m} B\right\|_{2}<1 \tag{3.5}
\end{equation*}
$$

then the operator $L_{b c}=L_{b c}^{0}-B$ is similar to the operator $\widetilde{L}_{b c}=L_{b c}^{0}-\widetilde{B}$, where

$$
\begin{equation*}
\widetilde{B}=J_{m} B_{1}+\left(I+\Gamma_{m} B\right)^{-1}\left(B_{1} \Gamma_{m} B_{1}-\left(\Gamma_{m} B_{1}\right) J_{m} B_{1}\right)+\widetilde{C} \tag{3.6}
\end{equation*}
$$

The operator \widetilde{C} is defined by $\widetilde{C}=J_{m} B_{2}+\left(I+\Gamma_{m} B\right)^{-1}\left(B_{1} \Gamma_{m} B_{2}+B_{2} \Gamma_{m} B_{1}+B_{2} \Gamma_{m} B_{2}-\right.$ $\left.\left(\Gamma_{m} B_{1}\right) J_{m} B_{2}-\left(\Gamma_{m} B_{2}\right) J_{m} B_{1}-\left(\Gamma_{m} B_{2}\right) J_{m} B_{2}\right)$, and moreover,

$$
\begin{equation*}
\left(L_{b c}^{0}-B\right)\left(I+\Gamma_{m} B\right)=\left(I+\Gamma_{m} B\right)\left(L_{b c}^{0}-\widetilde{B}\right) . \tag{3.7}
\end{equation*}
$$

The operator \widetilde{B} in (3.7) is representable in the form

$$
\begin{equation*}
\widetilde{B}=J B_{1}+B_{1} \Gamma B_{1}-\left(\Gamma B_{1}\right) J B_{1}+C \in \mathfrak{U}, \tag{3.8}
\end{equation*}
$$

where $C=C_{0}\left(L_{b c}^{0}\right)^{\frac{1}{2}}$, C_{0} belongs to the trace class $\mathfrak{S}_{1}(\mathcal{H})$ on $\mathrm{L}_{2}[0,1]$ (see [26]).
Proof. The existence of $m \in \mathbb{N}$ satisfying (3.5) was proved in Lemma 5. By Theorem 2 in [22] and Lemma [8, the operator $L_{b c}=L_{b c}^{0}-B$ is similar to $\widetilde{L}_{b c}=L_{b c}^{0}-\widetilde{B}$ and (3.6), (3.7) hold true. The operator C in (3.8) has the form

$$
C=-\left(I+\Gamma_{m} B\right)^{-1}\left(\Gamma_{m} B\right)\left(B_{1} \Gamma_{m} B_{1}-\left(\Gamma_{m} B_{1}\right) J_{m} B_{1}\right)+C_{1}+\widetilde{C}
$$

where

$$
C_{1}=B_{1} \Gamma_{m} B_{1}-B_{1} \Gamma B_{1}-\left(\Gamma_{m} B_{1}\right) J_{m} B_{1}+\left(\Gamma B_{1}\right) J B_{1}+J_{m} B_{1}-J B_{1}
$$

is of finite rank and, consequently, belongs to $\mathfrak{S}_{1}(\mathcal{H})$.
From Lemma 7 it follows that the operators $\left(\Gamma_{m} B\right) J_{m} B$ and $B \Gamma_{m} B$ belong to \mathfrak{U}. Consequently, $\widetilde{C} \in \mathfrak{U}$ and $B_{1} \Gamma_{m} B_{1},\left(\Gamma_{m} B_{1}\right) J_{m} B_{1} \in \mathfrak{U}$. Thus, C is representable in the form $C=C_{0}\left(L_{b c}^{0}\right)^{\frac{1}{2}}$, where C_{0} belongs to $\mathfrak{S}_{1}(\mathcal{H})$ (as the sum of a finite rank operator and the product of two Hilbert-Schmidt operators, see [26])). Thus, $\widetilde{B} \in \mathfrak{U}$.

§4. Proofs of the main results

Theorem 6 allows us to reduce the study of $L_{b c}$ to the study of $\widetilde{L}_{b c}$, and the latter will be done on the basis of Theorem 5y the method of similar operators.

In the next statement, the number m is chosen in such a way that

$$
\begin{equation*}
\left\|\Gamma_{m} B\right\|_{2}<1, \quad \frac{c^{\frac{3}{2}}\|B\|_{*}}{m}<\frac{1}{4}, \tag{4.1}
\end{equation*}
$$

where $c=(2 \pi)^{4}$ if $b c=$ per and $c=(3 \pi)^{4}$ if $b c=a p$. This statement is a principal result of the paper.

Theorem 7. Let $m \in \mathbb{N}$ satisfy (4.1). Then the operator $L_{b c}=L_{b c}^{0}-B$ (consequently, also $\widetilde{L}_{b c}$) is similar to an operator of the form

$$
\begin{equation*}
L_{b c}^{0}-J_{m} X_{*}=L_{b c}^{0}-P_{(m)} X_{*} P_{(m)}-\sum_{j \geq m+1} P_{j} X_{*} P_{j} \tag{4.2}
\end{equation*}
$$

The operator $X_{*} \in \mathfrak{U}$ is a solution of the equation

$$
\begin{equation*}
X=\widetilde{B} \Gamma_{m} X-\left(\Gamma_{m} X\right)\left(J_{m} \widetilde{B}\right)-\left(\Gamma_{m} X\right) J_{m}\left(\widetilde{B} \Gamma_{m} X\right)+\widetilde{B} \tag{4.3}
\end{equation*}
$$

in \mathfrak{U}. The operator $I+\Gamma_{m} X_{*}$ is invertible, and the similarity transformation taking $L_{b c}=L_{b c}^{0}-B$ to $L_{b c}^{0}-J_{m} X_{*}$ is done with the help of the operator

$$
\begin{equation*}
U_{m}=\left(I+\Gamma_{m} B\right)\left(I+\Gamma_{m} X_{*}\right)=I+V_{m}, \tag{4.4}
\end{equation*}
$$

where $V_{m} \in \mathfrak{S}_{2}(\mathcal{H})$. Moreover, $J_{m} X_{*}$ is representable in the form

$$
\begin{equation*}
J_{m} X_{*}=J \widetilde{B}+J(\widetilde{B} \Gamma \widetilde{B})+T_{0} \tag{4.5}
\end{equation*}
$$

where $T_{0}=T_{0}^{\prime}\left(L_{b c}^{0}\right)^{\frac{1}{2}}, T_{0}^{\prime} \in \mathfrak{S}_{1}(\mathcal{H})$.

Proof. By (3.5) (see the first condition in (4.1)), the operator $I+\Gamma_{m} B$ is invertible. Theorem 6 shows that $L_{b c}=L_{b c}^{0}-B$ is similar to $\widetilde{L}_{b c}=L_{b c}^{0}-\widetilde{B}$, where \widetilde{B} is given by (3.8). Since \widetilde{B} belongs to \mathfrak{U} (by Theorem(6), we see that $\widetilde{L}_{b c}=L_{b c}^{0}-\widetilde{B}$ (consequently, also $\left.L_{b c}=L_{b c}^{0}-B\right)$ is similar to an operator $L_{b c}^{0}-J_{m} X_{*}$ of the form (4.2), where $X_{*} \in \mathfrak{U}$ is a solution of equation (4.3). Applying J_{m} to the two sides of this equation, we obtain

$$
\begin{aligned}
J_{m} X_{*} & =J_{m}\left(\widetilde{B} \Gamma_{m} X_{*}\right)+J_{m} \widetilde{B} \\
& =J_{m} \widetilde{B}+J_{m}\left(\widetilde{B} \Gamma_{m} \widetilde{B}\right)+J_{m}\left(\widetilde{B} \Gamma_{m}\left(X_{*}-\widetilde{B}\right)\right)=J \widetilde{B}+J(\widetilde{B} \Gamma \widetilde{B})+T_{0},
\end{aligned}
$$

where $T_{0}=T_{0}^{\prime}\left(L_{b c}^{0}\right)^{\frac{1}{2}}, T_{0}^{\prime} \in \mathfrak{S}_{1}(\mathcal{H})$. We have used the fact that the product of two Hilbert-Schmidt operators is of trace class and that the operators $J_{m} X-J X, \Gamma_{m} X-\Gamma X$, $X \in \mathfrak{U}, m \in \mathbb{N}$, are of finite rank.

Clearly, the operator establishing similarity between $L_{b c}$ and $L_{b c}^{0}-J_{m} X_{*}$ coincides with the operator U_{m} in (4.4). Since $\Gamma_{m} B, \Gamma_{m} X_{*} \in \mathfrak{S}_{2}(\mathcal{H})$, we see that the operator V_{m} in (4.4) belongs to $\mathfrak{S}_{2}(\mathcal{H})$.

Below $\ell^{p}, p \geq 1$, stands for the space of sequences summable with power p. Before proving the main results, we state a lemma.

Lemma 9. The eigenvalues $\widetilde{\mu}_{n}^{ \pm}, n \in \mathbb{N}$, of the matrix

$$
\left(\begin{array}{ll}
c_{1}(n) & c_{2}(n) \\
c_{3}(n) & c_{4}(n)
\end{array}\right)+\left(\begin{array}{ll}
d_{1}(n) & d_{2}(n) \\
d_{3}(n) & d_{4}(n)
\end{array}\right)
$$

where $c_{j} \in \ell^{2}, d_{j} \in \ell^{1}, 1 \leq j \leq 4$, admit a representation of the form

$$
\widetilde{\mu}_{n}^{ \pm}=\frac{c_{1}(n)+c_{4}(n)}{2} \pm \frac{1}{2} \sqrt{\left(c_{1}(n)-c_{4}(n)\right)^{2}+4 c_{2}(n) c_{3}(n)}+\varepsilon_{n}^{ \pm}
$$

where the sequences $\left(\varepsilon_{n}^{ \pm}\right)$belong to $\ell^{\frac{4}{3}}$, i.e., $\sum_{n=1}^{\infty}\left|\varepsilon_{n}^{ \pm}\right|^{\frac{4}{3}}<\infty$.
We proceed to the proof of the main results.
Proof of Theorem 1. Theorem[7(already proved) makes it possible to establish the asymptotics for the eigenvalues of $L_{b c}$. Lemma 1 in [22] and Theorem 7 show that the operator $L_{b c}^{0}-J_{m} X_{*}$ of the form (4.2) commutes with all projections $P_{(m)}, P_{k}, k \geq m+1$ (see the Introduction). Consequently, the spaces $\mathcal{H}_{(m)}=\operatorname{Im} P_{(m)}\left(\right.$ where $\left.P_{(m)}=\sum_{j \leq m} P_{j}\right)$ and $\mathcal{H}_{j}=\operatorname{Im} P_{j}, j \geq m+1$, are invariant for $L_{b c}^{0}-J_{m} X_{*}$. Since the operators $L_{b c}$ and $L_{b c}^{0}-J_{m} X_{*}$ are similar, we have $\sigma\left(L_{b c}\right)=\sigma\left(\widetilde{L}_{b c}\right)=\sigma\left(L_{b c}^{0}-J_{m} X_{*}\right)$. It can easily be shown that $L_{b c}=L_{b c}^{0}-B\left(\right.$ like $\left.L_{b c}^{0}-J_{m} X_{*}\right)$ has compact resolvent. Thus, if $\lambda_{0} \in \sigma\left(L_{b c}^{0}-J_{m} X_{*}\right)$, then there exists a vector $x_{0} \in \mathrm{D}\left(L_{b c}^{0}\right)$ with $\left(L_{b c}^{0}-J_{m} X_{*}\right) x_{0}=\lambda_{0} x_{0}$. Now, the form of $J_{m} X_{*}$ implies

$$
\begin{equation*}
A_{(m)} P_{(m)} x_{0}=\lambda_{0} P_{(m)} x_{0}, \quad A_{j} P_{j} x_{0}=\lambda_{0} P_{j} x_{0}, \quad j \geq m+1, \tag{4.6}
\end{equation*}
$$

where

$$
A_{(m)}=\left(L_{b c}^{0}-J_{m} X_{*} \mid \mathcal{H}_{(m)}\right)
$$

is the restriction of $L_{b c}^{0}-J_{m} X_{*}$ to $\mathcal{H}_{(m)}$;

$$
A_{j}=\left(L_{b c}^{0}-J_{m} X_{*} \mid \mathcal{H}_{j}\right)
$$

is the restriction of $L_{b c}^{0}-J_{m} X_{*}$ to $\mathcal{H}_{j}, j \geq m+1$. Since $I=P_{(m)}+\sum_{j=m+1}^{\infty} P_{j}$ (the projections $P_{j}, j \geq m+1$, constitute a partition of unity), by (4.6) we see that at least one of the vectors $P_{j} x_{0}, j \geq m+1, P_{(m)} x_{0}$, is nonzero. Thus, λ_{0} is an eigenvalue of
the corresponding operator among $A_{j}, j \geq m+1$, and $A_{(m)}$. Thus, we have proved the inclusion

$$
\sigma\left(L_{b c}\right)=\sigma\left(\widetilde{L}_{b c}\right)=\sigma\left(L_{b c}^{0}-J_{m} X_{*}\right) \subset \sigma\left(A_{(m)}\right) \cup\left(\bigcup_{j \geq m+1} \sigma\left(A_{j}\right)\right)
$$

The reverse inclusion is obvious. Consequently,

$$
\begin{equation*}
\sigma\left(L_{b c}\right)=\sigma\left(\widetilde{L}_{b c}\right)=\sigma\left(L_{b c}^{0}-J_{m} X_{*}\right)=\sigma\left(A_{(m)}\right) \cup\left(\bigcup_{j \geq m+1} \sigma\left(A_{j}\right)\right) . \tag{4.7}
\end{equation*}
$$

Since $\mathcal{H}_{(m)}$ is finite-dimensional, $\operatorname{dim} \mathcal{H}_{(m)}=m$, (4.7) implies that the set $\sigma\left(A_{(m)}\right)=\sigma_{(m)}$ is finite. Also, the spaces $\mathcal{H}_{j}, j \geq m+1$, are two-dimensional. Thus, the operators $A_{(m)}$ and $A_{j}, j \geq m+1$, are well defined.

Since each $L_{b c}$ is similar to the corresponding operator $\widetilde{L}_{b c}$, all subsequent calculations will be done for $\widetilde{L}_{b c}$.

We calculate the eigenvalues of $L_{b c}$. For this, we use the representation (3.1), (3.2) of matrices, and also the Fourier series expansions for a and b :

$$
a(t)=\sum_{l \in \mathbb{Z}} a_{l} \mathrm{e}^{2 i \pi l t}, \quad b(t)=\sum_{l \in \mathbb{Z}} b_{l} \mathrm{e}^{2 i \pi l t} .
$$

Suppose that $b c=$ per. Formula (3.1) shows that the block matrix $\left(\mathfrak{A}_{n n}^{\text {per }}\right), n \in \mathbb{N}$, of B_{1} has the form

$$
\mathfrak{A}_{n n}^{\text {per }}=-(2 \pi n)^{2}\left(\begin{array}{ccc}
0 & a_{n} & a_{-n} \\
0 & a_{0} & a_{-2 n} \\
0 & a_{2 n} & a_{0}
\end{array}\right) .
$$

Accordingly, for $b c=a p$ the block matrix $\left(\mathfrak{A}_{n n}^{a p}\right), n \in \mathbb{N}$, has the form

$$
\mathfrak{A}_{n n}^{a p}=-(\pi(2 n+1))^{2}\left(\begin{array}{cc}
a_{0} & a_{-2 n-1} \\
a_{2 n+1} & a_{0}
\end{array}\right) .
$$

The block-diagonal entries $\mathcal{C}_{n n}^{\text {per }}, n \in \mathbb{N}$, of the matrix of the operator $B \Gamma B$ in the case of $b c=$ per have the form

$$
\mathcal{C}_{n n}^{\mathrm{per}}=n^{2} \sum_{\substack{l=1 \\
l \neq n}}^{\infty} \frac{l^{2}}{l^{4}-n^{4}}\left(\begin{array}{ccc}
0 & a_{l} a_{n-l}+a_{-l} a_{n+l} & a_{l} a_{-n-l}+a_{-l} a_{-n+l} \\
0 & a_{n-l} a_{l-n}+a_{n+l} a_{-n-l} & 2 a_{l-n} a_{-n-l} \\
0 & 2 a_{n+l} a_{n-l} & a_{n+l} a_{-n-l}+a_{n-l} a_{l-n}
\end{array}\right) .
$$

Accordingly, for $b c=a p$, the matrix has the form

$$
\begin{aligned}
\mathcal{C}_{n n}^{a p}=(2 n+1)^{2} \sum_{\substack{l=0 \\
l \neq n}}^{\infty} & \frac{(2 l+1)^{2}}{(2 l+1)^{4}-(2 n+1)^{4}} \\
& \times\left(\begin{array}{cc}
a_{n-l} a_{l-n}+a_{n+l+1} a_{-n-l-1} & 2 a_{l-n} a_{-n-l-1} \\
2 a_{n+l+1} a_{n-l} & a_{n+l+1} a_{-n-l-1}+a_{n-l} a_{l-n}
\end{array}\right) .
\end{aligned}
$$

Using Theorem 7, formula (4.5), and Lemma 9 we deduce that the remainder has the form $\gamma_{n} n^{2}$, where

$$
\sum_{n=m+1}^{\infty}\left|\gamma_{n}\right|^{\frac{4}{3}}<\infty
$$

Thus, for $n \geq m+1$ the eigenvalues of L_{per} have the following asymptotics:

$$
\begin{aligned}
& \widetilde{\lambda}_{n}^{\mp}=(2 \pi n)^{4}+(2 \pi n)^{2} a_{0}-n^{2} \sum_{\substack{l=1 \\
l \neq n}}^{\infty} \frac{\left(a_{n+l} a_{-n-l}+a_{n-l} a_{l-n}\right) l^{2}}{l^{4}-n^{4}} \\
& \mp(2 \pi n)^{2}\left(a_{-2 n} a_{2 n}\right.+\frac{1}{4 \pi^{4}}\left(\sum_{\substack{l=1 \\
l \neq n}}^{\infty} \frac{a_{l-n} a_{-n-l} l^{2}}{l^{4}-n^{4}}\right)\left(\sum_{\substack{l=1 \\
l \neq n}}^{\infty} \frac{a_{l+n} a_{n-l} l^{2}}{l^{4}-n^{4}}\right) \\
&\left.-\frac{a_{-2 n}}{2 \pi^{2}} \sum_{\substack{l=1 \\
l \neq n}}^{\infty} \frac{a_{l+n} a_{n-l} l^{2}}{l^{4}-n^{4}}-\frac{a_{2 n}}{2 \pi^{2}} \sum_{\substack{l=1 \\
l \neq n}}^{\infty} \frac{a_{l-n} a_{-n-l} l^{2}}{l^{4}-n^{4}}\right)^{\frac{1}{2}}+\gamma_{n} n^{2}, \\
& n \geq m+1 .
\end{aligned}
$$

This can also be written in the form

$$
\begin{equation*}
\tilde{\lambda}_{n}^{\mp}=(2 \pi n)^{4}+(2 \pi n)^{2} a_{0}+\gamma_{n}^{\mp} n^{2}, \tag{4.8}
\end{equation*}
$$

where $\left(\gamma_{n}^{\mp}\right)$ belongs to ℓ^{2}. Indeed, we have

$$
\left|\sum_{\substack{l=1 \\ l \neq n}}^{\infty} \frac{a_{l+n} a_{n-l} l^{2}}{l^{4}-n^{4}}\right| \leq \sum_{k=1}^{\infty} \frac{\left|a_{k}\right|\left|a_{2 n+k}\right|}{k(k+2 n)}=\sum_{k=1}^{\infty} \frac{\widetilde{\xi_{k}}}{k+2 n}=\sum_{k=1}^{\infty} \widetilde{\xi}_{k} \xi_{k+2 n},
$$

where the sequence ($\widetilde{\xi}_{k}$) belongs to ℓ^{1} and the sequence $\xi_{k+2 n}$ is summable with a power greater than 1. Then

$$
\left\|\sum_{k=1}^{\infty} \widetilde{\xi}_{k} \xi_{k+2 n}\right\|_{\ell^{2}} \leq \sum_{k=1}^{\infty}\left|\widetilde{\xi}_{k}\right|\|\xi\|_{\ell^{2}}<\infty .
$$

Estimating all summands in the asymptotic formula for eigenvalues in a similar way, we arrive at (4.8).

In the case of $b c=a p$, we argue much as above to obtain the following asymptotic formula for the eigenvalues of $L_{a p}$:

$$
\begin{aligned}
& \widetilde{\lambda}_{n}^{\mp}=(\pi(2 n+1))^{4}+(\pi(2 n+1))^{2} a_{0}-(2 n+1)^{2} \sum_{\substack{l=0 \\
l \neq n}}^{\infty} \frac{\left(a_{n+l+1} a_{-n-l-1}+a_{n-l} a_{l-n}\right)(2 l+1)^{2}}{(2 l+1)^{4}-(2 n+1)^{4}} \\
& \mp(\pi(2 n+1))^{2}\left(a_{-2 n-1} a_{2 n+1}+\frac{4}{\pi^{4}} \sum_{\substack{l=0 \\
l \neq n}}^{\infty} \frac{a_{l-n} a_{-n-l-1}(2 l+1)^{2}}{(2 l+1)^{4}-(2 n+1)^{4}} \sum_{\substack{l=0 \\
l \neq n}}^{\infty} \frac{a_{n+l+1} a_{n-l}(2 l+1)^{2}}{(2 l+1)^{4}-(2 n+1)^{4}}\right. \\
&\left.-\frac{2 a_{-2 n-1}}{\pi^{2}} \sum_{\substack{l=0 \\
l \neq n}}^{\infty} \frac{a_{n+l+1} a_{n-l}(2 l+1)^{2}}{(2 l+1)^{4}-(2 n+1)^{4}}-\frac{2 a_{2 n+1}}{\pi^{2}} \sum_{\substack{l=0 \\
l \neq n}}^{\infty} \frac{a_{l-n} a_{-n-l-1}(2 l+1)^{2}}{(2 l+1)^{4}-(2 n+1)^{4}}\right)^{\frac{1}{2}}+\widetilde{\gamma}_{n} n^{2}, \\
& n \geq m+1,
\end{aligned}
$$

where $\sum_{n=m+1}^{\infty}\left|\widetilde{\gamma}_{n}\right|^{\frac{4}{3}}<\infty$. We also have the following abridged asymptotic formula:

$$
\widetilde{\lambda}_{n}^{\mp}=(\pi(2 n+1))^{4}+(\pi(2 n+1))^{2} a_{0}+\widetilde{\gamma}_{n}^{\mp} n^{2}
$$

where $\left(\widetilde{\gamma}_{n}^{\mp}\right)$ belongs to ℓ^{2}. This completes the proof of the theorem.
Proof of Theorem 2, If a is a function of bounded variation, then its Fourier coefficients admit the estimate $\left|a_{n}\right| \leq \frac{c_{0}}{|n|}$, where c_{0} is some constant (see [27]). Now, arguing as in the proof of Theorem 1 , we establish the claim.

Corollary 1. The operator $L_{b c}=L_{b c}^{0}-B, b c \in\{$ per, $a p\}$ is spectral in the sense of Dunford (see [16).

In what follows, we consider the spectral projections described in the Introduction. Note that we have the following partition of unity:

$$
I=\sum_{k \geq m+1} P_{k}+P_{(m)}, \quad I=\sum_{k \geq m+1} \widetilde{P}_{k}+\widetilde{P}_{(m)},
$$

where $\widetilde{P}_{(m)}=\left(I+V_{m}\right) P_{(m)}\left(I+V_{m}\right)^{-1}$.
Proof of Theorem 3. Theorem 7 implies that $L_{b c}$ is similar to $L_{b c}^{0}-J_{m} X_{*}$ (see formula (4.2)) and the corresponding transformation is done by the operator U_{m} described in (4.4). The operator V_{m} in (4.4) has the form $V_{m}=\Gamma_{m} B+\Gamma_{m} X_{*}+\left(\Gamma_{m} B\right)\left(\Gamma_{m} X_{*}\right)$. Since $L_{b c}^{0}-B=\left(I+V_{m}\right)\left(L_{b c}^{0}-J_{m} X_{*}\right)\left(I+V_{m}\right)^{-1}$, by Lemma 1 in [22] the spectral projections $\widetilde{P}(\Omega)$ and $P(\Omega)$ are similar, moreover, $\widetilde{P}(\Omega)$ admits the representation $\widetilde{P}(\Omega)=(I+$ $\left.V_{m}\right) P(\Omega)\left(I+V_{m}\right)^{-1}$. Consequently, $\widetilde{P}(\Omega)-P(\Omega)$ is representable in the form

$$
\widetilde{P}(\Omega)-P(\Omega)=\left(I+V_{m}\right) P(\Omega)\left(I+V_{m}\right)^{-1}-P(\Omega)=\left(V_{m} P(\Omega)-P(\Omega) V_{m}\right)\left(I+V_{m}\right)^{-1} .
$$

First, we consider the case of $b c=$ per. For further use, we need to estimate the quantities $\left\|\Gamma_{m} X_{*} P(\Omega)\right\|_{2},\left\|P(\Omega) \Gamma_{m} X_{*}\right\|_{2},\left\|\Gamma_{m} B P(\Omega)\right\|_{2}$, and $\left\|P(\Omega) \Gamma_{m} B\right\|_{2}$. By (3.1) and Remark 3, we have

$$
\begin{aligned}
\left\|\Gamma_{m} X_{*} P(\Omega)\right\|_{2}^{2} & =\left\|\Gamma_{m} X_{0}\left(L_{b c}^{0}\right)^{\frac{1}{2}} P(\Omega)\right\|_{2}^{2}=\left\|\sum_{\substack{p \geq 0, j \geq k(\Omega) \\
p \neq j}}^{\infty} \frac{\left(P_{p} X_{0} P_{j}\right) \lambda_{j}^{2}}{\lambda_{p}-\lambda_{j}}\right\|_{2}^{2} \\
& \leq c^{3} \max _{\substack{p \geq 0, j \geq k(\Omega) \\
p \neq j}} \frac{j^{4}}{\left.p^{4}-j^{4}\right)^{2}} \sum_{\substack{p \geq 0, j \geq k(\Omega) \\
p \neq j}}^{\infty}\left\|P_{p} X_{0} P_{j}\right\|_{2}^{2} \\
& \leq c^{3} \max _{\substack{p \geq 0, j \geq k(\Omega) \\
p \neq j}} \frac{1}{\left(p^{2}-j^{2}\right)^{2}}\left\|X_{0}\right\|_{2}^{2} \leq \frac{c^{3}}{(2 k(\Omega)-1)^{2}}\left\|X_{0}\right\|_{2}^{2} .
\end{aligned}
$$

Thus,

$$
\left\|\Gamma_{m} X_{*} P(\Omega)\right\|_{2} \leq \frac{c^{\frac{3}{2}}\left\|X_{0}\right\|_{2}}{2 k(\Omega)-1}
$$

where $X_{0} \in \mathfrak{S}_{2}(\mathcal{H})$ is taken from the representation $X_{*}=X_{0}\left(L_{b c}^{0}\right)^{\frac{1}{2}}$, and $c=(2 \pi)^{4}$ for $b c=$ per, $c=(3 \pi)^{4}$ for $b c=a p$.

Similarly, we prove the estimate

$$
\left\|P(\Omega) \Gamma_{m} X_{*}\right\|_{2} \leq \frac{c^{\frac{3}{2}}\left\|X_{0}\right\|_{2}}{2 k(\Omega)-1} .
$$

Next, we estimate the quantity $\left\|\Gamma_{m} B P(\Omega)\right\|_{2}$. Since B_{2} is multiplication by the function b in \mathcal{H}, it suffices to estimate the quantities $\left\|\Gamma_{m} B_{1} P(\Omega)\right\|_{2}$ and $\left\|P(\Omega) \Gamma_{m} B_{1}\right\|_{2}$. Using the matrix representations (3.1), (3.2), and Remark 3 in the case of $b c=$ per we obtain

$$
\begin{gathered}
\left\|\Gamma B_{1} P(\Omega)\right\|_{2}^{2}=\sum_{j \geq k(\Omega)}^{\infty}\left|\left(\Gamma B_{1} e_{j}^{1}, e_{0}\right)\right|^{2}+\sum_{j \geq k(\Omega)}^{\infty}\left|\left(\Gamma B_{1} e_{j}^{2}, e_{0}\right)\right|^{2}+\sum_{\substack{p=1 \\
j \neq j, j \geq k(\Omega)}}^{\infty}\left|\left(\Gamma B_{1} e_{j}^{1}, e_{p}^{1}\right)\right|^{2} \\
\quad+\sum_{\substack{p=1 \\
p \neq j, j \geq k(\Omega)}}^{\infty}\left|\left(\Gamma B_{1} e_{j}^{2}, e_{p}^{1}\right)\right|^{2}+\sum_{\substack{p=1 \\
p \neq j, j \geq k(\Omega)}}^{\infty}\left|\left(\Gamma B_{1} e_{j}^{1}, e_{p}^{2}\right)\right|^{2}+\sum_{\substack{p=1 \\
p \neq j, j \geq k(\Omega)}}^{\infty}\left|\left(\Gamma B_{1} e_{j}^{2}, e_{p}^{2}\right)\right|^{2}
\end{gathered}
$$

$$
\begin{aligned}
= & \sum_{j \geq k(\Omega)}^{\infty} \frac{\left|a_{j}\right|^{2}(2 \pi j)^{4}}{(2 \pi j)^{8}}+\sum_{j \geq k(\Omega)}^{\infty} \frac{\left|a_{-j}\right|^{2}(2 \pi j)^{4}}{(2 \pi j)^{8}}+\sum_{\substack{p=1 \\
p \neq j, j \geq k(\Omega)}}^{\infty} \frac{\left|a_{j-p}\right|^{2}(2 \pi j)^{4}}{\left((2 \pi p)^{4}-(2 \pi j)^{4}\right)^{2}} \\
& +\sum_{\substack{p=1 \\
p \neq j, j \geq k(\Omega)}}^{\infty} \frac{\left|a_{-j-p}\right|^{2}(2 \pi j)^{4}}{\left((2 \pi p)^{4}-(2 \pi j)^{4}\right)^{2}}+\sum_{\substack{p=1 \\
p \neq j, j \geq k(\Omega)}}^{\infty} \frac{\left|a_{j+p}\right|^{2}(2 \pi j)^{4}}{\left((2 \pi p)^{4}-(2 \pi j)^{4}\right)^{2}}+\sum_{\substack{p=1 \\
p \neq j, j \geq k(\Omega)}}^{\infty} \frac{\left|a_{-j+p}\right|^{2}(2 \pi j)^{4}}{\left((2 \pi p)^{4}-(2 \pi j)^{4}\right)^{2}} \\
\leq & \frac{1}{(2 \pi)^{4}} \sum_{j \geq k(\Omega)}^{\infty} \frac{\left|a_{j}\right|^{2}}{j^{4}}+\frac{1}{(2 \pi)^{4}} \sum_{j \geq k(\Omega)}^{\infty} \frac{\left|a_{-j}\right|^{2}}{j^{4}}+\frac{1}{(2 \pi)^{4}} \sum_{\substack{p=1 \\
p \neq j, j \geq k(\Omega)}}^{\infty} \frac{\left|a_{j-p}\right|^{2}}{\left(p^{2}-j^{2}\right)^{2}} \\
& +\frac{1}{(2 \pi)^{4}} \sum_{p=1}^{p \neq j, j \geq k(\Omega)}<\frac{\left|a_{-j-p}\right|^{2}}{\left(p^{2}-j^{2}\right)^{2}}+\frac{1}{(2 \pi)^{4}} \sum_{p \neq j, j \geq k(\Omega)}^{\infty} \frac{\left|a_{j+p}\right|^{2}}{\left(p^{2}-j^{2}\right)^{2}}+\frac{1}{(2 \pi)^{4}} \sum_{p \neq j, j \geq k(\Omega)}^{\infty} \frac{\left|a_{-j+p}\right|^{2}}{\left(p^{2}-j^{2}\right)^{2}} \\
\leq & \frac{1}{2 \pi^{4}}\|a\|_{\ell^{2}}^{2}\left(\sum_{p=1}^{k(\Omega)-1} \frac{1}{(p+k(\Omega))^{2}(k(\Omega)-p)}+\sum_{p=k(\Omega)+1}^{\infty} \frac{1}{(p+k(\Omega))^{2}(p-k(\Omega))}\right) \\
\leq & \frac{\|a\|_{\ell}^{2} c_{1}^{2}}{k^{2}(\Omega)} \ln \left(\frac{(k(\Omega)-1)(2 k(\Omega)+1)}{k(\Omega)+1}\right),
\end{aligned}
$$

where $c_{1}>0$ is a constant. Consequently,

$$
\left\|\Gamma_{m} B P(\Omega)\right\|_{2} \leq \frac{c_{1}\|a\|_{\ell^{2}}}{k(\Omega)}\left(\ln \left(\frac{(k(\Omega)-1)(2 k(\Omega)+1)}{k(\Omega)+1}\right)\right)^{\frac{1}{2}}
$$

Similar arguments yield the same estimate (with a constant $c_{2}>0$) in the case of $b c=a p$. Similar inequalities hold for $\left\|P(\Omega) \Gamma_{m} B\right\|_{2}$ in both cases.

Using the above estimates, inequality (3.5), and also the representation of the operator V_{m}, we arrive at

$$
\begin{aligned}
& \|\widetilde{P}(\Omega)-P(\Omega)\|_{2} \leq\left\|V_{m} P(\Omega)\right\|_{2}+\left\|P(\Omega) V_{m}\right\|_{2} \\
& \quad \leq\left\|\Gamma_{m} B_{1} P(\Omega)\right\|_{2}+\left\|\Gamma_{m} X_{*} P(\Omega)\right\|_{2}+\left\|P(\Omega) \Gamma_{m} B_{1}\right\|_{2}+\left\|P(\Omega) \Gamma_{m} X_{*}\right\|_{2} \\
& \quad+\left\|\Gamma_{m} X_{*} P(\Omega)\right\|_{2}+\left\|P(\Omega) \Gamma_{m} B_{1}\right\|_{2} \\
& \leq \frac{3 c_{1}\|a\|_{\ell^{2}}}{k(\Omega)}\left(\ln \left(\frac{(k(\Omega)-1)(2 k(\Omega)+1)}{k(\Omega)+1}\right)\right)^{\frac{1}{2}}+\frac{3 c^{\frac{3}{2}}\left\|X_{0}\right\|_{2}}{2 k(\Omega)-1} \leq \frac{\widetilde{M}(\ln k(\Omega))^{\frac{1}{2}}}{k(\Omega)}
\end{aligned}
$$

where $\widetilde{M}>0$ is a constant independent of $k(\Omega)$, with $c=(2 \pi)^{4}$ for $b c=$ per, and $c=(3 \pi)^{4}$ for $b c=a p$.

Corollary 2. Under the assumptions of Theorem 3, we have

$$
\left\|\widetilde{P}_{n}-P_{n}\right\|_{2} \leq \frac{M_{1}}{n}, \quad n \in \mathbb{N}
$$

where $M_{1}>0$ is a constant. In this case Ω is a singleton $\{n\}$ and there is no summation on j.

Corollary 3. Under the assumptions of Theorem 3, we have

$$
\sum_{n=m+1}^{\infty}\left\|\widetilde{P}_{n}-P_{n}\right\|_{2}^{2}<\frac{M_{1}^{2}}{m^{2}}
$$

Proof of Theorem 4. The partition of unity formulas and Theorem 3 imply

$$
\begin{aligned}
\| \widetilde{P}_{(m)} & +\sum_{k=m+1}^{n} \widetilde{P}_{k}-P_{(m)}-\sum_{k=m+1}^{n} P_{k} \|_{2} \\
& =\left\|\widetilde{P}_{(m)}+\sum_{k=m+1}^{\infty} \widetilde{P}_{k}-\sum_{k=n+1}^{\infty} \widetilde{P}_{k}-P_{(m)}-\sum_{k=m+1}^{\infty} P_{k}+\sum_{k=n+1}^{\infty} P_{k}\right\|_{2} \\
& =\left\|\sum_{k=n+1}^{\infty} \widetilde{P}_{k}-\sum_{k=n+1}^{\infty} P_{k}\right\|_{2} \leq \frac{\widetilde{M}(\ln n)^{\frac{1}{2}}}{n},
\end{aligned}
$$

and the proof is complete.
Corollary 4. The spectral resolutions for $L_{b c}=L_{b c}^{0}-B$ and $L_{b c}^{0}$ converge uniformly:

$$
\lim _{n \rightarrow \infty}\left\|\widetilde{P}_{(m)}+\sum_{k=m+1}^{n} \widetilde{P}_{k}-P_{(m)}-\sum_{k=m+1}^{n} P_{k}\right\|_{2}=0
$$

§5. Construction of an analytic semigroup of operators

In this section, the results about the spectral properties of $L_{b c}=L_{b c}^{0}-B$ obtained above (especially, Theorem (7), will be used to show that the operator $-L_{b c}=-L_{b c}^{0}+B$ is sectorial and to construct the analytic semigroup whose generator is this operator.

Definition 4 (see [28). A linear operator

$$
C: \mathrm{D}(C) \subset \mathcal{X} \rightarrow \mathcal{X}
$$

in a Banach space \mathcal{X} is said to be sectorial if it is closed and densely defined and, moreover, for some $\varphi \in\left(\frac{\pi}{2}, \pi\right), M \geq 1$, and real a, the sector $S_{a, \varphi}=\{\lambda \in \mathbb{C}:|\arg (\lambda-a)|<$ $\varphi, \lambda \neq a\}$ is included in the resolvent set for C and $\left\|(\lambda-C)^{-1}\right\| \leq \frac{M}{|\lambda-a|}$ for all $\lambda \in S_{a, \varphi}$.

In the next theorem and its proof, we use the notation of Theorem 7 .
Theorem 8. The differential operator $-L_{b c}=-L_{b c}^{0}+B$ is sectorial and generates an analytic semigroup of operators $T: \mathbb{R}_{+} \rightarrow$ End \mathcal{H}. Furthermore,

$$
T(t)=U_{m} \widetilde{T}(t) U_{m}^{-1}
$$

where $U_{m}=\left(I+\Gamma_{m} B\right)\left(I+\Gamma_{m} X_{*}\right)$ and $\widetilde{T}: \mathbb{R}_{+} \rightarrow$ End \mathcal{H} is the semigroup generated by $-L_{b c}^{0}+J_{m} X_{*}$. Moreover, this semigroup is similar to a semigroup of the form $T_{(m)}(t) \oplus$ $T^{(m)}(t)$ acting on $\mathrm{L}_{2}[0,1]=\mathcal{H}_{(m)} \oplus \mathcal{H}^{(m)}$, where $\mathcal{H}_{(m)}=\operatorname{Im} P_{(m)}$, $\mathcal{H}^{(m)}=\operatorname{Im}\left(I-P_{(m)}\right)$, and $T^{(m)}(t)$ is representable in the form

$$
T^{(m)}(t) x=\sum_{k=m+1}^{\infty} \mathrm{e}^{C_{k} t} P_{k} x, \quad x \in \mathrm{~L}_{2}[0,1],
$$

where $C_{k} \in$ End $\mathcal{H}_{k}, \mathcal{H}_{k}=\operatorname{Im} P_{k}$. The natural number m is chosen so that the claim of Theorem 7 be true.

Proof. By Theorem 7 and formula (4.7), the operator $L_{b c}$ (respectively, $-L_{b c}$) is similar to $L_{b c}^{0}-J_{m} X_{*}$ (respectively, to $\left.-L_{b c}^{0}+J_{m} X_{*}\right)$, where $X_{*}=X_{0}\left(L_{b c}^{0}\right)^{\frac{1}{2}}, X_{0} \in \mathfrak{S}_{2}(\mathcal{H})$. Consequently,

$$
\sigma\left(-L_{b c}\right)=\sigma\left(-L_{b c}^{0}+J_{m} X_{*}\right)=\sigma_{m} \cup\left(\bigcup_{j \geq m+1} \sigma_{j}\right)
$$

where σ_{m} is a finite set;

$$
R\left(\lambda,-L_{b c}\right)=U_{m} R\left(\lambda,-L_{b c}^{0}+J_{m} X_{*}\right) U_{m}^{-1}
$$

where U_{m} is the transformation operator, $\lambda \in \rho\left(-L_{b c}\right)=\rho\left(-L_{b c}^{0}+J_{m} X_{*}\right), \lambda \notin \sigma\left(-L_{b c}\right)$.
To estimate the resolvent of $-L_{b c}^{0}+J_{m} X_{*}$ we consider the identities

$$
\begin{aligned}
-L_{b c}^{0}+J_{m} X_{*}-\lambda I & =\left(I+J_{m} X_{*}\left(-L_{b c}^{0}-\lambda I\right)^{-1}\right)\left(-L_{b c}^{0}-\lambda I\right) \\
& =\left(I+J_{m} X_{0}\left(L_{b c}^{0}\right)^{\frac{1}{2}}\left(-L_{b c}^{0}-\lambda I\right)^{-1}\right)\left(-L_{b c}^{0}-\lambda I\right)
\end{aligned}
$$

We exhibit a sector containing the spectrum of $-L_{b c}^{0}+J_{m} X_{*}$ and such that the operator $I+J_{m} X_{0}\left(L_{b c}^{0}\right)^{\frac{1}{2}}\left(-L_{b c}^{0}-\lambda I\right)^{-1}$ is invertible. By 1), the spectrum of $-L_{b c}^{0}+J_{m} X_{*}$ is the union of a finite set and the sets $\sigma_{j}, j \geq m+1$, where $\sigma_{j}=\left\{-\widetilde{\lambda}_{j}\right\}$. All eigenvalues of $-L_{b c}^{0}+J_{m} X_{*}$ belong to the sector $\gamma=\gamma_{0}+2\left\|X_{0}\right\|_{2}^{2}$, where γ_{0} is the sector with vertex at zero such that the argument obeys the condition $\frac{3 \pi}{4} \leq \arg z \leq \frac{5 \pi}{4}$. For every λ in γ, the operator $I+J_{m} X_{0}\left(L_{b c}^{0}\right)^{\frac{1}{2}}\left(-L_{b c}^{0}-\lambda I\right)^{-1}$ is invertible and we have $\left\|J_{m} X_{0}\left(L_{b c}^{0}\right)^{\frac{1}{2}}\left(-L_{b c}^{0}-\lambda I\right)^{-1}\right\| \leq \frac{1}{2}$. A direct calculation shows that the resolvent satisfies the inequality

$$
\left\|R\left(\lambda,-L_{b c}^{0}+J_{m} X_{*}\right)\right\| \leq \frac{2}{\left|\pi^{4}+\lambda\right|} \leq \frac{2}{\left|\lambda-2\left\|X_{0}\right\|_{2}^{2}\right|}
$$

Consequently, the operator $-L_{b c}^{0}+J_{m} X_{*}$ (thus, also $-L_{b c}$) is sectorial. By Theorem II.4.6 in [29], the operator $-L_{b c}$ is the generator of an analytic semigroup $T(t)=$ $U_{m} \widetilde{T}(t) U_{m}^{-1}$ (because $-L_{b c}$ and $-L_{b c}^{0}+J_{m} X_{*}$ are similar), where

$$
\widetilde{T}(t)=\frac{1}{2 \pi i} \int_{\Gamma} \mathrm{e}^{\lambda t} R\left(\lambda,-L_{b c}^{0}+J_{m} X_{*}\right) \mathrm{d} \lambda
$$

Consider the orthogonal decomposition

$$
\mathcal{H}=\mathcal{H}_{(m)} \oplus \mathcal{H}^{(m)}, \text { where } \mathcal{H}_{(m)}=\operatorname{Im} P_{(m)}, \quad \mathcal{H}^{(m)}=\operatorname{Im}\left(\sum_{k \geq m+1} P_{k}\right)
$$

Accordingly, the operator $-L_{b c}^{0}+J_{m} X_{*}$ decomposes as follows:

$$
-L_{b c}^{0}+J_{m} X_{*}=\left(-\widetilde{A}_{(m)}+P_{(m)} \mid \mathcal{H}_{(m)}\right) \oplus \widetilde{A}^{(m)}
$$

where $\widetilde{A}_{(m)}$ is the restriction of $L_{b c}^{0}-J_{m} X_{*}$ to $\mathcal{H}_{(m)}$ and $\widetilde{A}^{(m)}$ is the restriction of $-L_{b c}^{0}+J_{m} X_{*}$ to $\mathcal{H}^{(m)}$. By [29, the semigroup $T(t)$ is similar to $T_{(m)}(t) \oplus T^{(m)}(t)$, where $T^{(m)}(t)$ is representable in the form

$$
T^{(m)}(t) x=\sum_{k=m+1}^{\infty} \mathrm{e}^{C_{k} t} P_{k} x, \quad x \in \mathcal{H},
$$

with $C_{k} \in \operatorname{End} \mathcal{H}_{k}, \mathcal{H}_{k}=\operatorname{Im} P_{k}$. Using the calculations made in the proof of Theorem 1 , we obtain the following formula for the matrix of C_{k} in the case of L_{per} :

$$
-(2 \pi k)^{4} I-\left(\begin{array}{ccc}
0 & a_{k}-a_{l} a_{k-l}-a_{-l} a_{k+l} & a_{-k}-a_{l} a_{-k-l}-a_{-l} a_{-k+l} \\
0 & v_{1}^{\text {perer }}(k)+k^{2} \xi_{n}^{1} & v_{2}^{\text {per }}(k)+k^{2} \xi_{n}^{2} \\
0 & v_{3}^{\text {per }}(k)+k^{2} \xi_{n}^{3} & v_{4}^{\text {per }}(k)+k^{2} \xi_{n}^{4}
\end{array}\right) \text {, }
$$

where I is the unit matrix and

$$
\begin{aligned}
& v_{1}^{\mathrm{per}}(k)=(2 \pi k)^{2} a_{0}-k^{2} \sum_{\substack{l=1 \\
l \neq k}}^{\infty} \frac{\left(a_{k-l} a_{l-k}+a_{k+l} a_{-k-l}\right) l^{2}}{l^{4}-k^{4}}, \\
& v_{2}^{\mathrm{per}}(k)=(2 \pi k)^{2} a_{-2 k}-2 k^{2} \sum_{\substack{l=1 \\
l \neq k}}^{\infty} \frac{a_{l-k} a_{-l-k} l^{2}}{l^{4}-k^{4}}, \\
& v_{3}^{\mathrm{per}}(k)=(2 \pi k)^{2} a_{2 k}-2 k^{2} \sum_{\substack{l=1 \\
l \neq k}}^{\infty} \frac{a_{k-l} a_{l+k} l^{2}}{l^{4}-k^{4}}, \\
& v_{4}^{\mathrm{per}}(k)=(2 \pi k)^{2} a_{0}-k^{2} \sum_{\substack{l=1 \\
l \neq k}}^{\infty} \frac{\left(a_{k+l} a_{-l-k}+a_{k-l} a_{l-k}\right) l^{2}}{l^{4}-k^{4}}, \\
& \left(\xi_{n}^{3}\right),\left(\xi_{n}^{4}\right) \in \ell^{1} .
\end{aligned}
$$

with $\left(\xi_{n}^{1}\right),\left(\xi_{n}^{2}\right),\left(\xi_{n}^{3}\right),\left(\xi_{n}^{4}\right) \in \ell^{1}$.
Accordingly, for $L_{a p}$ this matrix has the following form:

$$
-(\pi(2 k+1))^{4} I-\left(\begin{array}{cc}
v_{1}^{a p}(k)+(2 k+1)^{2} \xi_{n}^{5} & v_{2}^{a p}(k)+(2 k+1)^{2} \xi_{n}^{6} \\
v_{3}^{a}(k)+(2 k+1)^{2} \xi_{n}^{7} & v_{4}^{a p}(k)+(2 k+1)^{2} \xi_{n}^{8}
\end{array}\right),
$$

where I is the unit matrix and

$$
\begin{aligned}
& v_{1}^{a p}(k)=(\pi(2 k+1))^{2} a_{0}-(2 k+1)^{2} \sum_{\substack{l=0 \\
l \neq k}}^{\infty} \frac{\left(a_{l-k} a_{k-l}+a_{k+l+1} a_{-k-l-1}\right)(2 l+1)^{2}}{(2 l+1)^{4}-(2 k+1)^{4}}, \\
& v_{2}^{a p}(k)=(\pi(2 k+1))^{2} a_{-2 k-1}-2(2 k+1)^{2} \sum_{\substack{l=0 \\
l \neq k}}^{\infty} \frac{a_{l-k} a_{-l-k-1}(2 l+1)^{2}}{(2 l+1)^{4}-(2 k+1)^{4}}, \\
& v_{3}^{a p}(k)=(\pi(2 k+1))^{2} a_{2 k+1}-2(2 k+1)^{2} \sum_{\substack{l=0 \\
l \neq k}}^{\infty} \frac{a_{k-l} a_{l+k+1}(2 l+1)^{2}}{(2 l+1)^{4}-(2 k+1)^{4}}, \\
& v_{4}^{a p}(k)=(\pi(2 k+1))^{2} a_{0}-(2 k+1)^{2} \sum_{\substack{l=0 \\
l \neq k}}^{\infty} \frac{\left(a_{k+l+1} a_{-l-k-1}+a_{k-l} a_{l-k}\right)(2 l+1)^{2}}{(2 l+1)^{4}-(2 k+1)^{4}},
\end{aligned}
$$

with $\left(\xi_{n}^{5}\right),\left(\xi_{n}^{6}\right),\left(\xi_{n}^{7}\right),\left(\xi_{n}^{8}\right) \in \ell^{1}$. This proves the theorem.
The author is grateful to the referee for useful remarks and for attention to this work.

References

[1] S. G. Mikhlin, Variational methods in mathematical physics, 2nd ed., Nauka, 1970; English transl., Fist edition, Pergamon Press Book, New York, 1964. MR 0172493 (30:2712)
[2] L. Collatz, Eigenwertaufgaten mit technischen Anweddungen, Math. Anwendungen Phys. Tech., Bd. 19, Akad. Verlag, Leipzig, 1949. MR0031337
[3] V. A. Yakubovich and V. M. Starzhinskiĭ, Linear differential equations with periodic coefficients and their applications, Nauka, Moscow, 1972; English transl., Halsted Press, New-York, 1975. MR0364740 (51:994)
[4] E. Korotyaev and I. Lobanov, Schrödinger operators on zigzag nanotubes, Ann. Henri Poincare 8 (2007), no. 6, 1151-1176. MR2355344
[5] A. Badanin and E. Korotyaev, Spectral asymptotics for periodic fourth-order operators, Int. Math. Res. Not. IMRN 2005, no. 45, 2775-2814. MR2182471
[6] , Spectral estimates for a fourth-order periodic operator, Algebra i Analiz 22 (2010), no. 5, 1-48; English transl., St. Petersburg Math. J. 22 (2010), no. 5, 703-736. MR2828825
[7] , Eigenvalue asymptotics for fourth order operators on the unit interval, arXiv:1309. 3449.
[8] , Even order periodic operators on the real line, Int. Math. Res. Not. IMRN 2012, no. 5, 1143-1194. MR2899961
[9] O. A. Veliev, On the nonself-adjoint ordinary differential operators with periodic boundary conditions, Israel J. Math. 176 (2010), 195-207. MR2653191
[10] V. Mikhailets and V. Molyboga, Singular eigenvalue problems on the circle, Methods Funct. Anal. Topology 10 (2004), no. 3, 44-53. MR2092532
[11] , Uniform estimates for the semi-periodic eigenvalues of the singular differential operators, Methods Funct. Anal. Topology 10 (2004), no. 4, 30-57. MR2109216
[12] V. Molyboga, Estimates for periodic eigenvalues of the differential operator $(-1)^{m} d^{2 m} / d x^{2 m}+V$ with V-distribution, Methods Funct. Anal. Topology 9 (2003), no. 2, 163-178. MR1999778
[13] M. A. Naimark, Linear differential operators, 2nd ed., revised and augmented, Nauka, Moscow, 1969; English transl., Pt. I, II, Frederic Ungar Publ. Co., New York, 1967-1968. MR0216050 (35:6885), MR0262880 (41:7485)
[14] P. Dzhakov and B. S. Mityagin, Instability zones of one-dimensional periodic Schrödinger and Dirac operators, Uspekhi Mat. Nauk 61 (2006), no. 4, 77-182; English transl., Russian Math. Surveys 61 (2006), no. 4, 663-766. MR2279044
[15] T. Kato, Perturbation theory for linear operators, 2nd ed., Grundlehren Math. Wiss., Bd. 132, Springer-Verlag, Berlin, 1976. MR0407617
[16] N. Dunford and J. T. Schwartz, Linear operators. Pt. III. Spectral operators, Pure Appl. Math., vol. 7, Intersci. Publ., New York, 1971. MR0421888 (54:1009)
[17] M. S. Agranovich, Spectral properties of diffraction problems, in: Generalized method of eigenoscillations in diffraction theory, Nauka, Moscow, 1974, pp. 289-416; English transl., Wilew, Berlin, 1999. MR 1713196
[18] A. G. Baskakov, Methods of abstract harmonic analysis in the theory of perturbations of linear operators, Sibirsk. Mat. Zh. 24 (1983), no. 1, 21-39; English transl., Sib. Math. J. 24 (1983), no. 1, 17-32. MR 688589
[19] , The averaging method in the theory of perturbations of linear differential operators, Differ. Uravn. 21 (1985), no. 4, 555-562; English transl., Differ. Equ. 21 (1985), no. 4, 357-362. MR791103
[20] , A theorem on spliting of an operator and some related problems in the analytic theory of perturbations, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), no. 3, 435-457; English transl., Math. USSR-Izv. 28 (1987), no. 3, 421-444. MR854591
\qquad , Spectral analysis of perturbed non-quasi-analytic and spectral operators, Izv. Ross. Akad. Nauk Ser. Mat. 58 (1994), no. 4, 3-32; English transl., Izv. Math. 45 (1995), no. 1, 1-31. MR. 1307054
[22] A. G. Baskakov, A. V. Derbushev, and A. O. Sherbakov, The method of similar operators in the spectral analysis of the nonselfadjoint Dirac operator with nonsmooth potential, Izv. Ross. Akad. Nauk Ser. Mat. 75 (2011), no. 3, 3-28; English transl., Izv. Math. 75 (2011), no. 3, 445-469. MR2847780
[23] D. M. Polyakov, Spectral analysis fourth-order nonselfajoint operator with nonsmooth coefficients, Sibirsk. Mat. Zh. 56 (2015), no. 1, 165-184; English transl., Sib. Math. J. 56 (2015), no. 1, 138-154. MR3407948
[24] , On spectral properties of fourth-order differential operator, Vestnik VGU. Ser. fiz.-mat. 1 (2012), 179-181. (Russian)
[25] , On spectral properties of fourth order differential operator with periodic and semiperiodic boundary conditions, Izv. Vyssh. Uchebn. Zaved. Mat. 2015, no. 5, 75-79; English transl., Russian Math. (Iz.VUZ) 59 (2015), no. 5, 64-68. MR3374274
[26] I. C. Gohberg and M. G. Krein, Introduction to the theory of linear non-selfadjoint operators in Hilbert space, Nauka, Moscow, 1965; English transl., Transl. Math. Monogr., vol. 18, Amer. Math. Soc., Providence, RI, 1969. MR0246142 (39:7447)
[27] A. Zygmund, Trigonometric series. Vol. I, Cambridge Univ. Press, London, 1968. MR0236587
[28] D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Math., vol. 840, Springer-Verlag, Berlin, 1981. MR610244
[29] K.-J. Engel and R. Nagel, One-parameter semigroups for linear evolution equations, of Grad. Texts in Math., vol. 194, Springer-Verlag, New York, 2000. MR1721989

Institute of Mathematics, Voronezh State University, Universitetskaya pl. 1, Voronezh 394006, RussiA

E-mail address: DmitryPolyakow@mail.ru

[^0]: 2010 Mathematics Subject Classification. Primary 34L20.
 Key words and phrases. Spectrum of an operator, fourth order differential operator, spectrum asymptotics, equiconvergence of spectral resolutions, method of similar operators.

 Supported by RFBR (grants 14-01-31196 and 15-31-20241) and by RSF (grant 14-21-00066; Section 4) for investigations done at the Voronezh State University.

