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THE JOHN–NIRENBERG CONSTANT OF BMOp, p > 2

L. SLAVIN AND V. VASYUNIN

Abstract. This paper is a continuation of earlier work by the first author who
determined the John–Nirenberg constant of BMOp

(
(0, 1)

)
for the range 1 ≤ p ≤ 2.

Here, that constant is computed for p > 2. As before, the main results rely on
Bellman functions for the Lp norms of the logarithms of A∞ weights, but for p > 2
these functions turn out to have a significantly more complicated structure than for
1 ≤ p ≤ 2.

§1. Preliminaries and main results

For a finite interval J and a function ϕ ∈ L1(J), let 〈ϕ〉
J
denote the average of ϕ over

J with respect to Lebesgue measure, 〈ϕ〉
J
= 1

|J|
∫
J
ϕ. Take an interval Q and p > 0, and

let BMO(Q) be the (factor-)space

(1.1) BMO(Q) = {ϕ ∈ L1(Q) : ‖ϕ‖BMOp(Q) := sup
interval J⊂Q

〈|ϕ− 〈ϕ〉
J
|p〉1/p

J
< ∞}.

The classical fact that all p-based (quasi)norms are equivalent justifies omitting the index
p on the left-hand side.

A weight is a function that is positive almost everywhere. We say that a weight w
belongs to A∞(Q), w ∈ A∞(Q), if both w and logw are integrable on Q and the following
condition is fulfilled:

[w]A∞(Q) := sup
intervalJ⊂Q

〈w〉
J
e
−〈logw〉

J < ∞.

The quantity [w]A∞(Q) is called the A∞(Q)-characteristic of w. When Q is fixed or not
important, we write simply BMO for BMO(Q) and A∞ for A∞(Q).

BMO functions are integrable locally exponentially. We can state this property in
the form of the so-called integral John–Nirenberg inequality, which is a version of the
classical weak-type inequality proved in [5].

Theorem (John–Nirenberg). For every p > 0, there exists a number ε0(p) > 0 such that
if ε ∈ [0, ε0(p)), Q is an interval, and ϕ ∈ BMO(Q) with ‖ϕ‖BMOp(Q) ≤ ε, then there is a
number C(ε, p) > 0 such that for any interval J ⊂ Q we have

(1.2) 〈eϕ〉
J
≤ C(ε, p)e〈ϕ〉J .

We shall always use ε0(p) to denote the best – largest possible – constant in this theorem
and call it the John–Nirenberg constant of BMOp (on an interval). Similarly, C(ε, p) will
denote the smallest possible constant in (1.2).

Observe that (1.2) means that if ϕ ∈ BMO, then eεϕ ∈ A∞ for all sufficiently small
ε > 0. For ϕ ∈ BMO, let

(1.3) εϕ = sup{ε : eεϕ ∈ A∞}.
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In fact, it can be shown that

ε0(p) = inf{εϕ : ‖ϕ‖BMOp = 1} = sup{ε : ∀ϕ, ‖ϕ‖BMOp = 1 =⇒ eεϕ ∈ A∞}.
In this paper, our goal is to compute ε0(p) for the case where p > 2. Here are some

previous results in that direction: Korenovskĭı [6] and Lerner [7] computed the analogs
of ε0(1) and C(ε, 1), respectively for the weak-type John–Nirenberg inequality; in [9],
we determined ε0(2) and C(ε, 2); in [12], the second author and A. Volberg found all
constants in the weak-type inequality for p = 2; and, finally, in [8], the first author
determined ε0(p) for p ∈ [1, 2] (including new proofs for p = 1 and p = 2) and C(ε, p)
for p ∈ (1, 2] and sufficiently large ε. This last paper built the framework that we follow
here, and we refer the reader to it for an in-depth discussion of the tools involved and
the differences between the cases of p = 2 and p �= 2.

Let us state the relevant theorem from [8].

Theorem 1.1 ([8]). For p ∈ [1, 2],

ε0(p) =

[
p

e

(
Γ(p)−

∫ 1

0

tp−1et dt
)
+ 1

]1/p
.

Furthermore, if 1 < p ≤ 2, then for all ε ∈ [(2− p)ε0(p), ε0(p)) we have

(1.4) C(ε, p) =
e−ε/ε0(p)

1− ε/ε0(p)
;

and for all 0 ≤ ε < 2
e we have

(1.5)
e−

e
2 ε

1− e
2ε

≤ C(ε, 1) ≤ 1

1− e
2 ε

.

We can finally complete the picture for all p ≥ 1. Remarkably, the formula for ε0(p)
in the case of p > 2 is the same as for 1 ≤ p ≤ 2, though it takes much more work to
show.

Theorem 1.2. For p > 2,

(1.6) ε0(p) =

[
p

e

(
Γ(p)−

∫ 1

0

tp−1et dt
)
+ 1

]1/p
.

In contrast to the case where 1 < p ≤ 2, for p > 2 we do not know the exact C(ε, p)
for any ε. While we could estimate this constant in a manner somewhat similar to (1.5),
the estimates we currently have seem much too implicit to be useful, so we omit them.

Without entering into details, we mention an important difference between the cases
of p ≤ 2 and p > 2. It was shown in [8] that the constant ε0(p) is attained in the weak-
type John–Nirenberg inequality for 1 < p ≤ 2 (the case where p = 1 was treated in [6]
and [7], while the case where p = 2 had been previously addressed in [12]). However, the
method used to show this fact for p ≤ 2 fails for p > 2, and we do not actually know if
the constant is attained (though we conjecture that it is).

On the other hand, another interesting result from [8] does go through for p > 2.
Specifically, we have the following theorem, which extends to p > 2 the main result of
Corollary 1.5 from [8]. It is a sharp lower estimate for the distance in BMO to L∞ in
the spirit of Garnett and Jones [1].

Theorem 1.3. If p > 2, Q is an interval, and ϕ ∈ BMO(Q), then

(1.7) inf
f∈L∞(Q)

‖ϕ− f‖BMOp(Q) ≥
ε0(p)

min{εϕ, ε−ϕ}
,

and this inequality is sharp.
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As was explained in [8], the main idea behind computing ε0(p) for p �= 2 is to consider
the dual problem: instead of estimating the values of ‖ϕ‖BMOp for which the exponen-
tial oscillation 〈eϕ−〈ϕ〉〉 might become unbounded, one estimates from below the BMOp

oscillations of the logarithms of A∞ weights and computes their asymptotics as the A∞-
characteristic goes to infinity. This idea is formalized in the following general theorem.

Fix p > 0. For C ≥ 1, let

(1.8) ΩC = {x ∈ R
2 : ex1 ≤ x2 ≤ C ex1}.

For an interval Q and every x = (x1, x2) ∈ ΩC , let

(1.9) Ex,C,Q =
{
ϕ ∈ L1(Q) : 〈ϕ〉

Q
= x1, 〈eϕ〉

Q
= x2, [eϕ]A∞(Q) ≤ C

}
.

The elements of Ex,C,Q will be called test functions. Define the following lower Bellman
function:

(1.10) bp,C(x) = inf
{
〈|ϕ|p〉

Q
: ϕ ∈ Ex,C,Q

}
.

Theorem 1.4 ([8]). Take p > 0. Assume that there exists a family of functions {bC}C≥1

such that for each C, bC is defined on ΩC , bC ≤ bp,C , and bC(0, · ) is continuous on the
interval [1, C]. Then

(1.11) εp0(p) ≥ lim sup
C→∞

bC(0, C).

Thus, to estimate ε0(p), we need a suitable family {bC}C of minorants of bp,C . Pre-
sisely as was done in [8], we actually find the functions bp,C themselves, for all p > 2 and
all sufficiently large C. We proceed as follows: in §2, we construct the so-called Bell-
man candidate, denoted by bp,C . This construction is subtler and more technical than
that in [8], and we briefly discuss the challenges involved. The proof that bp,C ≤ bp,C
constitutes §3. It is then an easy matter to prove Theorems 1.2 and 1.3, and it is taken
up in §4. Finally, in §5, we obtain the reverse inequality by demonstrating explicit test
functions that realize the infimum in (1.10).

§2. The construction of the Bellman candidate

For R > 0, let

ΓR = {x ∈ R
2 : x2 = Rex1}.

Then the domain ΩC defined in (1.8) is the plane region lying between Γ1 and ΓC .

2.1. Discussion and preliminaries. As has been mentioned earlier, the construction
of the Bellman candidate given here for p > 2 is more involved than those presented
in [8] for p = 1 and p ∈ (1, 2]. However, our main goal is the same as before: we are
building the largest locally convex function b on ΩC that satisfies the boundary condition
b(x1, e

x1) = |x1|p.
We briefly explain the similarities and differences between the cases where p ∈ (1, 2]

and p > 2 (the case of p = 1 is different from both). In all cases, the graph of the
candidate b is a convex ruled surface, which means that a straight-line segment contained
in the graph passes through each point on the graph. The domain ΩC then splits into
a collection of subdomains with disjoint interiors, ΩC =

⋃
j Rj , such that b is twice

differentiable and satisfies the homogeneous Monge–Ampère equation bx1x1
bx2x2

= b2x1x2

in the interior of each Rj . Moreover, for each subdomain Rj , either b is affine in the entire
Rj , or Rj is foliated by straight-line segments connecting two points of the boundary
Γ1 ∪ ΓC , and each point x ∈ int(Rj) lies on only one such segment. We call such
segments Monge–Ampère characteristics of b. Typically, if one knows the characteristics
everywhere in ΩC , one knows the function b.
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Figure 1. The geometric meaning of u(x) and ξ.

Thus, to construct a candidate one has to understand how to split ΩC into subdomains
and how to foliate each of them so that the resulting function b be locally convex. If this is
done and certain compatibility conditions are ensured, then b will almost automatically
be the largest locally convex function with the given boundary conditions, as desired.
However, in general, this is a difficult task, and the situation is further complicated by
the fact that the splitting in question is usually different for different C.

Fortunately, at present there is a fairly general theory for constructing such foliations
on special nonconvex domains such as ours. Started in [10] in the context of BMO2,
it was much developed and systematized in [2] and [3] (still for the parabolic strip of
BMO2); now it is adapted to general domains like ΩC , see [4]. We also mention the
recent paper [11], which formalized a theoretical link between the Bellman functions and
the smallest locally concave (or largest locally convex, as is our case) functions on the
corresponding domains.

A key building block for many Monge–Ampère foliations is the tangential foliation.
Let us explain this notion in our setting.

For C ≥ 1, let ξ = ξ(C) be a unique nonnegative solution of the equation

e−ξ = C(1− ξ), 0 ≤ ξ < 1.

Note that ξ(1) = 0 and that ξ is strictly monotone increasing with limC→∞ ξ(C) = 1.
Let

(2.1) k(z) =
ez

1− ξ
, z ∈ R,

and define a new function u = u(x) on ΩC by the implicit formula

(2.2) x2 = k(u)(x1 − u) + eu.

This function has a simple geometrical meaning illustrated in Figure 1: if one draws the
one-sided tangent to ΓC that passes through x so that the tangency point is to the right
of x, then this tangent intersects Γ1 at the point (u, eu), while the tangency point is
(u+ ξ, Ceu+ξ). In particular u(0, C) = −ξ. (We note that, in [8], ξ and u were called ξ+

and u+, respectively.)
In the case where 1 < p ≤ 2, for sufficiently large C, all of ΩC was foliated by the

tangents (2.2) for u ∈ (−∞,∞); thus, there was no need to split it into subdomains.
However, for p > 2, this uniform tangential foliation fails to yield a locally convex
function on the entire ΩC , for any C. What actually happens — and, again, only for
sufficiently large C — is shown in Figure 2 later in this section. There we have two
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tangentially foliated subdomains, R1 and R3, linked by a special “transition regime”
consisting of two more subdomains: one is R2, where the candidate is affine and the
foliation is thus degenerate, and the second is R4, where the characteristics are chords
connecting two points of Γ1. (In recent Bellman-function literature, these two particular
shapes are called “trolleybus” and “cup”, respectively; see [2, 3, 4].) This transition
regime shrinks as C grows, but never disappears. To show how all this fits together, we
need some technical preparation.

2.2. Technical lemmas.

Lemma 2.1.

(1) If w > 0 and v ∈
(
− w,−w p−1

p

)
, then

(2.3)
wp−1 + (−v)p−1

ew − ev
< (p− 1)(−v)p−2e−v.

(2) If 0 < w ≤ p−2
p−1 and v ∈ (−w, 0), then

(2.4)
wp−1 + (−v)p−1

ew − ev
< (p− 1)wp−2e−w.

Proof. For statement (1), note that ew−v−1 ≥ w−v > 0, and so it suffices to check that

wp−1 + (−v)p−1 < (p− 1)(−v)p−2(w − v) .

Put θ = − v
w ; then this inequality becomes

(p− 2)θp−1 + (p− 1)θp−2 − 1 > 0 ,
p− 1

p
< θ < 1 .

The left-hand side is monotone increasing in θ, and equals 2 (p−1)p

pp−1 − 1 when θ = p−1
p . In

its turn, this is a monotone increasing function of p, equal to 0 at p = 2.
For (2), observe that, since w > −v and 1− w ≥ 1− p−2

p−1 = 1
p−1 , we have

1− e−(w−v) > (w − v)
[
1− 1

2
(w − v)

]
> (w − v)(1− w) ≥ w − v

p− 1
,

and (2.4) follows from the obvious relation wp−1 + (−v)p−1 < wp−2(w − v). �
For any v < 0 and w > 0, put

(2.5) r(v, w) =
ew − ev

w − v
, q(v, w) =

wp − (−v)p

w − v
.

Lemma 2.2. For each w ∈
(
0, p−2

3p

)
, there exists a unique v ∈

(
−w,−w p−1

p

)
such that

(2.6)
q(v, w) + p(−v)p−1

r(v, w)− ev
=

pwp−1 − q(v, w)

ew − r(v, w)
= p

wp−1 + (−v)p−1

ew − ev
.

Proof. Observe that it suffices to show only the first identity in (2.6), because then the
second follows by elementary rearrangement. In its turn, the first identity is equivalent
to the relation
(2.7)
F (v, w) := (ew−ev)(wp−(−v)p−pwp−1−p(−v)p−1)+p(w−v)(wp−1ev+(−v)p−1ew) = 0.

Assume that w ∈ (0, p−2
3p ) and put λ = p−1

p . To show that there exists v ∈ (−w,−λw)

such that F (v, w) = 0, we compare the signs of F (−w,w) and F (−λw,w).
Since F (−w,w)=4pwp−1(w coshw−sinhw)>0, we want to check that F (−λw,w)<0.

Since

F (−λw,w) =(ew − e−λw)
[
(1−λp)wp−p(1+λp−1)wp−1

]
+ p(1+λ)wp

[
e−λw+λp−1ew

]
,
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the inequality F (−λw,w) < 0 is equivalent to

(1 + λ)w

e(1+λ)w − 1
− 1 +

1 + pλp−1 + (p− 1)λp

p(1 + λp−1)
w < 0.

Let

ψ(t) =
t

et − 1
− 1 +

1 + pλp−1 + (p− 1)λp

p(1 + λ)(1 + λp−1)
t .

We shall show that ψ(t) < 0 for t ∈ (0, p−2
3p (1 + λ)). Note that, for t > 0,

et > 1 + t+
1

2
t2 =⇒ t

et − 1
− 1 < − t

t+ 2
.

Therefore, for t > 0 we have

ψ(t) < −t
[ 1

t+ 2
− 1 + pλp−1 + (p− 1)λp

p(1 + λ)(1 + λp−1)

]
,

and it suffices to check that

p− 2

3p
(1 + λ) <

p(1 + λ)(1 + λp−1)

1 + pλp−1 + (p− 1)λp
− 2 =

(p− 2)(1− λp) + pλ(1− λp−2)

1 + pλp−1 + (p− 1)λp
.

Since (p− 2)(1−λp)+ pλ(1−λp−2) > (p− 2)(1+λ)(1−λp−1) and λp < λp−1, it suffices
to verify that

3 >
1/p+ (2− 1/p)λp−1

1− λp−1
=

2

1− λp−1
− 2 + 1/p.

This is true because the right-hand side is monotone decreasing in p and equals 5
2 when

p = 2. This proves that the desired v exists for each w.
To show that v is unique, we differentiate the function F with respect to v. This

derivative can be written as follows:

Fv(v, w) =
(
ew(w−v)−ew + ev

)
ev

(
pwp−1(w−v)−wp + (−v)p

ew(w−v)−ew + ev
− p(p− 1)(−v)p−2e−v

)

=
(
ew(w − v)− ew + ev

)
ev

(
p
wp−1 + (−v)p−1

ew − ev
−p(p− 1)(−v)p−2e−v

)
,

where we have used the second identity in (2.6). Now, the first factor is positive, because
the function t �→ et is strictly convex, while the last factor is negative by (2.3). Therefore,
Fv(v, w) is negative for any root v of the equation F (v, w) = 0 that lies in the interval(
− w,−w p−1

p

)
, which is possible only when such a root is unique. �

From now on, when we use v and w, it is always presumed that w ∈ (0, p−2
3p ), v ∈

(−w,−w p−1
p ), and the pair {v, w} satisfies (2.6). For such v and w, each of the three

equal quantities in (2.6) is a function of w, and it is convenient to give them a common
name. Let

(2.8) D(w) =
q(v, w) + p(−v)p−1

r(v, w)− ev
=

pwp−1 − q(v, w)

ew − r(v, w)
= p

wp−1 + (−v)p−1

ew − ev
;

then D is a function of w defined on the interval
(
0, p−2

3p

)
. We list some of its properties.

Lemma 2.3. We have

(2.9) D(w) < p(p− 1)(−v)p−2e−v

and

(2.10) D(w) < p(p− 1)wp−2e−w.

Furthermore, D′ > 0 on
(
0, p−2

3p

)
.
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Proof. Inequalities (2.9) and (2.10) come directly from (2.3) and (2.4), respectively (note
that p−2

3p < p−2
p−1 , so (2.4) applies).

To check the sign of D′, we shall treat q and r as functions of w and use the prime
sign to indicate the total derivative with respect to w. Thus, q′ = qw + qvvw and
r′ = rw + rvvw, where vw can be computed with the help of (2.7). Also, we denote
f(w) := wp and g(w) := ew.

We need the following simple but key fact: equation (2.6) can be written as

(2.11)
q′

r′
=

q − f ′

r − g′
= D.

Using this identity, we see that

D′ =
(q − f ′

r − g′

)′
=

(q′ − f ′′)(r − g′)− (q − f ′)(r′ − g′′)

(r − g′)2

=
g′′(q − f ′)− f ′′(r − g′)

(r − g′)2
=

g′′

r − g′

(q − f ′

r − g′
− f ′′

g′′

)
.

Since g is strictly convex, we have g′′ > 0 and r − g′ < 0. On the other hand, the
expression in parentheses is negative by (2.10). �

For p > 2, let

(2.12) ξ0(p) = 1− 1

3p+2Γ(p)
, C0(p) =

e−ξ0(p)

1− ξ0(p)
.

Lemma 2.4. Assume that ξ > ξ0(p). Let

c1 = ξ
[
e(1− ξ)Γ(p− 1)

]1/(p−2)
, c2 = ξ

[
2e(1− ξ)Γ(p)

]1/(p−2)
.

Then the equation

(2.13)
(1
ξ
− 1

)∫ ∞

w

sp−2e−s/ξ ds− wp−2e−w/ξ = 0

has a unique solution w∗ in the interval (0, c1).
Furthermore, the equation

(2.14)
(1
ξ
− 1

)
p(p− 1)ew(1/ξ−1)

∫ ∞

w

sp−2e−s/ξ ds = D(w)

has a unique solution sw in the interval (w∗, c2).

Proof. First, observe that c1 < c2 < ξ. The first inequality is trivial, while the second is
equivalent to ξ > 1 − 1

2eΓ(p) , which is clearly satisfied under the assumption ξ > ξ0(p).

Second, we have c2 < p−2
3p . Indeed, this inequality is equivalent to

ξ > 1−
(
1− 2

p

)p−2

2e (3ξ)p−2Γ(p)
.

Since ξ < 1 and
(
1− 2

p

)p−2
> e−2, this inequality is weaker than ξ > 1− 9

2e33pΓ(p) , which

is in its turn weaker than ξ > ξ0(p).
Consider equation (2.13). When w = 0, the left-hand side of (2.13) is positive. For

w = c1, we have(1
ξ
− 1

)∫ ∞

c1

sp−2e−s/ξ ds− cp−2
1 e−c1/ξ = (1− ξ)ξp−2

∫ ∞

c1/ξ

sp−2e−s ds− cp−2
1 e−c1/ξ

< (1− ξ)ξp−2Γ(p− 1)− cp−2
1 e−c1/ξ = ξp−2(1− ξ)Γ(p− 1)

(
1− e1−c1/ξ

)
< 0,



188 L. SLAVIN AND V. VASYUNIN

because c1 < ξ. Thus, a solution w∗ ∈ (0, c1) exists. To prove that it is unique, we note
that the left-hand side of (2.13) is monotone decreasing in w for w ∈ (0, p− 2), and that
c1 < p− 2.

Turning now to (2.14), for w = w∗ we have

(1
ξ
− 1

)
p(p− 1)ew∗(1/ξ−1)

∫ ∞

w∗

sp−2e−s/ξ ds = p(p− 1)wp−2
∗ e−w∗ > D(w∗)

by (2.13) and (2.10). Observe that, for any w, since 1−ev−w < 1−e−2w < 2w, it follows
that

D(w) = p
wp−1 + (−v)p−1

ew − ev
> pe−w wp−1

1− ev−w
>

1

2
pe−wwp−2.

Therefore, putting w = c2 on the left-hand side of (2.14), we get

(1
ξ
−1

)
p(p−1)ec2(1/ξ−1)

∫ ∞

c2

sp−2e−s/ξ ds < (1−ξ)ξp−2pΓ(p)e1−c2 =
1

2
pe−c2cp−2

2 < D(c2),

which implies the existence of a solution sw ∈ (w∗, c2). To prove uniqueness, observe
that the derivative of the left-hand side of (2.14) is a positive multiple of the left-hand
side of (2.13); thus, it equals zero at w = w∗ and is monotone decreasing for w ∈
(0, p− 2); in particular, it is negative for w > w∗. Therefore, the left-hand side of (2.14)
is monotone decreasing in w for w ≥ w∗, while the right-hand side is monotone increasing
by Lemma 2.3. �

Remark 2.5. In what follows, in addition to sw, we shall also use sv, which is a unique
solution of the equation F (v, sw) = 0 guaranteed by Lemma 2.2.

2.3. The Bellman candidate. As was mentioned earlier, we split the domain ΩC into
four subdomains, ΩC =

⋃4
j=1 Rj . Besides the numbers sv and sw given by Lemma 2.14

and Remark 2.5, in the definition below we use the function k defined in (2.1) and the
function r defined in (2.5). The splitting is pictured in Figure 2.

Figure 2. The splitting of ΩC for sufficiently large C.
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(2.15)

R1 =
{
x ∈ ΩC : x2 ≤ k( sw)(x1 − sw) + e sw

}
∪
{
x ∈ ΩC : x1 ≥ sw + ξ

}
;

R2 =
{
x ∈ ΩC : x2 ≤ k(sv)(x1 − sv) + esv, x2 ≥ r(sv, sw)(x1 − sw) + e sw,

x2 ≥ k( sw)(x1 − sw) + e sw
}

∪
{
x ∈ ΩC : sv + ξ ≤ x1 ≤ sw + ξ, x2 ≥ k(sv)(x1 − sv) + esv,

x2 ≥ k( sw)(x1 − sw) + e sw
}
;

R3 =
{
x ∈ ΩC : x1 ≤ sv + ξ, x2 ≥ k(sv)(x1 − sv) + esv

}
;

R4 =
{
x ∈ ΩC : x2 ≤ r(sv, sw)(x1 − sw) + e sw}.

Our Bellman candidate will have a different expression in each of the four subdomains,
and will require several auxiliary objects. For z ∈ R, we put

(2.16) m1(z) =
p

ξ
ez/ξ

∫ ∞

z

s|s|p−2e−s/ξ ds,

and, for z < sv,
(2.17)

m3(z) = −p

ξ
ez/ξ

∫
sv

z

(−s)p−1e−s/ξ ds+ e(z−sv)/ξ
(
esv− sw

(
m1( sw)− p swp−1

)
− p(−sv)p−1

)
.

The following clear lemma, whose simple proof is left to the reader, gives rise to two new
functions on R4.

Lemma 2.6. For each x = (x1, x2) ∈ R4 there exists a unique pair {v, w} satisfying (2.7)
and such that the line segment connecting the points (w, ew) and (v, ev) passes through x.
Thus,

x2 = r(v, w)(x1 − w) + ew.

In the special case where x = (0, 1), this segment degenerates to a point: v = w = 0.

From here on, we reserve the symbols w and v for the two functions on R4 given by
this lemma: w = w(x) and v = v(x); see Figure 3.

Figure 3. The subdomain R4 and the geometric meaning of v(x) and w(x).
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Finally, here is our complete Bellman candidate. For p > 2 and C > C0(p), let

(2.18) bp,C(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

m1(u)(x1 − u) + up, x ∈ R1,

q(sv, sw) (x1 − sw) + swp

+m1( sw)−q(sv, sw)
k( sw)−r(sv, sw)

(
x2 − r(sv, sw)(x1 − sw)− e sw

)
, x ∈ R2,

m3(u)(x1 − u) + (−u)p, x ∈ R3,

q
(
v, w) (x1 − w) + wp, x ∈ R4.

Recall that here u = u(x) is given by (2.2); v = v(x) and w = w(x) were defined in
Lemma 2.6; k is given by (2.1); r and q are given by (2.5); m1 is given by (2.16); and
m3 is given by (2.17). In addition, sw was defined in Lemma 2.4 as the solution of equa-
tion (2.14), while sv was defined in Remark 2.5 as a unique solution of equation F (v, sw) = 0
with F given by (2.7).

In the next section we present the main theorem relating the candidate bp,C and the
Bellman function bp,C as defined in (1.10).

§3. The main Bellman theorem and the proof of the lower estimate

The following result is the principal ingredient in the proofs of Theorems 1.2 and 1.3.

Theorem 3.1. If p > 2 and C > C0(p), then

(3.1) bp,C = bp,C in ΩC .

As is common, we split the proof of Theorem 3.1 into two parts: the so-called direct
inequality bp,C ≥ bp,C and its reverse.

Lemma 3.2. If p > 2 and C > C0(p), then

(3.2) bp,C ≥ bp,C in ΩC .

Lemma 3.3. If p > 2 and C > C0(p), then

(3.3) bp,C ≤ bp,C in ΩC .

The proofs of Theorems 1.2 and 1.3 involve only Lemma 3.2, which we prove in
this section. For the sake of completeness, we shall also show that the infimum in the
definition of the Bellman function is attained at every point in ΩC , and our candidate is
in fact the Bellman function. This is done in §5, where we prove Lemma 3.3.

An analog of Lemma 3.2 for p ∈ [1, 2] was proved in §5 of [8]. In fact, the proof given
there did not depend on the specific range of p. Rather, its main ingredient was showing
that bp,C is locally convex in ΩC , i.e., convex along every line segment contained in ΩC .
More precisely, the main result of Lemma 5.1 in [8] can be restated as follows.

Lemma 3.4 ([8]). Fix p > 0 and assume that for some C(p) ≥ 1 there is a family of
functions {bp,C}C≥C(p) satisfying the following conditions for each C:

(1) bp,C is locally convex in ΩC ;
(2) bp,C is continuous in ΩC ;
(3) for each x ∈ ΩC , we have

lim
c↘C

bp,c(x) = bp,C(x);

(4) for each s ∈ R, we have bp,C(s, e
s) = |s|p.

Then for all C ≥ C(p) we have

bp,C ≥ bp,C in ΩC .



THE JOHN–NIRENBERG CONSTANT OF BMOp, p > 2 191

It is routine to check that conditions (2)–(4) are satisfied for the bp,C defined in (2.18).
Therefore, Lemma 3.2 will be proved once we have established the following result.

Lemma 3.5. For p > 2 and C > C0(p), the function bp,C is locally convex in ΩC .

Let p > 2 and C > C0(p) be fixed; till the end of this section we write simply b for bp,C .
Before proving Lemma 3.5, we collect several useful facts from earlier work. First, as was
explained in [10] and [8], showing that b is locally convex in ΩC is the same as showing
that it is locally convex in each subdomain Rk and that bx2

is monotone increasing in x2

across the shared boundaries between subdomains. Second, in R1 and R3 the function b
has the form

b(x) = m(u)(x1 − u) + |u|p,
where m stands for m1 or m3, respectively, and in each case satisfies the differential
equation

(3.4) m′(u) =
1

ξ
(m(u)− pu|u|p−2),

while u = u(x) is given by (2.2). As was shown in [8], then we have

(3.5) bx2
= m′(u)e−u(1− ξ)

and also

(3.6) bx1x1
bx2x2

= b2x1x2
, sgn bx2x2

= sgn
(
m′(u)−m′′(u)

)
.

Therefore, to show that b is locally convex in R1 and R3, we simply need to check that
m′

1(u)−m′′
1(u) > 0 in R1 and m′

3(u)−m′′
3(u) > 0 in R3.

Proof of Lemma 3.5. First, we show the local convexity of b in each subdomain Rk.
In R1, a direct computation gives

ξ2

p(p− 1)
(m′

1(u)−m′′
1(u))e

−u/ξ = ξup−2e−u/ξ − (1− ξ)

∫ ∞

u

e−s/ξsp−2 ds =: H1(u),

where u ≥ sw. We have

H ′
1(u) = ξup−3e−u/ξ(p− 2− u).

Therefore, H1 is monotone increasing for u ∈ (0, p − 2) and decreasing for u > p − 2.
Since H1(u) → 0 as u → ∞, to show that H1(u) > 0 for u ≥ sw, it suffices to show
that H1( sw) > 0. This immediately follows by applying first (2.14) and then (2.10) with
w = sw:

(1− ξ)

∫ ∞

sw

e−s/ξsp−2 ds =
ξe sw(1−1/ξ)

p(p− 1)
D( sw) < ξ swp−2e− sw/ξ.

Therefore, bx2x2
> 0 in R1, so that b is locally convex in this subdomain.

In R2, b is affine and thus locally convex.
In R3, we compute

ξ2

p(p− 1)
(m′

3(u)−m′′
3(u))e

−u/ξ

= ξ(−u)p−2e−u/ξ − (1− ξ)

(∫
sv

u

e−s/ξ(−s)p−2 ds+ e( sw−sv)(1/ξ−1)

∫ ∞

sw

e−s/ξsp−2 ds

)

=: H3(u),

where u ≤ sv. We have

H ′
3(u) = ξ(−u)p−3e−u/ξ(u− p+ 2) < 0,
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and so to show that H3(u) > 0, it suffices to show that H3(sv) > 0. Like in the case of
H1, this follows by applying (2.14) and then (2.9) with v = sv:

(1− ξ)e( sw−sv)(1/ξ−1)

∫ ∞

sw

e−s/ξsp−2 ds =
ξe−sv(1/ξ−1)

p(p− 1)
D( sw) < ξ(−sv)p−2e−sv/ξ.

Thus, b is locally convex in R3.
We state the result for R4 separately.

Lemma 3.6. b is convex in R4.

Proof. In R4, b is given by

b(x) = q(v, w)(x1 − w) + f(w), x2 = r(v, w)(x1 − w) + g(w),

where, as in the proof of Lemma 2.3, we write f(w) = wp and g(w) = ew. Again, as we
did there, we shall use the prime sign to indicate the total derivative with respect to w.

To show that b is convex, we check that bx1x1
bx2x2

= b2x1x2
and bx2x2

> 0 in the interior
of R4. Differentiation gives

wx1
=

−r

r′(x1 − w)− r + g′
, wx2

=
1

r′(x1 − w)− r + g′
,

and

bx1
=

[
q′(x1 − w)− q + f ′]wx1

+ q = −r
q′(x1 − w)− q + f ′

r′(x1 − w)− r + g′
+ q = −rD + q,

where we have used (2.11). Similarly,

(3.7) bx2
=

[
q′(x1 − w)− q + f ′]wx2

=
q′(x1 − w)− q + f ′

r′(x1 − w)− r + g′
= D.

Therefore,
bx1x1

= −rD′wx1
, bx1x2

= −rD′wx2
, bx2x2

= D′wx2
,

and, since, wx1
= −rwx2

, we see that bx1x1
bx2x2

= b2x1x2
.

Furthermore, since D′ > 0 by Lemma 2.3, and since from geometry it is clear that
wx2

> 0, we have bx2x2
> 0, which completes the proof. �

To finish the proof of Lemma 3.5, we need to verify that bx2
is monotone increas-

ing in x2 across the boundaries between subdomains. We can write this requirement
symbolically as follows:

bx2

∣∣
R1,u= sw

≤ bx2

∣∣
R2

, bx2

∣∣
R4,w= sw

≤ bx2

∣∣
R2

, bx2

∣∣
R2

≤ bx2

∣∣
R3,u=sv

.

In fact, all three statements hold with equality (which implies that b is of class C1 in the
interior of ΩC , though we shall not use this fact).

By (3.7), we have bx2

∣∣
R4,w= sw

= D( sw). Now we use consecutively relations (3.5), (3.4),

and (2.16), integration by parts, and (2.14) to show that

(3.8) bx2

∣∣
R1,u= sw

= m′
1( sw)e− sw(1−ξ) =

1

ξ
(1−ξ)p(p−1)e sw(1/ξ−1)

∫ ∞

sw

sp−2e−s/ξ ds = D( sw).

A very similar calculation, but with the use of (2.17) in place of (2.16), gives bx2

∣∣
R3,u=sv

=

D( sw).
Finally,

bx2

∣∣
R2

=
m1( sw)− q(sv, sw)

k( sw)− r(sv, sw)
.

By (3.4) and (3.8),

m1( sw) = ξm′
1( sw) + p swp−1 =

ξ

1− ξ
e swD( sw) + p swp−1.
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Therefore,

bx2

∣∣
R2

=

ξ
1−ξ e

swD( sw) + p swp−1 − q(sv, sw)
1

1−ξ e
sw − r(sv, sw)

=

ξ
1−ξ e

swD( sw) +
(
e sw − r(sv, sw)

)
D( sw)

1
1−ξ e

sw − r(sv, sw)
= D( sw).

The proof is complete. �

Now we are in a position to prove the main theorems stated in §1.

§4. Proofs of Theorems 1.2 and 1.3

We need two auxiliary results proved in [8].
For p > 0, let

ω(p) =

[
p

e

(
Γ(p)−

∫ 1

0

tp−1et dt
)
+ 1

]1/p
.

Lemma 4.1 ([8]). Let ϕ0(t) = log(1/t), t ∈ (0, 1). Then

(4.1) εϕ0
= 1, ε−ϕ0

= ∞.

If p ≥ 1, then

(4.2) ‖ϕ0‖BMOp((0,1)) = ω(p).

Consequently,

(4.3) ε0(p) ≤ ω(p).

Lemma 4.2 ([8]). Let ϕ be a nonconstant BMO function. For ε ∈ [0, εϕ), let F (ε) =
[eεϕ]A∞ . Then F is a strictly monotone increasing and continuous function on [0, εϕ),
and limε→εϕ F (ε) = ∞.

Proof of Theorem 1.2. We use Theorem 1.4 with bC = bp,C given by (2.18). In view of
Lemma 3.2, bC ≤ bp,C , as required.

We need to compute bp,C(0, C). Note that sw < ξ by Lemma 2.4, and, thus, sv >
− sw > −ξ by Lemma 2.2. Therefore, the point (0, C) is in the subdomain R3 and, since
u(0, C) = −ξ, we have

bp,C(0, C) = m3(−ξ)ξ + ξp.

The quantity m3(−ξ) is given by (2.17):

m3(−ξ) = −p

ξ
e−1

∫
sv

−ξ

(−s)p−1e−s/ξ ds+e(−ξ−sv)/ξ
(
esv− sw

(
m1( sw)− p swp−1

)
− p(−sv)p−1

)
.

By Lemma 2.4, sw ∈ (0, c2) with c2 → 0 as ξ → 1. By Lemma 2.2, sv ∈ (− sw, 0). Therefore,

lim
ξ→1

sv = lim
ξ→1

sw = 0

and

lim
C→∞

bp,C(0, C) = lim
ξ→1

(
m3(−ξ)ξ+ ξp

)
= −p

e

∫ 0

−1

(−s)p−1e−s ds+ e−1m1(0) + 1 = ωp(p),

where we have used (2.16), which implies m1(0) = pΓ(p).
Hence, by Theorem 1.4, we have ε0(p) ≥ ω(p), and application of Lemma 4.1 finishes

the proof. �

The proof of Theorem 1.3 below is a version of the argument used in the proof of
Corollary 1.5 in [8]; the proof of sharpness, which involves the function ϕ0 occurring in
Lemma 4.1, is exactly the same and we omit it.
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Proof of Theorem 1.3. Take any ϕ ∈ BMO(Q). Without loss of generality, assume that
εϕ < ∞. For ε ∈ [0, εϕ), let F (ε) = [eεϕ]A∞(Q). By Lemma 4.2, for sufficiently large ε
we have F (ε) ≥ C0(p). Therefore, for any subinterval J of Q,

〈|εϕ− 〈εϕ〉
J
|p〉

J
≥ bp,F (ε)

(
0, 〈eεϕ−〈εϕ〉

J 〉
J

)
≥ bp,F (ε)

(
0, 〈eεϕ−〈εϕ〉

J 〉
J

)
.

Take a sequence {Jn} such that 〈eεϕ−〈εϕ〉
Jn 〉

Jn
→ F (ε). Since the left-hand side is

bounded from above by εp‖ϕ‖pBMOp(Q), we have

εp‖ϕ‖pBMOp(Q) ≥ bp,F (ε)

(
0, F (ε)

)
.

Now, we let ε → εϕ (and, thus, F (ε) → ∞). This gives

εpϕ‖ϕ‖
p
BMOp(Q) ≥ εp0(p).

If f ∈ L∞(Q), then εϕ−f = εϕ. Thus, we can replace ϕ with ϕ− f above, which gives

‖ϕ− f‖BMOp(Q) ≥
ε0(p)

εϕ
.

The same inequality holds true with ϕ replaced by −ϕ, and it remains to take the infimum
over f ∈ L∞(Q) on the left. �

§5. Optimizers and the reverse inequality

In this section, we complete the proof of Theorem 3.1 by proving Lemma 3.3. For this,
we present a set of special test functions on the interval (0, 1) that realize the infimum
in definition (1.10) of the Bellman function bp,C .

Without loss of generality we may assume that C > 1. Let Q = (0, 1). Recall the
Bellman candidate bp,C given by formula (2.18). For x ∈ ΩC , we say that a function ϕx

on Q is an optimizer for bp,C at x if

(5.1) ϕx ∈ Ex,C,Q and 〈|ϕx|p〉Q = bp,C(x),

where the set of test functions Ex,C,Q is defined by (1.9). Observe that if we have such
a function ϕx for all x ∈ ΩC , then

bp,C(x) = 〈|ϕ|p〉
Q

≥ bp,C(x),

which is the claim of Lemma 3.3.
Our optimizers ϕx will have different forms depending on the location of x in ΩC .

Specifically, we shall have a different optimizer for each of the four subdomains Rk of ΩC

defined by formula (1.8) and pictured in Figure 2. We do not discuss the construction
of these optimizers, but simply give formulas for them. A reader interested in where
they come from is invited to consult the papers [10] and [3], where a number of similar
constructions were carried out in the context of BMO2.

For each x ∈ R1, let

(5.2) ϕx(t) = u+ ξ log
(
α
t

)
χ(0,α)(t),

where u = u(x) is defined by (2.2) and

(5.3) α =
x1 − u

ξ
.

(This optimizer was defined in §5 of [8] under the name ϕ+
x .)

Now consider the subdomain R2. Let us give names to its four corners, clockwise from
top right:

X = ( sw + ξ, e sw+ξ), Y = ( sw, e sw), Z = (sv, esv), W = (sv + ξ, esv+ξ).
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We already know the optimizers for the points X, Y , and Z: the first comes from
formula (5.2) (which applies because X ∈ R1 ∩R2) with α = 1; the other two are trivial,
because for each x ∈ Γ1 the set Ex,C,Q contains only one element, namely, the constant
function ϕ(t) = x1. Therefore, for all t ∈ Q, we define

ϕX(t) = ξ log
(
1
t

)
, ϕY (t) = sw, ϕZ(t) = sv.

Now we use these three optimizers to define ϕx for every x ∈ R2. Observe that R2 is
contained in the triangle with the vertices X, Y , Z. This means that every x in R2 has
a unique representation as a convex combination of these three points. Thus, there exist
nonnegative numbers α1, α2, and α3 such that α1 + α2 + α3 = 1 and

(5.4) x = α1X + α2Y + α3Z.

To obtain ϕx, we concatenate ϕX , ϕY , and ϕZ in the appropriate proportion:

ϕx(t) = ϕX

(
t
α1

)
χ(0,α1)(t) + ϕY

(
t−α1

α2

)
χ(α1,α1+α2)(t) + ϕZ

(
t−α1−α2

α3

)
χ(α1+α2,1)(t),

or, equivalently,

(5.5) ϕx(t) = swχ(0,α1+α2)(t) + ξ log
(
α1

t

)
χ(0,α1)(t) + sv χ(α1+α2,1)(t),

with αk = αk(x) defined by (5.4).
This formula applies, in particular, to the fourth corner of R2, i.e., the point W . That

point also lies in the subdomain R3, and is the key to defining the optimizer for all
other points in that subdomain. Specifically, with the knowledge of ϕW , we define the
optimizer ϕx for an arbitrary point x ∈ R3 by the formula

(5.6) ϕx(t) = ϕW

(
t
τα

)
χ(0,τα)(t) + ξ log

(
α
t

)
χ(τα,α)(t) + uχ(τα,1)(t).

Here, u is given by (2.2), α is as in (5.3), and we also set

(5.7) τ = e(u−sv)/ξ.

It remains to define ϕx for x ∈ R4. Recall the two auxiliary functions v = v(x) and
w = w(x) defined by Lemma 2.6 (see Figure 3). Every point x ∈ R4 \ Γ1 lies on the line
segment connecting the points (v, ev) and (w, ew). Accordingly, we define ϕx to be the
appropriate concatenation of the two constant optimizers corresponding to those points:

(5.8) ϕx(t) = wχ(0,β)(t) + v χ(β,1)(t),

where

(5.9) β =
x1 − v

w − v
.

The following lemma immediately yields Lemma 3.3.

Lemma 5.1. Let ϕx be defined by (5.2) and (5.3) for x ∈ R1; by (5.4) and (5.5) for
x ∈ R2; by (5.6), (5.3), and (5.7) for x ∈ R3; and by (5.8) and (5.9) for x ∈ R4. Then
ϕx is an optimizer for bp,C at every x ∈ ΩC .

Remark 5.2. If a point x lies on a boundary shared by two subdomains, ϕx seems to be
defined by two different formulas. However, as is easy to check, in all cases above, such
two formulas give exactly the same function.

The proof of this lemma is very similar to that of Lemma 5.2 in [8], and we leave it
to the reader.
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