
Algebra i analiz St. Petersburg Math. J.
Tom 28 (2016), � 2 Vol. 28 (2017), No. 2, Pages 209–224

http://dx.doi.org/10.1090/spmj/1447
Article electronically published on February 15, 2017

ON OPERATORS COMMUTING

WITH A POMMIEZ TYPE OPERATOR

IN WEIGHTED SPACES OF ENTIRE FUNCTIONS

O. A. IVANOVA AND S. N. MELIKHOV

Abstract. A description is presented for continuous linear operators defined on a
countable inductive limit of weighted Fréchet spaces of entire functions and commut-
ing with a Pommiez type operator.

Introduction

In [20, 21, 22] Pommiez investigated the consecutive remainders for the Taylor series
of functions analytic in the disk centered at zero. With the help of this remainders and in
terms of them, he studied series expansions of such functions with respect to a sequence of
special polynomials and proved uniqueness theorems; he also obtained certain conditions
for such remainders to be univalent. In [23], generalized Newton series expansions for
analytic functions were treated. In all the papers [20, 21, 22, 23], the following difference
operator was used:

Dz(f)(t) :=

{
f(t)−f(z)

t−z , t �= z,

f ′(z), t = z.

Observe that if f(t) =
∑∞

k=0 akt
k, |t| < R, then Dn

0 (f)(t) =
∑∞

k=0 ak+nt
k for all integers

n ≥ 0. After the papers [20, 21, 22, 23], it has become usual to refer to the operators
Dz as Pommiez operators. It should be noted that they had been employed and studied
even before, moreover, the theory of finite differences for functions of a complex variable
dates back to as an early time as the 30s of the last century (see, for example, Gelfond’s
monograph [1]). Khaplanov (see [9]) found a sufficient condition for the completeness of
the system of remainders fn(t) =

∑∞
k=0 ak+nt

k, n ≥ 0 (i.e., of the sequence (Dn
0 (f))n≥0)

for the Taylor series of a function f(t) =
∑∞

k=0 akt
k in the disk |t| < R. Kaz′min (see [4])

established a completeness criteria for the system (Dn
0 (f))n≥0 in a simply connected

domain G ⊆ C containing zero, and investigated the completeness of systems of the form
(Dαn

(f))n∈N.
Subsequently, fairly many papers devoted to Dz appeared. We mention some of them.

Commutants and cyclic elements for D0 were studied by N. Linchuk in [7], by Dimovski
and Hristov in [15], by Yu. Linchuk in [19]. The equivalence of Pommiez operators in
spaces of analytic functions was treated, in particular, by S. Linchuk and Nagnibida in
[8]. Korobĕınik (see [6]) and Sherstyukov (see [11]) used the Pommiez operator to expand
analytic functions in partial fractions series.

In [16], cyclic elements and invariant subspaces were studied for the operator D0 in
the Hardy space H2 in the unit disk (in that paper, D0 was called the backward shift).
In [17], a backward shift operator in a Banach space was introduced, and its commutants
were studied along with more general properties of its cyclic elements. We also mention
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a series of papers by Korobĕınik and his students and followers about the description of
the commutators of the direct and backward shift operators and their generalizations in
spaces of numerical sequences (see the bibliography in [5]). In [2] and [3], the operator
Dz (more generally, the operator Dz,g0 ; see below) was used to construct an abstract
version of Leont′ev’s interpolating function; this function is widely used in the theory of
series of exponentials and convolution operators.

In the present paper, an operator of Pommiez type will be discussed. For z ∈ C, this
operator is defined as follows:

Dz,g0(f)(t) :=

{
f(t)−g0(t−z)f(z)

t−z , t �= z,

f ′(z)− g′0(0)f(z), t = z.

Here f belongs to a certain countable inductive limit E of weighted Fréchet spaces of
entire functions on C, and g0 is a fixed function in E such that g0(0) = 1. If g0 is
identically equal to 1, the operator Dz,g0 coincides with Dz. Clearly, D0,g0 maps E to
E linearly and continuously. The class of spaces E in question includes the most part
of the standard weighted spaces of entire functions that occur in Fourier analysis and
arise under realization of various function spaces and their duals with the help of the
Fourier–Laplace transformation and its analogs. Not every such space E contains the
polynomials, so that the standard operator D0, which corresponds to the case where
g0 ≡ 1, may fail to act in E. Thus, the passage to a function g0 ∈ E with g0(0) = 1
proves to be quite natural.

The principal result of the paper is Theorem 15 about the general form of the com-
mutants for D0,g0 in E. The first result of this sort was obtained by N. Linchuk in [7] for
the space A(G) of functions analytic in a domain G ⊆ C that contains 0, and for g0 ≡ 1.
Yu. Linchuk (see [19]) proved the corresponding result for an arbitrary linear left inverse
to the operator of multiplication by the independent variable that is continuous in A(G).
Both in E and in A(G), the set of such operators coincides with the set of all operators
D0,g0 (see Theorem 2 and Remark 3). It should be noted that the exposition in [7] and
[19] involved in an essential way Köthe’s theory (see [18]) of characteristic functions of
continuous linear operators in A(G), which is specific for A(G). Dimovski and Hristov
(see [15]) gave a proof of the commutant representation theorem for D0 in A(G) (for a
simply connected domain G) that differs from the proof in [7]. In [15], the density of the
set of polynomials in A(G) was used critically, along with the fact that the shift operators
Tz corresponding to D0 act on polynomials in a simple way. The crux of the method
used in [15] is in the proof of the implication “commutation with D0 implies commuta-
tion with an arbitrary shift operator Tz”. The new setting explored here has brought
about some difficulties related to lifting the assumptions mentioned above and fulfilled
automatically for A(G) in the case where g0 ≡ 1. These difficulties are overcome on the
basis of a quasianalytic nature of E. Specifically, we use the fact that the functionals
f �→ f (n)(0), n ≥ 0, f ∈ E, constitute a dense subset of the dual E′ for E in the Mackey
topology, which implies a due weighted approximability of the shift operators Tz and of
the commutants for D0,g0 by polynomials of D0,g0 .

The paper is organized as follows. In §1 we introduce a Pommiez type operator D0,g0

and describe its properties. In particular, we show that the set of all continuous linear
left inverses to the operator of multiplication by the independent variable in E consists
precisely of the operators D0,g0 . In §2 some auxiliary statements are proved. There we
introduce and explore a binary operation (convolution) ⊗ in E′ generated by a shift for a
Pommiez type operator. In §3 we prove the principal Theorem 15 and its consequences.
It is shown that E′ with the operation ⊗ is isomorphic to the algebra of all continuous
and linear operators in E that commute with D0,g0 .
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§1. Pommiez type operator and its properties

In [3], a Pommiez type operator in a weighted (LF )-space of entire functions was
studied. We present the necessary information from [3]. Given a continuous function
v : C → R, for a function f : C → C we put

pv(f) := sup
z∈C

|f(z)|
exp v(z)

.

Suppose that continuous functions vn,k : C → R satisfy

vn,k+1 ≤ vn,k ≤ vn+1,k, n, k ∈ N,

on C. As usual, the symbol A(C) denotes the space of all entire functions (on C). We
introduce the weighted Fréchet spaces

En := {f ∈ A(C) : pvn,k
(f) < +∞ for all k ∈ N}, n ∈ N.

Note that En is embedded in En+1 continuously for every n ∈ N. Put

E := ind
n→

En.

In the sequel, we assume that the double sequence (vn,k)n,k∈N satisfies the following
condition:

(1.1) ∀n ∃m ∀k ∃s ∃C ≥ 0 : sup
|t−z|≤1

vn,s(t) + ln(1 + |z|) ≤ inf
|t−z|≤1

vm,k(t) + C, z ∈ C.

Then E is invariant under differentiation and translation, and for every n ∈ N there
exists m ∈ N such that every bounded set in En is relatively compact in Em, see [3,
Remark 1]. Moreover, E is invariant under multiplication by the independent variable.

We assume that E contains a function that is not identically zero. Since for every

f ∈ E and z ∈ C with f(z) = 0 the function f(t)
t−z also belongs to E, we see that there

exists a function g0 ∈ E with g0(0) = 1.
Let g0 ∈ E satisfy g0(0) = 1. An operator of Pommiez type Dz,g0 , z ∈ C, is defined

on E as follows: for f ∈ E, we put

Dz,g0(f)(t) :=

{
f(t)−g0(t−z)f(z)

t−z , t �= z,

f ′(z)− g′0(0)f(z), t = z.

The operator Dz,g0 maps E to E linearly and continuously, see [3, Lemma 6].
We denote by L(E) the space of all continuous linear operators on E.
Let M(f)(z) := zf(z), f ∈ E, z ∈ C, be the operator of multiplication by the

independent variable. Clearly, M ∈ L(E). We show that every operator D0,g0 is a
continuous linear left inverse to M : E → E (and vice versa). For the space A(G), this
result was mentioned in [19] (see Remark 3).

Let KerL stand for the kernel of the operator L ∈ L(E).

Lemma 1. Let L ∈ L(E) be a continuous linear left inverse to M : E → E. Then there
exists a function f ∈ KerL with f(0) = 1.

Proof. We show that KerL �= {0}. Let KerL = {0}. Since is L : E → E a surjection,
we see that L is an algebraic isomorphism of E onto E. Then M is also an algebraic
isomorphism of E onto E. This contradicts the fact that M(E) �= E.

Let h ∈ KerL, and let h �= 0. Suppose that h(0) = 0. Then

h0(z) :=
h(z)

z
∈ E

and
0 = L(h) = L(M(h0)) = h0,

which contradicts the fact that h �= 0. It remains to put f := h
h(0) . �
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Theorem 2. The following conditions are equivalent:
(i) L is a continuous linear left inverse to M : E → E;
(ii) there exists a function g0 ∈ E such that g0(0) = 1 and L = D0,g0 .

Proof. The implication (ii) ⇒ (i) is obvious.
(i) ⇒ (ii): By Lemma 1, there exists a function g0 ∈ KerL with g0(0) = 1. Then for

every f ∈ E and every z ∈ C \ {0} we have

L(f)(z) = Lt

(
tD0,g0(t) + f(0)g0(t)

)
(z)

=
f(z)− f(0)g0(z)

z
+ f(0)L(g0)(z) = D0,g0(f)(z).

Thus, L = D0,g0 . �
Remark 3. In [19, p. 384], Yu. Linchuk observed that, in the Fréchet space A(G) of
functions analytic in a domain G ⊆ C containing 0, the general form of continuous linear
left inverses to M is given by the formula

(1.2) A(f) = D0(f) + f(0)ϕ, f ∈ A(G),

where ϕ is a function in A(G). The operator A in (1.2) is the operator D0,g0 of Pommiez

type for g0(t) = 1−tϕ(t). Reciprocally, any operatorD0,g0 is A as above if ϕ(t) = 1−g0(t)
t .

This is true both for A(G) and for E.

§2. Auxiliary results

2.1. The shift operator for a Pommiez type operator. Its properties. Fix a
function g0 ∈ E with g0(0) = 1. As in [14, 15], for z ∈ C we introduce the operator

Tz(f)(t) :=

{
tf(t)g0(z)−zf(z)g0(t)

t−z , t �= z,

zg0(z)f
′(z)− zf(z)g′0(z) + f(z)g0(z), t = z,

f ∈ E. (By analogy with [14], it is natural to call Tz the shift operator for the Pommiez
type operator.)

Lemma 4. (i) ∀n ∃m ∀k, l ∃s ∃C ≥ 0 : ∀f ∈ En

(2.1) |Tz(f)(t)| ≤ Cpvn,s
(f) exp vm,k(t) exp vm,l(z), t, z ∈ C.

(ii) For every n ∈ N there exists m ∈ N such that Tz maps En to Em continuously
and linearly for every z ∈ C; consequently, it maps E to E.

(iii) For every f ∈ E there exists m ∈ N such that for every k ∈ N the set Vk(f) :={
exp(−vm,k(t))Tt(f) : t ∈ C

}
is bounded in Em.

Proof. (i) This is a consequence of (1.1).
(ii) Formula (2.1) shows that ∀n ∃m ∀k ∃s ∃C ≥ 0: ∀f ∈ En

pvm,k
(Tz(f)) ≤ C exp vm,k(z)pvn,s

(f), z ∈ C.

Therefore, the operator Tz : En → Em is continuous for every z ∈ C.
(iii) This follows from (2.1) if we recall that

Tz(f)(t) = Tt(f)(z), t, z ∈ C. �
For z ∈ C, we introduce the delta-functions δz in a standard way:

δz(f) = f(z), f ∈ E.

Clearly, δz ∈ E′ for every z ∈ C. Here E′ stands for the topological dual to E. Observe
the obvious identity

δ0Tz = δz, z ∈ C.
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The following lemma is immediate.

Lemma 5. For every z ∈ C we have

TzD0,g0 = D0,g0Tz.

Let Fz = Tz(f), f ∈ E, z ∈ C.

Lemma 6. For all integers n ≥ 0 and all z ∈ C, we have

(2.2)
(
D0,g0(Fz)

)(n)
(0) =

1

n+ 1
(Fz)

(n+1)(0)− g
(n+1)
0 (0)

n+ 1
Fz(0).

Proof. We verify (2.2) for n = 0. Since for every t �= z, t �= 0 we have

D0,g0(Fz)(t) =

tf(t)g0(z)−zf(z)g0(t)
t−z − f(z)g0(t)

t
=

f(t)g0(z)− f(z)g0(t)

t− z
,

it follows that for every t �= z we have the identity

(2.3) D0,g0(Fz)(t) =
f(t)g0(z)− f(z)g0(t)

t− z
.

Thus, for z �= 0 we obtain

D0,g0(Fz)(0) =
f(z)− g0(z)f(0)

z
= D0,g0(f)(z).

Consequently,

D0,g0(Fz)(0) = D0,g0(f)(z)

for all z ∈ C. On the other hand, if z �= 0, then

(Fz)
′(0) =

(f(0)g0(z)− zf(z)g′0(0))(−z) + zf(z)

z2

=
f(z)− f(0)g0(z) + zg′0(0)f(z)

z
= D0,g0(f)(z) + g′0(0)f(z)

= D0,g0(f)(z) + g′0(0)Fz(0).

Therefore,

D0,g0(Fz)(0) = (Fz)
′(0)− g′0(0)Fz(0), z ∈ C.

Now let n ≥ 1, t �= z. By (2.3), differentiation in t yields

(
D0,g0(Fz)

)(n)
(t) =

(
f(t)g0(z)

t− z

)(n)

−
(
f(z)g0(t)

t− z

)(n)

= g0(z)

n∑
k=0

Ck
nf

(n−k)(t)
(−1)kk!

(t− z)k+1
− f(z)

n∑
k=0

Ck
ng

(n−k)
0 (t)

(−1)kk!

(t− z)k+1
.

So, for t = 0 and z �= 0 we have

(
D0,g0(Fz)

)(n)
(0) = f(z)

n∑
k=0

Ck
ng

(n−k)
0 (0)

k!

zk+1
− g0(z)

n∑
k=0

Ck
nf

(n−k)(0)
k!

zk+1

= f(z)
n∑

k=0

n!

(n− k)!

g
(n−k)
0 (0)

zk+1
− g0(z)

n∑
k=0

n!

(n− k)!

f (n−k)(0)

zk+1
.

(2.4)
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At the same time, for t �= z we have

(Fz)
(n+1)(t) = g0(z)

(
tf(t)

t− z

)(n+1)

− zf(z)

(
g0(t)

t− z

)(n+1)

= g0(z)
n+1∑
k=0

Ck
n+1(tf(t))

(n+1−k) (−1)kk!

(t− z)k+1
− zf(z)

n+1∑
k=0

Ck
n+1g

(n+1−k)
0 (t)

(−1)kk!

(t− z)k+1
,

whence for z �= 0 we obtain

(Fz)
(n+1)(0) = − g0(z)

n∑
k=0

Ck
n+1(n+ 1− k)f (n−k)(0)

k!

zk+1

+ zf(z)
n+1∑
k=0

Ck
n+1g

(n+1−k)
0 (0)

k!

zk+1
= g

(n+1)
0 (0)f(z)

+ f(z)

n+1∑
k=1

(n+ 1)!

(n+ 1− k)!

g
(n+1−k)
0 (0)

zk

− g0(z)

n∑
k=0

(n+ 1)!

(n+ 1− k)!
(n+ 1− k)

f (n−k)(0)

zk+1

= g
(n+1)
0 (0)f(z) + (n+ 1)f(z)

n∑
k=0

n!

(n− k)!

g
(n−k)
0 (0)

zk+1

− (n+ 1)g0(z)
n∑

k=0

n!

(n− k)!

f (n−k)(0)

zk+1
.

(2.5)

Now, (2.4) and (2.5) imply (2.2) for n ≥ 1, z �= 0. Clearly, (2.2) is true for all z ∈ C. �

Below we prove Lemma 7, which is similar to Lemma 2 in [19]. That lemma was proved
in [19] for the operators An acting in the Fréchet space A(G) of functions analytic in
a domain G ⊆ C (see Remark 3). The proof of Lemma 2 in [19] involved critically
the characteristic functions of the operators An. The characteristic function techniques
for continuous linear operators on A(G) is specific for A(G) and cannot be used in the
setting treated here. (Before, such characteristic functions had been employed in [7] for
the operator A = D0 that acts in A(G).) Here Lemma 7 is proved in a different, more
elementary and general way (without use of specific features of E). This method is also
applicable in the setting of [19].

Lemma 7. For every integer n ≥ 0, we have

(2.6) Dn
0,g0(f)(z) = ϕn(Tz(f)), f ∈ E, z ∈ C,

where ϕ0 = δ0; if n ∈ N, then there exist ck,n ∈ C, 0 ≤ k ≤ n− 1, with

ϕn(f) =
1

n!
f (n)(0) +

n−1∑
k=0

ck,nf
(k)(0), f ∈ E.

Proof. For n = 0, identity (2.6) is obvious. For n = 1, we have

D0,g0(f)(z) :=
f(z)− g0(z)f(0)

z
, z �= 0.
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On the other hand (the differentiations are in the variable t), for z �= 0 we have(
tf(t)g0(z)− zf(z)g0(t)

t− z

)′∣∣∣∣
t=0

− g′0(0)

(
tf(t)g0(z)− zf(z)g0(t)

t− z

)∣∣∣∣
t=0

=
−zf(0)g0(z) + z2f(z)g′0(0) + zf(z)− g′0(0)f(z)z

2

z2
=

f(z)− g0(z)f(0)

z
.

It follows that

D0,g0(f) = ϕ1(Tz(f)), f ∈ E,

where ϕ1(f) := f ′(0)− g′0(0)f(0).
Suppose that for n ≥ 1 there exist numbers ck,n, 0 ≤ k ≤ n − 1, such that (2.6) is

true. Taking Lemmas 5 and 6 into account, for f ∈ E and z ∈ C we obtain

Dn+1
0,g0

(f)(z) = Dn
0,g0

(
D0,g0(f)

)
(z)

= ϕn

(
Tz(D0,g0(f))

)
= ϕn

(
D0,g0(Tz(f))

)
= ϕn

(
D0,g0(Fz)

)
=

1

n!

(
D0,g0(Fz)

)(n)
(0) +

n−1∑
k=0

ck,n
(
D0,g0(Fz)

)(k)
(0) =

1

(n+ 1)!
F (n+1)

z (0)

+
n−1∑
k=0

ck,n

( 1

k + 1
(Fz)

(k+1)(0)− g
(k+1)
0 (0)

k + 1
Fz(0)

)
− g

(n+1)
0 (0)

(n+ 1)!
Fz(0)

=
1

(n+ 1)!
F (n+1)

z (0) +

n∑
k=1

ck−1,n

(1
k
(Fz)

(k)(0)− g
(k)
0 (0)

k
Fz(0)

)
− g

(n+1)
0 (0)

(n+ 1)!
Fz(0) =

1

(n+ 1)!
(Fz)

(n+1)(0) +
n∑

k=1

ck−1,n

k
(Fz)

(k)(0)

−
( n∑

k=1

ck−1,n
g
(k)
0 (0)

k

)
Fz(0)−

g
(n+1)
0 (0)

(n+ 1)!
Fz(0)

=
1

(n+ 1)!
(Fz)

(n+1)(0) +

n∑
k=0

ck,n+1(Fz)
(k)(0),

where

ck,n+1 =
ck−1,n

k
, 1 ≤ k ≤ n,

c0,n+1 = −
n∑

k=1

ck−1,n
g
(k)
0 (0)

k
− g

(n+1)
0 (0)

(n+ 1)!
. �

For f ∈ E, z, t ∈ C, put

T̃z(f)(t) :=

{
f(t)g0(z)−f(z)g0(t)

t−z , t �= z,

g0(z)f
′(z)− f(z)g′0(z), t = z;

τz(f)(t) := f(t+ z).

Condition (1.1) shows that the linear operators T̃z and τz, z ∈ C, map E into itself

continuously (and an analog of Lemma 4 is valid for T̃z).
To prove that for ϕ ∈ E′ and f ∈ E the function z �→ ϕ(Tz(f)), z ∈ C, is entire, we

shall need certain identities for the differences T̃μ(f)− T̃z(f) and the differentiability of

the vector-valued mapping z ∈ C �→ T̃z(f) ∈ E, which follows from these identities.

Remark 8. Formula (2.6) is also true for all functions f ∈ A(C).
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Lemma 9. (i) For f ∈ E, μ, z ∈ C, we have

T̃μ(f)− T̃z(f) = g0(μ)
(
(μ− z)Dμ,g0(Dz,g0(f)) + f(z)Dμ,g0(τ−z(g0))

)
− f(μ)

(
(μ− z)Dμ,g0(Dz,g0(g0)) + g0(z)Dμ,g0(τ−z(g0))

)
+ (g0(μ)− g0(z))Dz,g0(f)− (f(μ)− f(z))Dz,g0(g0).

(ii) For every f ∈ E, z ∈ C there exists r ∈ N such that the following formula is true
in Er:

lim
μ→z

T̃μ(f)− T̃z(f)

μ− z
= g0(z)

(
D2

z,g0(f) + f(z)Dz,g0(τ−z(g
′
0))

)
− f(z)

(
D2

z,g0(g0) + g0(z)Dz,g0(τ−z(g
′
0))

)
+ g′0(z)Dz,g0(f)− f ′(z)Dz,g0(g0).

(iii) For every ϕ ∈ E′ and f ∈ E, the function ϕ(Tz(f)) (of z) belongs to E.

Proof. (i) Since

T̃z(f)(t) =
f(t)g0(z)− f(z)g0(t)

t− z

= g0(z)
f(t)− g0(t− z)f(z)

t− z
− f(z)

g0(t)− g0(t− z)g0(z)

t− z
= g0(z)Dz,g0(f)(t)− f(z)Dz,g0(g0)(t)

for t �= z, it follows that

T̃z(f) = g0(z)Dz,g0(f)− f(z)Dz,g0(g0).

Taking into account the relation

Dμ,g0(f)−Dz,g0(f) = (μ− z)Dμ,g0

(
Dz,g0(f)

)
+ f(z)Dμ(τ−z(g0)),

see [3, Lemma 4], for μ, z ∈ C we obtain

T̃μ(f)− T̃z(f) = g0(μ)
(
Dμ,g0(f)−Dz,g0(f)

)
+
(
g0(μ)− g0(z)

)
Dz,g0(f)

− f(μ)
(
Dμ,g0(g0)−Dz,g0(g0)

)
−
(
f(μ)− f(z)

)
Dz,g0(g0)

= g0(μ)
(
(μ− z)Dμ,g0(Dz,g0(f)) + f(z)Dμ,g0(τ−z(g0))

)
− f(μ)

(
(μ− z)Dμ,g0(Dz,g0(g0)) + g0(z)Dμ,g0(τ−z(g0))

)
+
(
g0(μ)− g0(z)

)
Dz,g0(f)−

(
f(μ)− f(z)

)
Dz,g0(g0).

(ii) Statement (i) shows that

T̃μ(f)− T̃z(f)

μ− z
= g0(μ)

(
Dμ,g0(Dz,g0(f)) + f(z)

Dμ,g0(τ−z(g0))

μ− z

)
− f(μ)

(
Dμ,g0(Dz,g0(g0)) + g0(z)

Dμ,g0(τ−z(g0))

μ− z

)
+

g0(μ)− g0(z)

μ− z
Dz,g0(f)−

f(μ)− f(z)

μ− z
Dz,g0(g0)

for μ �= z. Now, (ii) follows from [3, Lemma 7 (iii), (iv)].
(iii) Since M(f) ∈ E (M is the operator of multiplication by the independent vari-

able), the function ϕ(Tz(f)) = ϕ(T̃z(M(f))), z ∈ C, is entire by (ii).
Let M(f) ∈ En, and let m be chosen by n as in inequality (2.1) of Lemma 4. Since

ϕ ∈ E′, the functional ϕ is continuous on Em; therefore, there exists k and B ≥ 0 such
that

(2.7) |ϕ(h)| ≤ Bpvm,k
(h), h ∈ Em.
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By (2.7) and inequality (2.1) in Lemma 4, for every l there exists s ∈ N and C ≥ 0 such
that

(2.8)
∣∣ϕ(Tz(f))

∣∣ ≤ Bpvm,k
(Tz(f)) ≤ BCpvn,s

(f) exp vm,l(z), z ∈ C.

Consequently, the function ϕ(Tz(f)), z ∈ C, belongs to Em. �
Remark 10. Let ϕn, n ≥ 0, be functionals as in Lemma 7. The system {ϕn : n ≥ 0}
is complete in E′ in every topology λ compatible with the natural duality between E′

and E (that is, the closure of the linear hull of the set {ϕn : n ≥ 0} in (E′, λ) coincides
with E′).

Proof. Let f ∈ E satisfy ϕn(f) = 0, n ≥ 0. Then f (n)(0) = 0 for every n ≥ 0,
whence f ≡ 0. Therefore, the system {ϕn : n ≥ 0} is complete in E′ in an arbitrary
topology compatible with the natural duality between E′ and E, see [13, Chapter 2, §2.3,
Theorem 2.3.1]. �
2.2. The convolution in E′ generated by the shift operator. We denote by τ :=
τ (E′, E) the Mackey topology in E′, i.e., the topology of uniform convergence on the
family of all absolutely convex σ(E,E′)-compact subsets of E, see [13, Chapter 8, 8.3.3].
Here σ(E,E′) is the weak topology in E determined by the natural duality between E
and E′.

For f ∈ E, we put

f̃(t, z) := Tz(f)(t), t, z ∈ C.

Lemma 11. Suppose that a net Ψμ ∈ E′, μ ∈ Δ, converges to ψ ∈ E′ in (E′, τ ). Then
for every function f ∈ E there exists m ∈ N such that in Em (consequently, also in E)
we have

(Ψμ)z(f̃(·, z)) −→
μ∈Δ

ψz(f̃(·, z)).

Proof. Take f ∈ E. By Lemma 4, there exists m ∈ N such that for every k ∈ N the set

Vk(f) = {exp(−vm,k(t))f̃(t, ·) : t ∈ C}
is bounded in Em. Fixing k ∈ N, we denote by ac(Vk(f)) the absolutely convex hull of
Vk(f) in Em. The set ac(Vk(f)) is also bounded in Em. By [3, Remark 1], there exists

s ∈ N such that ac(Vk(f)) is relatively compact in Es. The closure ac(Vk(f)) of ac(Vk(f))
in Es is compact. Since Es embeds continuously in (E, σ(E,E′)), the absolutely convex

set ac(Vk(f)) is also σ(E,E′)-compact. Therefore, Ψμ →
μ∈Δ

ψ uniformly on ac(Vk(f))

and, a fortiori, on Vk(f). Consequently,

sup
t∈C

∣∣exp(−vm,k(t))(Ψμ − ψ)z(f̃(t, z))
∣∣ −→
μ∈Δ

0.

Thus,

pvm,k

(
(Ψμ − ψ)z(f̃(·, z))

)
−→
μ∈Δ

0.

So, we have

(Ψμ)z(f̃(·, z)) −→
μ∈Δ

ψz(f̃(·, z))
in Em. �

We introduce a binary operation on E′: for ϕ, ψ ∈ E′ and f ∈ E put

(ϕ⊗ ψ)(f) := ϕt

(
ψz(f̃(t, z))

)
.

Lemma 9 (iii) shows that the operation ⊗ is well defined. Observe that for every
ψ, ϕ ∈ E′ and f ∈ E we have

(2.9) (ϕ⊗ ψ)(f) = ϕt

(
ψ(Tt(f))

)
.
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It is natural to call the operation ⊗ the convolution generated by a Pommiez type shift
operator. The space E′ with the operation ⊗ in the role of multiplication is an algebra.
Below we shall show that the operation ⊗ is commutative.

Lemma 12. Let ϕn, n ≥ 0, be functionals as in Lemma 7. For every entire function h
on C2 and every integers j, k ≥ 0 we have

(ϕj)z
(
(ϕk)t(h(t, z))

)
= (ϕk)t

(
(ϕj)z(h(t, z))

)
.

This result is a consequence of the independence of the partial derivatives for h of the
differentiation order (see also Remark 8).

Lemma 13. We have ϕ⊗ ψ = ψ ⊗ ϕ for every ϕ, ψ ∈ E′.

Proof. Let ϕn ∈ E′, n ≥ 0, be functionals as in Lemma 7. By Remark 10, the system
{ϕn : n ≥ 0} is complete in (E′, τ ). Consequently, there exist nets

{
Φλ :=

∑mλ

j=0 ajλϕj :

λ ∈ Λ
}
and

{
Ψμ :=

∑nμ

k=0 bkμϕk : μ ∈ Δ
}
(ajλ, bkμ ∈ C, mλ, nμ ∈ N ∪ {0}) convergent

in (E′, τ ) to ϕ and ψ, respectively.
Take f ∈ E. Invoking Lemma 11 and the fact that, by Lemma 12,

(Φλ)t
(
(Ψμ)z(f̃(t, z))

)
= (Ψμ)z

(
(Φλ)t(f̃(t, z))

)
, λ ∈ Λ, μ ∈ Δ,

we obtain

(ϕ⊗ ψ)(f) = ϕt

(
ψz(f̃(t, z))

)
= ϕt( lim

μ∈Δ
(Ψμ)z

(
f̃(t, z))

)
= lim

μ∈Δ
ϕt

(
(Ψμ)z(f̃(t, z))

)
= lim

μ∈Δ

(
lim
λ∈Λ

(Φλ)t
(
(Ψμ)z(f̃(t, z))

))
= lim

μ∈Δ

(
lim
λ∈Λ

(Ψμ)z
(
(Φλ)t(f̃(t, z))

))
= lim

μ∈Δ

(
(Ψμ)z

(
lim
λ∈Λ

(Φλ)t(f̃(t, z))
))

= lim
μ∈Δ

(Ψμ)z
(
ϕt(f̃(t, z))

)
= ψz

(
ϕt(f̃(t, z))

)
= (ψ ⊗ ϕ)(f). �

Theorem 14. If B ∈ L(E) and BD0,g0 = D0,g0B on E, then

BTz = TzB

for every z ∈ C.

Proof. Fixing z ∈ C, we observe that (here Ft := Tt(f))

Tz(f)(t) = δz(Ft).

Let ϕn, n ≥ 0, be functionals as in Lemma 7. By Remark 10, there exists a net
{
Φα :=∑nα

j=0 bjαϕj : α ∈ Λ
}
(bjα ∈ C, nα ∈ N∪ {0}) convergent to δz in (E′, τ ). We show that

lim
α∈Λ

nα∑
j=0

bjαD
j
0,g0

(f) = Tz(f)

in E for every function f ∈ E. Take f ∈ E. As in the proof of Lemma 11, we deduce
the existence of m ∈ N such that in Em (with respect to t) we have

Φα(Ft) −→
α∈Λ

δz(Ft).

Since

Φα(Ft) =

nα∑
j=0

bjαϕj(Ft) =

nα∑
j=0

bjαD
j
0,g0

(f)(t),

the following is true in Em (consequently, in E):
nα∑
j=0

bjαD
j
0,g0

(f) −→
α∈Λ

Tz(f).
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Thus, for f ∈ E we obtain

B(Tz(f)) = B

(
lim
α∈Λ

nα∑
j=0

bjαD
j
0,g0

(f)

)
= lim

α∈Λ

nα∑
j=0

bjαB
(
Dj

0,g0
(f)

)
= lim

α∈Λ

nα∑
j=0

bjαD
j
0,g0

(B(f)) = Tz(B(f)).
�

§3. Principal result

3.1. A general form of the operators commuting with D0,g0 , and consequences.

Theorem 15. The following statements are equivalent:

(i) B ∈ L(E) and BD0,g0 = D0,g0B on E;
(ii) there exists ϕ ∈ E′ with

B(f)(z) = ϕ(Tz(f)), f ∈ E, z ∈ C.

Proof. (i) ⇒ (ii). The proof of this implication is analogous to the proof of a similar
implication in Theorem 1.8 in [15].

By Theorem 14, BTz = TzB on E for every z ∈ C. Since

Tξ(f)(z) = Tz(f)(ξ),

we have

(3.1) B(Tz(f))(ξ) = Tz(B(f))(ξ) = Tξ(B(f))(z).

Put ϕ(f) := B(f)(0), f ∈ E. Then ϕ ∈ E′. Formula (3.1) with ξ = 0 implies

T0(B(f))(z) = B(Tz(f))(0),

i.e. (because T0 is the identity operator),

(3.2) B(f)(z) = ϕ(Tz(f)), f ∈ E, z ∈ C.

(ii) ⇒ (i). By Lemma 9 (iii), the linear operator B maps E to E. Since the graph
of B is closed in E × E, we have B ∈ L(E) by the closed graph theorem, see [13,
Chapter 6, §6.7, Theorem 6.7.1] (the continuity of B : E → E can also be deduced from
inequality (2.8)). The relation BD0,g0 = D0,g0B on E is proved by direct inspection. �

Remark 16. (a) If an operator B ∈ L(E) commutes with D0,g0 on E, the functional
ϕ ∈ E′ in (ii) is unique.

Indeed, formula (3.2) with z = 0 shows that

ϕ(f) = B(f)(0), f ∈ E.

(b) The operators commuting with A (as in Remark 3; then they also commute
with D0,g0) in A(G) were described by Yu. Linchuk, see [19]. It was the paper [19]
that suggested us the formula in (ii) in the case under study. In Linchuk’s proof, the
Köthe theory of characteristic functions l(λ, z) for the operator A ∈ L(A(G)) was used
substantially:

l(λ, z) := At

( 1

λ− t

)
(z), λ /∈ G, z ∈ G.

A similar result for ψ ≡ 0 (see (1.2)), i.e., for the usual Pommiez operator D0, had been
obtained by N. Linchuk by the same method even before, see [7].

(c) Using a different method, Dimovski and Hristov (see [15]) described the commu-
tants for the usual Pommiez operator D0 on A(G) for a simply connected domain G ⊆ C.
We employ the idea of Dimovski and Hristov, which reduces the corresponding descrip-
tion to Theorem 14. The implementation of this idea in the present setting has met
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considerable difficulties related to the absence of certain important properties intrinsic
for A(G), specifically, the simple way in which Tz acts on polynomials (for g0 ≡ 1) and
the density of the set of polynomials on A(G).

We denote by K(D0,g0) the set of all commutants for D0,g0 in E. Note that K(D0,g0) is
a subspace of L(E) and is an algebra with composition of operators in the role of multi-
plication.

For ϕ ∈ E′, we put

κ(ϕ)(f)(z) := ϕ(Tz(f)), f ∈ E, z ∈ C.

By Theorem 15, κ takes E′ onto K(D0,g0) bijectively.

Lemma 17. For every ϕ, ψ ∈ E′ we have

κ(ϕ⊗ ψ) = κ(ϕ)κ(ψ).

Proof. Take ϕ, ψ ∈ E′. On the one hand, for every f ∈ E, z ∈ C we can use (2.9) to
obtain

κ(ϕ⊗ ψ)(f)(z) = (ϕ⊗ ψ)(Tz(f)) = ϕt(ψ(Tt(Tz(f)))).

On the other hand, since the operators κ(ψ) and Tz commute by Theorems 14 and
15, for f ∈ E and z ∈ C we arrive at

κ(ϕ)κ(ψ)(f)(z) = κ(ϕ)
(
κ(ψ)(f)

)
(z) = ϕ

(
Tz(κ(ψ)(f))

)
= ϕ

(
κ(ψ)(Tz(f))

)
= ϕt

(
ψ
(
Tt(Tz(f))

))
.

Hence, κ(ϕ⊗ ψ) = κ(ϕ)κ(ψ). �

Corollary 18. The mapping κ : (E′,⊗) → K(D0,g0) is an isomorphism of algebras.

Proof. By Theorem 15, the (linear) mapping

κ : E′ → K(D0,g0)

is bijective. By Lemma 17, κ : E′ → K(D0,g0) is an isomorphism of algebras. �

Remark 19. Corollary 18 and Lemma 13 show that the commutative operation ⊗ is
also associative, and the composition of operators in K(D0,g0) is not only associative,
but also commutative. Therefore, (E′,⊗) and K(D0,g0) are associative and commutative
algebras.

Let P(D0,g0) be the set of all polynomials of the operator D0,g0 , i.e., the set of all
operators of the form

P (D0,g0) =

n∑
j=0

ajD
j
0,g0

, aj ∈ C, n ≥ 0.

Clearly, P(D0,g0) is a subspace of K(D0,g0).

Corollary 20. K(D0,g0) coincides with the closure of P(D0,g0) in L(E) with the topology
of pointwise convergence (see [12, Chapter III, §3, example 4(a)]).

Proof. Let B ∈ K(D0,g0). By Theorem 15, there exists ϕ ∈ E′ such that

B(f)(z) = ϕ(Tz(f)), f ∈ E, z ∈ C.

By Remark 10, there exists a net
{
Φα :=

∑nα

j=0 cjαϕj : α ∈ Λ
}
(cjα ∈ C, nα ∈ N ∪ {0})

convergent to ϕ in (E′, τ ).
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Take f ∈ E. Arguing as in the proof of Lemma 11, we arrive at the existence of m ∈ N

such that

(3.3) sup
h∈Wk(f)

|(ϕ− Φα)(h)| −→
α∈Λ

0

for every k ∈ N. (Here Wk(f) := {exp(−vm,k(t))Tt(f) : t ∈ C}.) Therefore, for every
k ∈ N, using Lemma 7 and (3.3), we obtain the following relation for the polynomials
Pα(z) :=

∑nα

j=0 cjαz
j :

pvm,k

((
B − Pα(D0,g0)

)
(f)

)
= sup

t∈C

(
exp(−vm,k(t))

∣∣∣∣ϕ(Tt(f))−
nα∑
j=0

cjαD
j
0,g0

(f)(t)

∣∣∣∣)

= sup
t∈C

(
exp(−vm,k(t))

∣∣∣∣ϕ(Tt(f))−
nα∑
j=0

cjαϕj(Tt(f))

∣∣∣∣)
= sup

h∈Wk(f)

∣∣ϕ(h)− Φα(h)
∣∣ −→
α∈Λ

0.

Thus, Pα(D0,g0)(f) →
α∈Λ

B(f) in E for every f ∈ E. �

3.2. Example. Consider the following situation. Let G be a convex domain in C con-
taining 0, let (Kn)n∈N be a sequence of compact convex subsets of C with Kn ⊂ intKn+1,
n ∈ N, and let G =

⋃
n∈N

Kn (intΩ denotes the interior of a subset Ω of C). We denote
by Hn the support function for Kn:

Hn(z) := sup
t∈Kn

Re(tz), z ∈ C, n ∈ N.

Put vn,k := Hn, n, k ∈ N. The functions vn,k (they do not depend on k) satisfy (1.1).
In the case in question, E is an (LB)-space: E = indn→ En, where the weighted Banach
spaces En are defined as follows:

En :=

{
f ∈ A(C) : ‖f‖n := sup

z∈C

|f(z)|
expHn(z)

< +∞
}
.

For the role of g0, we take the function g0 ≡ 1, which belongs to E. We shall write Dz

in place of Dz,g0 , z ∈ C. Let ez(t) := exp(tz), t, z ∈ C.
As is well known, in the present setting the space E′ can be identified with the Fréchet

space of all functions analytic in G. More precisely, the transformation

Φ: E′ → A(G), ϕ �→ ϕ(ez), z ∈ G,

is an algebraic isomorphism (which is also topological if we endow E′ with the strong
topology of the dual to E). Since the structure of Φ will be used in what follows, we
include the proof of this fact. For a locally convex space H, we denote by H ′

b the strong
dual to H. By [10, Theorem 4.5.3], the Laplace transformation

F(ψ)(λ) := ψ(eλ), ψ ∈ A(G)′, λ ∈ C,

is a linear topological isomorphism of A(G)′b onto E. The space A(G) is reflexive, whence
we see that the canonical mapping (see [12, Chapter 4, §5, p. 182])

J : A(G) → A(G)′′, f �→ J (f) : J (f)(ψ) = ψ(f), ψ ∈ A(G)′,

is bijective (and continuous if A(G)′′ is endowed with the topology of the second strong
dual). Consequently, the mapping J−1F ′ is a linear topological isomorphism of E′

b onto
A(G). Moreover, for ϕ ∈ E′ and z ∈ G we have

(J−1F ′)(ϕ)(z) = δz
(
(J−1F ′)(ϕ)

)
= J

(
(J−1F ′)(ϕ)

)
(δz)

= F ′(ϕ)(δz) = ϕ(F(δz)) = ϕ(ez).
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Therefore, Φ = J−1F ′, and Φ is a linear topological isomorphism of E′
b onto A(G).

The natural duality between E′ and E induces a duality between A(G) and E. The
latter is given by the bilinear form

〈h, f〉 = Φ−1(h)(f), h ∈ A(G), f ∈ E.

Since A(G) is reflexive, for h ∈ A(G) and f ∈ E we obtain

(3.4) Φ−1(h)(f) = ((F ′)−1J )(h)(f) = ((F−1)′J )(h)(f) = J (h)(F−1(f)) = F−1(f)(h).

By (3.4) and [10, Chapter IV, 4.5, p. 137–139], we have

(3.5) 〈h, f〉 = 1

2πi

∫
C

γf (t)h(t)dt,

where γf is the Borel transform of f ∈ E, and C is a closed rectifiable Jordan curve lying
both in G and in the domain of analyticity of γf .

It should be noted that

〈eλ, f〉 = f(λ), f ∈ E, λ ∈ C

by (3.5). Moreover,

〈h, ez〉 = Φ−1(h)(ez) = Φ(Φ−1(h))(z), h ∈ A(G), z ∈ G.

Lemma 21. Let D′
z : A(G) → A(G), z ∈ C, and M ′ : A(G) → A(G) be the adjoints to

Dz : E → E and M : E → E (M is multiplication by the independent variable) when the
topological dual to E is identified with A(G). Then:

(i) we have the identity

(3.6) D′
z(h)(t) =

∫ t

0

eξzh(t− ξ)dξ, h ∈ A(G), z ∈ G,

where the integral is taken over the interval [0, t];
(ii) M ′ is the differentiation operator on A(G).

Proof. (i) For f ∈ E and h ∈ A(G) we have

〈D′
z(h), f〉 = 〈h,Dz(f)〉.

If h = eλ, λ ∈ C, then for λ �= z we obtain

〈D′
z(eλ), f〉 = 〈eλ, Dz(f)〉 = Dz(f)(λ) =

f(λ)− f(z)

λ− z
=

〈eλ − ez
λ− z

, f
〉
.

Therefore, if λ �= z, then

D′
z(eλ) =

eλ − ez
λ− z

,

i.e.,

D′
z(eλ)(t) =

∫ t

0

eξzeλ(t−ξ) dξ, λ, z ∈ C, t ∈ G.

Since D′
z is continuous and linear on A(G) and the set {eλ : λ ∈ C} is complete in A(G),

identity (3.6) is fulfilled for all h ∈ A(G).
(ii) Suppose that D(h) := h′ and h ∈ A(G). For λ ∈ C and f ∈ E we have

〈D(eλ), f〉 = 〈λeλ, f〉 = λf(λ) = M(f)(λ) = 〈eλ,M(f)〉 = 〈M ′(eλ), f〉.
Thus, M ′(eλ) = D(eλ), λ ∈ C. Since the set {eλ : λ ∈ C} is complete in A(G), we see
that M ′ = D on A(G). �

Since g0 ≡ 1, we have Tz = DzM . Therefore,

ϕ(Tz(f)) = ϕ
(
Dz(M(f))

)
for ϕ ∈ E′, z ∈ C, and f ∈ E. For ϕ ∈ E′, we put ϕ̂ := Φ(ϕ).
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Applying Lemma 21 and formula (3.5), for ϕ ∈ E′, f ∈ E, and z ∈ C we obtain

ϕ(Tz(f)) = 〈ϕ̂,Dz(M(f))〉 = 〈D′
z(ϕ̂),M(f)〉 = 1

2πi

∫
C

γM(f)(t)

(∫ t

0

ezξϕ̂(t− ξ) dξ

)
dt,

where C is a closed rectifiable Jordan curve contained in G and in the domain where γf
(and γM(f)) are analytic. Since γM(f) = −γ′

f , integration by parts yields

ϕ(Tz(f)) =
1

2πi

∫
C

γf (t)

(
eztϕ̂(0) +

∫ t

0

ezξ(ϕ̂)′(t− ξ) dξ

)
dt

= ϕ̂(0)f(z) +
1

2πi

∫
C

γf (t)

(∫ t

0

ezξ(ϕ̂)′(t− ξ) dξ

)
dt.

By Theorem 15 and isomorphism between E′ and A(G), we have proved the following
result.

Theorem 22. (i) If an operator B ∈ L(E) commutes with D0 in E, then there exists a
unique function v ∈ A(G) such that

(3.7) B(f)(z) = v(0)f(z) +
1

2πi

∫
C

γf (t)

(∫ t

0

ezξv′(t− ξ) dξ

)
dt, f ∈ E, z ∈ C,

where γf is Borel associated with f , and C is a closed rectifiable Jordan curve in G that
lies in the domain where γf is analytic.

(ii) If B is defined by (3.7), where v ∈ A(G), then B is continuous and linear on E,
and we have BD0 = D0B on E.

In conclusion, we explain how the binary operation ⊗ is realized if the dual to E is
identified with A(G). For ϕ, ψ ∈ E′ and λ ∈ G, we have

ϕ̂⊗ ψ(λ) = (ϕ⊗ ψ)(eλ) = ϕt(ψ(Tt(eλ)) = ϕt

(
ψ
(
Dt(M(eλ))

))
= ϕt

(〈
ψ̂,Dt(M(eλ))

〉)
= ϕt

(〈
D′

t(ψ̂),M(eλ)
〉)

= ϕt

(〈
M ′D′

t(ψ̂), eλ
〉)
.

(3.8)

Next, for τ ∈ G we have

M ′(D′
t(ψ̂)

)
(τ ) =

d

dτ

(∫ τ

0

eξtψ̂(τ − ξ) dξ

)
(τ ) = ψ̂(0)etτ +

∫ τ

0

eξt(ψ̂)′(τ − ξ) dξ.

Thus, formula (3.8) implies

ϕ̂⊗ ψ(z) =

〈(
ψ̂(0)ϕ̂(τ ) +

∫ τ

0

ϕ̂(ξ)(ψ̂)′(τ − ξ) dξ

)
τ

, ez

〉
= ψ̂(0)ϕ̂(z) +

∫ z

0

ϕ̂(ξ)(ψ̂)′(z − ξ) dξ, z ∈ G.

So, the operation ⊗ is realized in terms of the Duhamel integral (convolution).

The authors are grateful to the referee for valuable remarks.
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