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NEW ALGORITHMS

FOR SOLVING TROPICAL LINEAR SYSTEMS

A. DAVYDOW

Abstract. The problem of solving tropical linear systems, a natural problem of
tropical mathematics, has already proved to be very interesting from the algorithmic
point of view: it is known to be in NP ∩ coNP , but no polynomial time algorithm is
known, although counterexamples for existing pseudopolynomial algorithms are (and
must be) very complex.

In this work, the study of algorithms for solving tropical linear systems is contin-
ued. First, a new reformulation of Grigoriev’s algorithm is presented, which brings
it closer to the algorithm of Akian, Gaubert, and Guterman; this makes it possible
to formulate a whole family of new algorithms, and, for some algorithms in this fam-

ily, none of the known superpolynomial counterexamples work. Second, a family of
algorithms for solving overdetermined tropical systems is presented.

An explicit algorithm is exhibited in the paper that can solve a tropical lin-
ear system determined by an (m × n)-matrix with maximal element M in time
Θ

((m
n

)
poly

(
m,n, logM

))
, and this time matches the complexity of the best of pre-

viously known algorithms for feasibility testing.

§1. Introduction

1.1. Tropical mathematics and tropical linear algebra. Tropical mathematics
unites three closely related fields of study: tropical algebra, tropical analysis, and trop-
ical geometry. The term is usually taken to mean mathematics obtained from classical
mathematics by replacing the addition and multiplication operations with minimum and
addition (respectively), hence the term min-plus algebra. Sometimes maximum is used
instead of minimum, with perfectly symmetrical results, so in what follows we always
use the minimum operation. Taking the minimum in tropical context is usually denoted
by ⊕; addition is denoted by ⊗. The ⊕ operation is idempotent, i.e., a ⊕ a = a, so
tropical mathematics is in fact a part of idempotent mathematics, although lately these
notions have often been identified so that the term “tropical” is sometimes applied to
any mathematical constructions with an idempotent operation.

Tropical algebra was the first section of tropical mathematics to appear. The term
originates from French mathematicians and first appeared in the 1980s. Although differ-
ent authors attribute the term to different researchers [31, 28, 21], all sources agree that
the term came into general use in the honor of one of the founders of this field, a Brazilian
mathematician Imre Simon, so the term “tropical” simply means how French mathemati-
cians viewed Brazil. Simon himself used the term already in the paper [30] that laid out
the foundations of tropical algebra, attributing the term to Christian Choffrut.

Initially, the term “tropical” was used for the discrete version of (min, +) algebra,
but at present the terminology has shifted, and tropical algebra is usually meant to be
an algebra over the semifield Rmin (as stated above) or even, sometimes, an arbitrary
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algebra with an idempotent operation, e.g., (min,max) algebra. Both Simon and his
French colleagues used tropical algebra for the study of finite state machines.

Although a systematic study of the tropical semiring began only after the works of
Simon, we should note that the (min, +) semiring had appeared before in optimization
problems. For instance, Floyd’s algorithm for finding shortest paths in a graph that was
proposed in [9] in the 1960s can be regarded as taking a tropical power of the distance
matrix (tropical exponentiation is similar to classical with the difference that we replace
addition with ⊕ and multiplication with ⊗). Speaking about idempotent algebra as a
whole, the first work to make serious use of an algebra over an idempotent ring (apart
from Boolean fields) was the work of Kleene [18] that studied nerve nets in the context of
finite state machines. At present, there is a host of literature on matrices with idempotent
coefficients and their applications, e.g., [5, 19, 22].

Tropical linear algebra is a subfield of tropical algebraic geometry that works with
systems of tropical linear equations. Unfortunately, definitions remain a major problem
in this subfield. Many notions of linear algebra have several equivalent definitions, but
after tropicalization equivalence disappears, and we are left with several different defini-
tions. One striking example of this phenomenon is that there may be several conflicting
definitions for the root of a tropical polynomial.

In the case of the root of a polynomial, researchers finally settled on the definition
of O. Viro, and now the set of roots of a polynomial is the set of this polynomial’s
nonsmoothness points. This definition prevailed because it preserves such important
properties as, for instance, the fundamental theorem of algebra (that a polynomial of
degree n has exactly n roots, counting multiplicities).

The problem of solving linear systems was formulated right after the definition of a root
for a tropical polynomial was given, but the first paper [7] actually devoted to tropical
linear algebra appeared only as late as in 2005. At present, this field is primarily being
developed in France (Akian, Gaubert, Grigoriev and others), sometimes in collaboration
with researchers from other countries (Izhakian, Guterman).

Since there are no known efficient algorithms for the main problems of tropical linear
algebra, it is currently little used in practice. Nevertheless, there are practical problems
that would benefit from developments in this field. For instance, Noel, Grigoriev, Vaku-
lenko, and Radulescu have recently proposed a way to use algorithms for solving tropical
linear systems to study stable states of reaction networks in biology [27, 26]. Thus, prob-
lems of tropical linear algebra are important from both theoretical and practical points
of view.

It is worth noting that many definitions and theorems of tropical geometry (including,
in particular, tropical linear algebra) had appeared much earlier than tropical geometry
itself took shape as a field of study. In these cases, tropical geometry serves as a language
in which it is convenient to state theorems that have already been proved from a different
viewpoint. Although at first glance this serves a little useful purpose, sometimes such a
translation may lead to new results. For instance, a translation of Viro’s patchworking
method to the language of tropical geometry has led Mikhalkin to an algorithm for
computing Gromov–Witten invariants; see [25].

1.2. Tropical linear systems. After researchers had agreed on the definitions of a
tropical polynomial and tropical root, one of the first problems that they tried to solve was
constructing an algorithm for testing the feasibility of a linear tropical system. However,
unlike the classical case the tropical problem turned out to be much harder, and despite
the fact that it was put forward five years ago, no efficient solution is known to date.

Similar to the classical case, a tropical linear system can be conveniently defined with
a matrix. One way to test the feasibility of a classical linear system is to test whether
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its determinant is zero. Therefore, due to the idempotent correspondence principle,
one could expect something similar in the tropical case as well. A formula for the
tropical determinant was first proposed by Izhakian in 2008 [13]. The definition of the
determinant was completely similar to the classical determinant with the sole difference
that one uses ⊕ instead of addition, ⊗ instead of multiplication, and there is no (−1)n

factor (i.e., this construction corresponds to the determinant and the permanent at the
same time). Izhakian also showed that a tropical system defined by a square matrix has
a solution if and only if its coefficients are not roots of the tropical determinant (i.e.,
the determinant of this matrix is minimized only at a single monomial). Such square
matrices were called tropically singular. Interestingly, 14 years before Izhakian, Butcovič
already defined tropical singularity under the name of strong regularity [4]. However, it
was done before tropical geometry appeared in earnest, and Butcovič did not establish
any relationship between strong regularity and feasibility of tropical systems.

It is important to note that Butcovič proposed an efficient algorithm for testing a
tropical matrix for singularity [4]. One can also note that the singularity condition is
equivalent to the existence of a unique minimal weight matching and can therefore be
efficiently tested with, e.g., the Hungarian method [20]. Thus, the feasibility problem for
tropical linear systems determined by square matrices was efficiently solved by Izhakian
in 2008. However, for other matrices even pseudopolynomial algorithms (that would
work in time polynomial of the numerical value of the input rather than its size) were
not known.

In 2009, Izhakian generalized his definition to rectangular matrices [14] and showed
that a system determined by a rectangular matrix is infeasible if and only if it contains
a singular submatrix of maximal width (i.e., of width equal to that of the matrix). Note
that Izhakian’s results imply that, as in the classical case, a tropical system with fewer
equations than variables is always feasible. However, since a rectangular matrix may
contain an exponential number of square submatrices of maximal width (in the case when
the height is much larger than the width), this result implied no efficient algorithm for
solving tropical linear systems determined by rectangular matrices. We should also note
that in the case of finite coefficients Izhakian’s results are in fact a simple consequence of
the theorem that establishes that the Kapranov rank and the tropical rank of a matrix
are maximized simultaneously, a theorem proved by Develin, Santos, and Sturmfels in
2005, see [7].

In the case when the number of equations and the number of variables coincide, it
is possible not only to efficiently test the system for feasibility but also to solve it (it
is important to note that, in the generic case, finding a solution of a system can be
much more difficult than feasibility testing). For this, Grigoriev proposed [10] to drop
the equation that intersects with minimal matchings in two cells and apply Cramer’s
tropical rule to the rest of the matrix [29]. Thus, the problem of solving a tropical
system with a square matrix can be solved in polynomial time.

The first pseudopolynomial algorithm for solving rectangular matrices was presented
in [1] by Akian, Gaubert, and Guterman in 2010. They showed that the feasibility
problem for a tropical linear system has a polynomial reduction to the problem of finding
the winner in mean payoff games. Mean payoff games were proposed in [8] by Ehrenfeucht
and Mycielski in 1979 and have already been quite comprehensively studied by 2010. For
instance, in 1993 Karzanov and Lebedev, using the results of Karp [15], showed that the
problem of finding the winner in a mean payoff game lies in the intersection of the
complexity classes NP and coNP , see [17]; in 1995, Zwick and Paterson proposed a
pseudopolynomial algorithm for solving this problem [32]. Several times, there appeared
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algorithms that claimed to find the winner of a mean payoff game in polynomial time
[16, 23, 24], but so far all of them turned out to contain mistakes [32].

Thus, in 2010 it was shown that the feasibility problem for a tropical system lies in
the intersection of NP and coNP ; this is an interesting complexity class as there are few
problems known to be in NP ∩ coNP but not known to be in P . The feasibility problem
also got a pseudopolynomial algorithm. However, it is easy to construct an example of
a matrix that results, by the algorithm of Akian, Gaubert, and Guterman, in a mean
payoff game with no known efficient algorithm. Therefore, the problem of finding an
efficient algorithm for testing feasibility of a tropical linear system remained open.

In 2011, Grigoriev proposed a different pseudopolynomial algorithm [11] similar to the
Gram–Schmidt process that was designed to immediately solve the feasibility problem for
a tropical system. Apart from its relative simplicity, an important feature of Grigoriev’s
algorithm was that apart from the pseudopolynomial estimate it immediately provided
an exponential complexity bound that does not depend on the numbers that occur in
the matrix. Later, Davydow showed [6] that if one fixes any one of the three parameters
(width, height, and maximal coefficient in the matrix), the algorithm will work in time
polynomial with respect to the other two parameters. These were optimistic results:
they meant that should there be examples of inputs on which Grigoriev’s algorithm is
not polynomial, they would have to be very complex because all three parameters would
have to change simultaneously. Unfortunately, Davydow found such a series [6], and by
the time Grigoriev’s work was published it was already known that this algorithm is also
not efficient in the general case.

As we have already mentioned, in 2010 Akian et al. [1] showed that the feasibility
problem for a tropical linear system can be polynomially reduced to the problem of
finding the winner in mean payoff games. In 2012, Grigoriev and Podolskii [12] found
the inverse reduction, showing that the feasibility problem for a tropical linear system
and the winner problem in a mean payoff game are equivalent. They constructed a
reduction to the problem of (min, +) systems (systems of equations of the form Ax = Bx,
where matrices are multiplied by vectors in the tropical sense), and the equivalence of
the problem of (min, +) systems to the problem of mean payoff games was proved by
Bezem, Nieuwenhuis, and Rodŕıgez-Carbonell already in 2010 [3]. At the same time, a
result similar to [12] was directly obtained by Akian, Gaubert, and Guterman [2].

On the one hand, after Grigoriev and Podolskii showed that testing feasibility for
a tropical system is as hard as finding the winner in a mean payoff game, it became
clear that finding an efficient algorithm is rather unlikely. On the other hand, they
showed that this problem is interesting not only as an independent problem but also as a
completely new approach to mean payoff games, and that this problem deserves an even
more detailed scrutiny.

Thus, at present there exist efficient feasibility testing algorithms for systems where
the number of equations exceeds the number of variables by a predefined constant; we
shall call such systems weakly overdetermined. In this case, it suffices to enumerate all
square submatrices of maximal width for the system’s matrix and test each of them for
singularity with the Hungarian method. Then, Izhakian’s results imply that a system
is feasible if and only if all resulting matrices are nonsingular. For systems with an
unbounded number of equations, only pseudopolynomial algorithms are known (the al-
gorithm of Akian–Gaubert–Guterman and Grigoriev’s algorithm). Note that in the case
of systems with bounded number of variables Grigoriev’s algorithm works in polynomial
time.

1.3. Our contributions. In this work, we present two main results related to new
algorithms for solving tropical linear systems. First, we present a new description for
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Grigoriev’s algorithm for solving tropical linear systems that allows us to generalize Grig-
oriev’s algorithm and another well known algorithm of Akian, Gaubert, and Guterman
and consider a whole family of algorithms that differ in the lifting operation. Even a
simple straightforward combination of these two algorithms can already solve hard coun-
terexamples for both Grigoriev’s and Akian–Gaubert–Guterman algorithms, and we leave
devising hard counterexamples for these new algorithms as an interesting open problem.

Second, we present a new algorithm for overdetermined tropical linear systems, i.e.,
systems that have more equations than variables. We reduce solving an overdetermined
tropical system to solving several of its subsystems. This leads to a general algorithm that
works on all tropical systems and runs in time Θ

((
m
n

)
poly

(
m,n, logM

))
. Moreover, we

show that weakly overdetermined tropical systems (where equations outnumber variables
only by a predefined constant) admit a polynomial time solution.

The paper is organized as follows. In §2, we give a formal definition of the feasibility
problem for a tropical system and introduce the notation used throughout the paper.
§3 is devoted to optimizing Grigoriev’s algorithm for solving linear tropical systems;
our optimization leads to a unified approach for Grigoriev’s algorithm together with the
algorithm of Akian, Gaubert, and Guterman, which in turn lets us combine the two
algorithms, getting an algorithm with no known counterexamples where it would have
to work for superpolynomial time. Finally, as we have already mentioned, it is possible
to test feasibility of weakly overdetermined tropical linear systems in polynomial time.
§4 presents a novel algorithm that actually solves such systems in polynomial time. §5
concludes the paper.

§2. Problem Setting

In this section, we give basic definitions regarding tropical linear systems.

Definition 1. A tropical linear system is a rectangular matrix of size m×n. A solution
of a tropical linear system is a row of n elements such that after adding it to each row
of the matrix each sum contains no strict minimum, i.e., the minimal element occurs at
least twice in every row. A tropical linear system is called feasible if there exists a row
that is a solution of this system [11].

Example 1. For the matrix (
1 2 3
3 2 1

)
,

the row (
1 0 1

)
represents a solution: after adding it to the first row we get the minimal value 2 in the
first and second columns; for the second row, we get the minimal value 2 in the second
and third columns.

Example 2. The matrix (
1 2
3 2

)

is obviously infeasible.

In this paper we shall consider the problem of finding a solution for integer-valued
tropical linear systems. First, we note that we can apply some simple transformations
to a system’s matrix without changing its feasibility status. The following proposition is
obvious.
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Proposition 1. The class of feasible tropical linear systems is invariant with respect to
adding an arbitrary constant to all numbers in one row or in one column. Moreover,
given a solution of the system after such a transformation, one can find a solution of the
original system by adding to the solution the difference between first rows of the matrix
before and after the transformation.

Proposition 1 immediately implies the following remark.

Remark 1. Without loss of generality we may assume that all elements of the system’s
matrix are nonnegative.

In what follows we introduce the following notation for a matrix A:

• m(A), the number of rows in the matrix A;
• n(A), the number of columns in the matrix A;
• k(A) = m(A)− n(A);
• M(A), the maximal number in the matrix A;
• R(A), the set of rows of the matrix A;
• ai(A), the ith row of the matrix A.

We will omit the argument in this notation if it is clear from the context what matrix
we are talking about.

§3. Grigoriev’s algorithm and its modifications

3.1. The original algorithm. One recently proposed algorithm for solving tropical
linear systems is Grigoriev’s algorithm. As we have already noted, a key feature of this
algorithm is that the paper [11] where this algorithm was proposed immediately shows
both an upper bound on the algorithm’s complexity that polynomially depends on the
matrix size (but it is polynomial in M , the largest element of the matrix, rather than
logM) and an upper bound that polynomially depends on logM (but it is not polynomial
in matrix size).

We begin with a description of Grigoriev’s algorithm. We begin with noting that,
due to Proposition 1, we can find not a solution of the matrix but rather a series of
transformations that consists of adding a constant to all elements in a row or in a column
that would reduce the original matrix to a matrix that has a zero row for a solution. In
what follows, we call such a matrix the solution matrix ; finding it is equivalent to finding
a solution.

To solve a system of size m × n, we proceed by induction and assume that we have
solved the system of size (m − 1) × n obtained from the initial system by removing its
first row. From this moment on we shall assume that all rows of the matrix, except
possibly the first row, contain no strict minima. Next we define the lifting operation
with Algorithm 1.

Note that although the lifting algorithm does contain some indeterminacy (it is not
specified in what order we add columns to the set J), when the first loop ends the set J
is defined uniquely, because the maximal by inclusion set of this sort is unique.

Then we transform the matrix in accordance with Algorithm 2. The time complexity
of this algorithm was originally shown to be O(m2n2M logM) [11]. Later, a different
estimate of O

(
logM · m · n2 ·

(
m+n
n

))
was shown by Davydow [6]. Moreover, there is

a known counterexample for Grigoriev’s algorithm: there exists a sequence of matrices
(with unbounded growth in the number of rows and columns) such that Grigoriev’s
algorithm takes Ω(n

m
6 logM) time to process them, where M = poly(n

m
6 ) [6].
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Algorithm 1: Matrix lifting in Grigoriev’s algorithm

Data: a matrix A and the index i of the column where the first row’s minimum is
located.

Result: if the lifting is possible, then A is the lifted matrix
1 J ← {i}
2 while there exists a row in which exactly one minimum is achieved in column j

such that j /∈ J (there can be other minimum’s in column’s not in J) do
3 J ← J ∪ {j}
4 end

5 if |J | = n(A) then
6 output that lifting is impossible

7 else
8 a ← ∞
9 for i = 0 to m do

10 if there are no minimal elements in row with index i outside of J then
11 ai ← maximal number one can add to columns with indices from the set

J in such a way that minimal elements remain minimal in the row with
index i

12 a ← min(a, ai)

13 end

14 foreach i ∈ J do
15 add a to the elements of column i (a could not be equal to ∞ at thirst point

as in this case the matrix already had at least to minimums in every row
pre lifting)

16 end

17 end

Algorithm 2: Grigoriev’s algorithm

Data: A, a matrix of the tropical system
Result: if the tropical system defined by A was feasible then its solution matrix,

else “infeasible”
1 Run this algorithm for the matrix A′ resulting from A by deleting the first row.

2 Reduce the matrix A to such a form that no row except possibly the first contains

a strict minimum.

3 while the first row contains a strict minimum do
4 if lifting of the matrix A is impossible then
5 return “infeasible”;

6 else
7 lift matrix A.

8 end

9 end

10 return A

3.2. Properties of the solutions found by Grigoriev’s algorithm. We introduce
a partial ordering on the solutions of a tropical linear system: we say that one solution
is less than another if it is smaller componentwise. Then the following theorem holds.
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Theorem 1. For a matrix with one strict minimum, Grigoriev’s algorithm finds the
smallest nonnegative solution. In terms of solution matrices, Grigoriev’s algorithm finds
the smallest solution matrix that is greater than the original matrix.

Proof. First, note that the existence of such a solution follows from the well-known fact
that the set of solutions is tropicaly linear.

We prove this theorem by induction on the number of liftings. Namely, we show
that at each step of Grigoriev’s algorithm the matrix does not become greater than the
minimal solution matrix among those that are greater than the original matrix. For the
induction base, note that the original matrix obviously satisfies this condition.

For the induction step, note that if, during a lifting, to at least one column we add
a number smaller than the one added in the algorithm, then the column to which we
added the smallest number will have a strict minimum. This means precisely that in the
smallest solution matrix among those that are larger than the original matrix we have
to add at least as much as Grigoriev’s algorithm adds. �
3.3. Optimizing Grigoriev’s algorithm. We begin with a simple corollary to Theo-
rem 1.

Corollary 1. If Grigoriev’s algorithm has changed every column at least once, it will
output “infeasible”.

Proof. In the smallest nonnegative solution, at least one of the elements must be zero;
otherwise, one could subtract it from every element and get a smaller solution. �

Corollary 1 implies our first optimization of Grigoriev’s algorithm: we can interrupt
it and output “infeasible” not when lifting is impossible, but rather when each column
has been changed at least once, which can happen much earlier.

For a second optimization, we can also do without the recursion on the matrix height:
we can simply add all columns with a strict minimum to the set J from the very beginning.
Note that while the first optimization obviously cannot hurt Grigoriev’s algorithm, we
do not know this for the second idea, although we have failed to find an example where
the original version of the algorithm would work faster than this modification.

For this version of Grigoriev’s algorithm, the same upper and lower bounds can be
proved in the same way as for the original version. Apart from some simplification,
this version of Grigoriev’s algorithm has the advantage that it is now very similar to the
Akian–Gaubert–Guterman algorithm; the only difference remains in the lifting operation:
the Akian–Gaubert–Guterman algorithm lifts only columns with strict minima, and only
for the value needed in order for the minima to cease being strict (see Algorithm 4).

This leads us to considering an entire scheme of algorithms that differ only in the
lifting operation; their general scheme is shown in Algorithm 3. All we need from this
operation is that after the lifting the matrix does not exceed the minimal solution that is
larger than the matrix before the lifting. For instance, at the lifting step we can add to
each column the maximum of the numbers that Akian–Gaubert–Guterman algorithm and
Grigoriev’s algorithm propose to add to this column. It is easy to construct even better
lifting methods, but at present, we do not know a superpolynomial counterexample even
to this simple combination of the Akian–Gaubert–Guterman algorithm and Grigoriev’s
algorithm, shown in Algorithm 6. Finding such a counterexample remains an interesting
open problem that could shed light on important properties of this class of algorithms.

§4. Weakly overdetermined systems

In this section, we proceed to the second main result of this work, namely an algorithm
for solving overdetermined tropical systems. In the following theorem, we show how to
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Algorithm 3: General scheme

Data: A, a matrix of the tropical system
Result: if the tropical system determined by A was feasible, then its solution

matrix, else “infeasible”
1 while there exist rows with strict minima, and there exists a column that has not

been lifted do
2 A ← Lifting(A)

3 end

4 if there exist rows with strict minima then
5 return “infeasible”

6 end

7 else
8 return A

9 end

Algorithm 4: Lifting in the Akian–Gaubert–Guterman algorithm

Data: A, a matrix of the tropical system
Result: lifted matrix

1 foreach strict minimum do
2 find the number to add to the corresponding column such that the minimum

ceases to be strict
3 end

4 Add to each column of A the maximal of all numbers found in the loop.

5 return A

Algorithm 5: Lifting in Grigoriev’s optimized algorithm algorithm

Data: A, a matrix of the tropical system
Result: lifted matrix

1 J ← ∅
2 while there exist a row such that its minimum is achieved in a single column j

such that j /∈ J do
3 J ← J ∪ j

4 end

5 a ← ∞
6 for i = 0 to m do
7 if there are no minimal elements in the row with index i outside of J then
8 ai ← maximal number that can be added to columns with indices from J so

that in the row with index i, minimal elements remain minimal

9 a ← min(a, ai)

10 end

11 foreach i ∈ J do
12 add a to column i

13 end

14 return A
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Algorithm 6: Lifting for combination of Akian–Gaubert–Guterman and Grigoriev’s
algorithms

Data: A, a matrix of the tropical system
Result: lifted matrix

1 B ← A

2 C ← A

3 Lift B with Akian–Gaubert–Guterman lifting algorithm (Algorithm 4)

4 Lift C with Grigoriev’s optimized lifting algorithm (Algorithm 5)

5 A ← max(B,C), where maximum is componentwise

reduce solving an overdetermined tropical system of width n to solving n + 1 systems
corresponding to its submatrices. Throughout the section, we assume that the arithmetic
operations with numbers in the matrix take O(1) time.

Theorem 2. Consider a matrix A and n(A)+1 subsets of its set of rows such that every
row of A is covered at least n times by these subsets. Then, if each subset determines a
feasible tropical system, A is also feasible. Moreover, if solutions of each of these systems
are known, the solution of the matrix A can be found in polynomial time.

Proof. We begin with constructing a matrix of solutions S with rows si, where si is the
solution for the system determines by the ith subset. Then we find a solution for the
tropical system S� (S transposed), denoting it by α; this solution exists and can be
found in polynomial time because S� is underdetermined: the number of equations is
less than the number of variables. Note that si + αi is still a solution for the system
determines by the ith subset because multiplication by a tropical constant preserves a
solution. Consider x =

⊕
i(si + αi). Then x is the solution for the original matrix A.

Indeed, since α is a solution, we can remove any row from this tropical sum, and x
will remain unchanged (because every minimum is achieved twice). Since each of the
rows ai is covered at least n times, by dropping the row corresponding to a set that does
not cover ai we get a solution for ai because the set of solutions is linear. �

Example 3. Let us consider how this algorithm works on the following example with
the overdetermined matrix ⎛

⎜⎜⎝
1 2 3
1 2 1
1 2 5
2 3 1

⎞
⎟⎟⎠ .

We begin with choosing 4 subsets of its rows:⎛
⎝1 2 3
1 2 1
1 2 5

⎞
⎠ ,

⎛
⎝1 2 3
1 2 1
2 3 1

⎞
⎠ ,

⎛
⎝1 2 3
1 2 5
2 3 1

⎞
⎠ ,

⎛
⎝1 2 1
1 2 5
2 3 1

⎞
⎠ .

First, we construct the matrix of solutions S and its transpose (soutions for the choosen
subsets are (212), (323), (212), and (100), respectively):

S =

⎛
⎜⎜⎝
1 0 0
2 1 2
3 2 3
2 1 2

⎞
⎟⎟⎠ , S� =

⎛
⎝1 2 3 2
0 1 2 1
0 2 3 2

⎞
⎠ .
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Next we solve S�, getting the solution matrix

⎛
⎝3 2 3 2
2 1 2 1
2 2 3 2

⎞
⎠ and its transpose

⎛
⎜⎜⎝
3 2 2
2 1 2
3 2 3
2 1 2

⎞
⎟⎟⎠ ,

and find the tropical sum of its rows:

x =
(
2 1 2

)
.

The resulting x is a solution for the original matrix.

Remark 2. As it often happens in tropical mathematics, this theorem holds in the classi-
cal case as well. Indeed, the n+1 vectors that represent solutions for subsets of equations
are necessarily linearly dependent. This means that there exists a vector x that can be
expressed as a linear combination of the other vectors; by an argument similar to the
proof of Theorem 2, this vector will be a solution for the original problem.

The most straightforward way to turn Theorem 2 into an algorithm is to choose, at
each step, n + 1 subsets with n + k − 1 rows each, making sure that for each of the
sets the absent rows are different. Thus, the feasibility problem for the original matrix
can be reduced to n + 1 problems of smaller size. To estimate the complexity of the
resulting algorithm in terms of n and k, we denote this complexity by T (n, k). Recall
that T (n, 0) = poly(n). We get the following recurrent relation for T (n, k): T (n, k) =
(n + 1)T (n, k − 1) + poly(n). This means that T (n, k) = (n + 1)kpoly(n), which is a
polynomial for k bounded by a constant, so we have arrived at the following theorem.

Theorem 3. The problem of solving weakly overdetermined tropical linear systems (sys-
tems for which k is bounded by a constant) can be solved in polynomial time.

One can consider other ways of choosing the subsets. One of the most efficient meth-
ods is the following: consider a matrix A for which we need to find a solution. First, we
introduce an ordering on the rows of a matrix corresponding to the order of rows in the
matrix A; we shall further assume that the rows in all subsets are ordered in this way. At
each step, we choose n+ 1 subsets as follows: the first n rows, all rows except the first,
all rows except the second, and so on, ending with all rows except the nth. To further
improve the algorithm’s running time, we use dynamical programming, storing the ma-
trices that appear over the course of the algorithm’s operation and their corresponding
solutions in order to reuse them if the same matrix appears for a second time.

After this optimization, all we need to estimate the running time is to estimate the
number of submatrices appearing in the algorithm. Note that all submatrices look like
this: the first n rows are an arbitrary ordered subset of rows, and the rest are always
several consecutive last rows. Thus, the number of matrices can be bounded from above
by m

(
m
n

)
(there are

(
m
n

)
ways to choose the first n rows, and the other rows are uniquely

determined by their number). As a result, we see that the algorithm for solving weakly
overdetermined systems has complexity

(
m
n

)
poly(m,n), which up to a polynomial coin-

cides with the upper bound for the best known algorithm for feasibility testing in tropical
linear systems. This bound is better than the upper bound on Grigoriev’s algorithm but
worse than the best known lower bound. With this algorithm, outlined in Algorithm 7,
we have finally proved our main result in this section.

Theorem 4. Any tropical linear system can be solved in time

Θ

((
m

n

)
poly(m,n, logM)

)
.
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Algorithm 7: Algorithm for solving weakly overdetermined systems

Data: A, the matrix of a tropical system
Result: if the tropical system determined by A was feasible then its solution

matrix, else “infeasible”
// solutions for submatrices are obtained with this algorithm

1 if n(A) = m(A) then
2 return a solution for the matrix A obtained by Grigoriev’s algorithm for

solving square tropical matrices

3 end

4 if n(A) > m(A) then
5 return a solution for the matrix A obtained with Cramer’s tropical rule

6 end

7 S ← ∅
8 if {a1, a2, . . . , an} is feasible then
9 S ← S∪ {solution of {a1, a2, . . . , an}}

10 else
11 return “infeasible”

12 end

13 for i = 0 to n do
14 if {a1, a2, . . . , ai−1, ai+1, . . . , an} is feasible then
15 S ← S∪ {solution {a1, a2, . . . , ai−1, ai+1, . . . , an}}
16 else
17 return “infeasible”

18 end

19 end

20 B ← matrix of the rows contained in the set S

21 Transpose B

22 C ← solution matrix of system B obtained with Cramer’s tropical rule

23 Transpose C

24 return tropical sum of the rows of C

§5. Conclusion

In this paper, we have presented new algorithms for solving tropical linear systems:
a modification of Grigoriev’s algorithm that leads to a new family of algorithms with
different lifting operations and a novel algorithm for solving overdetermined tropical
systems that has the same time complexity as the previously known feasibility testing
algorithm.

Tropical linear systems turn out to have very interesting computational properties:
the problem lies in NP ∩ coNP , but no polynomial algorithm is known, and the best
algorithm known so far was polynomial in any two of its characteristics out of three
(width, height, and the maximal element in the system’s matrix). Further work in this
direction may include further improvements of the algorithms proposed in this paper
and finding counterexamples for the new algorithms proposed here: while we do claim
that we have made Grigoriev’s algorithm significantly faster in practice, we doubt that
a simple combination of Grigoriev’s algorithm and that by Akian–Gaubert–Guterman is
indeed polynomial, so we expect the search for hard counterexamples to succeed.
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Another interesting direction for further study comes from the observation that for
every linear set of points there is a minimal tropical prevariety (with respect to inclusion)
that contains this set. In low dimensions such a prevariety can be constructed as the
closure of the original set under several simple operations, and one can test infeasibility
by testing if a prevariety built on a set of vectors contains the entire space. We believe
that this approach may lead to new algorithms for solving tropical linear systems.
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