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NUMERICALLY DETECTABLE HIDDEN SPECTRUM

OF CERTAIN INTEGRATION OPERATORS

N. NIKOLSKI

Abstract. It is shown that the critical constant for effective inversions in operator
algebras alg(V ) generated by the Volterra integration Jf =

∫ x
0 f dt in the spaces

L1(0, 1) and L2(0, 1) are different: respectively, δ1 = 1/2 (i.e., the effective in-
version is possible only for polynomials T = p(J) with a small condition number
r(T−1)‖T‖ < 2, r( · ) being the spectral radius), and δ1 = 1 (no norm control of
inverses). For more general integration operator Jμf =

∫
[0,x〉 f dμ on the space

L2([0, 1], μ) with respect to an arbitrary finite measure μ, the following 0 − 1 law
holds: either δ1 = 0 (and this happens if and only if μ is a purely discrete mea-
sure whose set of point masses μ({x}) is a finite union of geometrically decreasing
sequences), or δ1 = 1.

§1. Introduction

1.1. What are effective inversions? Let A be a Banach algebra of bounded operators
on a Banach (or Hilbert) space; often A = alg(T ), the algebra generated by an operator
T (norm closure of the polynomials in T ). Given a ∈ A, σV (a) denotes a “visible part”
of the spectrum σ(a) (often, the set of eigenvalues, but sometimes simply the entire
spectrum σ(a)). “Constructive”, or effective approach to the inversion problem in A
consists in studying the function

c1(δ, A) = sup
{
‖a−1‖A : δ ≤ ma ≤ ‖a‖A ≤ 1

}
, 0 < δ ≤ 1,

where ma = inf{|λ| : λ ∈ σV (a)}, which is the best possible upper estimate of inverses
in terms of the lower bound δ of the “visible” spectrum.

An important quantity is also the so-called “critical constant”

δ1(A) = δ1(A, σV ) = inf{δ : c1(δ, A) < ∞}.
Thus, for a ∈ A with δ1 < ma ≤ ‖a‖A ≤ 1 there is an estimate for ‖a−1‖A in terms of

ma, ‖a−1‖A ≤ c1(ma, A), but for a with ma < δ1 there is no such estimate, c1(ma, A) =
∞. We refer to [Nik1999, ENZ1999, Nik2001, GMN2008] for more explanations and
examples (and to [Bj1972, Ol2001, AD2006] for a different approach to norm control of
inverses). See also §5 for comments.

1.2. Algebras generated by an integration operator. Given a Banach space X
and a (linear) bounded operator J : X → X, we let

A = alg(J : X → X)

be the norm closure of polynomials in J (assuming, by definition, 1(J) = id).
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In this paper, we deal with compact operators J only, and so it is natural to take as
the “visible spectrum” σV (J) the whole spectrum σ(J), which reduces to the eigenvalues
of J , plus the point {0} if dimX = ∞. The “visible” part of the spectrum of a polynomial
T = p(J), p =

∑n
k=0 ckz

k, will be σV (T ) = p(σV (J)), by the spectral mapping theorem.
Below, the generating operator J will be one of the following integration operators:

Jμf(x) =

∫
[0,x〉

f dμ,

or

J̃μf(x) =

∫
〈x,1]

f dμ (0 < x < 1)

on one of the spaces Lp([0, 1], μ), where μ stands for a finite (nonnegative) Borel measure,
and ∫

[0,x〉
f dμ =

∫
[0,x)

f dμ+
1

2
μ({x})f(x), x ∈ [0, 1],

and ∫
〈x,1]

f dμ =

∫
(x,1]

f dμ+
1

2
μ({x})f(x), x ∈ [0, 1].

In order to explain this choice of integration, recall that the measure μ is the sum of
a discrete and a continuous component,

μ = μd + μc,

where
μd =

∑
y∈[0,1]

μ({y})δy

and δy stands for a Dirac unit mass at y. The integration against μc over [0, x) and [0, x]
is the same, so ∫

[0,x〉
f dμc =

∫
[0,x)

f dμc.

It is easily seen that the adjoint operator (Jμc
)∗ is given by (Jμc

)∗f =
∫
[x,1]

f dμc, so that

Jμc
+(Jμc

)∗ is a rank 1 operator, and hence iJμc
is a rank 1 perturbation of a selfadjoint

operator. But for Jμd
, there will be an extra-term — a diagonal operator on L2(μd). In

order to avoid this unsymmetry, we “equidistribute” the diagonal term between Jμ and
(Jμ)

∗, which leads exactly to the above definition. It follows that(1
i
Jμ −

(1
i
Jμ

)∗ )
f =

∫
[0,1]

f dμ, f ∈ L2(μ),

which anew implies that 1
i Jμ is a rank 1 perturbation of a selfadjoint operator (and

similarly for J̃μ). We refer to [NV1998] for these conclusions and detailed computations.

In this paper, we view Jμ and J̃μ as operators on Lp(μ) spaces for p = 1, 2,∞, and
consider the corresponding algebras

algLp(μ)(Jμ), algLp(μ)(J̃μ).

In §2 below (see §2(6), §2(7)), we show that J̃μ is unitarily equivalent to Jμ̃, and so we
can reduce the discussion to one of them, say Jμ. Notice that, for every p, 1 ≤ p ≤ ∞,
Jμ : L

p(μ) → Lp(μ) is a compact operator whose spectrum σ(Jμ : L
p(μ) → Lp(μ)) does

not depend on p and consists of {0} and the eigenvalues 1
2μ({y}), y ∈ [0, 1] (which can be

arranged in a sequence tending to 0 because
∑

y∈[0,1] μ({y}) < ∞), see §2 for the proof.

However, the “effective inversion behavior” of Jμ heavily depends on p — we present
below two results supporting this claim, for p = 1,∞ and p = 2. Namely, the following
theorems hold; for the proofs, see §3 below.
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1.3. Theorem. Let μ be a continuous measure (μd = 0, i.e., μ({x}) = 0 for all x ∈
[0, 1]), and A = algL1(μ)(Jμ) or A = algL∞(μ)(Jμ). Then, σ(Jμ) = {0} (and hence

σ(p(Jμ)) = {p(0)} for all p), and

δ1(A) = 1/2, c1(δ, A) =
1

2δ − 1
for 1/2 < δ ≤ 1.

Similar claims are valid for Ã = algL1(μ)(J̃μ) or Ã = algL∞(μ)(J̃μ).

For p = 2, we are able to treat the case of a general measure, for which we need the
following terminology. A sequence (aj)j≥1 of positive real numbers (aj > 0) is said to
decrease geometrically if

sup
j≥1

aj+1

aj
< 1.

We say that Jμ has a purely discrete geometric spectrum if μc = 0 and the set {y ∈ [0, 1] :
μ({y}) > 0} is a finite union of sequences, say (yj,k)j≥1, k = 1, . . . , N , for which every
(μ({yj,k}))j≥1 decreases geometrically.

1.4. Theorem. Let μ be a finite measure on [0, 1], and let A = algL2(μ)(Jμ) or A =

algL2(μ)(J̃μ). The following alternative holds.

(1) Either Jμ has purely discrete geometric spectrum, and then δ1(A) = 0 and

c1(δ, A) ≤ a
log 1

δ

δ2N
, 0 < δ < 1,

where N is a number from the definition of the geometric spectrum, and a > 0
depends on N and the ratios of geometric sequences in σ(Jμ); or

(2) this is not the case, and then δ1(A) = 1 (so that c1(δ, A) = ∞ for every 0 < δ <
1).

Notice that for p �= 1, 2,∞, the question on effective inversions in algLp(μ)(Jμ) should
be more involved because even in the simplest case when μ is the Lebesgue measure
(dμ(x) = dx), the open problem on characterization of the Lp convolutions (multipliers)
f �−→ f ∗S is implicitely present. On the other hand, Yuri Tomilov (Institute of Mathe-
matics of Polish Academy) attracted my attention to Yu. Lyubich’s paper [Lyu2010] (and
to many others quoted in that paper) from which the case of the classical Volterra oper-
ator J = Jμ, dμ(x) = dx on the space L2(0, 1) easily follows, as the following argument
shows.

Since ‖(I + J)−n‖ ≤ 1 for every n ≥ 1 (obvious from J. von Neumann’s inequality)
and σ((I + J)−1) = {1}, we get limn ‖(I + J)n‖ = ∞, which is also obvious from
the Gelfand–Hille’s old (and simple) lemma saying that an operator T with one point
spectrum σ(T ) = {1} and bounded powers supn∈Z

‖Tn‖ < ∞ is the identity, T = id.
Therefore, δ1(A) = 1 for A = algL2(dx)(J).

In fact, much more on the behavior of ‖f(J)n‖ is known for various functions f
(see [Lyu2010] and references therein), and in particular, it is shown — contrary to the
property used above — that for T = f(J), f(1) = 1, on the spaces Lp(0, 1), p �= 2,
the behavior of ‖Tn‖ and ‖T−n‖ is rather symmetric (as n → ∞). After normalization
Tn/‖Tn‖, this implies only the inequality

c1

(
r(T )n

‖Tn‖ , alg(J)
)

≥ ‖Tn‖ · ‖T−n‖,

whose value depends on concrete growing rates of ‖Tn‖ and ‖T−n‖. The author supposes
to return elsewhere to the analysis of these and other known results on integral operators.

A few more comments on the above results 1.3–1.4 are given below, see §5.



776 N. NIKOLSKI

§2. Preliminaries on Jμ

Estimates in algebras algLp(μ)(Jμ) depend on the spectral properties of Jμ. Here we

list some of them for the reader’s convenience (although, some of these properties — or
maybe all of them — are known to the experts, see for example [Lyu2010]).

(1) The operator Jμ : L
p(μ) → Lp(μ) is compact for every p, 1 ≤ p ≤ ∞; moreover,

JμL
1(μ) ⊂ L∞(μ).

Indeed, clearly Jμf ∈ L∞(μ) for every f ∈ L1(μ). For compactness, it suffices to
show that both Jμ : L

1(μ) → L1(μ) and Jμ : L
∞(μ) → L∞(μ) are compact. We have

Jμ = Tk + Jd
μ, where Tk stands for the integral operators

Tkf =

∫
[0,1]

k(x, y)f(y) dμ(y), x ∈ [0, 1],

with the L∞ kernel k(x, y) = χ[0,x)(y), and Jd
μ : L

p(μd) → Lp(μd) is the multiplication

operator Jd
μf(x) =

1
2μ({x})f(x) by the sequence { 1

2μ({x})} tending to 0. The operator

Jd
μ is obviously compact on any sequence space Lp(μ), 1 ≤ p ≤ ∞, whereas the former

one, Tk, has the norm ‖Tk : L
1(μ) → L1(μ)‖ = supy

∫
[0,1]

|k(x, y)| dμ(x), and hence can be

norm approximated by operators with degenerate kernels (so, finite rank operators), and
similarly for Tk : L

∞(μ) → L∞(μ). The result follows by the Riesz–Torin Lp interpola-
tion.

(2) The case where p = 2. First, we introduce the following notation, referring for
all definitions to the textbooks on Hardy spaces, for example, to [Gar1981, Nik2002,
Nik2012]. H2 stands for the Hardy space of the disk D = {z : z ∈ C, |z| < 1}, and,
given an inner function θ, Kθ = H2� θH2 is the backward shift invariant “model space”
corresponding to θ. With an operator Jμ : L

2(μ) → L2(μ) we associate the inner function
θμ,

θμ(z) =
∏
k≥1

bλk
(z) · exp

(
− μc([0, 1])

1 + z

1− z

)
,

where

λk =
1− μ({xk})/2
1 + μ({xk})/2

((xk) is an enumeration of the set {x ∈ [0, 1] : μ({x}) > 0}) and bλk
(z) = λk−z

1−λkz
) is an

elementary Blaschke factor. The model operator Mθ is defined by

Mθf = Pθ(zf)(f ∈ Kθ),

where Pθ stands for the orthoprojection onto Kθ.
In this notation, the following statement was proved in [NV1998].

The operator iJμ : L
2(μ) → L2(μ) is dissipative, 2 Im(Jμ)f = (f, 1)L2(μ)1, f ∈ L2(μ)

(hence, Im(Jμ) ≥ 0), and its Cayley transform

Cμ =: (I − Jμ)(I + Jμ)
−1

is a contraction unitarily equivalent to the model operator Mθμ : Kθμ → Kθμ .

(3) The spectrum σ(Jμ : L
p(μ) → Lp(μ)) does not depend on p and consists of {0}

and the eigenvalues 1
2μ({y}) > 0, y ∈ [0, 1]; if a number λ > 0 is an eigenvalue of Jμ,

the dimension of the Jordan block corresponding to λ is card{y ∈ [0, 1] : λ = 1
2μ({y})},

i.e.,

dim
⋃
k≥1

Ker(Jμ − λI)k = card
{
y ∈ [0, 1] : λ =

1

2
μ({y})

}
.
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Indeed, since Re(Jμ) ≥ 0, a number λ ∈ C, Re(λ) ≥ 0 is an eigenvalue of Jμ if

and only if 1−λ
1+λ is an eigenvalue of Cμ. Now, for p = 2, the point spectra of the

operators Cμ and Mθμ are the same, and for the latter one, we know (see [Nik2002],
for example) that, on the space Kθμ , its point spectrum coincides with the zeros of the
Blaschke factor in θμ, and the size of a Jordan block corresponding to a number λ is
exactly card{k : λk = λ} (we use the notation of (2) above). This implies the claimed
description for σ(Jμ : L

2(μ) → L2(μ)).
To settle the case of all other p, 1 ≤ p ≤ ∞, it suffices to observe that

Ker((Jμ|L1(μ))− λI)k ⊂ L∞(μ)

for every λ �= 0 and k ≥ 1 (i.e., every eigen- or associate-vector of Jμ in L1(μ) is, in fact,
in L∞(μ)); the last inclusion follows from the identity (z − λ)k = (−λ)k + zq(z), where
q is a polynomial, and the inclusion JμL

1(μ) ⊂ L∞(μ) from (1) above. Now, the claim
is proved.

(4) Continuous measures μ and the standard Volterra operator. By the standard
Volterra operator J we mean Jμ : L

p(μ) → Lp(μ) with dμ(x) = dx, so that

Jf(y) =

∫ y

0

f dx, J : Lp(0, 1) → Lp(0, 1).

The following property should be known but we cannot localize a reference.
Let μ be a continuous probability measure on [0, 1] (i.e., μ([0, 1]) = 1 and μd = 0), and

let ϕ(x) = μ((0, x)), 0 ≤ x ≤ 1. Then, the composition Cϕf =: f ◦ ϕ is a surjective
isometry Cϕ : L

p(0, 1) → Lp((0, 1), μ) and

JμCϕ = CϕJ.

Indeed, ϕ is a continuous monotone function and ϕ(0) = 0, ϕ(1) = 1, so that for
every interval [a, b] ⊂ [0, 1] we have ϕ−1([a, b]) = [α, β] and ϕ(α) = a, ϕ(β) = b (ϕ−1(A)
stands for the preimage of A). Taking f = χ[a,b], we obtain

∫
f ◦ ϕdμ =

∫
χ[α,β] dμ =

ϕ(β)− ϕ(α) = b− a =
∫
f dx, and hence the same identity∫

f ◦ ϕdμ =

∫
f dx

is valid for all f ∈ L1(0, 1). Applying it to
∫
|f |p dx, we see that the map

Cϕ : L
p(0, 1) → Lp((0, 1), μ)

is a linear isometry. It is onto, because its range is dense, containing any indicator
function χ[α,β] due to the relation χ[α,β] = χϕ−1(ϕ[α,β]), which is fulfilled in the space

Lp(μ) (because μ(ϕ−1([α, β]) \ [α, β]) = 0). The last argument also implies that, given
y ∈ [0, 1], we have χ[0,y](t) = χ[0,ϕ(y)](ϕ(t)) for μ-a.e. t ∈ [0, 1], whence

JμCϕf(y) =

∫
χ[0,y](t)f(ϕ(t)) dμ(t) =

∫
χ[0,ϕ(y)](ϕ(t))f(ϕ(t)) dμ(t)

=

∫
χ[0,ϕ(y)]f dx = (CϕJf)(y)

for every f ∈ L1(0, 1). Therefore, JμCϕ = CϕJ .

(5) The Volterra algebra A = algL1(0,1)(J). The following gives a description of the

above algebra as a convolution algebra L1(0, 1) with an identity added.
For any complex polynomial p, we have

‖p(J) : L1(0, 1) → L1(0, 1)‖ = |p(0)|+ ‖p− p(0)‖L1(0,1),
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whence algL1(0,1)(J) is a convolution algebra,

A = algL1(0,1)(J) = δ0 · C+ L1(0, 1),

with the measure norm ‖λδ0 + f‖A = |λ|+ ‖f‖L1(0,1).

Indeed, Jh = χ ∗ h|[0, 1], where χ = χ[0,∞) and ∗ stands for the convolution on R:

χ ∗ h(x) =
∫
R

h(t)χ(x− t) dt =

∫ x

0

h(t) dt, x ∈ [0, 1],

so that Jnh = χn ∗ h|[0, 1], χn(x) = xn−1/(n − 1)! (n = 1, 2, . . . ). Therefore, p(J) =∑n
k=0 ckJ

k is a convolution with the measure S = c0δ0 +
∑n

1 ckχk, and

‖p(J)‖ = ‖S|[0, 1]‖ = |c0|+
∥∥∥∥

n∑
1

ckχk|[0, 1]
∥∥∥∥
1

(the upper estimate ≤ is obvious, and the lower one ≥ follows after considering the
approximate identity hε =

1
εχ[0,ε] ∈ L1(0, 1) as ε → 0).

Since polynomials are dense in L1(0, 1), the claim follows.

(6) Adjoint operator J∗
μ. Given p, 1 ≤ p < ∞, we have

(Jμ : L
p(μ) → Lp(μ))∗ = J̃μ : L

p′
(μ) → Lp′

(μ),

where 1
p′ +

1
p = 1.

Indeed, Jμf(x) = Tkf(x) =:
∫
[0,1]

k(x, y)f(y) dμ(y), where k(x, y) = χ[0,x)(y) +
1
2χ{x}(y), and hence J∗

μ = Tk∗ : L
p′
(μ) → Lp′

(μ),

k∗(x, y) = χ[0,y)(x) +
1

2
χ{y}(x),

so that

J∗
μf(x) =

∫
[0,1]

k∗(x, y)f(y) dμ(y)

=

∫
(x,1]

f(y) dμ(y) +
1

2
μ({x})f(x) = J̃μf(x), x ∈ [0, 1].

(7) Unitary equivalence. The operator J̃μ : L
p(μ) → Lp(μ) is unitarily equivalent to

Jμ̃ : L
p(μ̃) → Lp(μ̃), where μ̃(B) = μ(1−B), 1−B = {1− x : x ∈ B}, B ⊂ [0, 1].

Indeed, let V f(x) = f(1 − x), x ∈ [0, 1]. Clearly, V 2 = id and the mappings
V : Lp(μ) → Lp(μ̃) and V : Lp(μ̃) → Lp(μ) are unitary (≡ isometric isomorphisms).
Moreover, by a staightforward verification,

J̃μV = V Jμ̃.

§3. Proof of Theorem 1.3

Since, by 2(4), Jμ is unitarily equivalent to J , it suffices to prove the claim for the
Volterra algebra A = algL1(0,1)(J) of Subsection 2(5). Let

1/2 < δ ≤ |λ| ≤ ‖λδ0 + f‖A ≤ 1;

writing λδ0 + f = λ(δ0 + f/λ), we have ‖λδ0 + f‖A = |λ| + ‖f‖ ≤ 1 and ‖f/λ‖ ≤
1/|λ| − 1 < 1, so that

‖(λδ0 + f)−1‖A = |λ|−1‖(δ0 + f/λ)−1‖A ≤ |λ|−1(1− (1/|λ| − 1))−1 =
1

2|λ| − 1
,

which gives c1(δ, A) ≤ 1
2δ−1 for 1/2 < δ ≤ 1.
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In order to prove the reverse (lower) estimate for c1(δ, A), we use the following lemma
from [Nik1999].

If, for every ε > 0 and every N ∈ N, there exists an element a ∈ A such that
|â| < ε‖a‖ (â stands for the Gelfand transform of a) and the system (ak/‖a‖k)0≤k≤N is
(1 + ε)-equivalent to the unit basis in l1N+1, i.e.,

(1 + ε)

∥∥∥∥ ∑
0≤k≤N

cka
k/‖a‖k

∥∥∥∥ ≥
∑

0≤k≤N

ck for every ck ≥ 0,

then c1(δ, A) ≥ 1
2δ−1 for every 1/2 < δ ≤ 1.

In our case A = δ0 · C+ L1(0, 1), and we take

a = δ−1χΔ where Δ = [1/2N, δ + 1/2N ] with δ < 1/2N2.

Then ak = a ∗ a ∗ · · · ∗ a is supported on the interval Δk = [k/2N, k(δ + 1/2N)], so that
Δk ∩Δl = ∅ for 1 ≤ k �= l ≤ N . It is also clear that ‖ak‖L1(0,1) = 1 for 0 ≤ k ≤ N , and

hence the needed property follows with ε = 0. By the lemma quoted, c1(A, δ) ≥ 1
2δ−1 for

every 1/2 < δ ≤ 1, and the claim on Jμ : L
1(μ) → L1(μ) follows.

For J̃μ : L
1(μ) → L1(μ), we use Subsection 2(7), which shows that

V −1J̃μV = Jμ̃ : L
1(μ̃) → L1(μ̃).

Since (μ̃)c = (μc), and since a unitary equivalence preserves the polynomial calcu-

lus V −1p(J̃μ)V = p(Jμ̃), the norm ‖p(J̃μ)‖ = ‖p(Jμ̃)‖, and the spectrum σ(p(J̃μ)) =
σ(p(Jμ̃)), we can extend it to the algebras,

V : Ã(μ) =: algL1(μ)(J̃μ) → A(μ̃) =: algL1(μ̃)(Jμ̃),

obtaining c1(δ, A(μ̃)) = c1(δ, Ã(μ)), δ1(A(μ̃)) = δ1(Ã(μ)). Now, the result for Ã(μ)
follows from that for A(μ̃).

It is also clear that the functions c1(δ) and the constants δ1 coincide for the algebras
A = algX(T ) and A∗ = algX∗(T ∗) = {S∗ : S ∈ A} (because ‖S‖ = ‖S∗‖ and σ(S) =
σ(S∗), for a bilinear duality). Applying this to

(Jμ : L
1(μ) → L1(μ))∗ = J̃μ : L

∞(μ) → L∞(μ)

and using already proved assertions for A = algL1(μ)(Jμ) and Ã = algL1(μ)(J̃μ), we finish
the proof.

§4. Proof of Theorem 1.4

First, we consider the algebra A = algL2(μ)(Jμ), and start with proving that the

algebras alg(Jμ) and alg(Cμ) generated, respectively, by Jμ and its Cayley transform
Cμ = (I − Jμ)(I + Jμ)

−1, coincide. From Subsection 2(2), it follows that Re(Jμ) ≥ 0,
and so (I + Jμ)

−1 is bounded, and moreover (I + Jμ)
−1 ∈ alg(Jμ) (because all resolvent

values (λI − Jμ)
−1 for λ ∈ C in the unbounded connected component Ω of C \ σ(Jμ) are

in alg(Jμ); in our case, Ω = C \ σ(Jμ)). Therefore, alg(Cμ) ⊂ alg(Jμ).
Conversely, from the statement in Subsection 2(2) it follows that σ(Cμ) = {1}∪ {λk :

k ≥ 1} (with the notation of 2(2)), so that, (I + Cμ)
−1 is bounded, and for the same

reason as above, (I + Cμ)
−1 ∈ alg(Cμ) and Jμ = (I −Cμ)(I +Cμ)

−1 ∈ alg(Cμ), whence
alg(Jμ) ⊂ alg(Cμ).

So, it is proved that alg(Cμ) = alg(Jμ), and moreover, from the previous arguments
it is clear that the Gelfand transform f (on σ(Jμ)) of an element T ∈ alg(Jμ) coincides
with the Gelfand transform of T regarded as an element of the algebra alg(Cμ) (and
defined on σ(Cμ)) up to the change of variables f �−→ f ◦ ω, ω(z) = (1 − z)(1 + z)−1.
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Conclusion: the algebras alg(Jμ) and alg(Cμ) — and due to Subsection 2(2), the algebra
alg(Mθ) (Mθ and θ = θμ are defined in Subsection 2(2) above) — have the same values
of δ1 and c1(δ).

From the Sarason commutant lifting theorem, we know that

‖f(Mθ)‖ = ‖f‖H∞/θH∞ = min{‖f + θh‖∞ : h ∈ H∞}
for every polynomial f (and, in fact, for every f ∈ H∞), so that alg(Mθ) is isometri-
cally isomorphic to the closure of polynomials clos(P+/θH

∞) in the quotient algebra
H∞/θH∞. It is known (see [GMN2008] for the details) that in our case (where the set
σ(Mθ) ∩ T is a singleton), the last closure is the image Ca(D)/θH

∞ of the disk algebra
Ca(D) = clos(P+) for the quotient map.

Now, let θμ = B be a Blaschke product (i.e., μc = 0). For the algebras

A = H∞/BH∞ and A = Ca(D)/BH∞,

where B is a Blaschke product and the “visible spectrum” is defined as the point spec-
trum σp(MB) (i.e., the zeros of the product B), the quantities δ1 and c1(δ) were found
in [GMN2008]. For our case (B is a Blaschke product with real zeros λk defined in Sub-
section 2(2) above and tending to 1), the results of [GMN2008] can be summarized as
follows.

(a) δ1(A) = δ1(A) and c1(δ,A) = c1(δ, A) for every 0 < δ < 1, see [GMN2008,
Theorem 4.2].

(b) δ1(A) = 0 ⇔ the sequence σ = (λk) of eigenvalues ofMθ, −1 < λk < 1, defined in
Subsection 2(2) above is a Newman–Carleson sequence, i.e., ν =:

∑
k(1−λk)δλk

is a Carleson measure (H2|σ ⊂ L2(ν)) (see Theorem 3.3 and Proposition (P7) in
§3 of [GMN2008]).

It is well known that a sequence (λk) lying on the diameter (−1, 1) and having
limk λk = 1, is Newman–Carleson if and only if it is a finite union of sequences

(λkj
) tending to 1 at least geometrically, i.e. supj

1−λkj+1

1−λkj
< 1 (for example,

see [Nik2002]; C.3.7.2, items (c) and (f), or [Gar1981]).
(c) In the case where σ = (λk) is a finite union (say, N) of sequences (λkj

) tending
to 1 at least geometrically, we have the following estimate:

c1(δ, A) ≤ a
log 1

δ

δ2N
, 0 < δ < 1,

(see [GMN2008, Corollary 3.6]); the constant a > 0 depends on N and the ratios
of geometric sequences in σ.

It remains to show that if (λk) is not Newman–Carleson, or μc �= 0, then δ1(A) = 1.
For this, we make use of pseudohyperbolic geometry of sequences in the unit disk, in
the same spirit as in [GMN2008] (for general properties of pseudohyperbolic metrics,
see [Gar1981], or [Nik1986, Nik2002]).

First, suppose μc �= 0, that is θμ = BS, where B stands for the Blaschke product
B =

∏
k bλk

and S = exp(−a 1+z
1−z ), a = μc([0, 1]) > 0. Given 0 < δ < 1, there exists a

straight horde γ of the circle T = {|z| = 1} passing by 1 and so close to T that |bλ(z)| > δ
for every λ ∈ (−1, 1) and z ∈ γ. Since limz∈γ,z→1 θμ(z) = 0, we obtain |bz(λk)| > δ for
every k and z ∈ γ, and on the other hand

lim
z∈γ
z→1

(
inf
w∈D

(|bz(w)|+ |θμ(w)|)
)
≤ lim

z∈γ
z→1

|θμ(z)| = 0,

which means that limz∈γ
z→1

‖b−1
z ‖Ca/θmH∞ = ∞, and hence

c1(δ, Ca/θmH∞) = ∞.
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This implies δ1(A) = 1.
Now, we assume that the sequence (λk) is not Newman–Carleson and, given 0 < δ < 1,

use the same horde γ as before. There exists 0 < a < 1 so close to 1 that the disk
{w : |bλk

(w)| < a} contains a point z of γ, let z = zk. Since (λk) is not Newman–
Carleson and lies on a diameter, the sets Ak,ε = {j : |bλk

(λj)| < ε} are arbitrarily large
for every ε > 0:

lim sup
k→0

N(k, ε) = ∞, where N(k, ε) = card(Ak,ε).

Now, let a+ ε < 1. Then, |bzk(λj)| > δ for every k and j, but

lim inf
k

(
inf
w∈D

(|bzk(w)|+ |θμ(w)|)
)
≤ lim inf

k
|B(zk)| = 0

because |bλj
(zk)| ≤ |bλj

(λk)|+|bλk
(zk)| < ε+a (|bλ(z)| is a metric, see [Gar1981]) whence

|B(zk)| ≤
∏

j∈Ak,ε

|bλj
(zk)| ≤ (ε+ a)N(k,ε).

As before, this means that

lim sup
k

‖b−1
zk

‖Ca/θμH∞ = ∞,

and hence c1(δ, Ca/θmH∞) = ∞ for every 0 < δ < 1, which implies δ1(A) = 1. So, all is
proved for the algebra A = algL2(μ)(Jμ).

The case of the algebra Ã = algL2(μ)(J̃μ) reduces to the preceding one (with μ replaced

by μ̃, for which {μ({x}) : x ∈ [0, 1]} = {μ̃({x}) : x ∈ [0, 1]}) by using the same argument
as at the end of the proof in §3.

§5. Conclusion

Given a Banach algebra A with fixed “visible” spectrum σV (a) of its elements, one
can distinguish the following two phenomenons on the spectral behavior.

(1) A Wiener–Pitt type phenomenon of “invisible spectrum”. This is the case when
there exists a ∈ A such that

σ(a) �= clos(σV (a)).

The very first appearance of this phenomenon is for A to be the convolution algebra
of (complex) measures A = M(R), where σV (μ) = μ̂(R) is the range of the Fourier
transform of μ ∈ A, see [WP1938]. In this case, if for example 0 ∈ σ(a)\clos(σV (a)), one
gets ma > 0, but a is not invertible, and, moreover, c1(ma) = ∞ and δ1(A) ≥ ma. The
reasons for the appearance of an “invisible spectrum” vary dramatically from algebra
to algebra (generalized characters measurable with respect to singular σ-subalgebras of
the σ-algebra of Borel subsets of R for A = M(R); a forced holomorphic extension for
A = Mult(Lp(T, w)) from [Nik2009] and [NVer2015]; boundary fiber homomorphisms of
H∞/θH∞ that are invisible but numerically detectable from Ca/θH

∞, see [GMN2008,
NV2011]). . . , so that, for the moment, it seems impossible to find a common point
between them.

(2) No “invisible spectra”, but there is a numerically detectable “invisible spectrum”.
This is a more refined phenomenon, which happens in an algebra A where ma > 0 always
implies that a ∈ A is invertible, but there is no estimate of the form ‖a−1‖ ≤ ϕ(ma)
(assuming the normalization ‖a‖ ≤ 1; without normalization, such an estimate entails
already that the norm ‖ · ‖A is equivalent to a uniform norm, see [Nik1999], which case
is trivial for the efficient inversions problem). The algebras A considered in this paper
are exactly of this type; in order to treat them we introduced the quantities c1(δ, A),
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δ1(A), etc. One can observe that this refined phenomenon often occurs for algebras A
whose “weak completion” A has already a type (1) “invisible spectrum”.
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