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CORRECTING CONTINUOUS HYPERGRAPHS

F. PETROV

Abstract. A general result in the spirit of the continuous hypergraph removal
lemma is stated and proved: if a “closed” property of values of a measurable function
on [0, 1]n holds almost everywhere, then the function may be changed on a set of
measure 0 so that this property holds everywhere. It is also shown that in some
situations a discrete version fails.

§1. Positive statement

Our result generalizes some specific lemmas of [2, 3, 5]. Statements of this type are
used in the theory of continuous graphs, see the book [4] and the references therein.
Discrete versions have various applications in combinatorics.

We introduce the necessary notation. Let K be a compact metric space, and let X
be a standard continuous measure space (say, X = [0, 1] with Lebesgue measure). Next,
let k be a positive integer and f(x1, x2, . . . , xk) : X

k → K a measurable function (with
respect to the Borel σ-algebra on K). We denote by Nk the set of all ordered k-tuples
I = (i1, . . . , ik) of mutually distinct positive integers. For any such k-tuple I and any
points y1, y2, . . . in X, we denote fI(y1, y2, . . . ) := f(yi1 , . . . , yik). So, f induces a map

f̃ from XN to Tychonoff’s compact set KNk that sends a point (y1, y2, . . . ) ∈ XN to the
function I → fI(y1, y2, . . . , ) on Nk.

Theorem 1. 1. Let M be a fixed closed subset of KNk . Assume that for almost all

y1, y2, . . . in X the value f̃(y1, y2, . . . ) belongs to M . Then there exists a measurable
function g on Xk equivalent to f and such that g̃(y1, y2, . . . ) belongs to M for all mutually
different y1, y2, . . . in X.

2. Assume additionally that f is “almost symmetric”, i.e.,

(1) f(x1, . . . , xk) = f(xπ1
, . . . , xπk

)

for almost all x1, . . . , xk in X and any permutation π of the set {1, 2, . . . , k}. Then
there exists a symmetric measurable function g on Xk equivalent to f and such that
g̃(y1, y2, . . . ) belongs to M for all (not necessary different) y1, y2, . . . in X.

Before passing to the proof, we mention some examples.

Example 1. Suppose k = 2, K = {0, 1}, and for almost all y1, y2, y3 we have

f(y1, y2) = f(y2, y1), f(y1, y2) · f(y2, y3) · f(y1, y3) = 0.

(This corresponds to some explicit closed set M .) So, f determines a graphon that has
almost no triangles. Then the claim is that we may save almost all edges so that there
would be no triangle at all, i.e., a continuous version of the triangle removal lemma holds
true. Similarly we get the hypergraph removal and induced hypergraph removal lemmas.
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In [1] it was shown by using ultralimits how these lemmas allow one to get discrete
counterparts. In the next example a discrete version turns out to be false (see §2).

Example 2 ([5]). Suppose k = 2, K = [0,∞], and for almost all y1, y2, y3 we have

f(y1, y2) = f(y2, y1), f(y1, y2) + f(y2, y3) ≥ f(y1, y3).

Again, this corresponds to an appropriate closed set M , which is cylindrical, like in the
previous example. In this case we deal with an “almost metric space”, which therefore
may be “corrected” by changing distances on a null set of pairs in X2 to a genuine
semimetric space. The values g(x, x) may be redefined to 0 if needed. Also, a priori
infinite distances may occur. But in fact almost all distances should be finite, and hence
on some set X ′ of full measure all distances are finite. We may identify the complement
X \X ′ of this set with one of the points x0 ∈ X ′, which makes all distances finite.

The proof of part 1 (nonsymmetric version) consists of two ingredients: the Lebesgue
density theorem and the Tychonoff compactness theorem. In part 2 (symmetric version)
we need also the following standard variant of the Ramsey theorem.

Theorem 2 (Ramsey theorem). Given c < ∞ colors, positive integers ν, k1, . . . , kν , and
positive integers N1, . . . , Nν , there exist positive integers R1, . . . , Rν such that for disjoint
finite sets A1, . . . , Aν of cardinalities |Ai| = Ri, 1 ≤ i ≤ ν, the following statement holds
true.

Assume that each array (B1, . . . , Bν), where Bi ⊂ Ai and |Bi| = ki, is colored in one
of our c colors. Then there always exist sets Ci ⊂ Ai, |Ci| = Ni, so that the colors of the
arrays satisfying Bi ⊂ Ci are all the same.

We identify X with [0, 1) equipped by the Lebesgue measure μ, and for x ∈ X denote
by Δm(x) a unique half-interval [s/m, (s+ 1)/m) containing x (s = 0, 1, . . . ).

We need the following variant of the Lebesgue density theorem.

Theorem 3. For almost all x1, . . . , xk in X and any open set U ⊂ K containing
f(x1, . . . , xk) we have

lim
m

mk · μ
(
f−1(U) ∩

k∏
i=1

Δm(xi)

)
= 1.

Proof. Consider a countable base of the topology on K. It suffices to take open sets U
from this base. For each of them, the claim is simply the usual Lebesgue density theorem
for the set f−1(U). �

Denote by Y ⊂ Xk a set of full measure for which the condition of Theorem 3 is
fulfilled.

For a positive integer ν, we define a metric on Kν by

dist
(
(x1, . . . , xν), (y1, . . . , yν)

)
:= max

1≤i≤ν
distK(xi, yi).

Proof of Theorem 1. We start with part 1.
First, we require that f and g coincide on Y . This already implies that g is measurable

and equivalent to f .
Now we need to define the values of g on Xk \ Y so that g satisfy the condition of

Theorem 1. Denote by Φ the set of K-valued functions g on Xk such that g = f on Y .

This set Φ is a closed subset of the Tychonoff compact space KXk

, which may naturally

be identified with KXk\Y .
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The closed set M is an intersection of closed cylindrical sets, say, M =
⋂

α Mα. For
fixed α and fixed mutually different points y1, y2, . . . in X, the condition

(2) g̃(y1, y2, . . . ) ∈ Mα

gives rise to a closed subset of Φ. We must prove that all such closed subsets of have Φ
a point in common. So, it suffices to prove that any finite collection of such subsets has
a common point. Fix such a collection. It only deals with a finite number of k-tuples
in Xk. Denote by A = {x1, . . . , xn} the finite set of all points in those k-tuples. Then
conditions (2) hold simultaneously if and only if

(3) g̃(x1, . . . , xn, . . . ) ∈ M ′,

where M ′ denotes the closed cylindrical set determined by some k-tuples of different
indices not exceeding n. We write g̃(x1, . . . , xn) for the left-hand side of (3), because the
further arguments of g̃ are of no importance.

We need to define g on all k-tuples (z1, . . . , zk) ∈ Ak so that
(i) g̃(x1, . . . , xn) ∈ M ′; and
(ii) g coincides with f on Y ∩Ak.
Fix arbitrary ε > 0. Assume that we have succeeded to define g so that
(i−ε) g̃(x1, . . . , xn) is ε-close to M ′; and
(ii−ε) g(y1, . . . , yk) and f(y1, . . . , yk) are ε-close in K provided that (y1, . . . , yk) ∈

Y ∩Ak.
Then we let ε tend to 0 and choose a convergent subsequence of values of g on all

k-tuples in A. Clearly this limit function satisfies (i) and (ii), as desired.
For finding g satisfying (i−ε) and (ii−ε), we take m large and replace any point z ∈ A

with a random point z′ ∈ Δm(z). Then we define

g(z1, . . . , zk) = f(z′1, . . . , z
′
k)

for any points z1, . . . , zk in A.
Then (i) (and, hence, also (i−ε)) holds with probability 1. Due to Theorem 3, con-

dition (ii−ε) holds with probability arbitrarily close to 1, provided that m is sufficiently
large. So, with positive probability such g works.

Now we pass to proving part 2 of the theorem. First, we change M so as to ensure
that any function g satisfying g̃(y1, y2, . . . ) ∈ M be symmetric. For this, we intersect
M with the sets defined by g(y1, . . . , yk) = g(yπ1

, yπ2
, . . . , yπk

). Of course, still we have

f̃(y1, y2, . . . ) ∈ M for almost all y1, y2, · · · ∈ X.
We follow the lines of the proof of part 1. In particular, we find a finite subset A =

{x1, . . . , xn}. The difference is that now we need to check not merely that g̃(x1, . . . , xn) ∈
M ′ for appropriate M ′, but that

(i′) g̃(y1, . . . , yn) ∈ M ′ for all y1, . . . , yn in A (not necessary different).
For this, at the last step, instead of replacing each point z ∈ A with a random point

z′ ∈ Δm(z), we fix a large number R to be specified later (R depends only on K, ε and,
n = |A|, but does not depend on m) and for each z ∈ A choose R independent random
points in Δm(z). They form a random set Ω(z) (of course, the sets Ω(z), z ∈ A, are
disjoint sets of cardinality R with probability 1). For arbitrary points z1, . . . , zk in A we
require g(z1, . . . , zk) = f(z′1, . . . , z

′
k) for some z′i ∈ Ω(zi). Then for sufficiently large m

condition (ii-ε) holds with probability almost 1 for all possible choices z′i ∈ Ω(zi).
We split K into a finite number c of parts so that each part has diameter less then ε.

Let us think that these parts correspond to c different colors.
For any set S = {y1, . . . , yk} ⊂ ∪z∈AΩ(z), we define its color as a part containing

f(y1, . . . , yk) (with probability 1 this is consistent, i.e., does not depend on the order
of elements in S). Let the type of a set S be defined as the function z 
→ |I ∩ Ω(z)|
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on A. The number of possible types depends only on |A| and k. Applying Theorem 2
repeatedly for sufficiently large R, we can find subsets Ξ(z) ⊂ Ω(z), |Ξi| = n, so that
all subsets S ⊂ ∪z∈AΞ(z) of the same type have the same color. Now we are ready to
define g(z1, . . . , zk) for all (not necessary distinct) points z1, . . . , zk in A. We require that
g(z1, . . . , zk) := f(z′1, . . . , z

′
k), where z′i ∈ Ξ(zi) are mutually different points, and that g

be symmetric on Ak. Of course, both conditions may be satisfied. Note that for other
possible choices of z′i the value of g moves by a distance of at most ε.

We need to check (i′). Choose mutually different points y′i ∈ Ξ(yi), i = 1, 2, . . . , n.

With probability 1 we have f̃(y′1, . . . , y
′
n) ∈ M ′. Our construction of g guarantees that

g̃(y1, . . . , yn) and f̃(y′1, . . . , y
′
n) are ε-close in Kn(n−1)...(n−k+1), as desired. �

§2. Counterparts

It is easily seen that the requirement that f be symmetric is essential in part 2. Say, if
K = {0, 1}, k = 2, and the condition on f is |f(x, y)−f(y, x)| = 1 for almost all x, y ∈ X
(there are many such functions), this cannot be satisfied for all x, y. The reason is that
a Ramsey type theorem fails for directed graphs.

Also, we cannot replace the subset I by a multiset even in the symmetric case. Say,
if k = 2, K = {0, 1}, and |f(x, y) − f(x, x)| = 1 for almost all x, y (which is true for
f(x, y) = χx�=y), this cannot be made true for all x, y.

In what follows we need the next elementary statement.

Lemma 1. Let ABC be a triangle on the Euclidean plane with side lengths AB = c,
BC = a, CA = b and with altitude length CH = h. Assume that a+ b− c ≤ 1/2. Then
4h2 ≤ c+ 1/4

Proof. Let D be the point symmetric to B with respect to the line parallel to AB and
passing through C. Then CD = CB = a, c+1/2 ≥ a+b = AC+CD ≥ AD =

√
c2 + 4h2,

and the claim follows. �

Now we show that a naive discrete version of Example 2 (correction of metrics) is false.
Namely, consider a large finite set X equipped by a function d(x, y) : X × X → [0,∞)
(“almost a metric”) such that

(i) d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x) for all x, y ∈ X;
(iii) d(x, y) + d(y, z) ≥ d(x, z) for all but o(|X|3) triples (x, y, z) ∈ X3.
Do these properties imply that

(iv) d coincides with a semimetric d̃ on X for all but o(|X|2) pairs (x, y) ∈ X2?
The answer is in the negative. A possible counterexample is the following. Let X be

a set of integral points inside a Euclidean disk {x : ‖x‖ ≤ R} of large radius R on the
plane; then |X| grows as πR2. Let d(x, y) = ‖x− y‖ − 1/2 for x = y; d(x, x) = 0. Note
that most triangles xyz satisfy ‖x − y‖ + ‖y − z‖ ≥ ‖x − z‖ + 1/2, which yields (iii).
Indeed, if we fix a largest side xz, by Lemma 1 the locus of points y satisfying the reverse
inequality ‖x − y‖ + ‖y − z‖ < ‖x − z‖ + 1/2 is contained in a strip of width O(

√
R),

so that the number of such points y is O(R3/2) = o(|X|). It remains to sum up over
all possible pairs xz. On the other hand, for any ordered pair (x, y) of distinct integral
points x, y lying in the disk {x : ‖x‖ < R/2} we can consider a point z ∈ X such that y

is a midpoint of xz; any metric d̃ must differ from d for at least one side of the triangle
xyz (and each side is counted at most 6 times). This implies that (iv) fails.

There is a general machinery of Elek and Szegedy [1], allowing to get discrete versions
from continuous ones. But the above example shows that sometimes a continuous version
is true while the discrete one is wrong. It would be interesting to understand when such
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things happen and when not. Say, what is the answer for almost metrics d that satisfy
the additional restriction 1 ≤ d(x, y) ≤ 100 for x = y?
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I would like to thank Pavel Zatitskĭı, Petr Naryshkin, and Ilya Shkredov for fruitful
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