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EXTENSION OF THE NEWTON-PUISEUX ALGORITHM TO
THE CASE OF A NONZERO CHARACTERISTIC GROUND FIELD. I

A. L. CHISTOV

ABSTRACT. The Newton—Puiseux algorithm for constructing roots of polynomials
in the field of fractional power series is generalized to the case of a ground field of
nonzero characteristic.

INTRODUCTION

Let k be a ground field and k((X)) the field of power series in X with coefficients in k.
Let f € k((X))[Y] be a separable polynomial of degree degy f = d > 1. We shall assume
without loss of generality that f = > .,.,fiY" where f; € k[[X]] for all i and the
leading coefficient satisfies lcy f = fq = 1. So, f € k[[X]][Y]. Denote by A = Res(f, f4-)
the discriminant of the polynomial f.

Denote by Q = k((X)) the algebraic closure of the field £((X)) and by ¢ the maximal
weakly ramified extension of k((X)) contained in 2. We have

(1) Qo = U ks((X17)),
1<vez,
GCD(v, max{1,char(k)})=1
where k, is the maximal separable extension of k contained in the algebraic closure k of
the field £ and GCD denotes the greatest common divisor. If the characteristic char(k)
is 0, then Q = Qy = J,~, k((X/)).

In any characteristic of the ground field, there is a valuation ord : Q — QU {+o0}
such that ord(X) = 1. It induces the discrete valuation on each finite extension of the
field k((X)). Notice that for any elements z1,x2 € Q conjugated over the field k((X))
we have ord(x1) = ord(z2).

In the case of zero characteristic, the classical Newton-Puiseux algorithm can be
viewed as an algorithm of factoring the polynomials from k((X))[Y] over the field Q¢ by
using the method of Newton broken lines. Namely, let y = >, 1 X% be a root of f,
where all y; are elements k, ap < a1 < ag < ..., and all a; belong to %Z for some
1 < e < d (to fix e, we assume that it is minimal possible). Then for every r > 0 the
pair (y,, ;) can be found by considering the Newton broken line of the polynomial

f(Y+ Z ina"’)-
0<i<r
This is the essence of the Newton—Puiseux algorithm.
One can prove easily that K = k((X))[y] = &’'((7)), where k' is the field of residues of
the field K and 7 = AX'/¢ is a uniformizing element of K and 0 # A\° € k. The field &’
is a finite extension of k and is generated over k by all the elements A~¢®iy; (actually by
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a finite number of them). For the degree we have [k’ : k] < d. The degree of the minimal
polynomial of the element y over k((X)) is equal to e[k’ : k].

In what follows we suppose that char(k) = p > 0. It is natural the think that any
generalization of the Newton—Puiseux algorithm to the case of nonzero characteristic of
the ground field is again an algorithm of factoring polynomials from k((X))[Y] over the
field Qy. This generalization must use some extension of the method of the Newton
broken lines to the case of nonzero characteristic of the ground field.

But, in comparison with the case where char(k) = 0, some difficulties arise. First, the
field Q@ = E((X)) cannot be described in a simple way. Moreover, let y € Q be a root
of the polynomial f. Then, in general, we cannot choose an element n’ € Q such that
y € K((n).

However, the field K = k((X))[y] has a uniformizing element 7 such that ord(w) = 1/e
for an integer e > 1. The residue field k' of the field K with respect to the restriction
to K of the valuation ord is a finite (not necessarily separable) extension of the field k.
As in the case of zero characteristic, the degree of the minimal polynomial of y over
k((X)) is equal to e[k’ : k]. There is a system of representatives X of the field k¥’ in K.
We may assume without loss of generality that ¥ D k and X is a linear space over k
(in general, one cannot choose X to be an algebra over k). Denote by k, the separable
closure of the field k. Then k; Nk’ C K. So, we may assume that k, Nk’ C X. Now the
root y can be represented as the sum of an infinite series

(2) y= Z yir’,

i0<i€Z

where all y; lie in ¥, y;, # 0.

Factoring the polynomial f over the field € is easily reduced to constructing, for every
root y of f, a uniformizing element 7, a system of representatives 3, and the expansion (2)
(but we shall not use this in the present paper). More precisely, to obtain (2) it suffices to
construct all elements y; € ¥ for iy <i <1+ ord(A) (we assume that ord(A) is known).
After that, the subsequent elements y; can be found in a simple way by using a version
of the Hensel lemma, see the Appendix. Unfortunately, it is impossible to obtain at once
3 and 7 in nonzero characteristic. To overcome this difficulty, in §2 we introduce new
expansions (3) with nice properties. They arise naturally and are constructed in several
steps with the help of Newton broken lines, see §5. These expansions give immediately
the irreducible factors of the polynomial f over the field 4. Once expansions (3) are
obtained, we can easily find 3, 7, and the expansion (2).

Actually, the construction of expansions described in §§1-3 is canonical. Moreover, it
is natural to view the family of expansions (3) for all ¢ as a generalization to the case of
nonzero characteristic of one expansion (1) for zero characteristic.

Assume that f € k[X,Y] and the field k is finitely generated over a primitive subfield.
It is important that in this case the complexity of the algorithm for constructing the
expansions (3) is polynomial in the size of the input data and the characteristic p of the
field k£ (in the sense that for every integer N the approximations of order N, see the
definition below in the Introduction, of all the coefficients of the irreducible factors of the
polynomial f over the field €y can be found within the time polynomial in N, p and the
size of the input data). This will be proved in the second part of this paper. There we
are going to establish the results in nonzero characteristic similar to those in [I] and, may
be, [2] (provided this second part will not turn out to be lengthy). The main difficulty
will be to estimate the size of the coeflicients from k, of the factors of the polynomial f
that are irreducible over €.
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In this paper we assume that an algorithm for factoring polynomials in one variable
over finite extensions of the field ks is known in advance. If the field k is finitely gener-
ated over a primitive subfield, then such an algorithm can easily be obtained from the
algorithm of factoring polynomials over the algebraic closure k described in [3]. We shall
discuss this issue in more detail in the second part of the paper.

Now we need some notation. Let

b= ) WYX e QY]
0<i<degy v,
J>jo
be an arbitrary polynomial with coeflicients 1); ; € ks; the integer v > 1 is assumed
minimal possible and jj is an integer. Set

ord(¢) =inf {j/v : ;; #0& 0 < i < degy ¥ & j > jo}.

Therefore, jo € ZU{+0c}, and we may take jo = ord(¢))v if 1) # 0. Let N be an integer.
We define a polynomial 14 y € ks(X/¥)[Y] by the formula

w#,N = Z wl’leXj/V.
0<i<degy ¥,
Jo<j<Nwv
In a natural sense, ¥4 n is an approximation to the polynomial ¢. If N < jg, then

Yy n =0.
If ¢ € ky[X'/¥,Y], then, by definition,

degy ¢ =max ({-1}U{j/v : ¢;; #0& 0 <i <degy ¢ & j > 0}).

Let 2 € k((X)). We shall say that Z € k((X)) is an approximation of x of order N if
and only if ord(z — Z) > N + 1.

Denote by F € Qo[Y] the minimal polynomial of the root y over the field 5. We
shall assume that the leading coeflicient lcy F' equals 1. Now we are able to formulate
the main result of the first part of the paper. Put Ky = Q¢ N k((X))[y]. Then Ky is the
maximal weakly ramified extension of the field k((X)) contained in k((X))[y].

Theorem 1. Assume that an algorithm for factoring the polynomials over finite exten-
sions of the field ks is known. Then we suggest an algorithm for factoring the polynomi-
als from k[X,Y] over the field Qo by using a generalization of the Newton broken lines
method. More precisely, suppose that a polynomial f € k[X,Y] with leading coefficient
ley f =1 is separable as an element of k(X)[Y], see above. Then for every root y of f
and every integer N > 0 one can construct the polynomial Fyu n.

The construction of F is based on the new expansions (3) introduced in the paper
and related to the root y. They enjoy properties (1)—(xviii), see §§1-3 (and give a lot of
information). These expansions are canonical. They depend only on the element y and
do not depend on the polynomial f.

In particular, using the expansions (3), one can construct a uniformizing element of
the field k((X))[y] over Ko and a system of generators with the multiplication table of the
purely inseparable extension k' D k' Nks of fields. Actually, in the notation introduced in
the next sections, a uniformizing element is obtained immediately by using 9a; » and the
system of generators of the extension k' D k' Nk is equal to 7, . . ., T(qs)-

Finally, we would like to distinguish the lemmas important for justification of the
construction described in this paper. These are Lemma [Bland Lemma[l Of course, what
is most important in the paper is the algorithm itself described in §5. This algorithm is
natural but is not so simple as it may seem at the first glance.
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§1. THE MAIN EXPANSIONS

Let f € k[[X]][Y] be a polynomial from the Introduction and let y € k((X)) be a root
of f. We fix an integer N > 0. We shall find approximations of order N of some elements
of k((X)) (this is the meaning of N). We shall see that the expansions introduced in
this paper and satisfying properties (i)—(xviii), see §§1-3, are stable if N > ord(A)/2.
Starting with §3, we shall suppose that N > ord(A)/2. Next, one can apply the Hensel
lemma, see the Appendix, to the constructed approximations to obtain irreducible factors
of the polynomial f over the field Qg if N > (3/2) ord(A). Actually, in what follows we do
not need the Hensel lemma. Instead, one can enlarge N and use the algorithm suggested
in the paper to get better approximations of the irreducible factors of f.

Now we are going to describe the construction of expansions related to the root y of
the polynomial f. The detailed algorithm for this construction if f € k[X,Y] will be
given in §5. It employs a generalization of the method of Newton broken lines.

We proceed to the description of this construction (it is purely mathematical; at
present we do not focus on its algorithmic aspects). We shall obtain a finite number
of elements g1, g2,..., N1,72,... (they depend on y) of the field 2 with the following
properties. For every m, we have

ord(nm) =0, ord(gm) = am/(bmp®™)

for some integers a,, bm, Sm with by, > 1, s, > 0, GCD(am,p) =1, GCD(by, p) = 1,
and S, > Sm—1 (we put sg = 0). Next, for every m we denote by 7, the residue of the
element 7,,,. The field ks[71, ..., 7] is purely inseparable over the field ks and has the
degree p™™ over kg, where 1 <r,, € Z and 1, > rp—1 (we put ro = 0).

Set w(0) = v(0) = w(l) = v(1) =0, g1 = y. At the beginning of the gth step of
our construction the elements g1, 92,...,9v, M,M2,--.,Nw, and P, from the field Q are
known. Here 1 < ¢ < g;. So, there are g, steps in the construction considered. We shall
write v = v(q), w = w(q). We have

v(g—1)<wv(g) <v(g—1)+1, w(g—1) <w(q) <w(g—1)+1,
(v(g—1),w(g—1)) # (v(g),w(q)) for ¢q>2.

Therefore, the sequences v(0),v(1),v(2)... and w(0),w(1), w(2),... are finite, mono-
tone, and nondecreasing.

Put ug = Sy(g) = Su(g-1) T Tw(a) =~ Tw(g-1)-

We denote

Q ={B1/B2€Q : 1,82 € Z & GCD(B2,p) =1 & B2 > 1}
and, for integers 1 < v < v(q;) and 1 <w < w(q;),

Jw = {(jl,...,jw) €LY : 0< jyp <p"m 71 forall 1<m< w},
I, = {(il, ceydy) EZY 2 0 <y <Pt forall 1<m < v}.
Set Ip = Jo = {( )}, i.e., these are singletons; here the element ( ) is the O-tuple.

Definition 1. Let 1 <w < w(qy) be an integer. Suppose that w = w(q) > w(q — 1) for
some integer g > 2 (obviously for every w, there is a unique integer ¢ with this property).
Then we put p'(w) = v(q — 1).

Let 1 <m < v(gy) be an integer. Then we put

p(m) =inf{w € Z : m < p'(w) &1 <w<w(q)}.
Hence, if there is no integer w such that p’(w) is defined and m < p’(w), then p(m) = 4oc.

The following statements can be proved easily:
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p'(w) >0 for every 1 < w < w(gy);

the sequence p'(1), p'(2),...,p'(w(g;)) is monotone nondecreasing;

the sequence p(1), p(2),...,p(v(g;)) is monotone nondecreasing;
if 1 <m < w(g) and 1 < w < w(gy), then the inequalities m < p'(w) and

p(m) < w are equivalent.

Lemma 1. Assume that ¢ > 2 and only the sequences v(0),..., v(g) = v, w(0),...,
w(q) = w are known (these sequences are known at the beginning of the qth step of our
construction). Let 1 < m < v be an integer. Then one can decide whether p(m) > w. If
p(m) < w, then one can compute p(m).

Proof. This follows immediately from Definition[Il We leave the details to the reader. [

Our main expansion has the form

(B 7= > Yovsit st X OG1 e G M Yt
(Q481 e esT05J 150 Jw ) EAG
and possesses the following properties (i)—(ix).
(i) A, is a finite (or empty) subset of Q x Zv*+*.
(ii) 0 <gm <p™ "™t foralll <m <w,ie, (ji, ..., jw) € Ju-
(iii) At the beginning of the gth step, for all (j1,...,jw) € Ju, 1 < m < v, integral
constants ¢m j ..., are computed. Each constant ¢y, j, . ,....5, depends only
ON M, Jp(m)s - - - Jw (if p(m) > w, then the sequence j,(m), ..., ju is empty).
(iv) For every (i1, .. 00, J1,---,Jw) € Ay we have
Cmjp(my s sdw < < Cmjp(m)y s sdw +psm_sm71
forall 1 <m <w.

We shall explain the meaning of conditions (iii) and (iv) in §3. There we shall specify the

constants Cm, j, ., .....j., introducing the additional condition (xviii) for them. See also
Remark [ in §3.

(v) @ €@, in other words o = 31 /82 € Q, p1, 52 € Z, and GCD(f2,p) = 1.
(vi) Let (91, 00,01, -5 Jw) € Ag. Then Yo, iyjr..iw € ks. The element
Yovyin,.osivogrnde €duals 0 if and only if ¢ = ¢ and (01, ylyy J1yee s fw) =
(N +1,0,...,0) (notice that (N +1,0,...,0) is the last constructed element of
Aqé, see §2 for more detail). In all other cases Ya,i;, .. iy.j1,....j0 7 0-
(vil) For any pairwise distinct collections

(aai17~-~aivvj1a"'7jw)’(a/’ilh""i;?ji""?j;u) EA(P
either (jla"'ajw) 7& (]iav]{u) or
a+ Z im@m /[ (bmp®™) # o’ + Z it am/ (bmp®™).
1<m<wv 1<m<wv
(viii) If ¢ # g5, then ord(gy+1) < N + 1 and for every (o, i1, ..., %, j1,---,Juw) € Aq
we have
(4) o+ Z im@m /[ (bmp®™) < max { ord(Fg41), N + 1}.
1<m<w
If ¢ = g}, then ord(y 1) > N + 1. If
(N +1,0,...,0) # (i1, vy iy Ju) € Ags,

then inequality (4) holds true with ¢ = ¢;.
(ix) The number #A, of elements of A, is maximal possible, i.e., there is no similar
expansion with A’ in place of A, satisfying (i)—(viii) and such that #A" > #A,.
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If ord(gg+1) < N + 1, then, using the element 7,41, one can construct gy+1 Or Ny41
(possibly, both of them), define v(¢+ 1), w(¢+ 1) and proceed to the next (g+ 1)st step.
More precisely, for every ¢ > 1, if ord(gg+1) < N + 1, then the following conditions and
definitions (x)—(xiv) hold true.

(X) gut1 = Yg41 if and only if ord(g,41) € #Q’ and ord(y,) & WQ’, where
Sy+1 1s an the integer with s,411 > s,.

(xi) Let gy+1 = Yg+1. Then there is a unique apy1 € Q' and unique (iy41,1, -- -,

ty+1,0) € I, such that

psu+1*3v

ord (g /(Xrrgt L gl)) = 0.
Put

Sy41—Sv

(5) Eor1=0pyy  [(XTgy g,
Notice here that for every 0 < v < v(g*) — 1 there is a unique 1 < ¢ < q, — 1 such that
Gu+1 = Yg+1, so that (5) is true for all such v.

(xii) Suppose gy41 = g1 and the residue &, belongs to kg[fi,..., 7). Then
vig+1)=v+1,wg+1) =w.

(xiii) Suppose gy4+1 = Jgr1 and the residue &,;; does not belong to k[, ..., fuw].
Then, by definition, h,y1 = 375:;1_% and Nyir1 = &yr1- So, the integer

Tw+1 > Ty is defined now. Put By41 = Qpt1, twt1,m = tot1,m foralll <m <.
In this case v(g+ 1) =v+ 1, w(g+1) =w+ 1.

(xiv) Let ord(Jy4+1) € I%Q’. Then by definition we put hy41 = Jg+1. Now there is a
unique By4+1 € Q" and unique (Ly41.15-- -, bwt1,0) € Iy such that

ord (hyp1/(XPerigiettt . L gherie)) = 0.
Put

(6) Mgt = hapgr [ (XPwriglottt o ghwti),

Then the residue 7,11 does not belong to kg[7, ..., 7w]. Therefore, we see that
the integer ry,11 > 7, is defined now. In this case v(g+1) = v, w(g+1) = w+1.

Notice that (6) is satisfied if one of conditions (xiii) or (xiv) is fulfilled, i.e., if and only
if w(g+ 1) = w(q) + 1. Moreover, in this case v = p'(w + 1) in (6).
In either of the cases (xii) or (xiii) we represent

—p w(g+1) ~"w(q) _j i
P — . YA . plw
(7) w1 = E Sot11rdu™ * o Ty
(J1seensJw)€Jw

where all &,41,5,,....5, belong to ks (to avoid ambiguity, if w = 0 we use the notation

o1, for &utnji,j,)-
In either of the cases (xiii) or (xiv) we represent

_pw(g+1) T Tw(q) _j i
4 — . R J1 . nlw
(8) Thw+1 = E Nw+1,51,.5w™ = -+ Ty
(J15-5dw) EJw

where all 1y41,5,,....5, belong to ks (to avoid ambiguity, if w = 0 we use the notation

Nw+1, T Nuwt1,j1,. )

So, in case (xiii) we have {,41,,.. ju = Nwtl,j1,...50 0T all (j1,...,Jw) € Ju, and
therefore, the representations (7) and (8) coincide.

Put ks, = ks, ..., 0m] for every 1 < m < w(qy). Then using relations (8) for

w=0,...,m— 1, one can obtain the multiplication table for the basis

9) W, 0< G, <pT Tt 1< n<m,
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of the field ks ,, over ks (actually (j1,...,75m) € Jm in (9)). The basis (9) will be called
the standard basis of the field ks ., over k5. We put ks o = ks.
Note also that if ¢ > 2 and A; = &, then gy =y or hy = y.
Finally,
(xv) let ord(gy+1) > N + 1. Then the gth step under consideration is final. We put
qy = q in this case.

§2. MORE DETAILS ABOUT THE CONSTRUCTION OF THE MAIN EXPANSION

Let us describe in more detail how to obtain the expansion (3) at the gth step (where
1<qg< qZ) of our construction (at present everything depends on y). In what follows in
this section, we shall suppose that the integers ¢m j, ), ...ju > (J1y -y Jw) € Jw, 1 <m <
v, are arbitrary but fixed, where v = v(q), w = w(q), and 1 < g < ¢*. We shall specify
these integers Cimjp(my s in the next section.

For all (ji,...,juw) € Jw, we put

3 . — y y v, X X y 3 3 Sm—Sm—1
Loji,jw = {(Zlv cesdy) EZY Cmgpmyseeoder = tm < Cm gy (myseeniw TP

vYm (1 <m <)}

Set Ay = @. We shall suppose that the finite set of multiindices (of different lengths)
Ag—1=Ui<meq1 Am is constructed at the (¢ — 1)st step of the first recursion or ¢ = 1.

Here we need a second recursion on a set A D Aq,l for finding the expansion (3). We
shall say that A determines the step of the second recursion at the qth step of the first
recursion. We shall also say that this step of the second recursion corresponds to A.

If ¢ = 1, it may happen that this second recursion has no steps. In this case A = @
and Al = .

The set A is also constructed recursively at the previous steps. At the first step of
this second recursion we have A = gq,l. At the end of recursion we obtain the set /Tq,
Actually, A C ,Zq and A # /qu at the beginning of any step, and A = /qu at the end of
the final step of this recursion. We have A, = qu \ Aq,l, where A, is as in §1.

Let A determine the step of the second recursion at the gth step of the first recursion,
or A= gq. Then we put

~ _ Npuq . X . . o i1 7 jl J
(10)  Jga =109y - ) Yorsit,eomsivsdioedwX 91 oo TGS Y
(O 1 ey J1seesfin ) EANA g1

and Ju = Jya if A\ A1 # @. Set Ju = y.
We suppose that the elements ya i, ,....iy,j1,....7. ar€ known for all

w

(auilu' .. 7i’u7j17" '>jw) € A\A‘IQ*l

at the beginning of the step of the second recursion corresponding to the subset A. At
the end of that step we obtain a set A 2 A and the expansion (10) with A, in place of
A. If the step corresponding to A is not final, then the next step of the second recursion
corresponds to Ay (in place of A).

If the step corresponding to A is final, then we put Zq = A, and obtain the element
Uq+1 by replacing A with ﬁq on the right-hand side of (10). So, Pg41 = Yo 4, Put
Ya, = Yg,4,

If ¢ = qj;, then at the final step of the second recursion we have ord(ya) > N + 1.
There is only one step when the last inequality is true. Only in this case it may happen
that y4 = 0.
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If ord(gy,4) < N+1 and A determines the step of the second recursion at the gth step
of the first recursion, then we assume that the conditions (xvi) and (xvii) formulated
below are fulfilled.

(xvi) a =ord(gga) € p%@’, where v = v(q) (in particular, this automatically implies

that g, 4 # 0).

Hence, there are unique a € Q' and (¢1,...,t,) € I, such that

(11) a=a+tordg) + -+ t,0rdg,.

Therefore,

(12) ord (Jg,a/(Xg1" - .- - gy)) =0

(here a, t1, ..., L, depend on ¢, A). Putting ng. a4 = ¥g.4/(X%g1* - ... - giv), we denote by

7q,4 the residue of the element 1, 4.
(xvii) The residue 74,4 belongs to k[, . .., My, where w = w(q).
Notice that if A = ﬁq_h ord(gq.4) < N +1, and ¢ > 2, then conditions (xvi) and
(xvii) are fulfilled, and therefore, A,_1 determines the step of the second recursion at
the gth step of the first recursion.

Lemma 2. Let 0 < v < wv(gy) be an integer. Then (5) with m in place of v+ 1 is true

for every 1 <m < v. We shall view all s1,...,5, and iy, .m, as constants. Assume that
ord(X7gyt - ... -gl) =0 for some v € Q' and some integers ny,...,n,. Then there are
integers ay, . ..,a, such that

(13) X0g g =G

and for every 1 < m < v the integer ay,p*™~°m~1 — n,, depends only on Ny41,...,MNy.
Therefore, the integer a,, depends only on Ny, ...,n, for every 1 <m < wv.

Proof. We shall suppose without loss of generality that v > 1. Since

ord(X7gyt - ... - gy) =0,
we have n, = p**~®v-1q, for an integer a,. Now by (5) with v in place of v + 1 we can
write X7gl - ..o gh = XV gl - ght MM for some v € Q' and some integers
ny,...,n,_,. Here each n, —n,, 1 < m < v — 1, depends only on n,. Obviously
a,p®” %=1 —n, = 0. We have ord (X“Y/gil1 C ~g:fll) = (0. Therefore, the required
assertion is obtained by induction on v. ([l

Corollary 1. Under the conditions of Lemma 2, let 0 < w < w(q;) be an integer. Then
identity (6) with (n, p’(n)) in place of (w+1,v) is true for every 1 < n < w. We view all

Tlyeo oy Tw G0d Ly, m, S constants. Suppose that ord(X%gi - ... - givhl - ... - hiv) =0
for some d € Q' and some integers iy, ... iy, j1,--.,Jw- Then there are integers ai, ..., a,
such that

(14) XOgin o agivhIt . Rl =gl gl Ll

and for every 1 < m < v the integer an, depends only on iy, ...,y and jy(m);s-- - Jw-

Proof. Recall that the inequalities m < p/(n) and p(m) < n are equivalent. Hence, by
(6), tnm # 0 only if p(m) < n. Thus, the required assertion follows immediately from
Lemma 2 and identity (6). O

Lemma 3. (a) Let v =v(q), w = w(q), 1 < q < g, and let a € (1/p**)Q’ be an arbitrary
number (not necessarily a = ord(yy,4)). Then for every (ji, ..., jw) € Ju there are unique
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(i1, yiv) € L jy.. g and B € Q' such that a = ord(XPg}* - ... - giv). More precisely,
there is a function s : piv "X Jw = Q X ZY such that (B,i1,...,iy) = (@, 1, Jw)-
(b) Moreover, assume also that v > 1, (j1,...,jw) € Juw, and the elements g1,..., g,
and the constants ¢y j, . .....5, are fized for all1 < m < wv. Then for every 1 < m <wv
the integer i, depends only on ord(gs, ) and Cingip(my seesdo s+ + + 3 COp(uy e sdun - The integer
B depends only on
Ord(gqﬁ)’ Clijpysdws == 1 COGp()semduw®

Proof. This is straightforward by the Chinese remainder theorem applied v times. ]
Recall that ks g = ks and kg = Es[71, - -5 ], 1 <m < w(qy).
Definition 2. Let 1 < v < v(gy) be an integer. Put
x(v) = min{m : &, € ksm & m > 0}.
Then 0 < x(v) € Z.
Lemma 4. If 1 <wv <w(g,), then x(v) < p(v).

Proof. The sequences v(0),v(1),v(2)... and w(0),w(1),w(2)... are monotone nonde-
creasing. We shall use this fact below.

Let ¢ > 2 be the smallest integer such that v = wv(q). By Definition B &, €
kM1, ..., Tw(g) for some 1 < ¢" < ¢ with x(v) = w(q').

On the other hand, let p(v) = w < +o00. By Definition[Il v < p'(w) = v(¢” — 1) for
an integer ¢” > 2 such that w = w(q”) > w(¢” — 1). Hence, v(q) < v(¢” —1). Now
q < ¢"” — 1 because ¢ is the smallest integer such that v = v(g). Thus,

x(v) =w(q') <w(q) <w(q" —1) <w(q") =w = p(v).

The lemma is proved. ([l

Recall that (11) and (12) hold true. In assertion (a) of the following lemma the number
a € (1/p*)Q’ is arbitrary (not necessarily a = ord(y,,4)). For this a, there are unique
a € Q and (t1,...,t) € I, such that (11) is fulfilled (here we use the same notation «,
{1,-.-,Ly as in the case where a = ord(y,, 4); this will not lead to any ambiguity).

Lemma 5. (a) Let v =v(q), w =w(q), 1 < q < q;. Suppose a € (1/p*)Q’ is arbitrary
and (11) holds true. Put

Ba,v,w _ {Xﬁ—agilﬂl — .giu—lz'un.{l . '773;’“’ .
(J1, - Jw) € Juw & (Byi1, ... iy) = 2(a, j1, ..., jw) }-

Then the family of residues {N}yeB, , . 5 a basis of the field k[, ..., 7] over k.

(b) Assume that conditions (xvi) and (xvii) are fulfilled. Then there are unique
YBitsinjtrin € ks With (8,41, ..., 4y) = se(ord(Pg,4), J1, - - -+ Jw) for all (j1,-.., Jw) €
Jw such that

(15) Ord(‘%““_ D Ysiniadigu X9 g "lfﬁ“) > ord(g,a)-
(J15eesdw) €EJuw,
(Byi1s-msiv)=22(a,515-- 5 w)
Proof. Assertion (b) follows from (a) immediately.
We prove (a). We shall suppose without loss of generality that v > 1. By Lemma [3]
each i, — L, 1 <m < v, depends o‘nly O Cr iy sevriiun s 3 Cspyeras A ord(gg,a)-
We have ord(XP=%gi* =" . ... . gi»~) = 0. By Lemma 2] we can write

XPmognmn. g =g

v o
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where a,, is an integer depending only on 4, — tm, ..., 4, — Ly for every 1 < m < v.
Therefore, a,, depends only on Clmp(my seesdito s+ + 3 COGp(wy 0o and ord(g,,4) for every
1<m<o.
Set
An = H mo 0<n<w
x(m)=n
1<m<wv

Notice that each a,, in the last product does not depend on ji, ..., jj(m)—1. By Lemma[d]
we have p(m) —1 > x(m) = n. Hence, each a,, in the last product does not depend
on ji,...,jn. Therefore, also the product A, itself does not depend on ji,...,75,. To
specify the dependence of A, on j,11,. .., jw, we shall write A, = X\ (Jnt1, -+, Jw) (An
also depends on a, but this does not matter at present).

Denote by Ap(jni1,--.,jw) the residue of the element A, (jni1,.-.,jw). Then 0 #

)\n(jn-i-h .. 7jw) S ks,n-
Now we write

(16) XO=gp= e ghe Tt el = X dw) ] (0 AUt dw) -
1<n<w

Let 1 <t < w be an integer. Let A(f) denote the following claim. The family
Ht<n<w(ﬁfl"j\n(jn+1, e dw)), 0 < jp <p™ ™1t <n <w,is a basis of the field k;_,,
over kg ;1.

We are going to prove A(1) with the help of decreasing induction on ¢. The base A(w)
of induction is obvious. Assume that ¢t > 1 and that A(¢ 4 1) is proved. Then

ﬁgtﬂ H (ﬁgznj‘n(JnJrh R 7jw)) )
t+1<n<w
0<je <p™ "', 0<j,<p™ ™1 t+1<n<w,
is a basis of the field ks ., over kg ¢—1.
The family_ﬁi*}t(jt_s_l, s dw), 0 <y < p™TTt1 s a basis of the field kg, over kg1

because 0 # A\ (jit1,---5Jw) € kst Therefore, for every (ji41,-..,Jjw) the linear space
over ks ;—1 generated by the family

ﬁgt H (ﬁ%nj‘n(.yn-i-huyw)) ) 0 S]t Spﬁ—ﬁ—l,
t+1<n<w
coincides with the linear space over k, ;1 generated by the family
ﬁgtj‘t(jt-i-la"'ajw) H (ﬁ%ﬂj‘n(jn-ﬁ-laa]w)) ) 0 S]t Spnim_l
t+1<n<w
(both are subspaces of the field k; ,,). This implies A(¢) immediately.
Thus, A(1) is true. Hence, the family
H (ﬁgzn/_\n(jn-i-lv---vjw))a (j17---7jw)€Jw7
1<n<w

is a basis of the field ks ., over k. For every (j1,...,jw) € Juw, multiplying the element

of this basis that corresponds to (j1,...,Jjw) by a nonzero constant A\o(ji,...,Jw), We
obtain again a basis of ks ., over k,. This last basis coincides with the family {7},cB, , .,
by (16). Assertion (a) and the lemma are proved. O

We return to the case where A determines the step of the second recursion at the ¢th
step of the first recursion. First, suppose that a = ord(g4,4) < N + 1. Then, by our



EXTENSION OF THE NEWTON-PUISEUX ALGORITHM 835

assumption, see above, conditions (xvi) and (xvii) are fulfilled. Put

A ={(Bir, - iv J1, s Jw)

(17) : . . . . .
(.717"').]w) S Jw & (67215“-711)) = %(avjlv"'ajw)}~

Then by Lemma [l (b), all the elements yg iy, iy.j1,...5w € ks With (8,41,..., 6, J1,...,
Jw) € A" are well defined and (15) holds true. Set

(18) A = {(6, TlyevvylyyJlye-- 7jw) cA YB it e yins1se s fuw 7& 0}

Then A” # @ because §;,4 # 0. Put Ay = AU A”. Now we have one of the following
two subcases (a) and (b).

(a) Recall that the element 7, 4, is defined, see the beginning of the section. Assume
that conditions (xvi) and (xvii) are fulfilled with g, 4, in place of 7, 4 (the residue
7g,4, is defined by analogy with 7, 4 if condition (xvi) is fulfilled with 7, 4, in
place of ¥, 4; in what follows we shall omit the words “in place of g4.4” for
brevity). Then we replace A by A, and proceed to the next step of the second
recursion at the gth step of the first recursion. Notice that in this subcase we do
not suppose that necessarily ord(yq,a.) < N + 1.

(b) Assume that it is not true that conditions (xvi) and (xvii) are fulfilled for g 4. .
Then the step of the second recursion corresponding to A is final. In this subcase
we put /qu =AL, Ay = /qu \ /qu_l, Ug+1 = Yq,A, - Now, by items (xii), (xiii), and
(xiv) in §1, we pass to the (¢ + 1)st step of the first recursion.

More precisely, in subcase (b) either condition (xvi) is fulfilled for 7, 4, and condition
(xvii) is not fulfilled for g4 4, or condition (xvi) is not fulfilled for 7, 4, . Therefore, in
subcase (b) either ord(Jg,4,) € ﬁ@’ and the element 7, 4, does not lie in k471, ...,
Nw), or ord(Jq,a,) & 1#@/ and 9, 4, # 0. Moreover, by Lemma [J (see §3 below), in
subcase (b) if additionally condition (xviii) holds true, then ord(g,+1) < ord(A)/2.

Now suppose that ord(y;4) > N + 1 (possibly, J, 4 = 0) and A determines the
step of the second recursion at the gth step of the first recursion. Then the step of the
second recursion corresponding to A is final. Put Ay = AU {(N + 1,0,...,0)} and
YN+1,0,...,0 = 0, where (N +1,0,...,0) € Q' x Z"T™. Set ¥g,a, = Ug. A, Yg+1 = Ug, A4+
/qu =Ay, A, = /Tq \ /Tq_l, and ¢y = g, see item (xv) in §1. Here the construction is
canonical, but may seem slightly artificial. However, we shall see that for ¢ = ¢; and
ord(gq,4) > N +1 such a final step (or some similar one) will be necessary in §5 to define
the leaf of the tree T, see §4 below, corresponding to the root y.

Also, it may happen that ord(g, 4) < N + 1 but the conditions of Lemma [ (b) are

~

not fulfilled for g, 4 with A = A;_;. Then we are not able to find A4 at the gth step.
But obviously, in this case ¢ = 1 and A = /To = @. Then, in accordance with items
(x)—(xiv), see the end of §1, we put Ay, = @, construct g; or i, (maybe both of them)
and proceed to step 2 of the first recursion.

Thus, we have finished the description of the construction of expansion (3) in this
section. More information on this expansion will be given in §5 with the help of the
method of Newton broken lines.

We need also the following definitions. Let 1 < ¢ < g;. Denote by S , the set of
all A such that the set A determines the step of the second recursion at the gth step of
the first recursion, see the beginning of the section. Therefore, Sz/;,ql N S;7q2 = @ for all
1<q #q2 < q.

Observe that S; , # @ for ¢ > 2. For every 1 < ¢ <g,, if S, , # & then fwlq_l €S, 4
but A, ¢ S

v.q» Whence A, # @ in this case.
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For every 1 < ¢ < ¢, we put

Sy,q = {Aq} U U Syl;,m7 Sy = {quj} U U Sg/;,q'
1<m<gq 1<q<gq;
Set S,0={A0} = {2}, S, 1 = @ (s0 that #S,0 =1, #S, 1 = 0).
Notice that also Sy = ;< <4 Sy.q-
For every 0 < g < g and every A € S, 4\ Sy 4—1 We Put s4 = Sy(q), TA = Tw(q)-

§3. MODIFIED EXPANSIONS

In this and the following sections we suppose that N > ord(A)/2. Consider the main
expansion (3) obtained at the gth step of our construction. Recall that v = p'(w + 1) in
(3). Put

c;wp("m__?jw = Conjpmyseduo Z Jntnm, 1<m<w,
p(m)<n<w
see (6) with (n, p’(n)) in place of (w + 1,v) for the definition of ¢, ,,. Recall that the
conditions m < p/(n) and p(m) < n are equivalent. We substitute the expressions for n,,,
1 <n <w, from (6) (with (n, p’'(n)) in place of (w + 1,v)) in the expansion (3). Then
we get the modified expansion

P E / a i1 i pJ1 L pJw 5y
(19) yq - ya,il,...,il,,jl,...,ij 91 cee Gy hl s hu} + Yg+1,
(avil7~--7iuvj17-~7jw)e‘4;

/
where all Yo i, i, i o
a bijection A, — A,

are elements of k., and #A4, = #A;. More precisely, there is

) . . ;o g .
(aallv"'alvuyla"w]’w) = (Oé 5217"'7lva,715"'a.7w)7
./ . .
ty = tm — § Inln,m, 1 §m§v>
p(m)<n<w
, .
o =a— E Jn Oy
1<n<w
, B _ o _ . . .
such that Yo it oot oo = Yot oo for every (o, i1,...,%,71,---,jw) € Aq.
Hence,
/ ; / . Sm—Sm—1
My Jp(m)seJw < ip < cmwjp('ln):"'vjw +p ;o L<m<w,
. o . ,
for every (o, i1, ... 0y, J1,- -, Jw) € Ay

Thus, to obtain expansions (3) it suffices to construct the modified expansions (19),
and conversely. Actually, we shall construct (3) and (19) simultaneously.
In what follows in this paper we shall suppose that the following condition is fulfilled:

(xviii) Cinip(my oo = Ep(m)gugw Jubu,m for all (41,...,7w) € Ju, 1 <m <.

We shall see that condition (xviii) is convenient for applying our generalization of the
method of Newton broken lines. Obviously, condition (xviii) is equivalent to

(20) c =0, foral (j1,...,jw)€ Jw, 1<m< .

mvjp(m)vv--vj'w

Remark 1. Assume that the constants ¢ j, ) ,....j,, satisfy condition (iii) but may fail
to satisfy (xviii) (say, in the important case where all ¢y, j, . ...5,, are 0). Then, for
example, one can modify the entire construction as follows. At the gth step of the first

recursion, let 1 < aq < degy f—1 be the smallest integer (it exists) such that the elements
~aqpe

Yq ) gzll Teee 93}’77{1 e ” 77{010’ (ila ey Zv) € Imjh...,jwa (jla" . ajw) S Jw are hnearly
independent over the field €. Then one replaces gg"q by 75" * in the expansion (3).
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This replacement is necessary. Namely, the elements gy " uq, gil Coieghe n{l el
(41, s%0) € Ly gy, gy (1, s Jw) € Juw, must be linearly independent over the field Qg
if the final aim is to construct ¥ and =, see the Introduction, cf. the proof of Lemma [0
Here we leave the details to the interested reader. We shall not use this remark in the
paper.

Lemma 6. (a) Let v = v(q), w = w(qg), 1 < q < gy, and let a € (1/p*)Q’
be an arbitrary number. Then for every (ji,...,jw) € Juw there are unique
(i1,...,iy) € I, and B € Q' such that a = ord(XPgl* - ... - givn] . ... . hiv).
More precisely, there is a function ' : pl. ' X Jy = Q x Z' such that

(Byi1y. . yiy) = 5 (a1, -, Jw). Assume that (11) is fulfilled. Then under con-
dition (xviil) we have

Ba,’u,w = {Xﬁ_agi—17“ A .giu—bvhjl'l o h{uw :
(s Jw) € Ju & (Byisevoyio) = (@i, s ju) }-

/

(b) Under the conditions of (a) assume additionally that v' = v(q¢’), v’ = w(q¢'),
1<¢ <gq, and a € (1/p*")Q'. Then the family By, contains Bg 4 (more
precisely, Bg v w 15 a subfamily of Bg.w)-

Proof. This follows straightforwardly from the definitions (we leave the details to the
reader). O

Remark 2. Put Baﬂ,,w = {ﬁ}neBw,w Then the elements of the basis B, . can be
presented as linear combinations of the elements of the standard basis (9) with m = w
by using Lemma[2 or Corollary [l and relations (7), (8) with (v(¢'),w(q’)),1 < ¢ <gq-—1,
in place of (v, w).

Let ¢ > 1, and let (xii),, (xiii)y, (xiv), denote conditions (xii), (xiii), (xiv) from §1,
respectively.
Also, we need to introduce yet another modified expansion. Let (a,iy,... %y, Jj1,
-y Juw) € Aj. For every 2 <m < ¢, we set
® i, = iy(m) if and only if condition (xii),, 1 is fulfilled;
® iy = ly(m) T P ™ fu(m) if and only if condition (xiii),, 1 is fulfilled;
® i, = ju(m) if and only if condition (xiv),,1 is fulfilled.

For every 1 < g < gy, there is a bijection

(21) A;—)AZ, (aazlaaZU(q)vjlv7]’w(q))'_>(aﬁzl2/77lg)
defining the set A} (if ¢ = 1, the sequences i1,...,iy(q); J1s---sJw(q); 9,---,0y are
empty). Put yg,ig,m,@'g = Yorsinerinjirerju LOT €VELY (01, ..., by, J1, - vy Jw) € A;. Now

for every 1 < ¢ < g, we can use (19) to get the second modified expansion

(22) B =X e XOTETE B T
(in,ennriq)EAY

(here if ¢ = 1, then the sequence is, ..., 4, is empty and the product g}’é"’g}? e gjiq

equal to 1). Notice that if (a, iz, ...,7,) € A, then 0 < i, < p*m for all 2 <m < gq.

is

Lemma 7. (a) Let2<q<gqy; orq=1 and A, # &. Then
ord(gg+1) > p*eord(y,) >0

(if /L = &, then §o = §1, whence ord(gz) = p** ord(y1)).
(b) If (ayia, ..., i) € Ay and 1 < q < gy, then a > 0.
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(¢) If (ayit, .- iu, 1,05 Juw) € Ay and 1 < g < g5, then a > 0.

Proof. We have lcy f = 1. Hence, y is integral over k[[X]]. Therefore, ord(y;) > 0. Now
assertion (a) follows from (3) and the described construction immediately. Assertion (c)
follows from (b) and the existence of the bijection (21).
It remains to prove (b). We shall suppose without loss of generality that ¢ > 2. By
(22), for every (i, ...,i,) € Ay we have p*sord(y,) < ord(X gyt - .-
Applying (a) und using induction on 2 < n < g, we prove that

Z (p"™ — 1) ord(gm) < ord(g,) — ord(71).

1<m<n-—1

Notice that p“* — 1 = 0. Hence,

(pe —iq) ord(y,) < a+ Z (p"™ — 1) ord(Um) < o+ ord(,) — ord(J1).
1<m<qg—1

Thus, o > ord(g1) > 0 because p“s — i, > 1. The lemma is proved. O

Recall that the last step g of the construction of our expansions was defined at the
end of §1. Now we are going to introduce the polynomials P, € Qy[Y], 1 < ¢ < qy +1,
and Gy(q), Hu(q) € Q[Y], 2 < ¢ < gj;, associated with the modified expansions (19).
These polynomials will be such that

(23) U = Pa¥): 9ua) = Go)(¥): hwie) = Hu(g) ()-

Definition 3. This definition is recursive in ¢ > 1. Put P, =Y. Suppose that 1 < g < g;
and the polynomials P, € Qo[Y], 1 < a < ¢, and Gy(q), Hy(a) € Q0[Y], 2 < a < g, have
already been defined. Then we put

— pp"d _ / ayin .G I . Hiw
(24)  Pyyr = By Y Yeireivdin g XOGY G H] L H

(O’aila<~-7iv7j17--<7jw)eA;

where uq = 8y(q) = Su(g—1) T Tw(q) = Tw(g—1)> ¥ = v(q), w = w(q).

Suppose that 1 < ¢ < g; and that (xii), see §1, holds true (recall that in this case we
have v(q +1) = v(q) + 1, w(g + 1) = w(q)). Then we put Gy (g41) = Pyy1-

Suppose that 1 < ¢ < ¢; and that (xiii) holds true (recall that v(q + 1) = v(q) + 1,

Sv+4+1~5v

w(q+1) = w(g)+1in this case). Then we put Gy(g11) = Pyy1 and Hyg41) = Py ,
where v = v(q).

Suppose that 1 < ¢ < g, and that (xiv) holds true (recall that v(g + 1) = v(g),
w(q +1) = w(g) + 1 in this case). Then we put H,g41) = Pyy1-

Comparing (24) and (19), we see that (23) is satisfied. Note that the leading coeffi-
cients with respect to Y of all the introduced polynomials P, and G g, Huw(q), ¢ = 2,
are equal to 1. Next, if ¢ > 2, then degy G1 = 1 or degy H1 = 1, and if additionally
A = @, then G; =Y or H; =Y, see the end of §1. Similarly, degy P> = 1, and if
A =g, then P, =Y.

The definitions and (24) imply

o) P =B = % il KPR
(i1 yereyig) EAY

for every 1 < ¢ < gy, cf. (22).

Lemma 8. (a) Suppose that q an integer, 1 < q < g;, and v = v(q), w = w(q).
Then degy Pyi1 = pstmv.
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(b) Suppose that 1 < q < q;, v = v(q), w = w(q), and (xii) holds true. Then
degy Gy =p*t.

(c) Suppose that 1 < q < g, v = v(q), w = w(q), and (xiii) holds true. Then
degy Gy1 = p* " and degy Hypq = p*iitie.

(d) Suppose that 1 < q < q;, v = v(q), w = w(q), and (xiv) holds true. Then
degy Hyy1 = p*tre.

Proof. This follows straightforwardly from Definition [Bl ]

Lemma 9. (a) ord(71) < ord(f(0)). If, moreover, y # 0 and f(0) = 0, then f'(0) =
(5% £)(0) # 0 and ord(71) < ord(f(0)).
(b) Let g;, > 2. Then for every 1 < q < g;; we have ord(y,) < ord(A)/2.
(c) If 1 <q<gj, then

(26) ord(§,) < p~*ord(A)/2,
where
Hg = Ug + Ug+1 + -+ + Ugs—1 = Sy(g;—1) + Tw(gy—1) ~ Sv(g—1) ~ Tw(g—1)-

Inequality (26) is strict whenever q;; > 3 or A #+ .
(d) Let q = q;. Then the degree of the extension of fields satisfies

[Qoly] : Qo] = p*r@ ¥ = degy Py-11.

Proof. Assertion (a) is obvious. Assertion (c) follows from (b) with ¢ = g;; and Lemmal[7]
(a). Therefore, it suffices to prove (b) and (d) with ¢ > 2.

Suppose that ¢; > 2 and 2 < ¢ < q; + 1. Let a = syg—1) + Tw(g-1)- Then P, =
yr' 4 > 0<j<pe PajY7, where all the coefficients P, ; lie in Q. Let K’ be the maximal
weakly ramified extension of the field k((X)) contained in the field k£((X))[y]. Put K =
K'[P,0,...,Pype_1]. Hence, K is a finite weakly ramified extension of the field k((X)).
Therefore, the ramification index of the extension K[y] D K is at least p* and the
degree of inertia of this extension is at least p™»@. Hence, [K[y] : K] > p*v@*tTw,
The extensions Q¢ D K and K[y] D K are linearly disjoint over K, because K is the
maximal weakly ramified extension of the field k((X)) contained in K[y]. Therefore,
[0y] : Qo] = [K[y] - K. Let b= [K[y] : K].

Let ¢ < gy In this case g, > ¢ > 2. Hence, Sy(q) + Tw(q) > Su(g—1) + Tw(g—1)- Thus,
p® < pr@F w@ and b > p®.

Let ¢ = g; + 1. In this case, assuming that [Qo[y] : Qo] > pSea-DHTwe@-1  we also get
b > p®.

It remains to show that for every 2 < ¢ < ¢; + 1 the inequality b > p” implies
that ord(y,) < ord(A)/2. Indeed, then (a) follows immediately, and the contradiction
ord(Jgs+1) < ord(A)/2 proves also (c).

Therefore, in the sequel in the proof we shall suppose that b > p® and 2 < ¢ < ¢, + 1.
Let o1,...,04 be the family of all the embeddings of the field K[y] — k((X)) over the
field K. Consider the linear system

(27) Y aiwX; =0i@,), 1<i<b,
0<j<b—1

for the unknowns X;, 0 <7 < b—1. It is a system with square matrix. The determinant
¢ of this matrix is [[,;;<,(0;(y) — 0i(y)). Hence, ord(d) < ord(A)/2. By the Cramer
rule, system (27) has a unique solution X; = ¢;/6, and ord(d;) > ord(yy), 0 < i <b—1.
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On the other hand, since P,(y) = @, and b > p°, the solution of system (27) is
X;=PF,;,0<j<p*=1, Xpe =1and X; =0, p* < j <b—1. In particular, this
implies that d,. /6 = 1. Consequently,

ord(A)/2 > ord(d) = ord(dpe) > ord(g,).
The lemma is proved. O

Lemma 10. Let F € Q[Y] be the minimal polynomial of the root y with the leading
coefficient ley F' = 1. Then ord(F — Py-11) 2 N +1 —ord(A)/2.

Proof. Let F'— Pysi1 = g, ;Y where all ¢; lie in Qg and b = [Q[y] : Qo] see
Lemma [ (d). We use the notation of the proof of Lemma @ Put ¢ = qy + 1. Then
system (27) has the solution X; = ¢;, 0 < < b—1, because F(y) = 0 and P,(y) = .
We have ord(d) < ord(A)/2 (even if ¢; = 1). By the Cramer rule, system (27) has a
unique solution X; = §;/6, and now ord(d;) > ord(y,) > N + 1,0 < i < b—1. This
implies the required assertion. O

Let A € S, \ {ng}, see the end of §2. Then A € S; | for some 1 < g < ¢g;. Hence,
the set AL € S, 4 is defined, see §2. Recall that Ay \ A = A”, where the set A” is given
by (17) and (18).

The mapping Sy\{gq;} — S,\{@}, A— A, isinjective (recall here that Ay = @ and,
possibly, A; = @). Hence, for every set A € S, \{@} there is a unique set A_ € Sy\{gq;}
such that (A_); = A.

Now for every set A € S, \ {@} we are going to define polynomials Q4 and Pa.
Namely, there is a unique 1 < ¢ < g, such that A € S, ;\ Sy 41 =5, ;U {A\{A, 1}
Then Q4 and P4 are given by the formulas

Z !~ iy 777 juw
(28) QA = ya,ih...-,iv7j17-~»>jqua Gll R G'Ul Hll et H’L]U Y
(avil7~--77;'U7j17--*7jw)6A\A*
Uq !~ "; J j
(29) Pa=Py" - > Yasis oot X G oo G HT L Hy

(Qy015eeesB0,01 55w ) EANAg—1

where v = v(q), w = w(q) and (see the beginning of this section for the definition of ¢y,
and a,)

(30) iy =tm— > ntnm, 1<m<v, o =a- Y juan.
p(m)<n<w 1<n<w

Hence, also

(31) Py=Pr" - > Qar,
{A’€5,,4\Sy,q—1: A'CA}
and 1fA+ S Sy7q\5y7q_1, then ]DAJr =Py — QA+-

Let A € S(;U{/Tq}. Then we set Py o = Py if A# A, 1 and P, 4 = PP A = Ay

Put P =Y, Qz = 0. Now the polynomials P4, Q4 are defined for all A € 5,,.
The definitions imply that g4 = Pa(y) for every A € S, and 3,4 = P, a(y) for every
Ae S U {Aq} and every 1 < ¢ < g;.

Notice that if the polynomial Q4 (respectively, P4), G1,...,G,, H1,..., Hy, and all
integers ty, m, @, are known, then we can find all the coefficients yg i, ....i, j1,....jo O1 the
right-hand side of (28) (respectively, (29)) with the help of Lemma [[3] see below, and
solving a linear system over the field k" (X /"),
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Lemma 11. Let A € S,’J U {Aq}, 1 <q<gq Letl <wv <dbe the smallest integer
and k" C ks the smallest finite extension of k such that all the polynomials Py a,G1,
ey Gy, Hy,y .. Hybelong to K" (XY/V)[Y]. Then all these polynomials belong to the ring
E'[X/" Y]. Therefore, all the polynomials Py, ..., P, belong to the ring k" [(XY",)Y].

Proof. This follows from Lemma [ immediately. O

Lemma 12. (a) Foreveryl < q < q;, we havedegy Py < p*v-0F"w@-1 ord(A)/2.
(b) If g =q; + 1, then

degy Py < N + 1+ (p*ra-nF w1 —1)ord(A)/2.

Proof. We shall use induction on ¢ and (22), (25). If ¢ = 1, then degy P, = 0 and the
claim is trivial. If ¢ = 2, then everything follows from Lemma [@ with ¢ = 2 and (22),
(25) with ¢ = 1.

Assume that ¢ > 3 and the lemma is proved for ¢ — 1. Consider identity (25) with
g—1in place of ¢. Then 0 < a by Lemmal[7l (b) and a < ord(A)/2 by Lemma[dl for every
(@,i1,...,iq-1) € Ay_1. Recall that 0 < i,,, < p“m —1 for every 1 < m < ¢—1 and every
(@,i1,...,iq-1) € Ay_;. Write o/ = a—ord(A)/2. Now by the inductive assumption for
every (a,iy,...,iq-1) € A]_; we have

degy (XOPy - ... PP ) =a+ Y ip degy P
2<m<q—1
<a'+ord(A)/2+ Z (p'm — 1)p*rm-1FTuem=1 ord(A)/2
2<m<qg—1
= + (psv(1)+7"w(1) 4 Z (ps'u('nL)J'_rw('ln) _ ps'u('mfl)"rrw("nfl)))Ord(A)/Q
2<m<qg—1

= of 4 a6 ord(A) /2.

Notice that o/ <0if 3 < ¢ < gy and o' < N +1—ord(A)/2if ¢ = ¢, + 1. Similarly, the
inductive assumption implies

degX(P(fjfl) < peta-hHTun ord(A) /2,

and the required assertions follow. The lemma is proved. |

Lemma 13. Let 1 < q < g be an integer, and let v = v(q), w = w(q). Let A €

Sy qU {Zq}, see the end of §2. Let k" C k, be the least finite extension of the field k and
v > 1, GCD(v,p) = 1, the smallest integer such that all the polynomials Py 4, G1, ...

)

Gy, Hy,..., Hy lie in K"[XY")Y], see Lemma [0 Then for every integer b > 0 the
family
GyGy - ... GyH{'H - ... -H}*P",,

(32)  0<ip<p™ ™t 1<m<v 0 jp <p™ ™7, 1<m<w;
0<a<b/p>t™, acZ,
is a basis of the k"[X'/¥]-module of polynomials 1 € K"[ X", Y] of degree degy ¢ < b

(this module is free over k"[X'/*]). Moreover, for every integer 0 < b/ < b there is a
unique element of the family (32) such that

bV =adegy Ppa+ Y imdegy G+ Y jmdegy Hp.

1<m<wv 1<m<w
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Proof. The leading coefficient with respect to Y of each polynomial in the family (32) is
equal to 1. Hence, it suffices to prove the last assertion of the lemma. Moreover, let A,
denote the following assertion. For every integer 0 < b’ < pS»@ ¥ w(@ there is a unique
element of the family (32) with a = 0 such that

b = Z im degy G, + Z Jm degy Hy,.

1<m<wv 1<m<w

Obviously, the last assertion of the lemma is equivalent to A,;. We shall prove A, using
induction on g. The base ¢ = 1 is obvious. Note also that the uniqueness of the required
element in A, follows automatically from its existence, because the number of elements
of the family (32) with a = 0 is equal to pSv@ T w(@,

Assume that ¢ > 2 and assertion A,_; is proved. We prove A,. Observe that now
one of conditions (xii)q—1, (xiii)g—1, and (xiv),—1 is fulfilled. Suppose that condition
(xii)q—1 is fulfilled. Then v(q) = v(¢ —1) + 1, w(q) = w(g — 1), uqg = p*»@ %=1 and
by Lemma [§ we have degy G4 = p* (-0 F"w@-1. Now it suffices to prove the following
claim. Assume that

(33) 0 < A(pSrta=— DT w@-1) < pSo@ T wlo)
for an integer A\. Then there is an integer 0 < ¢ < p®v(@~%v@@-1 such that
Alp*a=nTren) = ideg Gy (g)-

But this follows immediately from the relations u, = p*@ =%~ and degy G, =
pivla=1)TTw(g-1),

Suppose that condition (xiii),—; is fulfilled. Hence, v(q) = v(¢ — 1) + 1, w(q) =
w(q — 1) +1, and by Lemma [§ we have degy G (q) = p* =0 w@=1 and degy Hyq) =
p*r@TTw-1_ Now it suffices to prove the following claim. Under condition (33), there are
integers 0 < i < p*v(@~Sva-1 and 0 < j < p"w@ "w@-1 guch that A\(pSea-DT we-n) =
idegy Gy + jdegy Hy(q)- Again, this is straightforward.

Finally, suppose that condition (xiv),—1 is fulfilled. Hence, v(q) = v(q — 1), w(q) =
w(g—1)+1, uqg = p"=@ w1 and by Lemmal[§ we have degy H,(q) = p*(a-1 T wa-1,
Now it suffices to prove the following claim. Under condition (33), there is an inte-
ger 0 < j < p'w@~Tw-1 such that A\(p*v-vF w@-0) = jdegy H,(,). Again, this is
straightforward. The lemma is proved. ([l

Under the conditions of Lemma [[T], we are going to describe the ideal of relations be-
tween G1,...,Gy, H1,...,Hy, and Py 4. Let Zy,...,7,, Y1,...,Yy, Z be new variables,
where v = v(q), w = w(q). Then the ring R = K'[XY"][Z1,..., 2y, Y1,..., Yy, Z] is
defined. We introduce the k”[X'/*]-algebra R/J,, where J, is an ideal of R. We shall
describe the generators of J,. We put X,,11 = Z,(n+1) if and only if condition (xii),,
or condition (xiii),, is fulfilled and 1 <m < ¢ — 1. Put X1 = Yyy(m1) if and only if
condition (xiv),, is fulfilled and 1 < m < g — 1. Let Jy; denote the set of all 2 <m < ¢
such that condition (xiii),— is fulfilled. Then the ideal J; has the following family of
generators:

i Ty (m) j Jw(m) um
(34) Z ya)il)"wiu(m))jla"'ij(m)XaZ].l et Zv(m) ’ Yl R Yw(m) +Xm+1_X7[;l )
(-a’il"-“’iv“n)’ ’ 2 S m S q— 1?
]17v--v]'w(7n))€Am
psv(nl)fsu(nlfl)
(35) Yi(m) — Z(m) , m € Jyi,
(30 Sttt X o 2P Y 7 X

(@81 5eeest,01 5 Jw ) EANAg—1
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where o/, i},...,i are defined by (30).

Corollary 2. Under the previous conditions, there is an isomorphism of k"[X/"]-alge-
bras

(37) E'XYN 21, Zo, Y, Yy, Z)) Ty — K [X YY)
induced by the the homomorphism of rings of polynomials

R—K'[XYY], Zi—Gi 1<i<w, Yj—Hj, 1<j<w, Zw Pya.
Proof. This is straightforward. ]

84. TREES CORRESPONDING TO EXPANSIONS OF ROOTS OF THE POLYNOMIAL f

Put ¢* = max{gq; : yis a root of f}. Recall that the sets of multiindices S, 4, S, and,
for every A € S, the integers s4 and r4 were defined at the end of §2. Put

Sya={A" €S, : A C A} forevery AeS,,
Vya={(A'Q,a) : A €S a&Q=Qu &a=sa +ra,} for every A€ S,

where Q 4+, sar, ras correspond to the root y in accordance with our construction. Notice
that Sy, 4 is a linearly ordered set with respect to the inclusion of sets. Namely, for
arbitrary A’, A” € Sy 4 we put A’ < A” if and only if A’ C A”. The element A is
maximal in Sy 4 with respect to this order.

Similarly V, 4 is a linearly ordered set. Namely, for arbitrary (4’,Q,a), (A", Q’, a’) €
Vy.a we put (A,Q,a) < (A”,Q',a') if and only if A" C A”. The element (A,Q4,a) €
Vy,4 is maximal in Vj, 4 with respect to this order.

Set

Tyq=A{Vya: A€ Sy}, 1<q<gq,,
Ty = {Vy,A : Ae Sy},

T, = U Ty,min{q;,q}, 1<qg<q”,

y is a root of f

r= U 5.

y is a root of f

Observe that if A € S, 4, then S4 C S, 4. Hence,

T,= |J Tyq and T= |J T,

1<q<q; 1<q<q*

We shall view each Tj, 1 < g < ¢*, and, respectively, T" as the set of vertices of a tree.
Namely, if 7,7 € T;, (respectively, 71,72 € T'), then 75 is a son of 7y if and only if the
number of elements #(72 \ 71) is equal to 1, i.e., if and only if the difference 75 \ 71 is a
singleton.

Thus, par abuse de langage, in what follows we shall call each T, (respectively, T') a
tree. More generally, we shall identify other trees with the sets of their vertices if this
will not lead to ambiguity.

The root 7y of each tree T, and T is equal to {(&,0,0)} (recall that Ay = @ and,
possibly, Ay = @ for every root y of the polynomial f).

Denote by L(T) the set of all leaves of the tree T.

In the next lemma we prove auxiliary assertions. In fact, they are straightforward,
and the reader may skip the detailed proof of this lemma.
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Lemma 14. (a) Let 7 € T, T # 19, so that T =V, a, where A € Sy 4\ Sy q—1 for some
root y of the polynomial f and an integer 1 < q < q.

We claim that the following objects depend only on T and do not depend on the choice
of the root y and the set A. These are the sets A, Sy a, the integers q and

v(1),...,v(q), w(l),...,w(q), S15---,50(q) Tir-+sTw(q)
the polynomials
Pl,...,Pq, Gl,...,Gv(q), Hl,...,Hw(q), Qar, A/ES‘%A,
the rational numbers

OI'd( m( )) <m<gq, Ord(QA' (y))5 A€ S%A?
ord(gm) 1 m < ( ); Ord(hm), 1 <m< w(Q)a

the elements

(38) (O‘maim,lv--wim,m—l)y 1<m< U(q),

(39) (Bmaﬁm,la~'~7Lm,p’(q))a 1 Smﬁw(q),

the families of coefficients

(40) Youin,eesiv(g)sdis - rdw(m) (047 (AT 7iv(q)aj17 cee a.]w(m)) €A \ Aq—la
(41) ya,il,...,iv(m),jl ..... Jw(m)? (Oé, ilv S ,iv(m),jl, s ,jw(m)) € Amv

ya,il,...,iv(m),jl ..... Jw(m)? (Oé, ilv e ,iv(m),jl, .. ,jw(m)) € A, \ (A/)*a

42
(42) A'cA A eS,m\Sym-1, 1<m<gq,

and the residues

(43) glw"agv(q)v ﬁla-'-aﬁw(q)'

Moreover, the residues (43) are given by the corresponding recursive relations (7) and
(8), and these relations depend only on T and do not depend on the choice of the root y
and the set A. N

(b) An element 7 € T is a leaf of the tree T if and only if we have A = A, € Sy and
q = qy for some choice of the root (y, A) corresponding to T (see the beginning of the
statement of the lemma). If T is a leaf of the tree T, then the above relations are fulfilled
also for any other similar choice of these elements. In this case, the polynomial Pq;H 18
defined. Again, it does not depend on the choice of (y, A).

Proof. We prove (a). We have the natural mapping 7 : 7 — n(7), (A, P,a) — A’
Therefore, the set S, 4 = m(7) does not depend on the choice of (y, A). The set A is
a maximal element of S, 4 with respect to inclusion of sets, see above, and hence A
depends only on 7 and does not depend on the choice of (y, A).

For every A’ € S, 4 and every x € A’ the element z belongs to Q' x Z™~! for an
integer m > 1. Put o’(x) = m. Set 0(A’) = max({o'(z) : x € A’} U{0}). In accordance
with our construction and the definitions, the number of elements #a( y,4) is equal to
q + 1 if and only if A, # @. Otherwise, #0(Sy,4) = ¢. Notice that A # @ if and only
if (&,Q,0) € 7 for some nonzero Q. Therefore, ¢ depends only on 7.

Let o(Sy,4) = {00,01...,04}, where 0 = 09 < 01 < 092 < -+ < 04 (09 = o1 if
#0(Sy,4) = q). Then Ap, 0 < m < q—1, is the maximal element (with respect to
inclusion) of the set {A" € Sy 4 : 0(A’) = m}. Hence, each set Ay 0<m < q—1, does
not depend on the choice of (y, A).
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Using induction on ¢, we may assume that assertion (a) of the lemma holds true for
g — 1 in place of g or ¢ = 1 (¢ = 1 is the base of induction). Now, if ¢ > 2, we can
apply the inductive assumption to the set Zq_l, which does not depend on the choice of
(y,A). Therefore, the set S, 5 = 5,41 does not depend on the choice of (y, 4). If
q > 3, then, similarly, the Set S L, = = Sy q—2 does not depend on the choice of (y, A).
If ¢ = 2, the set Sy 4—2 = {@} also does not depend on the choice of (y, A).

We have P =Y. Let ug—1 = Sy(q—1) = Su(g—2) T Tw(g—1) — Tw(g—2)» 2 < ¢ < q,. Then

ug_1
P,=P - > Qa, 2<q<g,
A/esy,qfl\sy,qf2

see (31) with A = ﬁq,l. Hence, by the inductive assumption, the polynomial P, does
not depend on the choice of (y, A).

Let g1 be an integer such that 2 < gr<qgorl<q <gq and A, # . Then by the
conditions of the lemma we have A D (Aq1 D+ 2 Aq1 1. Hence, the element (,qu_l)+
is minimal in Sy 4 \ Sy q,—1, and therefore, it depends only on 7 and does not depend on
the choice of (y, A).

Let (o, i1, yip,J1s---yJw) € (Zlql,l)Jr \ /qu,l. Notice here that if v = v(q) >
v(g — 1), then i, = 0 because ord(Pg’luq1 (y)) € (1/p*»a1-0)Q’, see (23) and the end of
§1. Next, sy(q,) + Tw(q) = Sar + Tas, where A" = ﬁql ifgn <gand A’ = Aif ¢ = q.
Therefore, s,(4,) + Tw(q,) does not depend on the choice of (y, A). Consequently, u, does
not depend on the choice of (y, A). Now, see the end of §2, by Lemma [l (b) we have

ord(PI () =a+ S imord(g),
1<m<v(gq1—-1)
which does not depend on on the choice of (y, A) by the inductive assumption. Therefore,
ord(P,, (y)) does not depend on on the choice of (y, A).

We show that also ord(P;(y)) does not depend on on the choice of (y, A). Indeed, it
suffices to consider the case where ﬁl =@. Theng>2, PL=Y,and P, =Y?"' =Y,
ord(P;(y)) does not depend on the choice of (y, A).

On the other hand, our construction shows that

ord(P(fuq (y)) € p o@D FTw@ TTuE@-n QY
Ord(Pg’uq (y)) & p~Sva- DT w@ Tu@-nH Q'

Therefore, using the inductive assumption, we see that 7, does not depend on the
choice of (y, A). Hence, also s, does not depend on the choice of (y, A).

Now we use the definitions to prove that ord(g,), 1 < m < v(q), and ord(h.,),
1 < m < w(q), do not depend on the choice of (y, A). By the construction described in
§1 and §2 this implies that the elements (38), (39) do not depend on the choice of (y, A).

To obtain relations (7) and (8), we use the polynomials Q(Am)+7 1<m<q-1. By
the recursive assumption, relations (7) and (8) with (v(m),w(m)), 1 < m < ¢—2, in
place of (v, w) depend only on 7 and do not depend on the choice of (y, A).

It remains to consider the case where m = ¢ — 1. The definitions imply that

_ g L giv gt . =
Qui, ., W) = E Ynsitrivndidu X 9100 e G760 Gy
(V21 seesivsitseedu) E(Ag_1) 4 \Ag_1

We have ord(P(fuq (y) — Q(gqu(y)) > ord(Pé”uq (y)) and

ord(PP"" (y)) = v + i1 ord(g1) + - - + i, ord(g,)

for every (’yailv s ,ivajla s ajw) € (Aq,1)+ \ AN(]*l'
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We put (6,71,...,7y) = (@, iv,1,- ., Gv,0—1,0) whenewer (xii), , or (xiii), , is true
and (0,n1,...,1) = (Buw,fw 1, twe) if (xiv)q_1 is true. Then
(44) P () X0y gy

. " -r —1
is equal to g " Y

(xiii),_, or (xiv)q’f1 is true.
Let a = ord(Pg’uq (y)) and assume (11).
Suppose that (xii), ; is true. Then (v(g—1),w(¢—1)) = (v—1,w), a € (1/p*~*)Q,

Tw(q) T "w(g—1) if

if (xii), , or (xiii), ; occur or is equal to nf,

Tw(q) = Tw(g—1), and (a, t1,...,ty) = (§,n1,...,n,). By Lemma[@ (b), the basis By v w
contains B, 1.5, whence By .y = Bay—1.4. Consider relations (7), (8) for (v(q'),
w(q')), 1 < ¢ < q—2, in place of (v,w). By the recursive assumption, these relations
depend only on 7 and do not depend on the choice of (y, A). The elements of the basis
Ba,v_Lw can be written as linear combinations of the elements of the standard basis (9)
with m = w. By Remark 2] this representation depends only on 7 and does not depend
on the choice of (y, A).

On the other hand, by Lemma [ (b), the family of coefficients of the residue of the

element (44) in the basis By ,—1, is precisely

Yy sitsee i dtseodw? (’777;17 cey by g1y 7jw) € (";LZ*l)Jr \AQ*l'

Thus, the coefficients of the representation of the residue of &7 "~

as a linear
combination of elements of the basis Baﬁv,Lw depend only on 7 and do not depend on
the choice of (y, A). Hence, the same is true for the standard basis (9) with m = w (in
place of B, ,_1.4). Consequently, relation (7) with (v(g — 1), w(q — 1)) in place of (v, w)
depends only on 7 and does not depend on the choice of (y, A) whenever (xii), , is true.
Assume that (xiii), , is true. Then (v(g —1),w(g—1)) = (v —Lw—1) and a €
(1/p*-1)Q'. By Lemma [0 (b), the basis Baw,w contains Ba_yv,l_’w,l. As in the case
where (xii) 4—1 18 true, we can prove that the coefficients of the representation of the
residue of PP (y)/(X%g{* - ... - gi) as a linear combination of elements of the basis
Baﬂ,,l,w,l depend only on 7 and do not depend on the choice of (y, A). Hence, the same
is true for the standard basis (9) with m = w — 1 (in place of Baﬂ,,l,w,l).

We have ord((X@g4t - ... - gto)/(X0g™M - ...« gno)P™ @ ™Yy — 0 (and now 1, =
n, = 0). Applying the recursive assumption, Lemma[2] and Remark 2] we can represent
the residue of the element (X%gtt - ... - giv)/(X0gP - ... - gmo)P ™ ™Y 45 a linear

combination of elements of the standard basis (9) with m = w — 1 and prove that the
coefficients from kg in this representation depend only on 7 and do not depend on the
choice of (y, A). Thus, relations (7) and (8) with (v(¢ — 1), w(qg — 1)) in place of (v, w)
depend only on the choice of 7 and do not depend on (y, A) whenever (xiii), , is true.

Assume that (xiv),_, is true. Then (v(g—1),w(¢—1)) = (v,w—1) and a € (1/p*)Q’.
By Lemmal] (b), the basis Baﬂ,’w contains Ba7v7u}_1. As in the case where (Xiii)q_1 is true,
we can prove that the coefficients of the representation of the residue of Pguq (y)/(X>gy*-

-gtr) as a linear combination of elements of the basis Ba,v,wq depend only on 7 and
do not depend on the choice of (y, A). Hence, the same is true for the standard basis (9)
with m = w — 1 (in place of By pw—1)-

Like in the case where (xiii) 41 is true, we can represent the residue of the element
(XOght - gt ) [(XOgP . L gne) @Y g g Tinear combination of elements

of the standard basis (9) with m = w and prove that the coefficients from k; in this
representation depend only on 7 and do not depend on the choice of (y,A). Thus,
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relation (8) with (v(q — 1), w(qg — 1)) in place of (v,w) depends only on 7 and does not
depend on the choice of (y, A) if (xiii), ; occurs. This proves assertion (a).
Assertion (b) is proved similarly. The lemma is proved. |

Remark 3. Under the conditions of Lemma[I4] if ¢ < ¢*, then some sons of 7 in the tree
T may belong to T, and other sons to T,41 \ T;. Hence, in general, the property A = A,
depends on the choice of the root y of the polynomial f.

§5. GENERALIZATION OF THE NEWTON BROKEN LINES METHOD

Now we assume that f € k[X,Y] is a polynomial with leading coefficient ley (f) = 1
and that f is separable as an element of k(X)[Y].

In this section our aim is to make the construction described in §1 fully algorithmic.
Now we are going to construct the expansions introduced in §1 for all roots of the
polynomial f. Therefore, we modify the description of this construction making some
supplements to it. Our algorithm is recursive on the tree 7. We shall say that the step of
recursion corresponds to the tree 7 if and only if the tree T is given at the beginning (or
the input) of that step. Here T is a subtree of the tree T, see §4. The base of recursion
is the tree consisting of one vertex: the root 7y of the tree T. Recall that this root is
equal to the singleton {(2,0,0)}. We shall suppose that the set of leaves L(T) is linearly
ordered. Let 1 < ¢ < ¢* be the smallest integer such that L(7)NT, \ L(T) # & (here we
identify the tree T, with the set of its vertices). Then we have an induced linear order on
the set L(T)NT,\L(T). We find the least element 7 € L(7)NT,\ L(T), and construct all
its sons 75, j € Jr, in the tree T’ by using a generalization of the method of the Newton
broken lines, see below. Thus, we obtain the new tree 7. =7 U {7; : j € J;}. Then we
introduce a linear order on the set {r; : j € J;} and assume that

o 7; <71’ forevery 7' € L(T)\ {7};
e for all ji,jo € Jr, if 75, € T, and 7, € Tyq1 \ Ty, then 75, < 75,.

This gives a linear order on the set
LT)U{r : j e J 3\ {7} = L(T).

After that, if 7 # T we replace 7 by 7. and proceed to the next step of recursion.
At the step of recursion corresponding to the tree T, the following objects are known
(i.e., were computed at the preceding steps):

(xix) the tree T itself with the linear order on the set its leaves L(T);
(xx) for every leaf 7 € L(T), all the objects occurring in Lemma [I4] that depend only
on 7 and do not depend on the choice of (y, A).

Before describing the recursion step that corresponds to the tree 7T, we give some
definitions. Let 7 = V), 4 for some root y of the polynomial f, and let A € S, 4\ Sy,q—1
for some 0 < ¢ < ¢g;. Let v =v(q), w = w(q). The objects defined below will depend on
T.

Let ¢ = Zlgigd ;Y € Qo[Y] be an arbitrary polynomial such that

b= Y Y, e,

1<i<deg

and degy ¥ = d. Recall that ord(v)) = min{ord(¢y;), 0 < i < d}.
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Let v > 1 be the smallest integer such that all the polynomials v, Pa, Gy,..
Gy, Hy,..., Hy, belong to ks((X'/¥))[Y]. Then Lemma [[3 allows us to represent

aGin . LGl | . Hiw pa
(45) V¥ > Vainsiviiduna X OG- GUH] - HI PR,
(11,50 si0 ) €Ty,
(jl vvvvv jw)e']uu
0<a<dp~*v~"w a€Z,
ord (1) <ae(1/v)Z

)

where all Yo i, . iv.j1.iw.a D€lONG to ks. Denote by Z, (1) the set of all collections
(a,i17...,iv,j1,...7 jw,a) such that (il,...7iv) e I, (jl,...7jw) € Ju, 0 < a <
dp=* ", a € Z, ord(¢)) < a € (1/v)Z, and Ya iy, . iyj1,....jw.a 7 0. Then we can
replace the summation conditions in (45) by >, i o er (-

In what follows we shall assume that ord(¢)) = 0 and ley ¢ = ¢q = 1.

For every 0 < a < d we introduce the set

Pra@) = {ord(Xi - .. - girhdt - o hIe) (i, iy 1y s @) € o (V) )

Notice that P .(¢) C (1/p*)Q'.
For every b € P, ,(¢) we introduce the element

_ o xagin e piw
(46) 'l/}b,a* Z woml1,,_,%1]17,_1]1‘,7@){ g1 et Gy h1 hw'
(avil7~--_77;'U7j17-<~7jwaa)ezﬂ'(w)v
ord(X*gy - ...-givhit- ... -hiw)=b

We have ord(1p,,) = b (this can easily be deduced from Lemmal[dl). Set P, (v) = {(b,a) :
0<a<d&bePrq(¢)} Put

Y = Z '(/)b,aZa-
(b,a)EP-(¥)
Let v, ¢ be integers, v > 0, § > 0. Put

Pr(1),7,0) = {(b, a) € Pr(¥) : ¥(b1,a1) € Pr(¢)(yby + day > vb+ (5a)},
1/17(%5) = Z 77Z11),(1,Za-

(b,a)€P~(¢,7,6)
Set d(,9) = max{a : I(b,a) € P-(¥,7,d)}. Then deg, 1, (v,d) = d(v,9).

Assume additionally that §/v € (1/p*)Q’, where the integer s > s, is the smallest
possible and v = v(gq). We shall write s = s(v,d). Now we are going to define the
polynomials

$7(7,0), ¥2(7,0) € ks, -, 7] [Z],
where w = w(q). Let ag € Z be such that Z% divides the polynomial ¢, (7, §) but Z%*1
does not divide 1,(7,d). Notice that the constant ¢ = b+ (6/v)(a — ag) € (1/p*)Q’
is the same for all (b,a) € P-(¢,7,d). In particular, taking a — ap = 0, we see that
c € (1/p*)Q’. Therefore, p*~*» divides a — ag for every a such that there exists b with
(b.a) € P (1. 7.0).
There are unique ¢ € Q' and (dy,...,d,) € I, such that

(47) ord(Xg{t - ... - giv) =p* "6 /7.
Next, there are unique ¢’ € Q' and (dj,...,d,) € I, such that

v

ord(XE/g;l/1 C -gg;’) =c.
For every integer a such that (b, ap®~** + ag) € Pr (1,7, d) for some b, put
" d] d,
Pa = wb,ap5*5v+ao ’ (‘X‘ggtli1 e 'gg“)a/(Xs gl1 Ceee G )

Now, ord(¢,) = 0 for such a. Hence, the residue @, of the element ¢, is well defined.



EXTENSION OF THE NEWTON-PUISEUX ALGORITHM 849

Lemma 15. The residue @, depends only on ¥, a, 7y, 8, and T, but does not depend on
the choice of (y, A)

Proof. Set

b @git Cg Rt Ny
baxlla"'77"uajl7"->]wxa - waﬂlv--ﬂm]l ----- J1;)111P575“+GOX 91 et Gy hl T hw

for every summand on the right-hand side of identity (46) with ap®~*v + a¢ in place of
a. It suffices to show that for every such summand ba ;.. i, .1,....jw,a the residue of the

.....

element
d ap®” v +a, 1 d d,
(48) Devsivvoociiv i - (XG0 - gav) V(XTGP gl)
depends only on ¥, a,i1,...,%, J1s- -+ Jw, @ 7, 0, and 7 and does not depend on the

choice of (y, A). By Corollary [I] the element (48) can be represented in the form

ai L £t ]
1/}0‘77:17-~'7i1)7j1 11111 Jw,aps~ v +aogS1 cen ST e Ty
with some integers aq,...,a,. These integers depend only on i1,...,%, 71, -+, Jw, @

7, 8, and 7 by Corollary [l and Lemma 4 Hence, £*,..., &%, 7',..., 7w depend

only on i1, ..., 4%y, J1,- -y Jw, @ 7, 0, and 7 and do not depend on the choice of (y, A) by
Lemma [I4l The lemma is proved. |

By definition, we put
Yi(7,0) = > A

{a:3b (bap*~=v+ao)€P-(¢,7,0)}
VE(7,8) = 29 (7,8)(Z27 ).

Then *(v,d)/Z% is a polynomial in ZP" . We have deg,1*(y,0) = d(v,5). By
Lemma [I5] the polynomials ¥ (y,0) and ¢ (v, ) depend only on ¥, 4, v, and 7 and do
not depend on the choice of (y, A)

The set of vertices V(1) of the generalized Newton broken line of the polynomial
is defined by the formula

Vr(¥) = {(b,a) € Pr(v) : 3(7,6) € Z2(y > 0& 6 2 0 & Pr(v,7,6) = {(b,a)}) }.

In other words, (b,a) is a vertex of the generalized Newton broken line of ¢ if and only
if it is the element of the singleton P.(1,~,d) for some integers v > 0 and ¢ > 0.

The set of edges E- (1) of the generalized Newton broken line of the polynomial ) (or
simply the generalized Newton broken line of the polynomial ¢) is defined by the formula

E (¢) = {((b1,a1), (b2, a2)) € Vo (¢)? :
(v,0) € Z*(y > 0 & § > 0 & Pr(¥,7,6) D {(b1,a1), (b2, a2)} & a1 > az)}.

It should be emphasized that here E. () is a generalized Newton broken line corre-
sponding to 7. Sometimes we shall omit the word “generalized” if this does not lead to
ambiguity.

If e = ((b1,a1), (b2,a2)) € E-(¥), then, by definition, ¥y, = ¥X(v,0) and ¥F, =
Px(v,d), where {(b1,a1), (ba,a2)} C Pr(1),7,0). In this case the slope A(e) of the edge e
is defined by the formula A(e) = §/v = (b1 —b2) /(a1 —az). For every e € E(¢) we define
integers y(e) > 0 and d(e) > 0 such that d(e)/v(e) = A(e) and GCD(v(e),d(e)) = 1. Put
s(e) = 5(1(¢), 5(e)).

If e € Vo(4), then by definition v5 , = ¥}(v,0) and ¢F, = ¥}(7,0), where {e} =
P‘F W, s 6)
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Now we proceed to the description of the recursion step corresponding to the tree 7.
Let us find the minimal element 7 € L(T) N T, \ L(T). Here 1 < ¢ < ¢* is the smallest
integer such that L(7)NT, \ L(T) # @, see the beginning of the section.

Let 7 =V, 4 for a root y of the polynomial f and a set A belonging to Sy 4 \ Sy,q—1,
0 < ¢ < g;. In what follows we consider objects occurring in Lemma 4 (they depend
only on 7).

Let v > 1 be the smallest integer and k” the least separable extension of the field k
such that all the polynomials Pa, Gy, ..., Gy, Hy, ..., Hy lie in k" ((X'/*))[Y].

Notice that the set Z,(f) is finite by Lemma [[2] and Lemma [[3] because f € k[X,Y].
Applying Lemma [[3 and solving a linear system over the field k”(X'/¥), we construct
the set Z.(f) and the family of coefficients

(49) {fa,il,m,iu ;jl,~~~~,jw7a}(0¢7i17-~»7i1) 150 dw,a) €L (f)

In accordance with the definitions given, to find E,(f) it suffices to know ord(g,,) and
ord(hy,) for all 1 <m < v, 1 < n < w, and these numbers are known by the recursive
assumption. Let us construct the Newton broken line E, (f) of the polynomial f. Obvi-
ously A(e) > 0 for every e € E,(f). Denote by E.(f) the subset of all e € E.(f) such
that A(e) > ord(Qa(y)) if A # @ and A(e) > 0 if A = & (recall that A = & only if
q=0and 7 = 79). For every e € E/(f) we compute the polynomial f* . € k, ,[Z] using
Lemma [2] and identities (5) (here we leave the details to the reader). Next, we use the
algorithm (known in advance) for factoring polynomials over finite extensions of ks to
factor each polynomial fr . over the field ks .,, obtaining a decomposition into irreducible
factors
:,e = Pr,e,0 H (Zplj - Soj)ujv

J€Jr.e

where J; . is a finite set of indices, 0 # @r 0 € ks (it is the leading coefficient of the
polynomial f*.), 0 # ¢; € ks, 1 < pt; € Z, 0 < v € Z, and each polynomial zZr7 —
is irreducible over the field k., for every j € J... We shall assume without loss of
generality that J, ., NJ.., = @ for all pairwise distinct e1,es € EL(f).

If Z does not divide the polynomial f;, then we put J, = UeeE;(f) Jre-

If Z divides the polynomial f., then we shall suppose without loss of generality that
Jro & UeeE;(f) Jre. In this case we put J, = {j o} U UeeE;(f) JIre.

In both cases the set of all sons of the vertex 7 in the tree T' (and therefore also in the
tree 74 ) is in one-to-one correspondence with the set J;. Let {7;};c, denote the family
of all sons of the vertex 7.

Recall that 7; \ 7 is a singleton, see §4. We have 7; = V,,. 4, for some root y; of f and
Aj € S,,. Now we need to define these y;, A; and construct 7; and all the objects from
the statement of Lemma [4] related to 7; for every j € J,.

Suppose that j € J;, j # jro- Then there exists a root y; of f such that 7 =V, a,
ord(Pa(y;)) = A(e), s = s(e), and

ord ((Paly;)” ™ /(X°gfr - gi")" " =) >0
(here €,dy,...,d, depend on e and A(e) = d/7, see (47) above). We choose and fix such
a root y;.

If j € Jr, j = jro, then there is a unique root y; _, of the polynomial f such that
PA(ij,o) =0.

Put A; = Ay, where A, Ay € S, see §2, and 7; =V, a,. Thus, 7; is defined for
every j € J,. The tree 7} is constructed. We introduce the linear order on the set of
leaves L(7T.) as described at the beginning of the section.
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The explicit algorithm for finding V,,; 4, and all the objects related to 7; is obtained
straightforwardly from the construction described in the preceding sections. Still we give
some details here. Namely, one of the following conditions is fulfilled.

(xii) j € Jre, € € EL(f), Me) € (1/p°)Q, Ae) € (1/p*~1)Q’, where s > s, and

v; = 0;
(xiii)’ j € Jre, € € EL(f), Me) € (1/p*)Q', A(e) ¢ (1/p*~1)Q’, where s > s, and
v > 0;
(xiv)’ j € Jre, e € EL(f), Ae) € (1/p°*)Q', and v; > 0;
(xv) j=jro,0r jE Jre, e € EL(f), and A(e) > N + 1;
(xvi) & (xvii) j € Jre, e € EL(f), AMe) € (1/p**)Q', AM(e) < N+1, and v; =0
(here (xii)’, (xiii)’, (xiv)’, and (xv)’ correspond to (xii), (xiii), (xiv), and (xv) from §1,
and the item (xvi) & (xvii) corresponds to the two items (xvi) and (xvii) from §2 and
the subcase (a) where ord(g4) < N +1).

In what follows till the end of the section all the objects correspond to the root y; (in
place of y), say, the polynomial P, the integer-valued functions v, w and so on.

Now we have Qa, = Qa,, Pa, = Pa,. Next, Aj € Sy, 441\ Sy, 4 if (xii)’, (xiii)’, or
(xiv)" are true, and A; € S, 4\ Sy, q—1 if (xv)" or (xvi)’ & (xvii)" are true. Therefore,
54; = Sy(q+1) ad T4, = Ty (g1 if (xi1)’, (xiii)’, or (xiv)’ are true, and s4; = sy, 74, = Tw
if (xv)" or (xvi)’ & (xvii)’ are true.

In the cases where (xii)’, (xiii)’, or (xiv)" are fulfilled, we have A(e) < N + 1, ¢ < g,
and 7; € Ty \ Ty. If (xv)’ is fulfilled, then 7; € L(T) NTy,.

If (xii)’, (xiii)’, (xiv)’, or (xv)’ are fulfilled, then /Tq = A and
(50) Py =Pa=P""— Y Qu,

Alesy,A\Sy,q—l

where all the elements on the right-hand side of (50) are defined recursively and depend
only on 7.
Assume that (xii)’ are fulfilled. Then v(¢+1) = v+ 1, w(g+ 1) = w, Spp1 = S,

uq+1 = Su+1 — Suy GU+1 = Pq+1, (051)+17i11+1,17 . 7iv+1,v) = (E,dl, .. .,dv), £U+1 =
s—Sv d ; =
Ppea(y;)” " /(Xog1* - .. - gyv), and € = @
Assume that (xiii)’ is fulfilled. Then v(g+1) = v+ 1, wig+1) = w4+ 1, Sp41 = 8,
Tw4+1 = Tw + Vi, Ug+1 = Su+1 — Su + Tw4+1 — Tw; Gv+1 - Pq—i—l; Hw-i—l - PngvlJrl ”7
(a'u+1a i’UJrl,l; oo 37:'U+1,’L)) = (B’L}Jrla L’L}+1,1; ey Lerl,v) - (6, dl; ey d’U)a
s—sy d w41 Tw
Nwt1 = &os1 = Pya(y)? " /(Xog1" - .. - gi), and Mip41 =¥j-
Assume that (xiv)’ is fulfilled. Then v(¢+1) =v, w(g+1) =w+1, ry11 =1y + v},
Ug+1 = Tw+1 — Tw, Herl = Pq+1> (ﬁerlu Ly+1,19 -5 L'L)Jrl,v) = (57 d17 cee >dv)> Nw+1 =
s—sy d _pTwl —Tw
Paga(y;)? J(X%g1* - ... - gov), and Mip41 = ¥j-

It remains to show how to construct the polynomials Pa; and Q4; explicitly.

Assume that (xii)’, (xiii)’, or (xiv)’ are fulfilled. Put a = p*s+1A(e) and assume (11),
see §2.

Let a < N+1. Now a € (1/p**)Q’. Hence, by Lemmald] (b), the basis Ba,v(q+1)7w(q+1)

contains By , .. One constructs the bases B v(g+1),w(g+1) and Bg . immediately.
Put

Wy = (Xl gl (X ).
Then ord(¥;) = 0. Hence, by Lemma [5 there are integers a1, ...,a, (one can con-
struct them easily) such that ¥; = £* - ... - £3». Therefore, the residue of the element
Pyi1 (y)P" " (X it ... - gly) is equal to @€ - ... -&y». We represent this residue
©;V; as a linear combination of elements of the basis By ,(g+1),w(g+1) (in fact, of the
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basis Ba,v,w). Then, by Lemma [l (b), the family of nonzero coefficients from k in this
representation is exactly

Yrysitseesio(qan)sdieodw(gr1) (% ULy ty(g4+1)J1y - - 7-7w(¢1+1)) €4 \ A

(recall that now A = ,Zq and A; = (Eq)+). Thus, using (28), (29) with (¢ + 1, 4,) in
place of (g, A), we can construct P, and @4, explicitly in the case where (xii)’, (xiii)’,
or (xiv)’ are fulfilled and a < N + 1.

Let (xii)’, (xili)’, or (xiv)’ be fulfilled, and let a > N +1. Then ¢;, =¢+1. Put 4; =
Agi1 = AUN+1,0,...,0), yn11.0...0 = 0, where (N+1,0,...,0) € Q' xz>(atD+wla+l),
Hence, Py, = P2 = Pqufl, Qa,; =0, and 7; € L(T) NTy4; in this case.

Assume that (xvi)’ & (xvii)’ is fulfilled. Let a = A(e) and assume (11), see §2. The
residue of the element Pa(y;)/(X%g{" - ... - g%) is equal to ;. We represent ¢; as a
linear combination of elements of the basis Ba’v,w. Then, by Lemma [l (b), the family of
nonzero coefficients from k, in this representation coincides with the family

Yy it,eesin, s dw? (771'1) R ivvjlv e 7jw) S A] \A

Thus, using (28), (29) with A; in place of A, we can construct P4, and @4, explicitly
in the case where (xvi)’ & (xvii)’ is fulfilled.

Assume that (xv)’ is fulfilled. Then we put g; =g and A; = AU{(N +1,0,...,0)},
where (N +1,0,...,0) € Q" x Z""™. We have yny1,0,....0 = 0. Hence, P4, = P4 and
Qa,; = 0. In this case 7; € L(T) is a leaf of the tree T'.

We have finished the description of the algorithm for constructing the tree T and the
objects corresponding to its vertices.

Proof of Theorem [l Let N be as in the statement of that theorem. Put Ny = N +
ord(A)/2. We apply the algorithm described in this section to (f, N1) in place of (f, N).
Let 7 € L(T) and let 7 = V,, 4 for some root y of the polynomial f and a set A € S,,.
By Lemma [I0] we have ord(F — Py:41) = N + 1. Hence, by Lemma [I4] (b), using
the polynomials FPy» 11, we can obtain the approximations Fy n of all factors F' of the
polynomial f irreducible over €.

All the other assertions of the theorem follow immediately from the construction
described in the paper. The theorem is proved. O

APPENDIX: A VERSION OF THE HENSEL LEMMA

Let f € k[[X]][Y] be a polynomial as in the Introduction, and let y € k((X)) be a
root of f.

Lemma 16. Let f € k[[X]][Y] be another polynomial similar to f and such that ord(f —

~

f) > ord(A) + 1. Then the following assertions are true.

(a) The separable algebras k((X))[Y]/(f) and k((X))[Y]/(f) are isomorphic over the
field k((X)).

(b) For every root y of f there is precisely one root § of f such that ord(y — §) >
ord(A)/2 (we assume that all the roots of the polynomials f and f belong to the
fized algebraic closure k((X)) of the field k((X))). We have § € k((X))[y]-

(¢) Denote by ¢ and @ the minimal polynomials of the elements y and § over the field
k((X)) with the leading coefficients lcy ¢ andlcy @ equal to 1. Then ord(¢—@) >
ord(A)/2.

(d) Let us identify y =Y mod ¢ € k((X))[Y]/(v). Then there is an isomorphism of
Jields k((X))[Y]/(#) = k((X))[Y]/(¢), Y mod § — § over k((X)).




EXTENSION OF THE NEWTON-PUISEUX ALGORITHM 853

(e) Moreover, the element § and the polynomial @ can be constructed by using the
Hensel lifting process, provided that the polynomial ¢ n, N = ord(A) + 1, is
known.

Proof. We leave the proof to the reader. Actually, it is known. |
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