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EXTENSION OF THE NEWTON–PUISEUX ALGORITHM TO

THE CASE OF A NONZERO CHARACTERISTIC GROUND FIELD. I

A. L. CHISTOV

Abstract. The Newton–Puiseux algorithm for constructing roots of polynomials
in the field of fractional power series is generalized to the case of a ground field of
nonzero characteristic.

Introduction

Let k be a ground field and k((X)) the field of power series in X with coefficients in k.
Let f ∈ k((X))[Y ] be a separable polynomial of degree degY f = d ≥ 1. We shall assume
without loss of generality that f =

∑
0≤i≤d fiY

i where fi ∈ k[[X]] for all i and the

leading coefficient satisfies lcY f = fd = 1. So, f ∈ k[[X]][Y ]. Denote by Δ = Res(f, f ′
Y )

the discriminant of the polynomial f .
Denote by Ω = k((X)) the algebraic closure of the field k((X)) and by Ω0 the maximal

weakly ramified extension of k((X)) contained in Ω. We have

(1) Ω0 =
⋃

1≤ν∈Z,
GCD(ν,max{1,char(k)})=1

ks((X
1/ν)),

where ks is the maximal separable extension of k contained in the algebraic closure sk of
the field k and GCD denotes the greatest common divisor. If the characteristic char(k)
is 0, then Ω = Ω0 =

⋃
ν≥1

sk((X1/ν)).

In any characteristic of the ground field, there is a valuation ord : Ω → Q ∪ {+∞}
such that ord(X) = 1. It induces the discrete valuation on each finite extension of the
field k((X)). Notice that for any elements x1, x2 ∈ Ω conjugated over the field k((X))
we have ord(x1) = ord(x2).

In the case of zero characteristic, the classical Newton–Puiseux algorithm can be
viewed as an algorithm of factoring the polynomials from k((X))[Y ] over the field Ω0 by
using the method of Newton broken lines. Namely, let y =

∑
i≥0 yiX

αi be a root of f ,

where all yi are elements sk, α0 < α1 < α2 < . . . , and all αi belong to 1
e Z for some

1 ≤ e ≤ d (to fix e, we assume that it is minimal possible). Then for every r ≥ 0 the
pair (yr, αr) can be found by considering the Newton broken line of the polynomial

f
(
Y +

∑
0≤i<r

yiX
αi

)
.

This is the essence of the Newton–Puiseux algorithm.
One can prove easily that K = k((X))[y] = k′((π)), where k′ is the field of residues of

the field K and π = λX1/e is a uniformizing element of K and 0 �= λe ∈ k. The field k′

is a finite extension of k and is generated over k by all the elements λ−eαiyi (actually by
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a finite number of them). For the degree we have [k′ : k] ≤ d. The degree of the minimal
polynomial of the element y over k((X)) is equal to e[k′ : k].

In what follows we suppose that char(k) = p > 0. It is natural the think that any
generalization of the Newton–Puiseux algorithm to the case of nonzero characteristic of
the ground field is again an algorithm of factoring polynomials from k((X))[Y ] over the
field Ω0. This generalization must use some extension of the method of the Newton
broken lines to the case of nonzero characteristic of the ground field.

But, in comparison with the case where char(k) = 0, some difficulties arise. First, the

field Ω = k((X)) cannot be described in a simple way. Moreover, let y ∈ Ω be a root
of the polynomial f . Then, in general, we cannot choose an element π′ ∈ Ω such that
y ∈ sk((π′)).

However, the field K = k((X))[y] has a uniformizing element π such that ord(π) = 1/e
for an integer e ≥ 1. The residue field k′ of the field K with respect to the restriction
to K of the valuation ord is a finite (not necessarily separable) extension of the field k.
As in the case of zero characteristic, the degree of the minimal polynomial of y over
k((X)) is equal to e[k′ : k]. There is a system of representatives Σ of the field k′ in K.
We may assume without loss of generality that Σ ⊃ k and Σ is a linear space over k
(in general, one cannot choose Σ to be an algebra over k). Denote by ks the separable
closure of the field k. Then ks ∩ k′ ⊂ K. So, we may assume that ks ∩ k′ ⊂ Σ. Now the
root y can be represented as the sum of an infinite series

(2) y =
∑

i0≤i∈Z

yiπ
i,

where all yi lie in Σ, yi0 �= 0.
Factoring the polynomial f over the field Ω0 is easily reduced to constructing, for every

root y of f , a uniformizing element π, a system of representatives Σ, and the expansion (2)
(but we shall not use this in the present paper). More precisely, to obtain (2) it suffices to
construct all elements yi ∈ Σ for i0 ≤ i ≤ 1+ord(Δ) (we assume that ord(Δ) is known).
After that, the subsequent elements yi can be found in a simple way by using a version
of the Hensel lemma, see the Appendix. Unfortunately, it is impossible to obtain at once
Σ and π in nonzero characteristic. To overcome this difficulty, in §2 we introduce new
expansions (3) with nice properties. They arise naturally and are constructed in several
steps with the help of Newton broken lines, see §5. These expansions give immediately
the irreducible factors of the polynomial f over the field Ω0. Once expansions (3) are
obtained, we can easily find Σ, π, and the expansion (2).

Actually, the construction of expansions described in §§1–3 is canonical. Moreover, it
is natural to view the family of expansions (3) for all q as a generalization to the case of
nonzero characteristic of one expansion (1) for zero characteristic.

Assume that f ∈ k[X,Y ] and the field k is finitely generated over a primitive subfield.
It is important that in this case the complexity of the algorithm for constructing the
expansions (3) is polynomial in the size of the input data and the characteristic p of the
field k (in the sense that for every integer N the approximations of order N , see the
definition below in the Introduction, of all the coefficients of the irreducible factors of the
polynomial f over the field Ω0 can be found within the time polynomial in N , p and the
size of the input data). This will be proved in the second part of this paper. There we
are going to establish the results in nonzero characteristic similar to those in [1] and, may
be, [2] (provided this second part will not turn out to be lengthy). The main difficulty
will be to estimate the size of the coefficients from ks of the factors of the polynomial f
that are irreducible over Ω0.
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In this paper we assume that an algorithm for factoring polynomials in one variable
over finite extensions of the field ks is known in advance. If the field k is finitely gener-
ated over a primitive subfield, then such an algorithm can easily be obtained from the
algorithm of factoring polynomials over the algebraic closure sk described in [3]. We shall
discuss this issue in more detail in the second part of the paper.

Now we need some notation. Let

ψ =
∑

0≤i≤degY ψ,
j≥j0

ψi,jY
iXj/ν ∈ Ω0[Y ]

be an arbitrary polynomial with coefficients ψi,j ∈ ks; the integer ν ≥ 1 is assumed
minimal possible and j0 is an integer. Set

ord(ψ) = inf
{
j/ν : ψi,j �= 0 & 0 ≤ i ≤ degY ψ & j ≥ j0

}
.

Therefore, j0 ∈ Z∪{+∞}, and we may take j0 = ord(ψ)ν if ψ �= 0. Let N be an integer.
We define a polynomial ψ#,N ∈ ks(X

1/ν)[Y ] by the formula

ψ#,N =
∑

0≤i≤degY ψ,
j0≤j≤Nν

ψi,jY
iXj/ν .

In a natural sense, ψ#,N is an approximation to the polynomial ψ. If N < j0, then
ψ#,N = 0.

If ψ ∈ ks[X
1/ν , Y ], then, by definition,

degX ψ = max
(
{−1} ∪ {j/ν : ψi,j �= 0 & 0 ≤ i ≤ degY ψ & j ≥ 0}

)
.

Let x ∈ k((X)). We shall say that rx ∈ k((X)) is an approximation of x of order N if
and only if ord(x− rx) ≥ N + 1.

Denote by F ∈ Ω0[Y ] the minimal polynomial of the root y over the field Ω0. We
shall assume that the leading coefficient lcY F equals 1. Now we are able to formulate
the main result of the first part of the paper. Put K0 = Ω0 ∩ k((X))[y]. Then K0 is the
maximal weakly ramified extension of the field k((X)) contained in k((X))[y].

Theorem 1. Assume that an algorithm for factoring the polynomials over finite exten-
sions of the field ks is known. Then we suggest an algorithm for factoring the polynomi-
als from k[X,Y ] over the field Ω0 by using a generalization of the Newton broken lines
method. More precisely, suppose that a polynomial f ∈ k[X,Y ] with leading coefficient
lcY f = 1 is separable as an element of k(X)[Y ], see above. Then for every root y of f
and every integer N ≥ 0 one can construct the polynomial F#,N .

The construction of F is based on the new expansions (3) introduced in the paper
and related to the root y. They enjoy properties (i)–(xviii), see §§1–3 (and give a lot of
information). These expansions are canonical. They depend only on the element y and
do not depend on the polynomial f .

In particular, using the expansions (3), one can construct a uniformizing element of
the field k((X))[y] over K0 and a system of generators with the multiplication table of the
purely inseparable extension k′ ⊃ k′ ∩ ks of fields. Actually, in the notation introduced in
the next sections, a uniformizing element is obtained immediately by using gq∗y , and the

system of generators of the extension k′ ⊃ k′ ∩ ks is equal to sη1, . . . , sηw(q∗y)
.

Finally, we would like to distinguish the lemmas important for justification of the
construction described in this paper. These are Lemma 5 and Lemma 9. Of course, what
is most important in the paper is the algorithm itself described in §5. This algorithm is
natural but is not so simple as it may seem at the first glance.
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§1. The main expansions

Let f ∈ k[[X]][Y ] be a polynomial from the Introduction and let y ∈ k((X)) be a root
of f . We fix an integer N ≥ 0. We shall find approximations of order N of some elements
of k((X)) (this is the meaning of N). We shall see that the expansions introduced in
this paper and satisfying properties (i)–(xviii), see §§1–3, are stable if N ≥ ord(Δ)/2.
Starting with §3, we shall suppose that N ≥ ord(Δ)/2. Next, one can apply the Hensel
lemma, see the Appendix, to the constructed approximations to obtain irreducible factors
of the polynomial f over the field Ω0 if N ≥ (3/2) ord(Δ). Actually, in what follows we do
not need the Hensel lemma. Instead, one can enlarge N and use the algorithm suggested
in the paper to get better approximations of the irreducible factors of f .

Now we are going to describe the construction of expansions related to the root y of
the polynomial f . The detailed algorithm for this construction if f ∈ k[X,Y ] will be
given in §5. It employs a generalization of the method of Newton broken lines.

We proceed to the description of this construction (it is purely mathematical; at
present we do not focus on its algorithmic aspects). We shall obtain a finite number
of elements g1, g2, . . . , η1, η2, . . . (they depend on y) of the field Ω with the following
properties. For every m, we have

ord(ηm) = 0, ord(gm) = am/(bmpsm)

for some integers am, bm, sm with bm ≥ 1, sm ≥ 0, GCD(am, p) = 1, GCD(bm, p) = 1,
and sm > sm−1 (we put s0 = 0). Next, for every m we denote by sηm the residue of the
element ηm. The field ks[sη1, . . . , sηm] is purely inseparable over the field ks and has the
degree prm over ks, where 1 ≤ rm ∈ Z and rm > rm−1 (we put r0 = 0).

Set w(0) = v(0) = w(1) = v(1) = 0, ry1 = y. At the beginning of the qth step of
our construction the elements g1, g2, . . . , gv , η1, η2, . . . , ηw, and ryq from the field Ω are
known. Here 1 ≤ q ≤ q∗y . So, there are q∗y steps in the construction considered. We shall
write v = v(q), w = w(q). We have

v(q − 1) ≤ v(q) ≤ v(q − 1) + 1, w(q − 1) ≤ w(q) ≤ w(q − 1) + 1,

(v(q − 1), w(q − 1)) �= (v(q), w(q)) for q ≥ 2.

Therefore, the sequences v(0), v(1), v(2) . . . and w(0), w(1), w(2), . . . are finite, mono-
tone, and nondecreasing.

Put uq = sv(q) − sv(q−1) + rw(q) − rw(q−1).
We denote

Q′ =
{
β1/β2 ∈ Q : β1, β2 ∈ Z & GCD(β2, p) = 1 & β2 ≥ 1

}

and, for integers 1 ≤ v ≤ v(q∗y) and 1 ≤ w ≤ w(q∗y),

Jw =
{
(j1, . . . , jw) ∈ Zw : 0 ≤ jm < prm−rm−1 for all 1 ≤ m ≤ w

}
,

Iv =
{
(i1, . . . , iv) ∈ Zv : 0 ≤ im < psm−sm−1 for all 1 ≤ m ≤ v

}
.

Set I0 = J0 = {( )}, i.e., these are singletons; here the element ( ) is the 0-tuple.

Definition 1. Let 1 ≤ w ≤ w(q∗y) be an integer. Suppose that w = w(q) > w(q − 1) for
some integer q ≥ 2 (obviously for every w, there is a unique integer q with this property).
Then we put ρ′(w) = v(q − 1).

Let 1 ≤ m ≤ v(q∗y) be an integer. Then we put

ρ(m) = inf
{
w ∈ Z : m ≤ ρ′(w) & 1 ≤ w ≤ w(q∗y)

}
.

Hence, if there is no integer w such that ρ′(w) is defined andm ≤ ρ′(w), then ρ(m) = +∞.

The following statements can be proved easily:
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• ρ′(w) ≥ 0 for every 1 ≤ w ≤ w(q∗y);
• the sequence ρ′(1), ρ′(2), . . . , ρ′(w(q∗y)) is monotone nondecreasing;
• the sequence ρ(1), ρ(2), . . . , ρ(v(q∗y)) is monotone nondecreasing;
• if 1 ≤ m ≤ v(q∗y) and 1 ≤ w ≤ w(q∗y), then the inequalities m ≤ ρ′(w) and
ρ(m) ≤ w are equivalent.

Lemma 1. Assume that q ≥ 2 and only the sequences v(0), . . . , v(q) = v, w(0), . . . ,
w(q) = w are known (these sequences are known at the beginning of the qth step of our
construction). Let 1 ≤ m ≤ v be an integer. Then one can decide whether ρ(m) > w. If
ρ(m) ≤ w, then one can compute ρ(m).

Proof. This follows immediately from Definition 1. We leave the details to the reader. �
Our main expansion has the form

(3) ryp
uq

q =
∑

(α,i1,...,iv ,j1,...,jw)∈Aq

yα,i1,...,iv ,j1,...,jwX
αgi11 · . . . · givv ηj11 · . . . · ηjww + ryq+1

and possesses the following properties (i)–(ix).

(i) Aq is a finite (or empty) subset of Q× Zv+w.
(ii) 0 ≤ jm < prm−rm−1 for all 1 ≤ m ≤ w, i.e., (j1, . . . , jw) ∈ Jw.
(iii) At the beginning of the qth step, for all (j1, . . . , jw) ∈ Jw, 1 ≤ m ≤ v, integral

constants cm,jρ(m),...,jw are computed. Each constant cm,jρ(m),...,jw depends only

on m, jρ(m), . . . , jw (if ρ(m) > w, then the sequence jρ(m), . . . , jw is empty).
(iv) For every (α, i1, . . . , iv, j1, . . . , jw) ∈ Aq we have

cm,jρ(m),...,jw ≤ im < cm,jρ(m),...,jw + psm−sm−1

for all 1 ≤ m ≤ v.

We shall explain the meaning of conditions (iii) and (iv) in §3. There we shall specify the
constants cm,jρ(m),...,jw , introducing the additional condition (xviii) for them. See also
Remark 1 in §3.

(v) α ∈ Q′, in other words α = β1/β2 ∈ Q, β1, β2 ∈ Z, and GCD(β2, p) = 1.
(vi) Let (α, i1, . . . , iv, j1, . . . , jw) ∈ Aq. Then yα,i1,...,iv ,j1,...,jw ∈ ks. The element

yα,i1,...,iv,j1,...,jw equals 0 if and only if q = q∗y and (α, i1, . . . , iv, j1, . . . , jw) =
(N + 1, 0, . . . , 0) (notice that (N + 1, 0, . . . , 0) is the last constructed element of
Aq∗y , see §2 for more detail). In all other cases yα,i1,...,iv ,j1,...,jw �= 0.

(vii) For any pairwise distinct collections

(α, i1, . . . , iv, j1, . . . , jw), (α
′, i′1, . . . , i

′
v, j

′
1, . . . , j

′
w) ∈ Aq,

either (j1, . . . , jw) �= (j′1, . . . , j
′
w) or

α+
∑

1≤m≤v

imam/(bmpsm) �= α′ +
∑

1≤m≤v

i′mam/(bmpsm).

(viii) If q �= q∗y , then ord(ryq+1) < N + 1 and for every (α, i1, . . . , iv, j1, . . . , jw) ∈ Aq

we have

(4) α+
∑

1≤m≤v

imam/(bmpsm) < max
{
ord(ryq+1), N + 1

}
.

If q = q∗y , then ord(ryq+1) ≥ N + 1. If

(N + 1, 0, . . . , 0) �= (α, i1, . . . , iv, j1, . . . , jw) ∈ Aq∗y ,

then inequality (4) holds true with q = q∗y .
(ix) The number #Aq of elements of Aq is maximal possible, i.e., there is no similar

expansion with A′ in place of Aq satisfying (i)–(viii) and such that #A′ > #Aq.
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If ord(ryq+1) < N + 1, then, using the element ryq+1, one can construct gv+1 or ηw+1

(possibly, both of them), define v(q+1), w(q+1) and proceed to the next (q+1)st step.
More precisely, for every q ≥ 1, if ord(ryq+1) < N + 1, then the following conditions and
definitions (x)–(xiv) hold true.

(x) gv+1 = ryq+1 if and only if ord(ryq+1) ∈ 1
psv+1 Q′ and ord(ryq) �∈ 1

psv+1−1Q′, where

sv+1 is an the integer with sv+1 > sv.
(xi) Let gv+1 = ryq+1. Then there is a unique αv+1 ∈ Q′ and unique (iv+1,1, . . . ,

iv+1,v) ∈ Iv such that

ord
(
gp

sv+1−sv

v+1 /(Xαv+1g
iv+1,1

1 · . . . · giv+1,v
v )

)
= 0.

Put

(5) ξv+1 = gp
sv+1−sv

v+1 /
(
Xαv+1g

iv+1,1

1 · . . . · giv+1,v
v

)
.

Notice here that for every 0 ≤ v ≤ v(q∗)− 1 there is a unique 1 ≤ q ≤ q∗y − 1 such that
gv+1 = ryq+1, so that (5) is true for all such v.

(xii) Suppose gv+1 = ryq+1 and the residue sξv+1 belongs to ks[sη1, . . . , sηw]. Then
v(q + 1) = v + 1, w(q + 1) = w.

(xiii) Suppose gv+1 = ryq+1 and the residue sξv+1 does not belong to ks[sη1, . . . , sηw].

Then, by definition, hw+1 = ryp
sv+1−sv

q+1 and ηw+1 = ξv+1. So, the integer
rw+1 > rw is defined now. Put βw+1 = αv+1, ιw+1,m = iv+1,m for all 1 ≤ m ≤ v.
In this case v(q + 1) = v + 1, w(q + 1) = w + 1.

(xiv) Let ord(ryq+1) ∈ 1
psv Q

′. Then by definition we put hw+1 = ryq+1. Now there is a

unique βw+1 ∈ Q′ and unique (ιw+1,1, . . . , ιw+1,v) ∈ Iv such that

ord
(
hw+1/

(
Xβw+1g

ιw+1,1

1 · . . . · gιw+1,v
v

))
= 0.

Put

(6) ηw+1 = hw+1/
(
Xβw+1g

ιw+1,1

1 · . . . · gιw+1,v
v

)
.

Then the residue sηw+1 does not belong to ks[sη1, . . . , sηw]. Therefore, we see that
the integer rw+1 > rw is defined now. In this case v(q+1) = v, w(q+1) = w+1.

Notice that (6) is satisfied if one of conditions (xiii) or (xiv) is fulfilled, i.e., if and only
if w(q + 1) = w(q) + 1. Moreover, in this case v = ρ′(w + 1) in (6).

In either of the cases (xii) or (xiii) we represent

(7) sξp
rw(q+1)−rw(q)

v+1 =
∑

(j1,...,jw)∈Jw

ξv+1,j1,...,jw sηj11 · . . . · sηjww

where all ξv+1,j1,...,jw belong to ks (to avoid ambiguity, if w = 0 we use the notation
ξv+1, for ξv+1,j1,...,jw).

In either of the cases (xiii) or (xiv) we represent

(8) sηp
rw(q+1)−rw(q)

w+1 =
∑

(j1,...,jw)∈Jw

ηw+1,j1,...,jw sηj11 · . . . · sηjww

where all ηw+1,j1,...,jw belong to ks (to avoid ambiguity, if w = 0 we use the notation
ηw+1, for ηw+1,j1,...,jw).

So, in case (xiii) we have ξv+1,j1,...,jw = ηw+1,j1,...,jw for all (j1, . . . , jw) ∈ Jw, and
therefore, the representations (7) and (8) coincide.

Put ks,m = ks[sη1, . . . , sηm] for every 1 ≤ m ≤ w(q∗y). Then using relations (8) for
w = 0, . . . ,m− 1, one can obtain the multiplication table for the basis

(9) sηj11 · . . . · sηjmm , 0 ≤ jn < prn−rn−1 , 1 ≤ n ≤ m,
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of the field ks,m over ks (actually (j1, . . . , jm) ∈ Jm in (9)). The basis (9) will be called
the standard basis of the field ks,m over ks. We put ks,0 = ks.

Note also that if q ≥ 2 and A1 = ∅, then g1 = y or h1 = y.
Finally,

(xv) let ord(ryq+1) ≥ N + 1. Then the qth step under consideration is final. We put
q∗y = q in this case.

§2. More details about the construction of the main expansion

Let us describe in more detail how to obtain the expansion (3) at the qth step (where
1 ≤ q ≤ q∗y) of our construction (at present everything depends on y). In what follows in
this section, we shall suppose that the integers cm,jρ(m),...,jw , (j1, . . . , jw) ∈ Jw, 1 ≤ m ≤
v, are arbitrary but fixed, where v = v(q), w = w(q), and 1 ≤ q ≤ q∗. We shall specify
these integers cm,jρ(m),...,jw in the next section.

For all (j1, . . . , jw) ∈ Jw, we put

Iv,j1,...,jw =
{
(i1, . . . , iv) ∈ Zv : cm,jρ(m),...,jw ≤ im < cm,jρ(m),...,jw + psm−sm−1

∀m (1 ≤ m ≤ v)
}
.

Set rA0 = ∅. We shall suppose that the finite set of multiindices (of different lengths)
rAq−1 =

⋃
1≤m≤q−1 Am is constructed at the (q− 1)st step of the first recursion or q = 1.

Here we need a second recursion on a set A ⊃ rAq−1 for finding the expansion (3). We
shall say that A determines the step of the second recursion at the qth step of the first
recursion. We shall also say that this step of the second recursion corresponds to A.

If q = 1, it may happen that this second recursion has no steps. In this case A1 = ∅
and rA1 = ∅.

The set A is also constructed recursively at the previous steps. At the first step of

this second recursion we have A = rAq−1. At the end of recursion we obtain the set rAq.

Actually, A ⊂ rAq and A �= rAq at the beginning of any step, and A = rAq at the end of

the final step of this recursion. We have Aq = rAq \ rAq−1, where Aq is as in §1.
Let A determine the step of the second recursion at the qth step of the first recursion,

or A = rAq. Then we put

(10) ryq,A = ryp
uq

q −
∑

(α,i1,...,iv,j1,...,jw)∈A\ rAq−1

yα,i1,...,iv ,j1,...,jwX
αgi11 · . . . · givv ηj11 · . . . · ηjww

and ryA = ryq,A if A \ rAq−1 �= ∅. Set ry∅ = y.
We suppose that the elements yα,i1,...,iv,j1,...,jw are known for all

(α, i1, . . . , iv, j1, . . . , jw) ∈ A \ rAq−1

at the beginning of the step of the second recursion corresponding to the subset A. At
the end of that step we obtain a set A+ � A and the expansion (10) with A+ in place of
A. If the step corresponding to A is not final, then the next step of the second recursion
corresponds to A+ (in place of A).

If the step corresponding to A is final, then we put rAq = A+ and obtain the element

ryq+1 by replacing A with rAq on the right-hand side of (10). So, ryq+1 = yq, rAq
. Put

y
rAq

= yq, rAq
.

If q = q∗y , then at the final step of the second recursion we have ord(ryA) ≥ N + 1.
There is only one step when the last inequality is true. Only in this case it may happen
that ryA = 0.
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If ord(ryq,A) < N+1 and A determines the step of the second recursion at the qth step
of the first recursion, then we assume that the conditions (xvi) and (xvii) formulated
below are fulfilled.

(xvi) a = ord(ryq,A) ∈ 1
psv Q

′, where v = v(q) (in particular, this automatically implies

that ryq,A �= 0).

Hence, there are unique α ∈ Q′ and (ι1, . . . , ιv) ∈ Iv such that

(11) a = α+ ι1 ord g1 + · · ·+ ιv ord gv.

Therefore,

(12) ord
(
ryq,A/(X

αgι11 · . . . · gιvv )
)
= 0

(here α, ι1, . . . , ιv depend on q, A). Putting ηq,A = ryq,A/(X
αgι11 · . . . · gιvv ), we denote by

sηq,A the residue of the element ηq,A.

(xvii) The residue sηq,A belongs to k[sη1, . . . , sηw], where w = w(q).

Notice that if A = rAq−1, ord(ryq,A) < N + 1, and q ≥ 2, then conditions (xvi) and

(xvii) are fulfilled, and therefore, rAq−1 determines the step of the second recursion at
the qth step of the first recursion.

Lemma 2. Let 0 ≤ v ≤ v(q∗y) be an integer. Then (5) with m in place of v + 1 is true
for every 1 ≤ m ≤ v. We shall view all s1, . . . , sv and im1,m2

as constants. Assume that
ord(Xγgn1

1 · . . . · gnv
v ) = 0 for some γ ∈ Q′ and some integers n1, . . . , nv. Then there are

integers a1, . . . , av such that

(13) Xγgn1
1 · . . . · gnv

v = ξa1
1 · . . . · ξav

v ,

and for every 1 ≤ m ≤ v the integer ampsm−sm−1 − nm depends only on nm+1, . . . , nv.
Therefore, the integer am depends only on nm, . . . , nv for every 1 ≤ m ≤ v.

Proof. We shall suppose without loss of generality that v ≥ 1. Since

ord(Xγgn1
1 · . . . · gnv

v ) = 0,

we have nv = psv−sv−1av for an integer av. Now by (5) with v in place of v + 1 we can

write Xγgn1
1 · . . . · gnv

v = Xγ′
g
n′
1

1 · . . . · gn
′
v−1

v−1 ξav
v for some γ′ ∈ Q′ and some integers

n′
1, . . . , n

′
v−1. Here each n′

m − nm, 1 ≤ m ≤ v − 1, depends only on nv. Obviously

avp
sv−sv−1 − nv = 0. We have ord

(
Xγ′

g
n′
1

1 · . . . · gn
′
v−1

v−1

)
= 0. Therefore, the required

assertion is obtained by induction on v. �

Corollary 1. Under the conditions of Lemma 2, let 0 ≤ w ≤ w(q∗y) be an integer. Then
identity (6) with (n, ρ′(n)) in place of (w+1, v) is true for every 1 ≤ n ≤ w. We view all

r1, . . . , rw and ιm1,m2
as constants. Suppose that ord(Xδgi11 · . . . · givv hj1

1 · . . . · hjw
w ) = 0

for some δ ∈ Q′ and some integers i1, . . . , iv, j1, . . . , jw. Then there are integers a1, . . . , av
such that

(14) Xδgi11 · . . . · givv hj1
1 · . . . · hjw

w = ξa1
1 · . . . · ξav

v ηj11 · . . . · ηjww ,

and for every 1 ≤ m ≤ v the integer am depends only on im, . . . , iv and jρ(m), . . . , jw.

Proof. Recall that the inequalities m ≤ ρ′(n) and ρ(m) ≤ n are equivalent. Hence, by
(6), ιn,m �= 0 only if ρ(m) ≤ n. Thus, the required assertion follows immediately from
Lemma 2 and identity (6). �

Lemma 3. (a) Let v = v(q), w = w(q), 1 ≤ q ≤ q∗y, and let a ∈ (1/psv)Q′ be an arbitrary
number (not necessarily a = ord(ryq,A)). Then for every (j1, . . . , jw) ∈ Jw there are unique
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(i1, . . . , iv) ∈ Iv,j1,...,jw and β ∈ Q′ such that a = ord(Xβgi11 · . . . · givv ). More precisely,
there is a function κ : 1

psv Q
′ × Jw → Q′ ×Zv such that (β, i1, . . . , iv) = κ(a, j1, . . . , jw).

(b) Moreover, assume also that v ≥ 1, (j1, . . . , jw) ∈ Jw, and the elements g1, . . . , gv
and the constants cm,jρ(m),...,jw are fixed for all 1 ≤ m ≤ v. Then for every 1 ≤ m ≤ v

the integer im depends only on ord(ryq,A) and cm,jρ(m),...,jw , . . . , cv,jρ(v),...,jw . The integer
β depends only on

ord(ryq,A), c1,jρ(1),...,jw , . . . , cv,jρ(v),...,jw .

Proof. This is straightforward by the Chinese remainder theorem applied v times. �

Recall that ks,0 = ks and ks,m = ks[sη1, . . . , sηm], 1 ≤ m ≤ w(q∗y).

Definition 2. Let 1 ≤ v ≤ v(q∗y) be an integer. Put

χ(v) = min{m : sξv ∈ ks,m & m ≥ 0}.
Then 0 ≤ χ(v) ∈ Z.

Lemma 4. If 1 ≤ v ≤ v(q∗y), then χ(v) < ρ(v).

Proof. The sequences v(0), v(1), v(2) . . . and w(0), w(1), w(2) . . . are monotone nonde-
creasing. We shall use this fact below.

Let q ≥ 2 be the smallest integer such that v = v(q). By Definition 2, sξv ∈
k[sη1, . . . , sηw(q′)] for some 1 ≤ q′ ≤ q with χ(v) = w(q′).

On the other hand, let ρ(v) = w < +∞. By Definition 1, v ≤ ρ′(w) = v(q′′ − 1) for
an integer q′′ ≥ 2 such that w = w(q′′) > w(q′′ − 1). Hence, v(q) ≤ v(q′′ − 1). Now
q ≤ q′′ − 1 because q is the smallest integer such that v = v(q). Thus,

χ(v) = w(q′) ≤ w(q) ≤ w(q′′ − 1) < w(q′′) = w = ρ(v).

The lemma is proved. �

Recall that (11) and (12) hold true. In assertion (a) of the following lemma the number
a ∈ (1/psv)Q′ is arbitrary (not necessarily a = ord(ryq,A)). For this a, there are unique
α ∈ Q′ and (ι1, . . . , ιv) ∈ Iv such that (11) is fulfilled (here we use the same notation α,
ι1, . . . , ιv as in the case where a = ord(ryq,A); this will not lead to any ambiguity).

Lemma 5. (a) Let v = v(q), w = w(q), 1 ≤ q ≤ q∗y. Suppose a ∈ (1/psv)Q′ is arbitrary
and (11) holds true. Put

Ba,v,w =
{
Xβ−αgi1−ι1

1 · . . . · giv−ιv
v ηj11 · . . . · ηjww :

(j1, . . . , jw) ∈ Jw & (β, i1, . . . , iv) = κ(a, j1, . . . , jw)
}
.

Then the family of residues {sη}η∈Ba,v,w
is a basis of the field ks[sη1, . . . , sηw] over ks.

(b) Assume that conditions (xvi) and (xvii) are fulfilled. Then there are unique
yβ,i1,...,iv ,j1,...,jw ∈ ks with (β, i1, . . . , iv) = κ(ord(ryq,A), j1, . . . , jw) for all (j1, . . . , jw) ∈
Jw such that

(15) ord
(

ryq,A−
∑

(j1,...,jw)∈Jw ,
(β,i1,...,iv)=κ(a,j1,...,jw)

yβ,i1,...,iv ,j1,...,jwX
βgi11 · . . . ·givv ηj11 · . . . ·ηjww

)
> ord(ryq,A).

Proof. Assertion (b) follows from (a) immediately.
We prove (a). We shall suppose without loss of generality that v ≥ 1. By Lemma 3,

each im − ιm, 1 ≤ m ≤ v, depends only on cm,jρ(m),...,jw , . . . , cv,jρ(v),...,jw and ord(ryq,A).

We have ord(Xβ−αgi1−ι1
1 · . . . · giv−ιv

v ) = 0. By Lemma 2, we can write

Xβ−αgi1−ι1
1 · . . . · giv−ιv

v = ξa1
1 · . . . · ξav

v ,
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where am is an integer depending only on im − ιm, . . . , iv − ιv for every 1 ≤ m ≤ v.
Therefore, am depends only on cm,jρ(m),...,jw , . . . , cv,jρ(v),...,jw and ord(ryq,A) for every

1 ≤ m ≤ v.
Set

λn =
∏

χ(m)=n,
1≤m≤v

ξam
m , 0 ≤ n ≤ w.

Notice that each am in the last product does not depend on j1, . . . , jρ(m)−1. By Lemma 4,
we have ρ(m) − 1 ≥ χ(m) = n. Hence, each am in the last product does not depend
on j1, . . . , jn. Therefore, also the product λn itself does not depend on j1, . . . , jn. To
specify the dependence of λn on jn+1, . . . , jw, we shall write λn = λn(jn+1, . . . , jw) (λn

also depends on a, but this does not matter at present).
Denote by sλn(jn+1, . . . , jw) the residue of the element λn(jn+1, . . . , jw). Then 0 �=

sλn(jn+1, . . . , jw) ∈ ks,n.
Now we write

(16) Xβ−αgi1−ι1
1 · . . . ·giv−ιv

v ηj11 · . . . ·ηjww = λ0(j1, . . . , jw)
∏

1≤n≤w

(
ηjnn λn(jn+1, . . . , jw)

)
.

Let 1 ≤ t ≤ w be an integer. Let A(t) denote the following claim. The family∏
t≤n≤w(sη

jn
n

sλn(jn+1, . . . , jw)), 0 ≤ jn < prn−rn−1 , t ≤ n ≤ w, is a basis of the field ks,w
over ks,t−1.

We are going to prove A(1) with the help of decreasing induction on t. The base A(w)
of induction is obvious. Assume that t ≥ 1 and that A(t+ 1) is proved. Then

sη
jt+1

t

∏
t+1≤n≤w

(
sηjnn

sλn(jn+1, . . . , jw)
)
,

0 ≤ jt ≤ prt−rt−1 , 0 ≤ jn < prn−rn−1 , t+ 1 ≤ n ≤ w,

is a basis of the field ks,w over ks,t−1.

The family sηjtt
sλt(jt+1, . . . , jw), 0 ≤ jt < prt−rt−1 , is a basis of the field ks,t over ks,t−1

because 0 �= sλt(jt+1, . . . , jw) ∈ ks,t. Therefore, for every (jt+1, . . . , jw) the linear space
over ks,t−1 generated by the family

sηjtt
∏

t+1≤n≤w

(
sηjnn

sλn(jn+1, . . . , jw)
)
, 0 ≤ jt ≤ prt−rt−1 ,

coincides with the linear space over ks,t−1 generated by the family

sηjtt
sλt(jt+1, . . . , jw)

∏
t+1≤n≤w

(
sηjnn

sλn(jn+1, . . . , jw)
)
, 0 ≤ jt ≤ prt−rt−1

(both are subspaces of the field ks,w). This implies A(t) immediately.
Thus, A(1) is true. Hence, the family

∏
1≤n≤w

(
sηjnn

sλn(jn+1, . . . , jw)
)
, (j1, . . . , jw) ∈ Jw,

is a basis of the field ks,w over ks. For every (j1, . . . , jw) ∈ Jw, multiplying the element
of this basis that corresponds to (j1, . . . , jw) by a nonzero constant sλ0(j1, . . . , jw), we
obtain again a basis of ks,w over ks. This last basis coincides with the family {sη}η∈Ba,v,w

by (16). Assertion (a) and the lemma are proved. �

We return to the case where A determines the step of the second recursion at the qth
step of the first recursion. First, suppose that a = ord(ryq,A) < N + 1. Then, by our
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assumption, see above, conditions (xvi) and (xvii) are fulfilled. Put

A′ =
{
(β, i1, . . . , iv, j1, . . . , jw) :

(j1, . . . , jw) ∈ Jw & (β, i1, . . . , iv) = κ(a, j1, . . . , jw)
}
.

(17)

Then by Lemma 5 (b), all the elements yβ,i1,...,iv ,j1,...,jw ∈ ks with (β, i1, . . . , iv, j1, . . . ,
jw) ∈ A′ are well defined and (15) holds true. Set

(18) A′′ =
{
(β, i1, . . . , iv, j1, . . . , jw) ∈ A′ : yβ,i1,...,iv,j1,...,jw �= 0

}
.

Then A′′ �= ∅ because ryq,A �= 0. Put A+ = A ∪ A′′. Now we have one of the following
two subcases (a) and (b).

(a) Recall that the element ryq,A+
is defined, see the beginning of the section. Assume

that conditions (xvi) and (xvii) are fulfilled with ryq,A+
in place of ryq,A (the residue

sηq,A+
is defined by analogy with sηq,A if condition (xvi) is fulfilled with ryq,A+

in
place of ryq,A; in what follows we shall omit the words “in place of ryq,A” for
brevity). Then we replace A by A+ and proceed to the next step of the second
recursion at the qth step of the first recursion. Notice that in this subcase we do
not suppose that necessarily ord(ryq,A+

) < N + 1.
(b) Assume that it is not true that conditions (xvi) and (xvii) are fulfilled for ryq,A+

.
Then the step of the second recursion corresponding to A is final. In this subcase

we put rAq = A+, Aq = rAq \ rAq−1, ryq+1 = ryq,A+
. Now, by items (xii), (xiii), and

(xiv) in §1, we pass to the (q + 1)st step of the first recursion.

More precisely, in subcase (b) either condition (xvi) is fulfilled for ryq,A+
and condition

(xvii) is not fulfilled for ryq,A+
or condition (xvi) is not fulfilled for ryq,A+

. Therefore, in

subcase (b) either ord(ryq,A+
) ∈ 1

psv Q
′ and the element sηq,A+

does not lie in ks[sη1, . . . ,

sηw], or ord(ryq,A+
) �∈ 1

psv Q
′ and ryq,A+

�= 0. Moreover, by Lemma 9 (see §3 below), in

subcase (b) if additionally condition (xviii) holds true, then ord(ryq+1) ≤ ord(Δ)/2.
Now suppose that ord(ryq,A) ≥ N + 1 (possibly, ryq,A = 0) and A determines the

step of the second recursion at the qth step of the first recursion. Then the step of the
second recursion corresponding to A is final. Put A+ = A ∪ {(N + 1, 0, . . . , 0)} and
yN+1,0,...,0 = 0, where (N + 1, 0, . . . , 0) ∈ Q′ × Zv+w. Set ryq,A+

= ryq,A, ryq+1 = ryq,A+
,

rAq = A+, Aq = rAq \ rAq−1, and q∗y = q, see item (xv) in §1. Here the construction is
canonical, but may seem slightly artificial. However, we shall see that for q = q∗y and
ord(ryq,A) ≥ N +1 such a final step (or some similar one) will be necessary in §5 to define
the leaf of the tree T , see §4 below, corresponding to the root y.

Also, it may happen that ord(ryq,A) < N + 1 but the conditions of Lemma 5 (b) are

not fulfilled for ryq,A with A = rAq−1. Then we are not able to find A+ at the qth step.

But obviously, in this case q = 1 and A = rA0 = ∅. Then, in accordance with items

(x)–(xiv), see the end of §1, we put rA1 = ∅, construct g1 or η1 (maybe both of them)
and proceed to step 2 of the first recursion.

Thus, we have finished the description of the construction of expansion (3) in this
section. More information on this expansion will be given in §5 with the help of the
method of Newton broken lines.

We need also the following definitions. Let 1 ≤ q ≤ q∗y . Denote by S′
y,q the set of

all A such that the set A determines the step of the second recursion at the qth step of
the first recursion, see the beginning of the section. Therefore, S′

y,q1 ∩ S′
y,q2 = ∅ for all

1 ≤ q1 �= q2 ≤ q∗y .

Observe that S′
y,q �= ∅ for q ≥ 2. For every 1 ≤ q ≤ q∗y , if S

′
y,q �= ∅ then rAq−1 ∈ S′

y,q ,

but rAq �∈ S′
y,q, whence Aq �= ∅ in this case.
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For every 1 ≤ q ≤ q∗y we put

Sy,q = { rAq} ∪
⋃

1≤m≤q

S′
y,m, Sy = { rAq∗y} ∪

⋃
1≤q≤q∗y

S′
y,q.

Set Sy,0 = { rA0} = {∅}, Sy,−1 = ∅ (so that #Sy,0 = 1, #Sy,−1 = 0).
Notice that also Sy =

⋃
1≤q≤q∗y

Sy,q .

For every 0 ≤ q ≤ q∗y and every A ∈ Sy,q \ Sy,q−1 we put sA = sv(q), rA = rw(q).

§3. Modified expansions

In this and the following sections we suppose that N ≥ ord(Δ)/2. Consider the main
expansion (3) obtained at the qth step of our construction. Recall that v = ρ′(w + 1) in
(3). Put

c′m,jρ(m),...,jw
= cm,jρ(m),...,jw −

∑
ρ(m)≤n≤w

jnιn,m, 1 ≤ m ≤ v,

see (6) with (n, ρ′(n)) in place of (w + 1, v) for the definition of ιn,m. Recall that the
conditions m ≤ ρ′(n) and ρ(m) ≤ n are equivalent. We substitute the expressions for ηn,
1 ≤ n ≤ w, from (6) (with (n, ρ′(n)) in place of (w + 1, v)) in the expansion (3). Then
we get the modified expansion

(19) ryp
uq

q =
∑

(α,i1,...,iv ,j1,...,jw)∈A′
q

y′α,i1,...,iv ,j1,...,jwX
αgi11 · . . . · givv hj1

1 · . . . · hjw
w + ryq+1,

where all y′α,i1,...,iv ,j1,...,jw are elements of ks, and #Aq = #A′
q. More precisely, there is

a bijection Aq → A′
q,

(α, i1, . . . , iv, j1, . . . , jw) 
→ (α′, i′1, . . . , i
′
v, j1, . . . , jw),

i′m = im −
∑

ρ(m)≤n≤w

jnιn,m, 1 ≤ m ≤ v,

α′ = α−
∑

1≤n≤w

jnαn.

such that y′α′,i′1,...,i
′
v,j1,...,jw

= yα,i1,...,iv,j1,...,jw for every (α, i1, . . . , iv, j1, . . . , jw) ∈ Aq.

Hence,

c′m,jρ(m),...,jw
≤ im < c′m,jρ(m),...,jw

+ psm−sm−1 , 1 ≤ m ≤ v,

for every (α, i1, . . . , iv, j1, . . . , jw) ∈ A′
q.

Thus, to obtain expansions (3) it suffices to construct the modified expansions (19),
and conversely. Actually, we shall construct (3) and (19) simultaneously.

In what follows in this paper we shall suppose that the following condition is fulfilled:

(xviii) cm,jρ(m),...,jw =
∑

ρ(m)≤u≤w juιu,m for all (j1, . . . , jw) ∈ Jw, 1 ≤ m ≤ v.

We shall see that condition (xviii) is convenient for applying our generalization of the
method of Newton broken lines. Obviously, condition (xviii) is equivalent to

(20) c′m,jρ(m),...,jw
= 0, for all (j1, . . . , jw) ∈ Jw, 1 ≤ m ≤ v.

Remark 1. Assume that the constants cm,jρ(m),...,jw satisfy condition (iii) but may fail

to satisfy (xviii) (say, in the important case where all cm,jρ(m),...,jw are 0). Then, for
example, one can modify the entire construction as follows. At the qth step of the first
recursion, let 1 ≤ aq ≤ degY f−1 be the smallest integer (it exists) such that the elements

ry
aqp

uq

q , gi11 · . . . · givv ηj11 · . . . · ηjww , (i1, . . . , iv) ∈ Iv,j1,...,jw , (j1, . . . , jw) ∈ Jw are linearly

independent over the field Ω0. Then one replaces ryp
uq

q by ry
aqp

uq

q in the expansion (3).
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This replacement is necessary. Namely, the elements ryq
aqp

uq

q , gi11 · . . . ·givv ηj11 · . . . ·ηjww ,
(i1, . . . , iv) ∈ Iv,j1,...,jw , (j1, . . . , jw) ∈ Jw, must be linearly independent over the field Ω0

if the final aim is to construct Σ and π, see the Introduction, cf. the proof of Lemma 9.
Here we leave the details to the interested reader. We shall not use this remark in the
paper.

Lemma 6. (a) Let v = v(q), w = w(q), 1 ≤ q ≤ q∗y, and let a ∈ (1/psv)Q′

be an arbitrary number. Then for every (j1, . . . , jw) ∈ Jw there are unique

(i1, . . . , iv) ∈ Iv and β ∈ Q′ such that a = ord(Xβgi11 · . . . · givv hj1
1 · . . . · hjw

w ).
More precisely, there is a function κ′ : 1

psv Q
′ × Jw → Q′ × Zv such that

(β, i1, . . . , iv) = κ′(a, j1, . . . , jw). Assume that (11) is fulfilled. Then under con-
dition (xviii) we have

Ba,v,w =
{
Xβ−αgi1−ι1

1 · . . . · giv−ιv
v hj1

1 · . . . · hjw
w :

(j1, . . . , jw) ∈ Jw & (β, i1, . . . , iv) = κ′(a, j1, . . . , jw)
}
.

(b) Under the conditions of (a) assume additionally that v′ = v(q′), w′ = w(q′),
1 ≤ q′ ≤ q, and a ∈ (1/psv′ )Q′. Then the family Ba,v,w contains Ba,v′,w′ (more
precisely, Ba,v′,w′ is a subfamily of Ba,v,w).

Proof. This follows straightforwardly from the definitions (we leave the details to the
reader). �

Remark 2. Put sBa,v,w = {sη}η∈Ba,v,w
. Then the elements of the basis sBa,v,w can be

presented as linear combinations of the elements of the standard basis (9) with m = w
by using Lemma 2 or Corollary 1 and relations (7), (8) with (v(q′), w(q′)), 1 ≤ q′ ≤ q−1,
in place of (v, w).

Let q ≥ 1, and let (xii)q, (xiii)q, (xiv)q denote conditions (xii), (xiii), (xiv) from §1,
respectively.

Also, we need to introduce yet another modified expansion. Let (α, i1, . . . , iv, j1,
. . . , jw) ∈ A′

q. For every 2 ≤ m ≤ q, we set

• i′′m = iv(m) if and only if condition (xii)m−1 is fulfilled;
• i′′m = iv(m) + psm−sm−1jw(m) if and only if condition (xiii)m−1 is fulfilled;
• i′′m = jw(m) if and only if condition (xiv)m−1 is fulfilled.

For every 1 ≤ q ≤ q∗y , there is a bijection

(21) A′
q → A′′

q , (α, i1, . . . , iv(q), j1, . . . , jw(q)) 
→ (α, i′′2 , . . . , i
′′
q )

defining the set A′′
q (if q = 1, the sequences i1, . . . , iv(q); j1, . . . , jw(q); i′′2 , . . . , i

′′
q are

empty). Put y′′α,i′′2 ,...,i′′q
= yα,i1,...,iv,j1,...,jw for every (α, i1, . . . , iv, j1, . . . , jw) ∈ A′

q. Now

for every 1 ≤ q ≤ q∗y we can use (19) to get the second modified expansion

(22) ryp
uq

q =
∑

(α,i2,...,iq)∈A′′
q

y′′α,i2,...,iqX
α

ryi22 ryi33 · . . . · ryiqq + ryq+1

(here if q = 1, then the sequence i2, . . . , iq is empty and the product ryi22 ryi33 · . . . · ry
iq
q is

equal to 1). Notice that if (α, i2, . . . , iq) ∈ A′′
q , then 0 ≤ im < pum for all 2 ≤ m ≤ q.

Lemma 7. (a) Let 2 ≤ q ≤ q∗y or q = 1 and rA1 �= ∅. Then

ord(ryq+1) > puq ord(ryq) ≥ 0

(if rA1 = ∅, then ry2 = ry1, whence ord(ry2) = pu1 ord(ry1)).
(b) If (α, i2, . . . , iq) ∈ A′′

q and 1 ≤ q ≤ q∗y, then α ≥ 0.
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(c) If (α, i1, . . . , iv, j1, . . . , jw) ∈ A′
q and 1 ≤ q ≤ q∗y, then α ≥ 0.

Proof. We have lcY f = 1. Hence, y is integral over k[[X]]. Therefore, ord(y1) ≥ 0. Now
assertion (a) follows from (3) and the described construction immediately. Assertion (c)
follows from (b) and the existence of the bijection (21).

It remains to prove (b). We shall suppose without loss of generality that q ≥ 2. By

(22), for every (α, i2, . . . , iq) ∈ A′′
q we have puq ord(ryq) ≤ ord(Xα

ryi22 ryi33 · . . . · ry
iq
q ).

Applying (a) und using induction on 2 ≤ n ≤ q, we prove that
∑

1≤m≤n−1

(pum − 1) ord(rym) ≤ ord(ryn)− ord(ry1).

Notice that pu1 − 1 = 0. Hence,

(puq − iq) ord(ryq) ≤ α+
∑

1≤m≤q−1

(pum − 1) ord(rym) ≤ α+ ord(ryq)− ord(ry1).

Thus, α ≥ ord(ry1) ≥ 0 because puq − iq ≥ 1. The lemma is proved. �

Recall that the last step q∗y of the construction of our expansions was defined at the
end of §1. Now we are going to introduce the polynomials Pq ∈ Ω0[Y ], 1 ≤ q ≤ q∗y + 1,
and Gv(q), Hw(q) ∈ Ω0[Y ], 2 ≤ q ≤ q∗y , associated with the modified expansions (19).
These polynomials will be such that

(23) ryq = Pq(y), gv(q) = Gv(q)(y), hw(q) = Hw(q)(y).

Definition 3. This definition is recursive in q ≥ 1. Put P1 = Y . Suppose that 1 ≤ q ≤ q∗y
and the polynomials Pa ∈ Ω0[Y ], 1 ≤ a ≤ q, and Gv(a), Hw(a) ∈ Ω0[Y ], 2 ≤ a ≤ q, have
already been defined. Then we put

(24) Pq+1 = P puq

q −
∑

(α,i1,...,iv,j1,...,jw)∈A′
q

y′α,i1,...,iv ,j1,...,jwX
αGi1

1 · . . . ·Giv
v Hj1

1 · . . . ·Hjw
w ,

where uq = sv(q) − sv(q−1) + rw(q) − rw(q−1), v = v(q), w = w(q).
Suppose that 1 ≤ q < q∗y and that (xii), see §1, holds true (recall that in this case we

have v(q + 1) = v(q) + 1, w(q + 1) = w(q)). Then we put Gv(q+1) = Pq+1.
Suppose that 1 ≤ q < q∗y and that (xiii) holds true (recall that v(q + 1) = v(q) + 1,

w(q+1) = w(q)+1 in this case). Then we put Gv(q+1) = Pq+1 and Hw(q+1) = P psv+1−sv

q+1 ,

where v = v(q).
Suppose that 1 ≤ q < q∗y and that (xiv) holds true (recall that v(q + 1) = v(q),

w(q + 1) = w(q) + 1 in this case). Then we put Hw(q+1) = Pq+1.

Comparing (24) and (19), we see that (23) is satisfied. Note that the leading coeffi-
cients with respect to Y of all the introduced polynomials Pq and Gv(q), Hw(q), q ≥ 2,
are equal to 1. Next, if q ≥ 2, then degY G1 = 1 or degY H1 = 1, and if additionally
rA1 = ∅, then G1 = Y or H1 = Y , see the end of §1. Similarly, degY P2 = 1, and if
rA1 = ∅, then P2 = Y .
The definitions and (24) imply

(25) Pq+1 = P puq

q −
∑

(α,i1,...,iq)∈A′′
q

y′′α,i1,...,iqX
αP i1

1 · . . . · P iq
q

for every 1 ≤ q ≤ q∗y , cf. (22).

Lemma 8. (a) Suppose that q an integer, 1 ≤ q ≤ q∗y, and v = v(q), w = w(q).

Then degY Pq+1 = psv+rw .
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(b) Suppose that 1 ≤ q < q∗y , v = v(q), w = w(q), and (xii) holds true. Then

degY Gv+1 = psv+rw .
(c) Suppose that 1 ≤ q < q∗y, v = v(q), w = w(q), and (xiii) holds true. Then

degY Gv+1 = psv+rw and degY Hw+1 = psv+1+rw .
(d) Suppose that 1 ≤ q < q∗y, v = v(q), w = w(q), and (xiv) holds true. Then

degY Hw+1 = psv+rw .

Proof. This follows straightforwardly from Definition 3. �

Lemma 9. (a) ord(ry1) ≤ ord(f(0)). If, moreover, y �= 0 and f(0) = 0, then f ′(0) =
( d
dY f)(0) �= 0 and ord(ry1) ≤ ord(f ′(0)).

(b) Let q∗y ≥ 2. Then for every 1 ≤ q ≤ q∗y we have ord(ryq) ≤ ord(Δ)/2.
(c) If 1 ≤ q < q∗y , then

(26) ord(ryq) ≤ p−μq ord(Δ)/2,

where

μq = uq + uq+1 + · · ·+ uq∗y−1 = sv(q∗y−1) + rw(q∗y−1) − sv(q−1) − rw(q−1).

Inequality (26) is strict whenever q∗y ≥ 3 or rA1 �= ∅.
(d) Let q = q∗y . Then the degree of the extension of fields satisfies

[Ω0[y] : Ω0] = psv(q)+rw(q) = degY Pq∗y+1.

Proof. Assertion (a) is obvious. Assertion (c) follows from (b) with q = q∗y and Lemma 7
(a). Therefore, it suffices to prove (b) and (d) with q ≥ 2.

Suppose that q∗y ≥ 2 and 2 ≤ q ≤ q∗y + 1. Let a = sv(q−1) + rw(q−1). Then Pq =

Y pa

+
∑

0≤j<pa Pq,jY
j , where all the coefficients Pq,j lie in Ω0. Let K ′ be the maximal

weakly ramified extension of the field k((X)) contained in the field k((X))[y]. Put K =
K ′[Pq,0, . . . , Pq,pa−1]. Hence, K is a finite weakly ramified extension of the field k((X)).
Therefore, the ramification index of the extension K[y] ⊃ K is at least psv(q) and the
degree of inertia of this extension is at least prw(q) . Hence, [K[y] : K] ≥ psv(q)+rw(q) .
The extensions Ω0 ⊃ K and K[y] ⊃ K are linearly disjoint over K, because K is the
maximal weakly ramified extension of the field k((X)) contained in K[y]. Therefore,
[Ω0[y] : Ω0] = [K[y] : K]. Let b = [K[y] : K].

Let q ≤ q∗y . In this case q∗y ≥ q ≥ 2. Hence, sv(q) + rw(q) > sv(q−1) + rw(q−1). Thus,

pa < psv(q)+rw(q) and b > pa.
Let q = q∗y + 1. In this case, assuming that [Ω0[y] : Ω0] > psv(q−1)+rw(q−1) , we also get

b > pa.
It remains to show that for every 2 ≤ q ≤ q∗y + 1 the inequality b > pa implies

that ord(ryq) ≤ ord(Δ)/2. Indeed, then (a) follows immediately, and the contradiction
ord(ryq∗y+1) ≤ ord(Δ)/2 proves also (c).

Therefore, in the sequel in the proof we shall suppose that b > pa and 2 ≤ q ≤ q∗y +1.

Let σ1, . . . , σb be the family of all the embeddings of the field K[y] → k((X)) over the
field K. Consider the linear system

(27)
∑

0≤j≤b−1

σi(y)
jXj = σi(ryq), 1 ≤ i ≤ b,

for the unknowns Xi, 0 ≤ i ≤ b− 1. It is a system with square matrix. The determinant
δ of this matrix is

∏
1≤i<j≤b(σj(y)− σi(y)). Hence, ord(δ) ≤ ord(Δ)/2. By the Cramer

rule, system (27) has a unique solution Xi = δi/δ, and ord(δi) ≥ ord(ryq), 0 ≤ i ≤ b− 1.
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On the other hand, since Pq(y) = ryq and b > pa, the solution of system (27) is
Xj = Pq,j , 0 ≤ j ≤ pa − 1, Xpa = 1 and Xj = 0, pa < j ≤ b − 1. In particular, this
implies that δpa/δ = 1. Consequently,

ord(Δ)/2 ≥ ord(δ) = ord(δpa) ≥ ord(ryq).

The lemma is proved. �

Lemma 10. Let F ∈ Ω0[Y ] be the minimal polynomial of the root y with the leading
coefficient lcY F = 1. Then ord(F − Pq∗y+1) ≥ N + 1− ord(Δ)/2.

Proof. Let F − Pq∗y+1 =
∑

0≤i≤b−1 ϕiY
i where all ϕi lie in Ω0 and b = [Ω0[y] : Ω0], see

Lemma 9 (d). We use the notation of the proof of Lemma 9. Put q = q∗y + 1. Then
system (27) has the solution Xi = ϕi, 0 ≤ i ≤ b − 1, because F (y) = 0 and Pq(y) = ryq.
We have ord(δ) ≤ ord(Δ)/2 (even if q∗y = 1). By the Cramer rule, system (27) has a
unique solution Xi = δi/δ, and now ord(δi) ≥ ord(ryq) ≥ N + 1, 0 ≤ i ≤ b − 1. This
implies the required assertion. �

Let A ∈ Sy \ { rAq∗y}, see the end of §2. Then A ∈ S′
y,q for some 1 ≤ q ≤ q∗y . Hence,

the set A+ ∈ Sy,q is defined, see §2. Recall that A+ \A = A′′, where the set A′′ is given
by (17) and (18).

The mapping Sy\{ rAq∗y} → Sy\{∅}, A 
→ A+ is injective (recall here that rA0 = ∅ and,

possibly, rA1 = ∅). Hence, for every set A ∈ Sy\{∅} there is a unique set A− ∈ Sy\{ rAq∗y}
such that (A−)+ = A.

Now for every set A ∈ Sy \ {∅} we are going to define polynomials QA and PA.

Namely, there is a unique 1 ≤ q ≤ q∗y such that A ∈ Sy,q \Sy,q−1 = S′
y,q ∪{ rAq} \ { rAq−1}.

Then QA and PA are given by the formulas

QA =
∑

(α,i1,...,iv,j1,...,jw)∈A\A−

yα,i1,...,iv,j1,...,jwX
α′
G

i′1
1 · . . . ·Gi′v

v Hj1
1 · . . . ·Hjw

w ,(28)

PA = P puq

q −
∑

(α,i1,...,iv,j1,...,jw)∈A\ rAq−1

yα,i1,...,iv,j1,...,jwX
α′
G

i′1
1 · . . . ·Gi′v

v Hj1
1 · . . . ·Hjw

w(29)

where v = v(q), w = w(q) and (see the beginning of this section for the definition of ιn,m
and αn)

(30) i′m = im −
∑

ρ(m)≤n≤w

jnιn,m, 1 ≤ m ≤ v, α′ = α−
∑

1≤n≤w

jnαn.

Hence, also

(31) PA = P puq

q −
∑

{A′∈Sy,q\Sy,q−1 :A′⊂A}
QA′ ,

and if A+ ∈ Sy,q \ Sy,q−1, then PA+
= PA −QA+

.

Let A ∈ S′
q∪{ rAq}. Then we set Pq,A = PA if A �= rAq−1 and Pq,A = P puq

q if A = rAq−1.
Put P∅ = Y , Q∅ = 0. Now the polynomials PA, QA are defined for all A ∈ Sy.

The definitions imply that ryA = PA(y) for every A ∈ Sy and ryq,A = Pq,A(y) for every

A ∈ S′
q ∪ { rAq} and every 1 ≤ q ≤ q∗y .

Notice that if the polynomial QA (respectively, PA), G1, . . . , Gv, H1, . . . , Hw, and all
integers ιu,m, αu are known, then we can find all the coefficients yβ,i1,...,iv ,j1,...,jw on the
right-hand side of (28) (respectively, (29)) with the help of Lemma 13, see below, and
solving a linear system over the field k′′(X1/ν).
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Lemma 11. Let A ∈ S′
q ∪ { rAq}, 1 ≤ q ≤ q∗y . Let 1 ≤ ν ≤ d be the smallest integer

and k′′ ⊂ ks the smallest finite extension of k such that all the polynomials Pq,A, G1,

. . . , Gv, H1, . . . , Hwbelong to k′′((X1/ν))[Y ]. Then all these polynomials belong to the ring
k′′[X1/ν , Y ]. Therefore, all the polynomials P1, . . . , Pq belong to the ring k′′[X1/ν , Y ].

Proof. This follows from Lemma 7 immediately. �

Lemma 12. (a) For every 1 ≤ q ≤ q∗y , we have degX Pq ≤ psv(q−1)+rw(q−1) ord(Δ)/2.
(b) If q = q∗y + 1, then

degX Pq ≤ N + 1 + (psv(q−1)+rw(q−1) − 1) ord(Δ)/2.

Proof. We shall use induction on q and (22), (25). If q = 1, then degX Pq = 0 and the
claim is trivial. If q = 2, then everything follows from Lemma 9 with q = 2 and (22),
(25) with q = 1.

Assume that q ≥ 3 and the lemma is proved for q − 1. Consider identity (25) with
q−1 in place of q. Then 0 ≤ α by Lemma 7 (b) and α ≤ ord(Δ)/2 by Lemma 9 for every
(α, i1, . . . , iq−1) ∈ A′′

q−1. Recall that 0 ≤ im ≤ pum −1 for every 1 ≤ m ≤ q−1 and every
(α, i1, . . . , iq−1) ∈ A′′

q−1. Write α′ = α− ord(Δ)/2. Now by the inductive assumption for
every (α, i1, . . . , iq−1) ∈ A′′

q−1 we have

degX(XαP i2
2 · . . . · P iq−1

q−1 ) = α+
∑

2≤m≤q−1

im degX Pm

≤ α′ + ord(Δ)/2 +
∑

2≤m≤q−1

(pum − 1)psv(m−1)+rw(m−1) ord(Δ)/2

= α′ +
(
psv(1)+rw(1) +

∑
2≤m≤q−1

(psv(m)+rw(m) − psv(m−1)+rw(m−1))
)
ord(Δ)/2

= α′ + psv(q−1)+rw(q−1) ord(Δ)/2.

Notice that α′ ≤ 0 if 3 ≤ q ≤ q∗y and α′ ≤ N + 1− ord(Δ)/2 if q = q∗y + 1. Similarly, the
inductive assumption implies

degX(P puq−1

q−1 ) ≤ psv(q−1)+rw(q−1) ord(Δ)/2,

and the required assertions follow. The lemma is proved. �

Lemma 13. Let 1 ≤ q ≤ q∗y be an integer, and let v = v(q), w = w(q). Let A ∈
S′
y,q ∪ { rAq}, see the end of §2. Let k′′ ⊂ ks be the least finite extension of the field k and

ν ≥ 1, GCD(ν, p) = 1, the smallest integer such that all the polynomials Pq,A, G1, . . . ,

Gv, H1, . . . , Hw lie in k′′[X1/ν , Y ], see Lemma 11. Then for every integer b ≥ 0 the
family

Gi1
1 Gi2

2 · . . . ·Giv
v Hj1

1 Hj2
2 · . . . ·Hjw

w P a
q,A,

0 ≤ im < psm−sm−1 , 1 ≤ m ≤ v; 0 ≤ jm < prm−rm−1 , 1 ≤ m ≤ w;

0 ≤ a ≤ b/psv+rw , a ∈ Z,

(32)

is a basis of the k′′[X1/ν ]-module of polynomials ψ ∈ k′′[X1/ν , Y ] of degree degY ψ ≤ b
(this module is free over k′′[X1/ν ]). Moreover, for every integer 0 ≤ b′ ≤ b there is a
unique element of the family (32) such that

b′ = a degY Pq,A +
∑

1≤m≤v

im degY Gm +
∑

1≤m≤w

jm degY Hm.
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Proof. The leading coefficient with respect to Y of each polynomial in the family (32) is
equal to 1. Hence, it suffices to prove the last assertion of the lemma. Moreover, let Aq

denote the following assertion. For every integer 0 ≤ b′ < psv(q)+rw(q) there is a unique
element of the family (32) with a = 0 such that

b′ =
∑

1≤m≤v

im degY Gm +
∑

1≤m≤w

jm degY Hm.

Obviously, the last assertion of the lemma is equivalent to Aq. We shall prove Aq using
induction on q. The base q = 1 is obvious. Note also that the uniqueness of the required
element in Aq follows automatically from its existence, because the number of elements
of the family (32) with a = 0 is equal to psv(q)+rw(q) .

Assume that q ≥ 2 and assertion Aq−1 is proved. We prove Aq. Observe that now
one of conditions (xii)q−1, (xiii)q−1, and (xiv)q−1 is fulfilled. Suppose that condition
(xii)q−1 is fulfilled. Then v(q) = v(q − 1) + 1, w(q) = w(q − 1), uq = psv(q)−sv(q−1) , and
by Lemma 8 we have degY Gv(q) = psv(q−1)+rw(q−1) . Now it suffices to prove the following
claim. Assume that

(33) 0 ≤ λ(psv(q−1)+rw(q−1)) < psv(q)+rw(q)

for an integer λ. Then there is an integer 0 ≤ i < psv(q)−sv(q−1) such that

λ(psv(q−1)+rw(q−1)) = i degGv(q).

But this follows immediately from the relations uq = psv(q)−sv(q−1) and degY Gv(q) =

psv(q−1)+rw(q−1) .
Suppose that condition (xiii)q−1 is fulfilled. Hence, v(q) = v(q − 1) + 1, w(q) =

w(q − 1) + 1, and by Lemma 8 we have degY Gv(q) = psv(q−1)+rw(q−1) and degY Hw(q) =

psv(q)+rw(q−1) . Now it suffices to prove the following claim. Under condition (33), there are
integers 0 ≤ i < psv(q)−sv(q−1) and 0 ≤ j < prw(q)−rw(q−1) such that λ(psv(q−1)+rw(q−1)) =
i degY Gv(q) + j degY Hv(q). Again, this is straightforward.

Finally, suppose that condition (xiv)q−1 is fulfilled. Hence, v(q) = v(q − 1), w(q) =
w(q−1)+1, uq = prw(q)−rw(q−1) , and by Lemma 8 we have degY Hw(q) = psv(q−1)+rw(q−1) .
Now it suffices to prove the following claim. Under condition (33), there is an inte-
ger 0 ≤ j < prw(q)−rw(q−1) such that λ(psv(q−1)+rw(q−1)) = j degY Hv(q). Again, this is
straightforward. The lemma is proved. �

Under the conditions of Lemma 11, we are going to describe the ideal of relations be-
tween G1, . . . , Gv, H1, . . . , Hw and Pq,A. Let Z1, . . . , Zv, Y1, . . . , Yw, Z be new variables,

where v = v(q), w = w(q). Then the ring R = k′′[X1/ν ][Z1, . . . , Zv, Y1, . . . , Yw, Z] is
defined. We introduce the k′′[X1/ν ]-algebra R/Jq, where Jq is an ideal of R. We shall
describe the generators of Jq. We put Xm+1 = Zv(m+1) if and only if condition (xii)m
or condition (xiii)m is fulfilled and 1 ≤ m ≤ q − 1. Put Xm+1 = Yw(m+1) if and only if
condition (xiv)m is fulfilled and 1 ≤ m ≤ q − 1. Let Jxiii denote the set of all 2 ≤ m ≤ q
such that condition (xiii)m−1 is fulfilled. Then the ideal Jq has the following family of
generators:

∑
(α,i1,...,iv(m),

j1,...,jw(m))∈A′
m

yα,i1,...,iv(m),j1,...,jw(m)
XαZi1

1 · . . . · Ziv(m)

v(m) · Y j1
1 · . . . · Y jw(m)

w(m) +Xm+1−Xpum

m ,

2 ≤ m ≤ q − 1,
(34)

Yw(m) − Zp
sv(m)−sv(m−1)

v(m) , m ∈ Jxiii,(35)
∑

(α,i1,...,iv ,j1,...,jw)∈A\ rAq−1

yα,i1,...,iv ,j1,...,jwX
α′
Z

i′1
1 · . . . · Zi′v

v · Y j1
1 · . . . · Y jw

w + Z −Xpuq

q .(36)
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where α′, i′1, . . . , i
′
v are defined by (30).

Corollary 2. Under the previous conditions, there is an isomorphism of k′′[X1/ν ]-alge-
bras

(37) k′′[X1/ν ][Z1, . . . , Zv, Y1, . . . , Yw, Z]/Jq → k′′[X1/ν , Y ]

induced by the the homomorphism of rings of polynomials

R → k′′[X1/ν , Y ], Zi 
→ Gi, 1 ≤ i ≤ v, Yj 
→ Hj , 1 ≤ j ≤ w, Z 
→ Pq,A.

Proof. This is straightforward. �

§4. Trees corresponding to expansions of roots of the polynomial f

Put q∗ = max{q∗y : y is a root of f}. Recall that the sets of multiindices Sy,q, Sy and,
for every A ∈ Sy, the integers sA and rA were defined at the end of §2. Put

Sy,A =
{
A′ ∈ Sy : A′ ⊂ A

}
for every A ∈ Sy,

Vy,A =
{
(A′, Q, a) : A′ ∈ Sy,A & Q = QA′ & a = sA′ + rA′ ,

}
for every A ∈ Sy,

where QA′ , sA′ , rA′ correspond to the root y in accordance with our construction. Notice
that Sy,A is a linearly ordered set with respect to the inclusion of sets. Namely, for
arbitrary A′, A′′ ∈ Sy,A we put A′ ≤ A′′ if and only if A′ ⊂ A′′. The element A is
maximal in Sy,A with respect to this order.

Similarly Vy,A is a linearly ordered set. Namely, for arbitrary (A′, Q, a), (A′′, Q′, a′) ∈
Vy,A we put (A′, Q, a) ≤ (A′′, Q′, a′) if and only if A′ ⊂ A′′. The element (A,QA, a) ∈
Vy,A is maximal in Vy,A with respect to this order.

Set

Ty,q = {Vy,A : A ∈ Sy,q}, 1 ≤ q ≤ q∗y ,

Ty = {Vy,A : A ∈ Sy},

Tq =
⋃

y is a root of f

Ty,min{q∗y ,q}, 1 ≤ q ≤ q∗,

T =
⋃

y is a root of f

Ty.

Observe that if A ∈ Sy,q, then SA ⊂ Sy,q. Hence,

Ty =
⋃

1≤q≤q∗y

Ty,q and T =
⋃

1≤q≤q∗

Tq.

We shall view each Tq, 1 ≤ q ≤ q∗, and, respectively, T as the set of vertices of a tree.
Namely, if τ1, τ2 ∈ Tq (respectively, τ1, τ2 ∈ T ), then τ2 is a son of τ1 if and only if the
number of elements #(τ2 \ τ1) is equal to 1, i.e., if and only if the difference τ2 \ τ1 is a
singleton.

Thus, par abuse de langage, in what follows we shall call each Tq (respectively, T ) a
tree. More generally, we shall identify other trees with the sets of their vertices if this
will not lead to ambiguity.

The root τ0 of each tree Tq and T is equal to {(∅, 0, 0)} (recall that rA0 = ∅ and,

possibly, rA1 = ∅ for every root y of the polynomial f).
Denote by L(T ) the set of all leaves of the tree T .
In the next lemma we prove auxiliary assertions. In fact, they are straightforward,

and the reader may skip the detailed proof of this lemma.
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Lemma 14. (a) Let τ ∈ T , τ �= τ0, so that τ = Vy,A, where A ∈ Sy,q \ Sy,q−1 for some
root y of the polynomial f and an integer 1 ≤ q ≤ q∗y.

We claim that the following objects depend only on τ and do not depend on the choice
of the root y and the set A. These are the sets A, Sy,A, the integers q and

v(1), . . . , v(q), w(1), . . . , w(q), s1, . . . , sv(q), r1, . . . , rw(q),

the polynomials

P1, . . . , Pq, G1, . . . , Gv(q), H1, . . . , Hw(q), QA′ , A′ ∈ Sy,A,

the rational numbers

ord(Pm(y)), 1 ≤ m ≤ q, ord(QA′(y)), A′ ∈ Sy,A,

ord(gm), 1 ≤ m ≤ v(q), ord(hm), 1 ≤ m ≤ w(q),

the elements

(αm, im,1, . . . , im,m−1), 1 ≤ m ≤ v(q),(38)

(βm, ιm,1, . . . , ιm,ρ′(q)), 1 ≤ m ≤ w(q),(39)

the families of coefficients

yα,i1,...,iv(q),j1,...,jw(m)
, (α, i1, . . . , iv(q), j1, . . . , jw(m)) ∈ A \ rAq−1,(40)

yα,i1,...,iv(m),j1,...,jw(m)
, (α, i1, . . . , iv(m), j1, . . . , jw(m)) ∈ Am,

1 ≤ m ≤ q − 1,
(41)

yα,i1,...,iv(m),j1,...,jw(m)
, (α, i1, . . . , iv(m), j1, . . . , jw(m)) ∈ A′ \ (A′)−,

A′ ⊂ A, A′ ∈ Sy,m \ Sy,m−1, 1 ≤ m ≤ q,
(42)

and the residues

(43) sξ1, . . . , sξv(q), sη1, . . . , sηw(q).

Moreover, the residues (43) are given by the corresponding recursive relations (7) and
(8), and these relations depend only on τ and do not depend on the choice of the root y
and the set A.

(b) An element τ ∈ T is a leaf of the tree T if and only if we have A = rAq ∈ Sy and
q = q∗y for some choice of the root (y,A) corresponding to τ (see the beginning of the
statement of the lemma). If τ is a leaf of the tree T , then the above relations are fulfilled
also for any other similar choice of these elements. In this case, the polynomial Pq∗y+1 is

defined. Again, it does not depend on the choice of (y,A).

Proof. We prove (a). We have the natural mapping π : τ → π(τ ), (A′, P, a) 
→ A′.
Therefore, the set Sy,A = π(τ ) does not depend on the choice of (y,A). The set A is
a maximal element of Sy,A with respect to inclusion of sets, see above, and hence A
depends only on τ and does not depend on the choice of (y,A).

For every A′ ∈ Sy,A and every x ∈ A′ the element x belongs to Q′ × Zm−1 for an
integer m ≥ 1. Put σ′(x) = m. Set σ(A′) = max({σ′(x) : x ∈ A′} ∪ {0}). In accordance
with our construction and the definitions, the number of elements #σ(Sy,A) is equal to

q + 1 if and only if rA1 �= ∅. Otherwise, #σ(Sy,A) = q. Notice that rA1 �= ∅ if and only
if (∅, Q, 0) ∈ τ for some nonzero Q. Therefore, q depends only on τ .

Let σ(Sy,A) = {σ0, σ1 . . . , σq}, where 0 = σ0 ≤ σ1 < σ2 < · · · < σq (σ0 = σ1 if

#σ(Sy,A) = q). Then rAm, 0 ≤ m ≤ q − 1, is the maximal element (with respect to

inclusion) of the set {A′ ∈ Sy,A : σ(A′) = m}. Hence, each set rAm, 0 ≤ m ≤ q− 1, does
not depend on the choice of (y,A).
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Using induction on q, we may assume that assertion (a) of the lemma holds true for
q − 1 in place of q or q = 1 (q = 1 is the base of induction). Now, if q ≥ 2, we can

apply the inductive assumption to the set rAq−1, which does not depend on the choice of
(y,A). Therefore, the set Sy, rAq−1

= Sy,q−1 does not depend on the choice of (y,A). If

q ≥ 3, then, similarly, the set Sy, rAq−2
= Sy,q−2 does not depend on the choice of (y,A).

If q = 2, the set Sy,q−2 = {∅} also does not depend on the choice of (y,A).
We have P1 = Y . Let uq−1 = sv(q−1) − sv(q−2) + rw(q−1) − rw(q−2), 2 ≤ q ≤ q∗y . Then

Pq = P puq−1

q−1 −
∑

A′∈Sy,q−1\Sy,q−2

QA′ , 2 ≤ q ≤ q∗y ,

see (31) with A = rAq−1. Hence, by the inductive assumption, the polynomial Pq does
not depend on the choice of (y,A).

Let q1 be an integer such that 2 ≤ q1 ≤ q or 1 ≤ q1 ≤ q and rA1 �= ∅. Then by the

conditions of the lemma we have A ⊃ ( rAq1−1)+ � rAq1−1. Hence, the element ( rAq1−1)+
is minimal in Sy,A \Sy,q1−1, and therefore, it depends only on τ and does not depend on
the choice of (y,A).

Let (α, i1, . . . , iv, j1, . . . , jw) ∈ ( rAq1−1)+ \ rAq1−1. Notice here that if v = v(q) >

v(q − 1), then iv = 0 because ord(P puq1

q1 (y)) ∈ (1/psv(q1−1))Q′, see (23) and the end of

§1. Next, sv(q1) + rw(q1) = sA′ + rA′ , where A′ = rAq1 if q1 < q and A′ = A if q1 = q.
Therefore, sv(q1) + rw(q1) does not depend on the choice of (y,A). Consequently, uq does
not depend on the choice of (y,A). Now, see the end of §2, by Lemma 5 (b) we have

ord(P puq1

q1 (y)) = α+
∑

1≤m≤v(q1−1)

im ord(gm),

which does not depend on on the choice of (y,A) by the inductive assumption. Therefore,
ord(Pq1(y)) does not depend on on the choice of (y,A).

We show that also ord(P1(y)) does not depend on on the choice of (y,A). Indeed, it

suffices to consider the case where rA1 = ∅. Then q ≥ 2, P1 = Y , and P2 = Y pu1
= Y ,

ord(P1(y)) does not depend on the choice of (y,A).
On the other hand, our construction shows that

ord(P puq

q (y)) ∈ p−sv(q−1)+rw(q)−rw(q−1)Q′,

ord(P puq

q (y)) �∈ p−sv(q−1)+rw(q)−rw(q−1)+1Q′.

Therefore, using the inductive assumption, we see that rw(q) does not depend on the
choice of (y,A). Hence, also sv(q) does not depend on the choice of (y,A).

Now we use the definitions to prove that ord(gm), 1 ≤ m ≤ v(q), and ord(hm),
1 ≤ m ≤ w(q), do not depend on the choice of (y,A). By the construction described in
§1 and §2 this implies that the elements (38), (39) do not depend on the choice of (y,A).

To obtain relations (7) and (8), we use the polynomials Q( rAm)+
, 1 ≤ m ≤ q − 1. By

the recursive assumption, relations (7) and (8) with (v(m), w(m)), 1 ≤ m ≤ q − 2, in
place of (v, w) depend only on τ and do not depend on the choice of (y,A).

It remains to consider the case where m = q − 1. The definitions imply that

Q( rAq−1)+
(y) =

∑

(γ,i1,...,iv ,j1,...,jw)∈( rAq−1)+\ rAq−1

yγ,i1,...,iv,j1,...,jwX
γgi11 · . . . · givv ξj11 · . . . · ξjww .

We have ord(P puq

q (y)−Q( rAq−1)+
(y)) > ord(P puq

q (y)) and

ord(P puq

q (y)) = γ + i1 ord(g1) + · · ·+ iv ord(gv)

for every (γ, i1, . . . , iv, j1, . . . , jw) ∈ ( rAq−1)+ \ rAq−1.
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We put (δ, n1, . . . , nv) = (αv, iv,1, . . . , iv,v−1, 0) whenewer (xii)q−1 or (xiii)q−1 is true

and (δ, n1, . . . , nv) = (βw, iw,1, . . . , iw,v) if (xiv)q−1 is true. Then

(44) P puq

q (y)/(Xδgn1
1 · . . . · gnv

v )p
rw(q)−rw(q−1)

is equal to ξp
rw(q)−rw(q−1)

v if (xii)q−1 or (xiii)q−1 occur or is equal to ηp
rw(q)−rw(q−1)

w if

(xiii)q−1 or (xiv)q−1 is true.

Let a = ord(P puq

q (y)) and assume (11).
Suppose that (xii)q−1 is true. Then (v(q− 1), w(q− 1)) = (v− 1, w), a ∈ (1/psv−1)Q′,

rw(q) = rw(q−1), and (α, ι1, . . . , ιv) = (δ, n1, . . . , nv). By Lemma 6 (b), the basis sBa,v,w

contains sBa,v−1,w, whence sBa,v,w = sBa,v−1,w. Consider relations (7), (8) for (v(q′),
w(q′)), 1 ≤ q′ ≤ q − 2, in place of (v, w). By the recursive assumption, these relations
depend only on τ and do not depend on the choice of (y,A). The elements of the basis
sBa,v−1,w can be written as linear combinations of the elements of the standard basis (9)
with m = w. By Remark 2, this representation depends only on τ and does not depend
on the choice of (y,A).

On the other hand, by Lemma 5 (b), the family of coefficients of the residue of the
element (44) in the basis sBa,v−1,w is precisely

yγ,i1,...,iv ,j1,...,jw , (γ, i1, . . . , iv, j1, . . . , jw) ∈ ( rAq−1)+ \ rAq−1.

Thus, the coefficients of the representation of the residue of ξp
rw(q)−rw(q−1)

v as a linear
combination of elements of the basis sBa,v−1,w depend only on τ and do not depend on
the choice of (y,A). Hence, the same is true for the standard basis (9) with m = w (in
place of sBa,v−1,w). Consequently, relation (7) with (v(q− 1), w(q− 1)) in place of (v, w)
depends only on τ and does not depend on the choice of (y,A) whenever (xii)q−1 is true.

Assume that (xiii)q−1 is true. Then (v(q − 1), w(q − 1)) = (v − 1, w − 1) and a ∈
(1/psv−1)Q′. By Lemma 6 (b), the basis sBa,v,w contains sBa,v−1,w−1. As in the case
where (xii)q−1 is true, we can prove that the coefficients of the representation of the

residue of P puq

q (y)/(Xαgι11 · . . . · gιvv ) as a linear combination of elements of the basis
sBa,v−1,w−1 depend only on τ and do not depend on the choice of (y,A). Hence, the same
is true for the standard basis (9) with m = w − 1 (in place of sBa,v−1,w−1).

We have ord((Xαgι11 · . . . · gιvv )/(Xδgn1
1 · . . . · gnv

v )p
rw(q)−rw(q−1)

) = 0 (and now ιv =
nv = 0). Applying the recursive assumption, Lemma 2, and Remark 2, we can represent

the residue of the element (Xαgι11 · . . . · gιvv )/(Xδgn1
1 · . . . · gnv

v )p
rw(q)−rw(q−1)

as a linear
combination of elements of the standard basis (9) with m = w − 1 and prove that the
coefficients from ks in this representation depend only on τ and do not depend on the
choice of (y,A). Thus, relations (7) and (8) with (v(q − 1), w(q − 1)) in place of (v, w)
depend only on the choice of τ and do not depend on (y,A) whenever (xiii)q−1 is true.

Assume that (xiv)q−1 is true. Then (v(q−1), w(q−1)) = (v, w−1) and a ∈ (1/psv)Q′.

By Lemma 6 (b), the basis sBa,v,w contains sBa,v,w−1. As in the case where (xiii)q−1 is true,

we can prove that the coefficients of the representation of the residue of P puq

q (y)/(Xαgι11 ·
. . . · gιvv ) as a linear combination of elements of the basis sBa,v,w−1 depend only on τ and
do not depend on the choice of (y,A). Hence, the same is true for the standard basis (9)
with m = w − 1 (in place of sBa,v,w−1).

Like in the case where (xiii)q−1 is true, we can represent the residue of the element

(Xαgι11 · . . . · gιvv )/(Xδgn1
1 · . . . · gnv

v )p
rw(q)−rw(q−1)

as a linear combination of elements
of the standard basis (9) with m = w and prove that the coefficients from ks in this
representation depend only on τ and do not depend on the choice of (y,A). Thus,
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relation (8) with (v(q − 1), w(q − 1)) in place of (v, w) depends only on τ and does not
depend on the choice of (y,A) if (xiii)q−1 occurs. This proves assertion (a).

Assertion (b) is proved similarly. The lemma is proved. �

Remark 3. Under the conditions of Lemma 14, if q < q∗, then some sons of τ in the tree

T may belong to Tq and other sons to Tq+1 \Tq. Hence, in general, the property A = rAq

depends on the choice of the root y of the polynomial f .

§5. Generalization of the Newton broken lines method

Now we assume that f ∈ k[X,Y ] is a polynomial with leading coefficient lcY (f) = 1
and that f is separable as an element of k(X)[Y ].

In this section our aim is to make the construction described in §1 fully algorithmic.
Now we are going to construct the expansions introduced in §1 for all roots of the
polynomial f . Therefore, we modify the description of this construction making some
supplements to it. Our algorithm is recursive on the tree T . We shall say that the step of
recursion corresponds to the tree T if and only if the tree T is given at the beginning (or
the input) of that step. Here T is a subtree of the tree T , see §4. The base of recursion
is the tree consisting of one vertex: the root τ0 of the tree T . Recall that this root is
equal to the singleton {(∅, 0, 0)}. We shall suppose that the set of leaves L(T ) is linearly
ordered. Let 1 ≤ q ≤ q∗ be the smallest integer such that L(T )∩Tq \L(T ) �= ∅ (here we
identify the tree Tq with the set of its vertices). Then we have an induced linear order on
the set L(T )∩Tq\L(T ). We find the least element τ ∈ L(T )∩Tq\L(T ), and construct all
its sons τj , j ∈ Jτ , in the tree T by using a generalization of the method of the Newton
broken lines, see below. Thus, we obtain the new tree T+ = T ∪ {τj : j ∈ Jτ}. Then we
introduce a linear order on the set {τj : j ∈ Jτ} and assume that

• τj < τ ′ for every τ ′ ∈ L(T ) \ {τ};
• for all j1, j2 ∈ Jτ , if τj1 ∈ Tq and τj2 ∈ Tq+1 \ Tq, then τj1 < τj2 .

This gives a linear order on the set

L(T ) ∪ {τj : j ∈ Jτ} \ {τ} = L(T+).

After that, if T+ �= T we replace T by T+ and proceed to the next step of recursion.
At the step of recursion corresponding to the tree T , the following objects are known

(i.e., were computed at the preceding steps):

(xix) the tree T itself with the linear order on the set its leaves L(T );
(xx) for every leaf τ ∈ L(T ), all the objects occurring in Lemma 14 that depend only

on τ and do not depend on the choice of (y,A).

Before describing the recursion step that corresponds to the tree T , we give some
definitions. Let τ = Vy,A for some root y of the polynomial f , and let A ∈ Sy,q \ Sy,q−1

for some 0 ≤ q ≤ q∗y . Let v = v(q), w = w(q). The objects defined below will depend on
τ .

Let ψ =
∑

1≤i≤d ψiY
i ∈ Ω0[Y ] be an arbitrary polynomial such that

ψ =
∑

1≤i≤degψ

ψiY
i, ψi ∈ Ω0,

and degY ψ = d. Recall that ord(ψ) = min{ord(ψi), 0 ≤ i ≤ d}.



848 A. L. CHISTOV

Let ν ≥ 1 be the smallest integer such that all the polynomials ψ, PA, G1, . . . ,
Gv, H1, . . . , Hw belong to ks((X

1/ν))[Y ]. Then Lemma 13 allows us to represent

(45) ψ =
∑

(i1,...,iv)∈Iv ,
(j1,...,jw)∈Jw,

0≤a≤dp−sv−rw , a∈Z,
ord(ψ)≤α∈(1/ν)Z

ψα,i1,...,iv,j1,...,jw,aX
αGi1

1 · . . . ·Giv
v Hj1

1 · . . . ·Hjw
w P a

A,

where all ψα,i1,...,iv ,j1,...,jw,a belong to ks. Denote by Iτ (ψ) the set of all collections
(α, i1, . . . , iv, j1, . . . , jw, a) such that (i1, . . . , iv) ∈ Iv, (j1, . . . , jw) ∈ Jw, 0 ≤ a ≤
dp−sv−rw , a ∈ Z, ord(ψ) ≤ α ∈ (1/ν)Z, and ψα,i1,...,iv ,j1,...,jw,a �= 0. Then we can
replace the summation conditions in (45) by

∑
(α,i1,...,iv ,j1,...,jw,a)∈Iτ (ψ).

In what follows we shall assume that ord(ψ) = 0 and lcY ψ = ψd = 1.
For every 0 ≤ a ≤ d we introduce the set

Pτ,a(ψ) =
{
ord(Xαgi11 · . . . · givv hj1

1 · . . . · hjw
w ) : (α, i1, . . . , iv, j1, . . . , jw, a) ∈ Iτ (ψ)

}
.

Notice that Pτ,a(ψ) ⊂ (1/psv)Q′.
For every b ∈ Pτ,a(ψ) we introduce the element

(46) ψb,a =
∑

(α,i1,...,iv,j1,...,jw,a)∈Iτ (ψ),

ord(Xαg
i1
1 · ... ·giv

v h
j1
1 · ... ·hjw

w )=b

ψα,i1,...,iv ,j1,...,jw,aX
αgi11 · . . . · givv hj1

1 · . . . · hjw
w .

We have ord(ψb,a) = b (this can easily be deduced from Lemma 5). Set Pτ (ψ) = {(b, a) :
0 ≤ a ≤ d & b ∈ Pτ,a(ψ)}. Put

ψτ =
∑

(b,a)∈Pτ (ψ)

ψb,aZ
a.

Let γ, δ be integers, γ > 0, δ ≥ 0. Put

Pτ (ψ, γ, δ) =
{
(b, a) ∈ Pτ (ψ) : ∀(b1, a1) ∈ Pτ (ψ)(γb1 + δa1 ≥ γb+ δa)

}
,

ψτ (γ, δ) =
∑

(b,a)∈Pτ (ψ,γ,δ)

ψb,aZ
a.

Set d(γ, δ) = max{a : ∃(b, a) ∈ Pτ (ψ, γ, δ)}. Then degZ ψτ (γ, δ) = d(γ, δ).
Assume additionally that δ/γ ∈ (1/ps)Q′, where the integer s ≥ sv is the smallest

possible and v = v(q). We shall write s = s(γ, δ). Now we are going to define the
polynomials

ψ

τ (γ, δ), ψ

∗
τ (γ, δ) ∈ ks[sη1, . . . , sηw][Z],

where w = w(q). Let a0 ∈ Z be such that Za0 divides the polynomial ψτ (γ, δ) but Z
a0+1

does not divide ψτ (γ, δ). Notice that the constant c = b + (δ/γ)(a − a0) ∈ (1/ps)Q′

is the same for all (b, a) ∈ Pτ (ψ, γ, δ). In particular, taking a − a0 = 0, we see that
c ∈ (1/psv)Q′. Therefore, ps−sv divides a − a0 for every a such that there exists b with
(b, a) ∈ Pτ (ψ, γ, δ).

There are unique ε ∈ Q′ and (d1, . . . , dv) ∈ Iv such that

(47) ord(Xεgd1
1 · . . . · gdv

v ) = ps−svδ/γ.

Next, there are unique ε′ ∈ Q′ and (d′1, . . . , d
′
v) ∈ Iv such that

ord(Xε′g
d′
1

1 · . . . · gd
′
v

v ) = c.

For every integer a such that (b, aps−sv + a0) ∈ Pτ (ψ, γ, δ) for some b, put

ϕa = ψb,aps−sv+a0
·
(
Xεgd1

1 · . . . · gdv
v

)a
/
(
Xε′g

d′
1

1 · . . . · gd
′
v

v

)
.

Now, ord(ϕa) = 0 for such a. Hence, the residue sϕa of the element ϕa is well defined.
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Lemma 15. The residue sϕa depends only on ψ, a, γ, δ, and τ , but does not depend on
the choice of (y,A)

Proof. Set

bα,i1,...,iv ,j1,...,jw,a = ψα,i1,...,iv ,j1,...,jw,aps−sv+a0
Xαgi11 · . . . · givv hj1

1 · . . . · hjw
w

for every summand on the right-hand side of identity (46) with aps−sv + a0 in place of
a. It suffices to show that for every such summand bα,i1,...,iv ,j1,...,jw,a the residue of the
element

(48) bα,i1,...,iv ,j1,...,jw,a ·
(
Xεgd1

1 · . . . · gdv
v

)aps−sv+a0
/
(
Xε′g

d′
1

1 · . . . · gd
′
v

v

)

depends only on ψ, α, i1, . . . , iv, j1, . . . , jw, a, γ, δ, and τ and does not depend on the
choice of (y,A). By Corollary 1, the element (48) can be represented in the form

ψα,i1,...,iv ,j1,...,jw,aps−sv+a0
ξa1
1 · . . . · ξav

v ηj11 · . . . · ηjww
with some integers a1, . . . , av. These integers depend only on i1, . . . , iv, j1, . . . , jw, a,
γ, δ, and τ by Corollary 1 and Lemma 14. Hence, sξa1

1 , . . . , sξav
v , sηj11 , . . . , sηjww depend

only on i1, . . . , iv, j1, . . . , jw, a, γ, δ, and τ and do not depend on the choice of (y,A) by
Lemma 14. The lemma is proved. �

By definition, we put

ψ

τ (γ, δ) =

∑
{a :∃b (b,aps−sv+a0)∈Pτ (ψ,γ,δ)}

sϕaZ
a,

ψ∗
τ (γ, δ) = Za0ψ


τ (γ, δ)(Z
ps−sv

).

Then ψ∗
τ (γ, δ)/Z

a0 is a polynomial in Zps−sv
. We have degZ ψ∗

τ (γ, δ) = d(γ, δ). By
Lemma 15, the polynomials ψ


τ (γ, δ) and ψ∗
τ (γ, δ) depend only on ψ, δ, γ, and τ and do

not depend on the choice of (y,A)
The set of vertices Vτ (ψ) of the generalized Newton broken line of the polynomial ψ

is defined by the formula

Vτ (ψ) =
{
(b, a) ∈ Pτ (ψ) : ∃(γ, δ) ∈ Z2(γ > 0 & δ ≥ 0 & Pτ (ψ, γ, δ) = {(b, a)})

}
.

In other words, (b, a) is a vertex of the generalized Newton broken line of ψ if and only
if it is the element of the singleton Pτ (ψ, γ, δ) for some integers γ > 0 and δ ≥ 0.

The set of edges Eτ (ψ) of the generalized Newton broken line of the polynomial ψ (or
simply the generalized Newton broken line of the polynomial ψ) is defined by the formula

Eτ (ψ) =
{
((b1, a1), (b2, a2)) ∈ Vτ (ψ)

2 :

∃(γ, δ) ∈ Z2(γ > 0 & δ ≥ 0 & Pτ (ψ, γ, δ) ⊃ {(b1, a1), (b2, a2)} & a1 > a2)
}
.

It should be emphasized that here Eτ (ψ) is a generalized Newton broken line corre-
sponding to τ . Sometimes we shall omit the word “generalized” if this does not lead to
ambiguity.

If e = ((b1, a1), (b2, a2)) ∈ Eτ (ψ), then, by definition, ψ∗
τ,e = ψ∗

τ (γ, δ) and ψ

τ,e =

ψ

τ (γ, δ), where {(b1, a1), (b2, a2)} ⊂ Pτ (ψ, γ, δ). In this case the slope λ(e) of the edge e

is defined by the formula λ(e) = δ/γ = (b1−b2)/(a1−a2). For every e ∈ Eτ (ψ) we define
integers γ(e) > 0 and δ(e) ≥ 0 such that δ(e)/γ(e) = λ(e) and GCD(γ(e), δ(e)) = 1. Put
s(e) = s(γ(e), δ(e)).

If e ∈ Vτ (ψ), then by definition ψ∗
τ,e = ψ∗

τ (γ, δ) and ψ

τ,e = ψ


τ (γ, δ), where {e} =
Pτ (ψ, γ, δ).
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Now we proceed to the description of the recursion step corresponding to the tree T .
Let us find the minimal element τ ∈ L(T ) ∩ Tq \ L(T ). Here 1 ≤ q ≤ q∗ is the smallest
integer such that L(T ) ∩ Tq \ L(T ) �= ∅, see the beginning of the section.

Let τ = Vy,A for a root y of the polynomial f and a set A belonging to Sy,q \ Sy,q−1,
0 ≤ q ≤ q∗y . In what follows we consider objects occurring in Lemma 14 (they depend
only on τ ).

Let ν ≥ 1 be the smallest integer and k′′ the least separable extension of the field k
such that all the polynomials PA, G1, . . . , Gv, H1, . . . , Hw lie in k′′((X1/ν))[Y ].

Notice that the set Iτ (f) is finite by Lemma 12 and Lemma 13 because f ∈ k[X,Y ].
Applying Lemma 13 and solving a linear system over the field k′′(X1/ν), we construct
the set Iτ (f) and the family of coefficients

(49) {fα,i1,...,iv ,j1,...,jw,a}(α,i1,...,iv ,j1,...,jw,a)∈Iτ (f).

In accordance with the definitions given, to find Eτ (f) it suffices to know ord(gm) and
ord(hn) for all 1 ≤ m ≤ v, 1 ≤ n ≤ w, and these numbers are known by the recursive
assumption. Let us construct the Newton broken line Eτ (f) of the polynomial f . Obvi-
ously λ(e) ≥ 0 for every e ∈ Eτ (f). Denote by E′

τ (f) the subset of all e ∈ Eτ (f) such
that λ(e) > ord(QA(y)) if A �= ∅ and λ(e) ≥ 0 if A = ∅ (recall that A = ∅ only if
q = 0 and τ = τ0). For every e ∈ E′

τ (f) we compute the polynomial f

τ,e ∈ ks,w[Z] using

Lemma 2 and identities (5) (here we leave the details to the reader). Next, we use the
algorithm (known in advance) for factoring polynomials over finite extensions of ks to
factor each polynomial f


τ,e over the field ks,w, obtaining a decomposition into irreducible
factors

f

τ,e = ϕτ,e,0

∏
j∈Jτ,e

(Zpνj − ϕj)
μj ,

where Jτ,e is a finite set of indices, 0 �= ϕτ,e,0 ∈ ks,w (it is the leading coefficient of the

polynomial f

τ,e), 0 �= ϕj ∈ ks,w, 1 ≤ μj ∈ Z, 0 ≤ νj ∈ Z, and each polynomial Zpνj − ϕj

is irreducible over the field ks,w for every j ∈ Jτ,e. We shall assume without loss of
generality that Jτ,e1 ∩ Jτ,e2 = ∅ for all pairwise distinct e1, e2 ∈ E′

τ (f).
If Z does not divide the polynomial fτ , then we put Jτ =

⋃
e∈E′

τ (f)
Jτ,e.

If Z divides the polynomial fτ , then we shall suppose without loss of generality that
jτ,0 �∈

⋃
e∈E′

τ (f)
Jτ,e. In this case we put Jτ = {jτ,0} ∪

⋃
e∈E′

τ (f)
Jτ,e.

In both cases the set of all sons of the vertex τ in the tree T (and therefore also in the
tree T+) is in one-to-one correspondence with the set Jτ . Let {τj}j∈Jτ

denote the family
of all sons of the vertex τ .

Recall that τj \ τ is a singleton, see §4. We have τj = Vyj ,Aj
for some root yj of f and

Aj ∈ Syj
. Now we need to define these yj , Aj and construct τj and all the objects from

the statement of Lemma 14 related to τj for every j ∈ Jτ .
Suppose that j ∈ Jτ , j �= jτ,0. Then there exists a root yj of f such that τ = Vyj ,A,

ord(PA(yj)) = λ(e), s = s(e), and

ord
((
PA(yj)

ps−sv
/(Xεgd1

1 · . . . · gdv
v )

)pνj

− ϕj

)
> 0

(here ε, d1, . . . , dv depend on e and λ(e) = δ/γ, see (47) above). We choose and fix such
a root yj .

If j ∈ Jτ , j = jτ,0, then there is a unique root yjτ,0 of the polynomial f such that
PA(yjτ,0) = 0.

Put Aj = A+, where A,A+ ∈ Syj
, see §2, and τj = Vyj ,Aj

. Thus, τj is defined for
every j ∈ Jτ . The tree T+ is constructed. We introduce the linear order on the set of
leaves L(T+) as described at the beginning of the section.
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The explicit algorithm for finding Vyj ,Aj
and all the objects related to τj is obtained

straightforwardly from the construction described in the preceding sections. Still we give
some details here. Namely, one of the following conditions is fulfilled.

(xii)′ j ∈ Jτ,e, e ∈ E′
τ (f), λ(e) ∈ (1/ps)Q′, λ(e) �∈ (1/ps−1)Q′, where s > sv and

νj = 0;
(xiii)′ j ∈ Jτ,e, e ∈ E′

τ (f), λ(e) ∈ (1/ps)Q′, λ(e) �∈ (1/ps−1)Q′, where s > sv and
νj > 0;

(xiv)′ j ∈ Jτ,e, e ∈ E′
τ (f), λ(e) ∈ (1/psv)Q′, and νj > 0;

(xv)′ j = jτ,0, or j ∈ Jτ,e, e ∈ E′
τ (f), and λ(e) ≥ N + 1;

(xvi)′ & (xvii)′ j ∈ Jτ,e, e ∈ E′
τ (f), λ(e) ∈ (1/psv)Q′, λ(e) < N + 1, and νj = 0

(here (xii)′, (xiii)′, (xiv)′, and (xv)′ correspond to (xii), (xiii), (xiv), and (xv) from §1,
and the item (xvi) & (xvii) corresponds to the two items (xvi) and (xvii) from §2 and
the subcase (a) where ord(ryA) < N + 1).

In what follows till the end of the section all the objects correspond to the root yj (in
place of y), say, the polynomial Pq+1, the integer-valued functions v, w and so on.

Now we have QAj
= QA+

, PAj
= PA+

. Next, Aj ∈ Syj ,q+1 \ Syj ,q if (xii)′, (xiii)′, or
(xiv)′ are true, and Aj ∈ Syj ,q \ Syj ,q−1 if (xv)′ or (xvi)′ & (xvii)′ are true. Therefore,
sAj

= sv(q+1) and rAj
= rw(q+1) if (xii)

′, (xiii)′, or (xiv)′ are true, and sAj
= sv, rAj

= rw
if (xv)′ or (xvi)′ & (xvii)′ are true.

In the cases where (xii)′, (xiii)′, or (xiv)′ are fulfilled, we have λ(e) < N + 1, q < q∗y ,
and τj ∈ Tq+1 \ Tq. If (xv)

′ is fulfilled, then τj ∈ L(T ) ∩ Tq.

If (xii)′, (xiii)′, (xiv)′, or (xv)′ are fulfilled, then rAq = A and

(50) Pq+1 = PA = P puq

q −
∑

A′∈Sy,A\Sy,q−1

QA′ ,

where all the elements on the right-hand side of (50) are defined recursively and depend
only on τ .

Assume that (xii)′ are fulfilled. Then v(q + 1) = v + 1, w(q + 1) = w, sv+1 = s,
uq+1 = sv+1 − sv, Gv+1 = Pq+1, (αv+1, iv+1,1, . . . , iv+1,v) = (ε, d1, . . . , dv), ξv+1 =

Pq+1(yj)
ps−sv

/(Xεgd1
1 · . . . · gdv

v ), and sξv+1 = ϕj .
Assume that (xiii)′ is fulfilled. Then v(q + 1) = v + 1, w(q + 1) = w + 1, sv+1 = s,

rw+1 = rw + νj , uq+1 = sv+1 − sv + rw+1 − rw, Gv+1 = Pq+1, Hw+1 = P psv+1−sv

q+1 ,

(αv+1, iv+1,1, . . . , iv+1,v) = (βv+1, ιv+1,1, . . . , ιv+1,v) = (ε, d1, . . . , dv),

ηw+1 = ξv+1 = Pq+1(yj)
ps−sv

/(Xεgd1
1 · . . . · gdv

v ), and sηp
rw+1−rw

w+1 = ϕj .
Assume that (xiv)′ is fulfilled. Then v(q + 1) = v, w(q + 1) = w + 1, rw+1 = rw + νj ,

uq+1 = rw+1 − rw, Hw+1 = Pq+1, (βv+1, ιv+1,1, . . . , ιv+1,v) = (ε, d1, . . . , dv), ηw+1 =

Pq+1(yj)
ps−sv

/(Xεgd1
1 · . . . · gdv

v ), and sηp
rw+1−rw

w+1 = ϕj .
It remains to show how to construct the polynomials PAj

and QAj
explicitly.

Assume that (xii)′, (xiii)′, or (xiv)′ are fulfilled. Put a = puq+1λ(e) and assume (11),
see §2.

Let a < N+1. Now a ∈ (1/psv)Q′. Hence, by Lemma 6 (b), the basis sBa,v(q+1),w(q+1)

contains sBa,v,w. One constructs the bases sBa,v(q+1),w(q+1) and sBa,v,w immediately.
Put

Ψj =
(
(Xεgd1

1 · . . . · gdv
v )p

rw(q+1)−rw(q) )
/
(
Xαgι11 · . . . · gιvv

)
.

Then ord(Ψj) = 0. Hence, by Lemma 5, there are integers a1, . . . , av (one can con-
struct them easily) such that Ψj = ξa1

1 · . . . · ξav
v . Therefore, the residue of the element

Pq+1(yj)
puq+1

/(Xαgι11 · . . . · gιvv ) is equal to ϕj
sξa1
1 · . . . · sξav

v . We represent this residue
ϕj

sΨj as a linear combination of elements of the basis sBa,v(q+1),w(q+1) (in fact, of the
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basis sBa,v,w). Then, by Lemma 5 (b), the family of nonzero coefficients from ks in this
representation is exactly

yγ,i1,...,iv(q+1),j1,...,jw(q+1)
,

(
γ, i1, . . . , iv(q+1), j1, . . . , jw(q+1)

)
∈ Aj \A

(recall that now A = rAq and Aj = ( rAq)+). Thus, using (28), (29) with (q + 1, Aj) in
place of (q, A), we can construct PAj

and QAj
explicitly in the case where (xii)′, (xiii)′,

or (xiv)′ are fulfilled and a < N + 1.
Let (xii)′, (xiii)′, or (xiv)′ be fulfilled, and let a ≥ N +1. Then q∗yj

= q+1. Put Aj =

rAq+1 = A∪(N+1, 0, . . . , 0), yN+1,0,...,0 = 0, where (N+1, 0, . . . , 0) ∈ Q′×Zv(q+1)+w(q+1).

Hence, PAj
= Pq+2 = P puq+1

q+1 , QAj
= 0, and τj ∈ L(T ) ∩ Tq+1 in this case.

Assume that (xvi)′ & (xvii)′ is fulfilled. Let a = λ(e) and assume (11), see §2. The

residue of the element PA(yj)/(X
εgd1

1 · . . . · gdv
v ) is equal to ϕj . We represent ϕj as a

linear combination of elements of the basis sBa,v,w. Then, by Lemma 5 (b), the family of
nonzero coefficients from ks in this representation coincides with the family

yγ,i1,...,iv ,j1,...,jw ,
(
γ, i1, . . . , iv, j1, . . . , jw

)
∈ Aj \A.

Thus, using (28), (29) with Aj in place of A, we can construct PAj
and QAj

explicitly
in the case where (xvi)′ & (xvii)′ is fulfilled.

Assume that (xv)′ is fulfilled. Then we put q∗yj
= q and Aj = A ∪ {(N + 1, 0, . . . , 0)},

where (N + 1, 0, . . . , 0) ∈ Q′ × Zv+w. We have yN+1,0,...,0 = 0. Hence, PAj
= PA and

QAj
= 0. In this case τj ∈ L(T ) is a leaf of the tree T .

We have finished the description of the algorithm for constructing the tree T and the
objects corresponding to its vertices.

Proof of Theorem 1. Let N be as in the statement of that theorem. Put N1 = N +
ord(Δ)/2. We apply the algorithm described in this section to (f,N1) in place of (f,N).
Let τ ∈ L(T ) and let τ = Vy,A for some root y of the polynomial f and a set A ∈ Sy.
By Lemma 10, we have ord(F − Pq∗y+1) ≥ N + 1. Hence, by Lemma 14 (b), using
the polynomials Pq∗y+1, we can obtain the approximations F#,N of all factors F of the
polynomial f irreducible over Ω0.

All the other assertions of the theorem follow immediately from the construction
described in the paper. The theorem is proved. �

Appendix: A version of the Hensel lemma

Let f ∈ k[[X]][Y ] be a polynomial as in the Introduction, and let y ∈ k((X)) be a
root of f .

Lemma 16. Let rf ∈ k[[X]][Y ] be another polynomial similar to f and such that ord(f −
rf) ≥ ord(Δ) + 1. Then the following assertions are true.

(a) The separable algebras k((X))[Y ]/(f) and k((X))[Y ]/( rf) are isomorphic over the
field k((X)).

(b) For every root y of f there is precisely one root ry of rf such that ord(y − ry) ≥
ord(Δ)/2 (we assume that all the roots of the polynomials f and rf belong to the

fixed algebraic closure k((X)) of the field k((X))). We have ry ∈ k((X))[y].
(c) Denote by ϕ and rϕ the minimal polynomials of the elements y and ry over the field

k((X)) with the leading coefficients lcY ϕ and lcY rϕ equal to 1. Then ord(ϕ− rϕ) ≥
ord(Δ)/2.

(d) Let us identify y = Y mod ϕ ∈ k((X))[Y ]/(ϕ). Then there is an isomorphism of
fields k((X))[Y ]/(rϕ) → k((X))[Y ]/(ϕ), Y mod rϕ 
→ ry over k((X)).
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(e) Moreover, the element ry and the polynomial rϕ can be constructed by using the
Hensel lifting process, provided that the polynomial ϕ#,N , N = ord(Δ) + 1, is
known.

Proof. We leave the proof to the reader. Actually, it is known. �
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