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Abstract. Rather than providing a comprehensive survey on manifolds curved from
below, the paper is aimed at exhibiting and discussing some of the main ideas and
tools that have been developed over decades. For the same reason, only a relatively
small sample of results is presented to illustrate this development and in doing this,
simplicity is emphasized over generality. In the same vein, at most a glimpse of an
idea or strategy of a proof is given.

The search for relations between geometry and topology of Riemannian manifolds has
been at the center of global Riemannian geometry since its beginning. On the geometric
side, a large part of this line of investigations has been dominated by the role of curvature
in various forms. For natural and geometrically appealing reasons, early efforts were
focussed on manifolds whose curvature does not change sign, i.e., with lower or upper
curvature bound 0, and in particular with positive or negative curvature. It took several
decades for ideas and tools to emerge breaking the ground for dealing with manifolds
with curvatures of both signs.

In this survey we will focus our attention on (closed) Riemannian manifolds with
a given lower (sectional) curvature bound. In addition to the basic global Toponogov
distance comparison theorem, and the Bishop–Gromov volume comparison theorem, the
key tools are critical point theory for distance functions, the Gromov–Hausdorff topology,
and Alexandrov geometry. Our aim is to discuss these tools as well as more classical
tools such the Morse theory of geodesics, and in the case of nonnegative curvature also
convexity. The insights gained from using these tools are typically expressed in finiteness,
structure, recognition, and rigidity results.

The importance of Alexandrov geometry to Riemannian geometry stems from the fact
that there are several natural geometric operations that are closed in Alexandrov geom-
etry but not in Riemannian geometry. These include taking Gromov–Hausdorff limits,
taking quotients by isometric group actions, and forming joins of positively curved spaces.
In particular, limits (or quotients) of Riemannian manifolds with a lower (sectional) cur-
vature bound are Alexandrov spaces, and only rarely Riemannian manifolds. Analyzing
limits frequently involves blow ups leading to spaces with nonnegative curvature as, e.g.,
in Perelman’s deep work on the geometrization conjecture. Also the infinitesimal struc-
ture of an Alexandrov space, which is expressed via its “tangent spaces” (blow ups at
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points), are cones on positively curved spaces. Hence, the collection of all compact posi-
tively curved spaces (up to scaling) agrees with the class of all possible so-called spaces
of directions, in Alexandrov spaces. So, spaces of positive curvature play the same role
in Alexandrov geometry as round spheres do in Riemannian geometry.

In addition to positively, and nonnegatively curved spaces, yet another class of spaces
has emerged in the general context of convergence, under a lower curvature bound,
namely, the almost nonnegatively curved spaces. These are spaces allowing metrics with
diameter say 1, and lower curvature bound arbitrarily close to 0. They are expected to
play a role among spaces with a lower curvature bound, analogous to that almost flat
spaces play for spaces with bounded curvature. In summary, the following classes of
spaces play essential roles in the study of spaces Mk with a lower curvature bound k:

M+ ⊂ M0 ⊂ M0−

corresponding to the positively curved, nonnegatively curved, and almost nonnegatively
curved spaces. Among all manifolds, these form “the tip of the iceberg”. Yet, aside from
being nilpotent spaces (up to finite covers) and having a priori bounded topology in terms
of generators for homology and fundamental groups, only a few general obstructions are
known, and none in the simply connected case. Moreover, so far only obstructions on
fundamental groups distinguish the three classes.

Although Alexandrov geometry enjoys a rich and continually evolving life on its own,
our discussion and treatment here is guided by its role in Riemannian geometry. This is
clearly illustrated by equivariant Riemannian geometry, where (groups of) symmetries
are present (or more generally, but yet not fully pursued, singular Riemannian folia-
tions). In this case, the Alexandrov spaces that are used and arise naturally are orbits
spaces/spaces of leaves (or closely related to such), and their structure is much simpler
than general Alexandrov spaces, yet rich enough to illuminate many general phenomena.
When sufficiently many or special symmetries are present, clear distinctions emerge be-
tween the basic classes M+ ⊂ M0 ⊂ M0− . In addition to the tools already mentioned,
here Lie theory, representation theory, as well as the theory of buildings pioneered and
developed by Tits, play important roles.

Our treatment is divided into the following nine sections: Characterizations and impact
of lower curvature bounds, Convexity in non-negative curvature, Critical point theory for
distance functions, Gromov–Hausdorff metric and Alexandrov geometry, Join operation
applications, Collapse and almost non-negative curvature, Constructions and examples,
The presence of symmetries, and Complete open manifolds.

For basic sources we refer to [Pe1, CE, BBI] and [BGP]. We also recommend several
surveys on various topics treated in much more depth than here [Pl, Pt, Zi, W6] and [Ro].

It is a pleasure to thank F. Galaz-Garsia, L. Guijarro, C. Plant, C. Searle, and F. Wil-
helm for constructive comments. Also, the title was of course inspired by Marcel Berger’s
extensive survey on Rimannian Geometry.

§1. Characterizations and impact of lower curvature bounds

Throughout, all Riemannian manifolds M considered will be complete, in fact usually
compact.

The basic Alexandrov–Toponogov triangle comparison theorem (see bullets below) can
be expressed in a number of equivalent useful ways. To ease their formulation we agree
that a triangle has minimal geodesic sides unless otherwise stated. Also a comparison
triangle is a triangle in the simply connected space form Snk of constant curvature k whose
sidelengths are the same as those it is compared with. The comparison angles are the
angles of the comparison triangle. Similarly, a hinge is a triangle with one side missing,
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and a comparison hinge is a hinge in constant curvature with the same angle as the one it
is compared with. Note, that with the exception of (degenerate) triangles with one side
of length πr in the sphere of radius r, i.e., curvature k = 1/r2, all comparison triangles
are unique up to isometry, and only depend on the distances between the vertices of
the triangle in question. We therefore also talk about comparison triangles of triangles
all of whose sides are missing, i.e. of virtual triangles, or simply three tuples of points.
Similarly we refer to four tuples as virtual tetrahedra.

The condition, secM ≥ k, that M has sectional curvature bounded from below by k,
i.e., the sectional curvature of any 2-plane in its tangent bundle TM is at least k, can be
characterized geometrically by any of the following five equivalent conditions.

• Angle version: The angles in any triangle in M are at least as big as the corre-
sponding angles in a comparison triangle in S2k.

• Hinge version: The distance between the endpoints of a hinge in M is at most
as big as the corresponding distance for a comparison hinge in S2k.

• Distance version: The distance between a vertex and a point on the opposite side
of a triangle in M is at least as big as the corresponding distance in a comparison
triangle in S2k.

• 4-point version: For any virtual tetrahedron in M , the sum of all three compar-
ison angles in S2k corresponding to any vertex is at most 2π.

• Embedding version: Any virtual tetrahedron in M admits an isometric embed-
ding into S3k′ for some k′ ≥ k.

The first three conditions have important rigidity versions (best expressed in the
second and third) when equality holds. We also note that the last three versions do
not a priori assume the existence of angles, and the last two not even the existence of
geodesics. The embedding version has its roots in the work of Wald [Wd], and was
developed by Berestovskii, as was the 4-point version [Bs]. Since curvature is usually
local in nature, the natural assumptions would be that the above conditions hold locally
in the space in question. As it turns out, this leads nontrivially to the above global
statements under fairly general conditions [BGP, P2]. The latter two make sense for
arbitrary metric spaces X including discrete spaces, and when they are satisfied, we use
the notation curvX ≥ k.

Note also that the hinge version has the following nice geometric interpretation. Let
the segment domain at p be the subset seg(p) ⊂ TpM consisting of those v for which
the geodesic cv : [0, 1] → M with initial velocity v is minimal. In other words, seg(p) is
the closure of the largest open starshaped domain (“centered” at the origin) on which
the exponential map exp: TpM → M defined by exp(v) = cv(1) is injective. Observe also

that exp(seg(p)) = M . Now equip TpM (or the open ball, Bp(π/
√
k) when k > 0) with

a metric of constant curvature k obtained from the Euclidean metric by radial warping.
With the exception of Sk, k > 0 (Toponogov’s diameter rigidity theorem), we can then
view the segment domain as a subset seg(p)k ⊂ Snk , and the hinge version simply states
that

(1.1) exp: seg(p)k → M is distance nonincreasing.

A trivial but powerful consequence of this is the following general volume comparison:

(1.2) vol(expH) ≤ vol(H) for measurable sets H ⊂ seg(p)k.

For starshaped sets, already the weaker curvature condition

ricMn ≥ (n− 1)k

yields volume comparison. The important so-called Bishop–Gromov relative volume com-
parison theorem states the following.



6 K. GROVE

Theorem 1.3 (relative volume comparison). Let M be a Riemannian n-manifold with
secM ≥ k, or more generally, with Ricci curvature ricMn ≥ (n − 1)k. Then for every
p ∈ M the function

V (r) = volD(p, r)/ volDn
k (r)

is nonincreasing.

This comparison result for volumes of closed balls in M relative to those in Sn
k has

the following simple but crucial consequence.

Lemma 1.4 (covering lemma). Let M be a Riemannian n-manifold with secM ≥ k, or
more generally, ricMn ≥ (n − 1)k. For any R > ε > 0 there is N = N(n, k,R, ε) such
that any R-ball in M can be covered by N or fewer ε-balls.

To see this, pick a maximal ε-separating set in D(p,R) (the closed ball centered at
p with radius R), i.e., a maximal set of points where any two have distance at least ε.
Being maximal implies that the ε-neighborhood of it covers D(p,R), i.e., the set is an
ε-net, and the relative volume comparison yields an upper estimate for the number of
these balls since the ε/2-balls are disjoint.

This lemma is the germ of finiteness and compactness results in Riemannian geometry
(see [G3] for a survey).

The condition secM ≥ 0 (respectively, secM > 0) can also be characterized by
invoking parallel transport as follows:

I(X,X) ≤ 0 (respectively, < 0) for any parallel field orthogonal

to any geodesic c : [0, 1] → M
(1.5)

where

(1.6) I(X,X) :=

∫ 1

0

〈X ′, X ′〉 − 〈R(X, c′)c′, X〉 = 1

L(c)

d2

ds2
L(cs),

is the index form, expressed via the second derivative of the length functional L, and
cs := exp sX is the exponential variation of c corresponding to the variation field X.

This simple fact by itself has rather immediate and strong consequences in the case
where secM > 0, as pioneered by Synge (cf. also [Pe2]):

• If M is orientable and dimM is even, then M is simply connected (Synge).
For such M any orientation preserving isometry A has fixed points (Weinstein).

• If dimM is odd, then M is orientable (Synge).
For such M any orientation reversing isometry A has fixed points (Weinstein).

• If V,W ⊂ M are totally geodesic and dimV +dimW ≥ dimM , then V ∩W �= ∅

(Frankel).

• If V ⊂ M is totally geodesic, the inclusion V n−k ⊂ Mn is (n−2k+1)− connected
(Wilking).

For the latter, recall that a map f : X → Y is �-connected if the induced map fq : πq(X) →
πq(Y ) on homotopy groups is onto for q = � and an isomorphism for q < �.

The result by Weinstein is actually for the more general case where A is a conformal
diffeomorphism [We]. All but Wilking’s result can be viewed as the rudimentary fact
of Morse theory that the index at a minimum must be zero. However, no knowledge of
Morse theory is needed. The point of Wilking’s result [W3] is an estimate for the index
of the first non-minimal critical point, “as” in Bott’s original proof of his periodicity
theorem. The relevant spaces of paths for these statements are: the space of closed
curves (Synge), the space of A-invariant curves (Weinstein), the space of paths joining
V and W (Frankel), and the space of paths from V to itself (Wilking).
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A small variation of this idea (multiply X by a function) also yields the classical
Bonnet theorem that diamM ≤ π, when secM ≥ 1, and also eventually leads to the
distance comparison theorem. Here Toponogov used his comparison theorem to show
that in fact M is isometric the the unit sphere if diamM = π.

§2. Convexity in nonnegative curvature

In general it is known from [CG] that any closed (locally) convex set C ⊂ M has the
structure of a topological manifold possibly with nonempty boundary ∂C and smooth
totally geodesic interior.

One of the key observations by Cheeger and Gromoll was that when secM ≥ 0, and
C ⊂ M is a compact convex subset with nonempty boundary ∂C, then

• the distance function dist(∂C, · ) : C → R is concave,

which follows from (1.5) in conjunction with the distance comparison theorem.
This immediately implies that the sublevel sets

Ca = {x ∈ C | dist(∂C, x) ≥ a} ⊂ C

are also (locally) convex, and one proves that dimCmax < dimC. Thus after finitely
many iterations of this process (if necessary), one then arrives at a (locally) convex set
without boundary, i.e., a totally geodesic submanifold, the soul S ⊂ C. Moreover, C has
the structure of a disk bundle over S (see also [BZ]).

Much of this applies in a much more general context, e.g., that of orbit spaces, with
strong applications (see the last section).

We also point out that if secM > 0, then dist(∂C, · ) : C → R is strictly concave along
all geodesics in C that are not minimal to the boundary ∂C. In particular, in this case
the soul S is a point reached in one step.

As might be expected, the existence of large topologically nontrivial convex sets in
manifolds of nonnegative curvature is rare. Nonetheless, they do appear naturally in some
important contexts, such as in complete, noncompact, nonnegatively curved manifolds,
and where group actions are present. In the latter case, there is actually an abundance
of them in particular among orbit spaces.

In the first scenario just alluded to, one has the following celebrated theorem.

Theorem 2.1 (soul theorem). Any complete noncompact manifold M with secM ≥ 0
is diffeomorphic to the normal bundle S⊥ of a compact totally geodesic submanifold S
in M .

The key issue in the proof is the construction of an exhaustion ofM by compact convex

sets Cs, where each Cs, s > 0, has top dimension, and Ct = C
(s−t)
s when 0 < t < s. This

starts with the observation that for any ray, i.e., a minimal geodesic c : [0,∞) → M , the
associated half-space Hc = M − ∪tB(c(t), t) is totally convex (by a distance comparison
argument). Here a set is said to be totally convex if any geodesic between points of it
lies entirely in it. Now consider all rays c emanating from a fixed point p ∈ M . It follows
that M is exhausted by the compact totally convex subsets Cs = ∩cHcs , s ≥ 0, where
cs(t) = c(s + t). Moreover, for any s > 0 we have dimCs = dimM , and in particular
∂Cs �= ∅.

From the construction and convexity it now follows that dist(S, · ) : M → R has no
critical points outside S (cf. the next section), and the theorem follows.

Note that if secM > 0 in the above theorem, then Cmax and hence S is a point. In
particular, such a manifold is diffeomorphic to Euclidean space.
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More generally, as conjectured by Cheeger and Gromoll, in [Pr1] it was shown that
the soul is a point if all curvatures at just one point are positive (see also [Bu]). The ob-
servation due to Perelman was in fact a general strong rigidity property for noncompact
manifolds M with secM ≥ 0. In particular, there is exactly one distance nonincreas-
ing retraction s : M → S (one was constructed by Sharafutdinov [Sf]) characterized by
s(exp(vp)) = p for any vp ∈ S⊥, and it is a submetry, i.e., s(B(q, r)) = B(s(q), r) for
all q ∈ M and all r > 0. Submetries between Riemannian manifolds are always of class
at least C1,1 [BG]. From the general work by Wilking on duality among Riemannian
foliations in nonnegative curvature it follows that the Sharafutdinov retraction s is in
fact smooth, improving [Gu1]. This duality also provides further rigidity for noncompact
manifolds of nonnegative curvature (see [W5]).

§3. Critical point theory for distance functions

Let A ⊂ M be a closed subset of M . Although the distance function dist(A, .) is not
smooth, there is a good notion for points being regular/critical. Specifically,

• A point q ∈ M is called a regular point for dist(A, . ) if there is a vector v ∈ TqM ,
such that the angle between v and any minimal geodesics from q to A exceeds
π/2.

Such vectors v are said to be regular.

• If q is not regular it is critical.

As in smooth critical point theory, one has the following crucial statement.

Lemma 3.1 (isotopy lemma). If dist(A, · ) has only regular values in the interval [r, R],
then the set D(A,R) = {q ∈ M | dist(A, q) ≤ R} deformation retracts to D(A, r). In fact,
D(A,R)−B(A, r) is homeomorphic to S(A, r)×[r, R], where S(A, r) = D(A, r)−B(A, r)
is the boundary of the r-neighborhood of A.

This is a simple consequence of the existence of a smooth “gradient like” vector field
on the “annular” region, and a first variation argument. Such a vector field is constructed
by partition of unity, based on the simple fact that the condition of being a regular vector
is open and convex.

A fully fledged “Morse Theory” for such functions, including what happens when
passing a critical value remains to be developed. For ideas about “index” in this context,
see [HW] though.

Nonetheless, we proceed to indicate the importance of the isotopy lemma in the proofs
of the diameter sphere and rigidity theorem, the Betti number theorem and the homotopy
finiteness theorem.

The observation that if p0 and p1 are points at maximal distance in a manifold M
with secM ≥ 1 and diamM > π/2, then all q ∈ M − {p0, p1} are regular for d(pi, · ),
yields the following [GSh].

Theorem 3.2 (diameter sphere theorem). Any manifold Mn with secM ≥ 1 and
diamM > π/2 is homeomorphic to Sn.

This result fails only in a rigid fashion when the diameter is allowed to be π/2.

Theorem 3.3 (diameter rigidity). A manifold M with secM ≥ 1 and diamM = π/2

is either homeomorphic to a sphere, or its universal cover M̃ is isometric to a rank one
symmetric space.

If in this theoremM is not simply connected, M is either isometric to a unique Z2-quo-
tient of a complex odd-dimensional projective space, or to a space form Sn/Γ, where Γ
acts reducibly on Rn+1.
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In the proof of the diameter rigidity theorem, the points p0 and p1 are replaced by
sets A0 and A1 each of which is the set of points at distance π/2 from the other and the
distance between any pair of points in A0 and A1 is π/2. It is a direct consequence of the
rigid version of the distance comparison theorem that the Ai are convex subsets of M . If
M is not a sphere, it turns out that both convex sets Ai are totally geodesic submanifolds
(one of them possibly a point), and any unit normal vector to A0 determines a minimal
geodesic from A0 to A1 and vice versa. The resulting maps S⊥p0

→ A1 are Riemannian
submersions. When A1 is simply connected, such a map is congruent to a Hopf fibration
by [GG2] and [W1], and the rigidity theorem follows [GG1].

A general and deep application of critical point theory is Gromov’s amazing [Gr1].

Theorem 3.4 (Betti number theorem). For each n ∈ N, k ∈ R, and D > 0, there is a
constant C = C(n, k,D) > 0 such that the homology and the fundamental group of any
Mn with secM ≥ k and diamM ≤ D can be generated by C or fewer elements.

The main ideas of the proof are present already in the case where secM ≥ 0. Here, the
germ of one of the geometric ideas comes from the observation that one does not need any
convexity arguments to see that a complete non-negatively curved manifold M has finite
topological type. In fact, Gromov showed that the distance function dist(p, · ) : M → R

from some (in fact any) point p ∈ M has no critical points outside some ball B(p,R(p)) ⊂
M . Indeed, in this case M is diffeomorphic to N ⊃ B(p,R), where ∂N is a smooth
approximation of ∂B(p,R). If on the contrary there is no such R, it would be possible to
find a sequence of critical points {qi} for dist(p, · ) with, say, dist(p, qi+1) ≥ 2 dist(p, qi)
for all i. A simple consequence of the Toponogov triangle comparison theorem, referred
to as the criticality principle in [G2], then yields a uniform lower bound θ for the angle
at p between any pair of minimal geodesics from p to qi and from p to qj , independent
of i and j. This is obviously impossible by compactness of the unit sphere SpM .

It is important to note that the angle bound θ exhibited above only depends on the
choice of the factor d = 2 > 1 used in separating critical values of dist(p, · ). A simple
packing argument for balls of radius θ/2 on the sphere SpM , yields an explicit upper
bound for the number of such critical values, which in addition only depends on n.
Summarizing, we have the following.

Lemma 3.5 (critical values lemma). There an explicit C ′ = C ′(n, d), d > 1, such that
dist(p, · ) has at most C ′ critical values {vi} with vi+1 ≥ dvi for any p ∈ M and any
n-dimensional Riemannian manifold with secM ≥ 0.

Combined with the covering Lemma 1.4, this is the main geometric ingredient in the
proof.

As yet another application of critical point theory in conjunction with distance com-
parison via curvature, we mention the following (see [GP1])

Theorem 3.6 (homotopy finiteness theorem). For each n ∈ N, k ∈ R, D, and v ∈ R+,
there is a constant C = C(n, k,D, v) > 0 such that there are at most C different homotopy
types among manifolds Mn with secM ≥ k, diamM ≤ D, and volM ≥ v.

As in the Betti number theorem, the constant here can be estimated explicitly. Also
here, the covering lemma plays an essential role, but the most important additional
geometric input in the proof comes from the observation that there is an a priori ε =
ε(n, k,D, v) such that the distance function dist(ΔM, · ) : M × M → R has no critical
points other than ΔM in an ε-neighborhood of the diagonal ΔM .

Note that for closed manifolds, the invariant min(secM)
(diam(M)

π

)2
is scale invariant

and takes its maximal value 1 at the round sphere (Toponogov’s rigidity theorem). Al-
ternatively, we may scale all closed manifolds M to have diameter π and consider the
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function

min sec : M → R with range (−∞, 1].

With this terminology, the above results can be stated as follows:

• Any M ∈ M with min secM > 1/4 is a topological sphere,

and its rigidity version states what happens otherwise when min secM = 1/4.

• Given n ≥ 2, and k ≤ 1, there is a number C = C(n, k) such that H(M) is
generated by at most C elements for any n-manifoldM ∈ M with min secM ≥ k.

• Given n ≥ 2, k ≤ 1 and v > 0, there is a number C = C(n, k, v) so that there
are at most C homotopy types of n-manifold M ∈ M with min secM ≥ k and
vol(M) ≥ v.

To gain further information, and in particular to achieve the finiteness of topological
types in the last theorem above, one needs additional insights gained from convergence
techniques to be discussed next.

§4. Gromov–Hausdorff metric and Alexandrov geometry

In this section we shall describe the so-called Gromov–Hausdorff metric on the space
of isometry classes of compact metric spaces, introduced by Gromov in connection with
his work on groups of polynomial growth [Gr2], and discuss some of the important
insights one gains from being able to take and analyze limit spaces. In the context of
manifolds with lower sectional curvature bounds this naturally leads to the notion of
Alexandrov spaces. These spaces are interesting in their own right and have applications
to Riemannian geometry beyond convergence.

Recall that the Hausdorff distance between two closed subsets A and B of a compact
metric space Z is given by

dZH(A,B) = inf
{
ε > 0|D(A, ε) ⊃ B and D(B, ε) ⊃ A

}
.

For arbitrary compact metric spaces X and Y , the Gromov–Hausdorff distance is defined
by

dGH(X,Y ) = inf
{
dZH(X,Y )|X,Y ⊂ Z

}
,

where the infimum is taken over all possible isometric embeddings of X and Y into all
possible compact metric spaces Z. It actually suffices to take Z = X

∐
Y with metrics

extending the metrics on X and on Y , i.e.,

dGH(X,Y ) = inf
Z=X

∐
Y

{
dZH(X,Y )

}
.

One shows that dGH(X,Y ) = 0 if and only if X and Y are isometric, and that this
indeed defines a metric on the isometry classes of compact metric spaces.

It is obvious that relative to this metric any compact metric space can be approximated
arbitrarily well by finite metric spaces. In other words, the induced topology is extremely
coarse in general. At the same time this indicates that geometry of finite metric spaces
may well have substantial impact on other geometries, including Riemannian geometry.
Moreover, we have already hinted at one of the starting points in Gromov’s theory:

Lemma 4.1 (precompactness lemma). A class C of compact metric spaces is precompact
if and only if this class has a covering function N(ε), i.e., for any ε > 0, each X ∈ C can
be covered by N(ε) or fewer ε-balls.

This already yields some sort of “finiteness result”: For each ε, there are finitely many
n-manifolds {Mi} with ricMi ≥ (n− 1)k and diamMi ≤ D so that any other manifold
satisfying these bounds is within Gromov–Hausdorff distance ε to one of {Mi}’s. The
problem is, however, that essentially no common features among manifolds from this
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class, which are close to one another, are known. One reason for this is that in general
one has rather limited control about spaces in the closure of this class (cf. [Co] though).

For these ideas to be useful, it is important that interesting properties be preserved
by the process of taking Gromov–Hausdorff limits. To analyze this, it is a useful fact
that if X is the Gromov–Hausdorff limit of a sequence {Xi}, then

there is a metric on Z = X
∐
i

Xi such that lim dZH(X,Xi) = 0.

This basically implies that the invariants that can be described in purely metric terms
are preserved in the limit. In particular, since a complete space being a length space (the
distance between any pair of points is the infimum of lengths of curves joining them) is
equivalent to having ε-almost midpoints for every ε > 0, it follows that

• The Gromov–Hausdorff limit of length spaces is a length space.

Similarly, from the tetrahedral version of the distance comparison theorem it follows
that this is also preserved in the limit, i.e.,

• The Gromov–Hausdorff limit of spaces with curvature at least k, has curvature
at least k.

In particular, the Gromov–Hausdorff limit of a sequence of Riemannian n-manifolds
with a uniform lower bound on sectional curvatures, is a length space with a lower
curvature bound. In addition, it is important that the (Hausdorff) dimension of such a
limit is at most n (cf., e.g., the precursor [GP2], to Alexandrov spaces).

In contrast, we point out that upper curvature bounds are not in general preserved
by the process of taking Gromov–Hausdorff limits. Although the condition sec ≤ K can
be expressed locally as in the distance comparison theorem with all inequalities reversed,
these geometric descriptions fail globally in general. In particular, an upper bound for
the curvature is only preserved by the process of taking Gromov–Hausdorff limits if
the distance comparison holds uniformly on all balls of a fixed size. Simply connected
manifolds with nonpositive curvature form an important class of examples where the
comparisons hold globally. Another class with this property is the class of manifolds Mn

with k ≤ secM ≤ K, diamM ≤ D, and volM ≥ v. The reason for this is Cheeger’s a
priory injectivity/convexity radius estimate for this class [C1].

We now turn our attention to Alexandrov spaces (with a lower curvature bound). By
definition,

• An Alexandrov space is a length spaceX with curvX ≥ k ∈ R, and dimH X < ∞.

It turns out that the Hausdorff dimension dimH of such a space is equal to its topo-
logical dimension, and in particular that it is an integer [BGP]. These spaces have a
surprisingly “simple” structure which we shall describe below.

First, however, we give some examples and constructions :

• X = ∂C, where C ⊂ Rn is a convex body.
• X = limMn

i , where Mi are Riemannian manifolds with secMi ≥ k.
• X = C0Y , the Euclidean cone on an Alexandrov space Y with curv Y ≥ 1.
• X = Σ1Y , the spherical suspension on an Alexandrov space Y with curv Y ≥ 1.
• X = Y1 ∗1 Y2, the spherical join of two Alexandrov spaces Yi with curv Yi ≥ 1.
• X = M/G, where G is a compact group of isometries and secM ≥ k.
• X = Y1 ∪∂ Y2, where Yi are Alexandrov spaces with isometric boundary ∂ (see
below).

• Special branched covers X̃ of an Alexandrov space X (instrumental in [GWi] and
[HS]).
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The metric on the Euclidean cone X = C0Y = Y × [0,∞)/Y × {0} is defined by the
requirement that the distance between (u, s) and (v, t) be the distance in the Euclidean
plane between the endpoints of a hinge with sides of lengths s and t and angle dist(u, v)
in Y . The metric on the spherical suspension and more generally spherical join is defined
similarly using the unit sphere in place of the Euclidean space.

These examples already suggest reasons for the utility of Alexandrov spaces. The fact
that the operations of taking Gromov–Hausdorff limits, of taking spherical joins, and of
taking isometric quotients are closed in Alexandrov geometry all have in fact applications
to Riemannian geometry. In this section we shall illustrate the first of these operations.
The second will be illustrated in the section about collapse, and the third will be the
subject of the last section.

Since Alexandrov spaces are locally compact [BGP], any pair of points is joined by a
minimal geodesic. The curvature condition implies that geodesics in such a space cannot
bifurcate, and are uniquely determined by their germs. A germ of (normal) geodesics
emanating at a point p ∈ X is called a geodesic direction at p. Again the curvature
condition allows to define the angle of a hinge at p as a limit of comparison angles. This
yields a metric on the space of geodesic directions at p, and the closure of this set is
called the space of directions at p and is denoted by SpX. The tangent space at p is
now defined as TpX = C0(SpX), i.e., as the Euclidean cone of the space of directions
at p. Alternatively, TpX is the pointed Gromov–Hausdorff limit relative to p of scaled
copies λX of X as λ → ∞. From this description it is easily seen that curv TpX ≥ 0,
curvSpX ≥ 1, and dimSpX = dimX − 1.

The fact that dimSpX = dimX − 1 allows for an inductive definition of the boundary
∂X of an Alexandrov space X, based on the fact that the only compact 1-dimensional
Alexandrov spaces are circles and intervals:

• A point x belongs to ∂X if and only if ∂Sp �= ∅.

For the local structure of an Alexandrov space, the following result is due to Perel-
man [Pr2].

Theorem 4.2 (structure theorem). For any point p in an Alexandrov space X, there is
ε = ε(p) > 0 such that the open ball B(p, ε) is homeomorphic to TpX.

From this result it follows that X globally admits a stratification into topological
manifolds, where the m-strata consist of those points p ∈ X where TpX topologically
splits off an Rm-factor and not an Rm+1-factor.

The proof of the local structure theorem relies on a highly nontrivial extension of
critical point theory for distance functions discussed in the Riemannian setting in the
previous section. As there, q ∈ X is said to be a regular point for the distance function
dist(A, .) from a closed subset A ⊂ X if there is a direction v ∈ SqX such that the angle
between v and any minimal geodesics from q to the set A exceeds π/2. If q is not regular
it is critical. The statement of the isotopy lemma carries over verbatim to this general
situation, but its proof is much deeper in the context of n-dimensional Alexandrov spaces.
To achieve it, one proves in general that a “submersion” of this kind to Rk, 1 ≤ k ≤ n,
(like k “independent distance functions”) is a locally trivial bundle. This is proved by
inverse induction on k, i.e., starting with k = n. The induction start is in fact fairly
simple in contrast to the highly nontrivial induction step.

The local structure theorem is also instrumental in Perelman’s far reaching topological
stability result [Pr3], a published proof of which is provided in [Ka1].

Theorem 4.3 (stability theorem). For any compact Alexandrov space X with curvX≥k,
there is ε =ε(X)>0 such that any Alexandrov space Y with curv Y ≥k and dGH(X,Y )<ε
is homeomorphic to X if dimY = dimX.
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From this and what we have seen above, the homotopy finiteness theorem can be
improved (although non quantitatively) to the following (cf. also [GPW]).

Theorem 4.4 (homeomorphism finiteness theorem). For given n, k,D and v, there
are at most finitely many topological types among the n-manifolds M with secM ≥ k,
diamM ≤ D, and volM ≥ v.

The first two conditions assure that the Gromov–Hausdorff closure of the class of man-
ifolds considered is compact and consists of Alexandrov spaces X with curvX ≥ k and
diamX ≤ D. The last condition assures that no collapse occurs and hence dimX = n,
so that the stability theorem applies. We point out that it is a general fact that in all
dimensions but four, there are only finitely many diffeomorphism types for a given man-
ifold M . In particular, the above result yields a diffeomorphism finiteness theorem in all
dimensions but four.

In the above proof one might wonder what it takes to ensure that all manifolds suffi-
ciently close to an X := limMi are actually diffeomorphic to one another. We refer to
this as the differentiable stability question/problem.

The situation in dimension four is not yet completely settled although a promising plan
of attack was offered by Curtis Pro and Fred Wilhelm. They obtained a general diffeo-
morphism stability theorem for limit objects whose singular set is reasonably controlled
and of codimension at least four [PrW].

A special situation where [PrW] applies is the recognition of manifolds with given
radius, a lower curvature bound, and near extremal volume. To describe this,

let Mπ(n) denote the collection of all closed manifolds with radius π,

and in addition to min sec : Mπ → (−∞, 1] consider the volume function

vol : Mπ(n) → R+.

Define Vn : (−∞, 1] → R+ by

Vn(k) =

{
volDn

k (π), when k ≤ 1/4,

2 vol
(

1√
k

(
Sn−2
1 ∗ [0, π

√
k]
))
, when 1/4 ≤ k ≤ 1.

From (1.2), volM ≤ volDn
k (π) for any M ∈ Mπ

k (n), where equality occurs only when
M is isometric to the unit sphere Sn1 or the projective space Sn1/4/〈− Id〉. It was proved

in [GP3], that for k ≤ 1/4 this volume estimate is optimal, whereas for k ∈ (1/4, 1) the

optimal estimate is
√
k 2 vol

(
1√
k

(
Sn−2
1 ∗ [0, π

√
k]
))
. Moreover, it was proved that the

corresponding Gromov–Hausdorff limit objects are Dn
k (π) with boundary points iden-

tified by either the antipodal map, or by a reflection when k ≤ 1/4, and the singular

sphere 1√
k

(
Sn−2
1 ∗

√
kS11

)
for k ∈ (1/4, 1). In particular, from Perelman’s stability the-

orem one concludes that manifolds of a given radius, with lower curvature bound and
almost optimal volume are topologically either a sphere or a real projective space.

In fact, invoking [PrW] (or the earlier paper [PSW]), one has the following statement.

Theorem 4.5 (differentiable recognition theorem). For each k ≤ 1 and an integer n
at least two, there is ε = ε(k, n) such that any M ∈ Mπ

k (n) with V (k) − vol(M) ≤ ε is
diffeomorphic to the n-sphere or the real projective n-space.

When k > 1/4 this also follows from the packing radius sphere theorem (see next
section).
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§5. Join operation applications

As was indicated in the previous section, it is often the case that manifolds with a lower
curvature bound and additional almost optimal values for various geometric invariants
are recognized topologically or even sometimes up to diffeomorphism (see also [GM]).

In view of the soft diameter sphere theorem and the corresponding maximal diameter
rigidity theorem, it is natural to wonder what can be said if, say, secM ≥ 1 and diamM
is close to the extreme value π.

Here one notes that there are metrics on the sphere that are arbitrarily Gromov–
Hausdorff close to the interval [0, π], illustrating the phenomenon of collapse to be dis-
cussed in the next section. On the other hand, if on Mn with secM ≥ 1 one has n+ 2
points any two of which have distance larger than π/2 to one another (think of the ver-
tices of an (n+1) simplex), then it is not hard to see that no collapse occurs. Moreover,
Riemannian geometric tools suffice to rule out exotic spheres in this case.

We point out that no exotic spheres M with secM ≥ 1 and diamM > π/2 are known.
On the other hand, the following generalization of the diameter sphere theorem was

proved in [GW1, GW2].

Theorem 5.1 (handlebody). Any Riemannian manifold Mn with secM ≥ 1, and q+1
points at pairwise distances exceeding π/2 is diffeomorphic to a handlebody Dq ×Sn−q ∪f

Sq−1 × Dn−q+1.

Note that of course q ≤ n in this theorem, and when q = n + 1 is maximal, M
is diffeomorphic to Sn as claimed above. The same conclusion follows from the above
theorem when q ≥ n− 3, where Hatcher’s theorem [Hat] that Diff+(S

3) has SO(4) as a
strong deformation retract is invoked.

Corollary 5.2. Any Riemannian manifold Mn with secM ≥ 1, and n − 2 points at
pairwise distances exceeding π/2 is diffeomorphic to Sn.

The key idea in the proof of the handlebody decomposition theorem is to change the
global Riemannian geometric problem to a local Alexandrov geometric problem. Specif-
ically, one looks at the (n + 1)-dimensional Alexandrov space X := ΣM , the spheri-
cal suspension of M , which has curvX ≥ 1 and is smooth everywhere except at the
north/south suspension points. By appealing to the techniques developed in [GS] and
[GWu], the existence of q + 1 points at pairwise distances larger than π/2 in M (placed
slightly below the equator M of X) allows for the construction of q concave functions
near the north vertex (smooth away from the vertex), together forming a submersion.
An analysis of an annular region around the north vertex based on this observation then
leads to the decomposition of a sphere (hence M) centered at the vertex.

As another application of this geometric setup, in [GW2] it was also proved that if
secMn ≥ 1 and only diamM > π/2, then there exists an n-dimensional Alexandrov
space Y which is the simultaneous Gromov–Hausdorff limit of Riemannian metrics on M
as well as on the standard sphere, all with sectional curvature at least 1. In particular,

Theorem 5.3. If the differentiable stability problem has a positive solution, then any
Mn with secM ≥ 1 and diamM > π/2 is diffeomorphic to Sn.

Note that for the conclusion one needs stability “only” for the particular setup de-
scribed above.

Yet another application of the same setup is due to Burkhard Wilking [W6].

Theorem 5.4. If there is an exotic sphere M with secM ≥ 1 and diamM > π/2, then
its diameter can be chosen arbitrarily close to π.
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§6. Collapse and almost nonnegative curvature

Except for the differentiable stability problem, the relationship between elements in
Mk(n) and n-dimensional limit objects, i.e., the noncollapsing case is rather well un-
derstood (cf. also [Ka2] where it was shown that such limits have significantly more
structure than n-dimensional Alexandrov manifolds).

The situation is dramatically different in the case of collapse, i.e., when a limit object
X = limMi, Mi ∈ Mk(n) has dimension m < n. Relatively little is known in general,
except for the immensely important case of n = 3, where understanding the structure of
collapse ([SY1, SY2]) is instrumental in Perelman’s solution of Thurston’s geometrization
conjecture (for n = 4 see [Ya4]).

Another exception is the special case where X is a Riemannian manifold. Here, for i
sufficiently large, there is an almost Riemannian submersion Fi : Mi → X, see [Ya1].

In general, when the limit is not a Riemannian manifold, one might wonder if almost
Riemannian submersion may be replaced by almost submetry (possibly after perturbing
metrics on domain and target) and what can be said about such maps restricted to inverse
images of natural singular strata of X. The depth and immense difficulties surrounding
this phenomenon may be appreciated from the deceivingly “simple” case where X is an
interval!

What is apparent, however, is that the manifolds M that support metrics collapsing
to a point with a lower curvature bound play a pivotal role in understanding collapse
in general. Such manifolds are said to be almost nonnegatively curved, because after
scaling (to, say, fixed diameter), limits with nonnegative curvature will arise. In fact, an
essential tool for analyzing such manifolds is via scalings/blowups, eventually leading to
a noncollapsed situation.

After the pioneering work of Yamaguchi and Fukaya (some of whose results are also
valid for manifolds in Mε with ε sufficiently close to 0), the most far reaching work so
far in this direction is due to Kapovitch, Petrunin, and Tuschmann [KPT]; among other
things they proved the following.

Theorem 6.1. The fundamental group π1(M) of any closed n-manifold M ∈ M0−

contains a nilpotent subgroup of index at most C(n).

Theorem 6.2. Any closed M ∈ M0− has a finite cover that is nilpotent.

Recall here that a connected CW complex is said to be nilpotent if its fundamental group
is nilpotent, and its action on the higher homotopy groups is nilpotent.

The essential additional new tool introduced here is that of a gradient push in Alexan-
drov spaces, the idea behind which is somewhat reminiscent of the Sharafutdinov retrac-
tion of convex sets in nonnegative curvature.

When combined with the Cheeger–Gromoll structure result for fundamental groups of
nonnegatively curved manifolds (they contain a finite index free Abelian subgroup), it is
a simple matter to exhibit manifolds showing that the inclusions M+ ⊂ M0 ⊂ M0− ⊂
Mk, k < 0, are all strict.

Although the above results say nothing for simply connected M , it is conceivable that
the ideas and tools developed in [KPT] will lead to obstructions to almost nonnega-
tive curvature in this case, where so far the only known one is Gromov’s Betti number
theorem.

We pause to mention that there are natural weaker as well as stronger notions of almost
nonnegative curvature, the weaker one being called almost non-negative curvature in a
generalized sense (cf. [Ya1, KPT]) and the stronger stemming from continuous collapse
to a point with a lower curvature bound. The latter obviously holds for positively and
for nonnegatively curved manifolds simply by scaling.
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Another natural and important example of continuous collapse occurs in the context of
isometric group actions G×M → M by a compact Lie group. This is the so-called Cheeger
deformation [C2] that provides a continuous collapse of M to its orbits space M/G.

Remark 6.3. In general, the collection of Alexandrov spaces X that a given manifold
M can collapse to under a lower curvature bound obviously provides much information
about M . That said, it is not clear how to measure, quantify, or approach this. But
even, say, the possible dimensions of such X have significance.

Just how little is known is illustrated by the following basic problem.

Problem 6.4. Does any M ∈ M0− also admit collapse to an Alexandrov space X with
0 < dimX < dimM?

This question is potentially related to the next conjecture.

Conjecture (Bott). The Betti numbers of the loop space of any (closed simply connected)
M ∈ M0 grow at most polynomially.

The natural approach to this would be via classical Morse theory (cf. the work on
positively pinched manifolds in [BBo]). In fact, it would suffice to control the number
of geodesics and their indices for some pair of points in M (possibly after altering the
metric). The work in [BP], however, makes this rather unpromising. Over the rationals,
the above property of the loop space is equivalent to dim(π∗(M) ⊗ Q) < ∞. Such M
are said to be rationally elliptic. This property alone is very strong and leads via ratio-
nal homotopy theory to additional important restrictions, including Gromov’s optimal
conjecture for dimH∗(M) to be that of the n-torus (cf., e.g., [GH]).

There are interesting cases where rational ellipticity can be proved via a combination
of collapse and Morse theory including manifolds of cohomogeneity one and nonnega-
tively curved manifolds of cohomogeneity two [Ye] (see also [GZ2]). The common feature
in these cases is that M projects to the orbits space X (limit of the collapse) and this
Alexandrov space is geometrically elliptic in the sense that there are points q0, q1 ∈ X
between which the number of geodesic (billiards) joining them grows at most polyno-
mially as a function of length. This property is shared by geodesics in M orthogonal
to the preimage P1 of q1 from a point p0 in the preimage of q0. Those are exactly the
critical points for the energy integral of the homotopy fiber of the inclusion of P1 ⊂ M .
In these examples, where P1 is homogeneous, P1 is rationally elliptic. Combining these
facts leads to the claim that M is rationally elliptic.

The following is a much harder question than Problem 6.4 above.

Problem 6.5. Does any M ∈ M0− also have an Alexandrov limit space X with elliptic
geometry?

If so, this might lead to a proof by induction on the dimension (along the lines alluded
to in the group action cases above) that M ∈ M0− are rationally elliptic. Note that in
such a strategy it is necessary to work with the larger class M0− and not just M+ or
M0 as in Bott’s conjecture.

Although we do not treat manifolds with bounded curvature here, we point out that
in sharp contrast to our discussion above, there is a well developed structure theory for
collapse with bounded curvature, developed by Fukaya, Cheeger, and Gromov culminat-
ing in [CFG]. This has had tremendous impact on the subject including the celebrated
finiteness theorem for 2-connected manifolds with bounded curvature and diameter by
Petrunin, Tuschmann, Fang, and Rong [PT, FR1].

We conclude this section with a brief discussion of the structure at infinity, M(∞)
of complete open manifolds M of nonnegative curvature, this being closely related to
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collapse as well. On the one hand, this can be defined as the space of rays from an
arbitrary point p ∈ M under suitable equivalence. Alternatively, it can be described via
the pointed limit of blowdowns at p ∈ M . This Gromov–Hausdorff limit, lim(λM, p) as
λ approaches 0, is the Euclidean cone C0(M(∞)).

In particular,M(∞) is an Alexandrov space with curv ≥ 1. As an example Rn+1(∞) =
Sn, and a capped off cylinder Sn × [0,∞) has ideal boundary a point.

Problem 6.6. Which Alexandrov spaces X can occur as the ideal boundary M(∞) of
a complete manifolds M with nonnegative curvature?

In [GuK] it was shown that if X = M(∞) is a Riemannian manifold, then it is the
base of a fibration from a sphere. When simply connected, this in particular implies by
work of W. Brouwder that X topologically looks like a rank one symmetric space. In
particular, the class of positively curved spaces that can appear as M(∞) is rather small.
Among non-manifolds, it does however include all spherical orbit spaces S/G.

One might wonder if the above problem is related to the following.

Problem 6.7. Which Alexandrov spaces X can occur as spaces of directions of (collaps-
ing) limits of Riemannian manifolds with a lower sectional curvature bound?

§7. Constructions and examples

So far we have discussed a sample of general results for the classes M+ ⊂ M0 ⊂
M0− ⊂ Mk obtained via comparison tools, critical point theory, Gromov–Hausdorff
convergence, and Alexandrov geometry.

Our focus in this section is to exhibit examples from the gem of manifoldsM+ ⊂ M0 ⊂
M0− , and present constructions leading to them. To a large extent this is closely related
to the role of symmetries to be discussed in the last section. In fact, the efforts spent
on deriving general results in the presence of symmetries shed new light and pave the
way towards the discovery and construction of examples. As this collection of examples
grows and is closely examined geometrically as well as (differential) topologically, existing
conjectures are either supported or refuted, and new insights are gained, possibly leading
to new conjectures.

At the core of this is the fact that any Lie group G with a biinvariant metric belongs
to M0.

Projections. It is an important simple fact that the Riemannian submersions M → N
are sectional curvature nondecreasing on horizontal planes (precise formulas provided by
[ON] and [Gr]). In particular,

• the base N of a Riemannian submersion M → N is in M0 when M ∈ M0.

Given that any compact Lie group G ∈ M0, it follows that all homogeneous manifolds
G /H and more generally biquotients G //H are in M0. Here, in the latter case H ⊂ G×G
acts from both sides of G, and when this action is free, G //H is a manifold.

Much work has been done towards analyzing which G /H and G //H support metrics
in M+.

In fact, there is a complete classification of homogeneous M = G /H ∈ M+; the
list provided by Berger [Be], Wallach [Wa], and Aloff–Wallach [AW] was shown to be
exhaustive by Berard–Bergery [BB] and Wilking–Ziller [WZ]. In the simply connected
case, aside from the CROSS, there is one example in each of the dimensions 6, 12, 13,
and 24 and an infinite family in dimension 7.

So far there is no classification of M = G //H ∈ M+, but there is one example in
dimension 6, infinitely many in dimension 7 all due to Eschenburg [E1], and infinitely
many in dimension 13 due to Bazaikin [Ba1].
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To illustrate how important it is to further analyze properties of this list of examples,
we mention that an analysis of their isometry groups led to the discovery [Sh] of sev-
eral examples in M+ with Abelian but noncyclic fundamental group (answering in the
negative a question by Chern). For further examples, see [GS, Ba2].

Bundles. Taking products obviously preserves the classes M0 ⊂ M0− . In contrast, no
known example in M+ is topologically a product! (compare this with the classical Hopf
conjecture that no metric on S2 × S2 puts it in M+).

In general, assume P → N is a principal G-bundle with P ∈ M0 and G acting freely
by isometries. Moreover, assume G acts isometrically on F ∈ M0. Then, since taking
products and quotients preserves M0,

• the total space M = P ×G F := (P × F )/G of the associated bundle is in M0.

The same holds with the class M0 replaced by the larger class M0− , with G acting
isometrically for a defining family of metrics. The utility of this construction of course
depends on the extent to which the desired principal bundles can be constructed (see
below). For the class M0 this is a very hard problem in general. For the class M0− ,
however, we have the following most desirable result due to Fukaya and Yamaguchi [FY].

Theorem 7.1 (bundle). Let P → N be a principal G-bundle with G compact. If N ∈
M0− , then there is a G-invariant metric on P ∈ M0− .

This gives rise to lots of examples, including all exotic 7 (respectively, 15) spheres that
fiber over S4 (respectively, S8) with fiber S3 (respectively, S7). A much more general result
was obtained by Searle and Wilhelm in [SW], in particular yielding that all exotic 15
spheres that bound parallelizable manifolds are in M0− .

Gluing constructions. In general, gluing constructions that yield manifolds in M+

are expected to be hard, and depending on its meaning one could even argue that none
exist yet (see below though).

The reason for this is that the simplest type of gluings (preserving curvature bounds)
“require” totally geodesic boundaries isometric to one another (and even better with
product metric near the boundary). In M0, this means convexity. Nonetheless, this is
exactly what has been accomplished in many interesting cases starting with [C2], where
it was shown that

• the connected sum of any two projective spaces is in M0.

This is achieved by showing that the disk bundle of the canonical line bundle over a
projective space can be given a metric with nonnegative curvature, and totally geodesic
boundary isometric to the standard sphere, and product near the boundary (see also
[BM]).

In general, any cohomogeneity one G-manifold M with orbit space an interval is the
union of two disk bundles, namely the normal disk bundles over the two nonprincipal
orbits. In [GZ1] it was shown that

• a cohomogeneity one manifold with singular orbits of codimension two has a G-
invariant metric in M0.

Indeed, one constructs such a metric on each disk bundle with the property that it is
product near the boundary and the two sphere bundles (a principal orbit) are isometric
(this is where the codimension is crucial).

Part of the utility of this is based on a principal bundle construction over cohomo-
geneity one manifolds whose total space is a cohomogeneity one manifold with singular
orbits of the same codimension as those on the base [GZ1]. In particular, it turns out
that this yields numerous principal bundles P → M with P ∈ M0, and thus numerous
associated bundles as well. In particular,



A PANORAMIC GLIMPSE OF MANIFOLDS 19

• the total space M of any vector or sphere bundle over S4 is in M0.

This class contains all the exotic Milnor spheres. We point out that by extending the
cohomogeneity one method above to biquotiens, just very recently Goette, Kerin, and
Shankar [GKS] have succeed in proving the following remarkable fact.

Theorem 7.2. All exotic 7-spheres belong to M0.

The result above for vector bundles over S4 above also addresses the following converse
of the soul theorem question.

Problem 7.3. Which vector bundles E over S ∈ M0 can have total space E ∈ M0?

Originally this was only formulated by Cheeger and Gromoll for S = Sn, where it is
still unknown in general except for n ≤ 5 (cf. [GZ1]). For all the compact rank one
symmetric spaces as base (as well as all known simply connected 4-manifolds in M0)
it is known that stably, i.e., by possibly adding a sufficiently large trivial bundle, the
conclusion holds [Ri, GA] ([GZ1]).

In general, the answer is in the negative, as was first shown by Özaidin and Wals-
chap [OW]. Since then numerous topological obstructions have been found by Belgradek
and Kapovitch when S has infinite fundamental group [BK].

In all the gluing constructions discussed so far, the manifold M was exhibited as the
union of two nonnegatively curved disk bundles, product near the boundary and isometric
boundaries.

It is interesting that, in fact, any complete open manifold of nonnegative curvature
(and the interior of any compact convex subset in a nonnegatively curved manifold) has
such a structure, as was proved by Guijarro [Gu]. From this it follows immediately that
if M and N are nonnegatively curved manifolds with convex boundaries ∂M and ∂N ,
then also

• the boundary ∂(M ×N) is in M0.

To see this, simply use Guijarro’s observation combined with

∂(M ×N) = M × ∂N ∪ ∂M ×N

and the fact that ∂(M × ∂N) = ∂M × ∂N = ∂(∂M ×N).
A very special case of this is what was referred to as an open book in [FG1], where,

say, M = D(ν) is a nonnegatively curved convex disk bundle, and N = Dk. Here,
the resulting nonnegatively curved manifold Mν,k can be thought of as an open book
whose pages D(ν) are parametrized by the sphere Sk−1 and the common binding is
S(ν). Alternatively, Mν,k = S(ν ⊕ εk), the sphere bundle of the sum of ν with a trivial
k-dimensional bundle.

This type of manifold M ∈ M0 arises naturally in the presence of reflection groups,
when the generating reflections have a common mirror (and the representation of the
reflection group orthogonal to the intersection of the mirrors is irreducible, cf. [FG1]).

In this context, the construction needs to be generalized and iterated (when the repre-
sentation of the reflection group orthogonal to the intersection of the mirrors is reducible,
cf. [FG1]). For this, the building block is not a convex nonnegatively curved manifold
with boundary, but rather a convex nonnegatively curved manifold

D(ν) = D(ν1)⊕D(ν2)⊕ · · · ⊕D(ν�)

with corners. Here the total boundary consists of faces any two of which meet perpen-
dicularly, and the metric near each face is a product. Moreover, each D(νi) is totally
geodesic in D(ν) all meeting orthogonally at the soul S. Inductively, each step of the
open book construction applied here reduces the number of faces by one, so after � open
book constructions we arrive at a nonnegatively curved Mν1,...,ν�;k1,...,k�

. Alternatively,
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Mν1,...,ν�;k1,...,k�
is the pull back by the diagonal S → S×· · ·×S of the product of sphere

bundles S(νi ⊕ εki), i = 1, . . . �.
It is possible to generalize the above construction for the metric on ∂(M × N) =

M × ∂N ∪ ∂M ×N to involve several choices of manifolds with corners, as in the special
case of iterated open books above, and one wonders what kind of manifolds this leads to.

We conclude our discussion about gluing methods to a case technically very far from
what was discussed above and indeed more subtle. Note that in positive curvature it
is impossible to glue two convex sets together (they are disks) without the resulting
manifold being a sphere topologically. In particular, all non-sphere cohomogeneity one
manifolds in M+ are glued together by two disk bundles whose common boundary is not
totally geodesic.

The work towards the classification of cohomogeneity one manifolds in M+ [GWZ]
(see the next section) yielded an explicit exhaustive list, including two infinite families
Pk and Qk, where at the time none other than P1 = S7 and Q1 = A7

1,1 (the normal
homogeneous Aloff–Wallach space [AW, W2]) were known to carry an (invariant) metric
in M+. Since then, explicit constructions [GVZ, De], unlike all previous ones in M+,
led to the following.

Theorem 7.4. The cohomogeneity one SO(4)-manifold P2 = T1S
4#Σ7 admits an in-

variant metric in M+.

Here the description of P2 as an exotic smooth structure on the unit tangent bundle
T1S

4 of S4 is due to Goethe [Go].

Deformations. One of the most natural attempts in the search for metrics with desired
properties is via deformations of a starting metric.

From the point of view of what we have discussed here related to Alexandrov geometry,
the so-called Cheeger deformation (whose origin stems from the construction of Berger
spheres) stands out. For G a closed connected Lie group, this is a deformation that
naturally shrinks the orbits of an isometric action G×M → M to points, providing a
deformation of M to M/G under a lower curvature bound.

Conformal changes play significant roles in various problems, often involving PDE
methods not treated here. Of course, in dimension two the classical uniformization
theorem stands out. In higher dimensions, important cases where curvature bounds like
those considered here are dealt with include the work in [PW] and [SW].

Despite the spectacular applications the Ricci flow has had, so far no major applica-
tions have been found in the primary context of lower (and no upper) sectional curvature
bounds. This is of course not surprising given that lower sectional curvature bounds are
not preserved.

It would be interesting to produce new examples of manifolds in, say, M+ ⊂ M0 by
deforming Alexandrov manifolds with nonnegative or positive curvature (cf. [Dy] and
[Sp] though).

§8. The presence of symmetries

Although a generic Riemannian metric has trivial isometry group, the “nicest”, “most
optimal” ones typically have lots of symmetries. Of course, this is to some extent a
matter of taste, but most would agree that for example the exclusive, yet rich class of
symmetric spaces are indeed models of perfection among Riemannian manifolds.

Many problems in geometry are motivated by a search for “optimal/nicest” metrics on
a given manifold, often involving curvature properties such as constant scalar -, ricci -,
or sectional curvature, or perhaps holonomy restrictions. Here we will add symmetry to
the mix.
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The presence of a group G of isometries on a Riemannian manifold M has strong
immediate impact for the following reasons.

• The fixed point set MG of G consists of totally geodesic submanifolds of M .
• The orbit space M/G is an Alexandrov space (at least as curved as M).

In addition, the isotropy/slice representations of all isotropy subgroups have rather
direct impact as well. For example, each orbit stratum (collection of orbits of the same
type) in M is a minimal submanifold, and in M/G it is totally geodesic. Note, that all
of this of course also applies to any subgroup K ⊂ G.

In this context, it is natural to investigate what can be said about the classes M+ ⊂
M0 ⊂ M0− in the presence of large and/or special groups of isometries. Such investiga-
tions have led to several strong results including classification type theorems, as well as
to the discovery and construction of one new member of M+ and numerous members of
M0 as discussed in the previous section.

Cohomogeneity. The cohomogeneity of an isometric group action G×M → M is the
codimension of its principal orbits, or equivalently in our case (where G and M are
compact), the dimension of its orbit space M/G.

As already pointed out, all homogeneous manifolds M = G /H, i.e., manifolds of
cohomogeneity zero, admit a G-invariant metric with M ∈ M0, and those with M ∈ M+

are classified ([BB] and [WZ]).
An application of the Cheeger deformation shows that all cohomogeneity one manifolds

admit invariant metrics in M0− [ST].
However, even among simply connected closed cohomogeneity one manifolds (all ra-

tionally elliptic [GH]), there is a distinction among the classes M+ ⊂ M0 ⊂ M0− .
In particular:

• No exotic spheres admit cohomogeneity one metrics in M0 [GVWZ, HR].
• All cohomogeneity one manifolds with both singular orbits of codimension 2
admit invariant metrics in M0 [GZ1].

• Only a few of the latter admit invariant metrics in M+ [GWZ].

Note that any G-manifold M with M/G a circle has a G-invariant metric in M0.
However, the following is a difficult problem.

Problem 8.1. Determine all closed simply connected cohomogeneity one manifolds
in M0.

For positive curvature, there is a complete classification in dimensions �= 7 (see [V1, V2]
and [GWZ]), which contains infinite subfamilies of the Eschenburg examples in dimension
7 as well as an infinite subfamily of the Bazaikin examples in dimension 13. In the
remaining dimensions, the following is true.

Theorem 8.2. A simply connected cohomogeneity one G-manifold Mn ∈ M+ is G-equi-
variantly diffeomorphic to a rank one symmetric space, as long as n �= 7, 13.

Recall that an exhaustive list of simply connected cohomogeneity one manifolds ad-
mitting positive curvature was derived in [GWZ] (an exceptional one of which was later
shown not to support such a metric [VZ]).

For any cohomogeneity, one has the following remarkable “finiteness analog” of the
classification of homogeneous manifolds in M+ (see [W4]).

Theorem 8.3 (Wilking). Any simply connected cohomogeneity k ≥ 1 manifold Mn ∈
M+ with n ≥ 18(k + 1)2 is a rank one symmetric space up to tangential homotopy
equivalence.
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So far, even in cohomogeneity two, we have limited knowledge about restrictions for
M ∈ M0 ⊂ M0−. However,

Theorem 8.4 (Yeager). Any simply connected cohomogeneity 2 manifold M ∈ M0 is
rationally elliptic.

We note that it is possible to extend the proof in [Ye] to the class M0−, and there are
numerous cohomogeneity two manifolds not in M0−. The latter can also be seen from
the work of Yamaguchi on collapse of 4-manifolds, see [Ya4], combined with the following
simple fact.

• The connected sum of any number of ±CP2 supports a T2-action of cohomogeneity
two.

In fact the actions are polar (see [GZ2] and below), with section RP
2 (respectively,

T2 /Z2) with one (respectively, two) projective spaces are involved. When more than
three projective spaces are involved, the section is hyperbolic, with hyperbolic polygon
as orbit space.

Torus Symmetry. Torus actions play a particular role for various reasons. For example,
from the Cheeger–Fukaya–Gromov theory if follows that collapse with bounded curvature
of simply connected manifolds is given in terms of such actions (see also [Ro]). Secondly,
for manifold in M+ the method of Synge implies that an isometric action by a torus
T has fixed points in even dimensions, and either fixed points or circle orbits in odd
dimensions (cf. §1). In particular, there are isotropy groups of maximal rank in even
dimension and at most corank 1 in odd dimensions.

Since the principal isotropy group of an effective Tk-action on Mn is trivial, it follows
that k ≤ n, with equality if an only if M = Tn. Also observe that if Tn−1 acts effectively
on Mn, and hence by cohomogeneity one, it follows that π1(M) is infinite unless n = 2, 3.
However, there are cohomogeneity two actions by Tn−2 on simply connected n-manifolds
for all n ≥ 3 [KMP] (and free actions by Tn−4 on simply connected n-manifolds for all
n ≥ 5 [KMP]).

If, however, Mn is rationally elliptic (but still under no curvature assumption), in

[GKR] it was proved that k ≤ � 2n
3 � for any effective Tk-action on M . Moreover, k ≤ �n

3 �
if the action is almost free.

In view of the Bott conjecture, this supports the following so-called maximal symme-
try rank conjecture proposed by B. Wilking and independently by F. Galaz-Garcia and
C. Searle.

Conjecture. If Tk acts isometrically on a simply connected n-manifold M ∈ M0, then
k ≤ � 2n

3 �.
The conjecture also includes a classification up to equivariant diffeomorphism in case

of equality.
It was proved in dimensions ≤ 9 by Galaz-Garcia and Searle [GaS1], and recently,

under an additional assumption, in general by Escher and Searle [ES]. The additional

assumption is that the smallest dimension of a Tk-orbit is either 2k − n or 2k − n+ 1.
Following the above conjecture, we say that a simply connectedMn ∈ M0 hasmaximal

(respectively, almost maximal symmetry rank) if the rank of the isometry group of M is
� 2n

3 � (respectively, � 2n
3 � − 1).

In particular, for a 4-manifold, almost maximal symmetry rank means that M admits
an isometric circle action. To describe the optimal classification for this case we mention
the remarkable fact that any T2-action on any of S2×S2, CP

2±CP
2 is induced from the

standard product action by T4 = T2 ×T2 on S3 × S3 via a free T2-subaction, see [GaK].
(For a more general result for torus manifolds in M0, see [Wm].)



A PANORAMIC GLIMPSE OF MANIFOLDS 23

Theorem 8.5. A closed simply connected S1-manifold M4 ∈ M0 is equivariantly dif-
feomeorphic to

• a linear S1-action on S4, or CP2 (the only possibility when M ∈ M+),
or to

• an S1-subaction of a T2-action on one of S2 × S2, CP
2 ± CP

2.

The assertions as well as the proofs have evolved over time, as can be seen in the
contributions [HK, Kl, SY, GS1, GaG, GWi, Sp]:

• The topological classification hinged on deep topology (Freedman’s classification of
simply connected topological 4-manifolds) and beautiful equivariant comparison geome-

try, showing that χ(MS1

) ≤ 4 (at most 3 when M ∈ M+).
• Using convexity and critical point theory, the geometric arguments became more

transparent and with stronger conclusions when the Alexandrov geometry of the orbit
spaceM/S1 was utilized. In particular, equivariant diffeomorphism was first proved in the
case where the S1-action has a fixed point component of dimension two, and hence acts
transitively on its normal sphere. (For a classification of such fixed point homogeneous
manifolds in M+ in general, see [GS2].)

• When the S1-action only has isolated fixed points, M/S1 is a simply connected
topological 3-manifold, and hence S3 by the Poincaré conjecture. In this case one can
obtain the diffeomorphism classification by invoking work of Fintushel and Pao on smooth
circle actions on closed simply connected 4-manifolds.

• To obtain the assertion up to equivariant diffeomorphism, however, one needs to
know that the singular set in M/S1 does not contain a knotted circle. This follows by
showing that the canonical 2-fold branched cover along such a circle has fundamental
group of order at least 3 if the curve is knotted, and that in our case it is an Alexandrov
space and hence its universal cover would have too many very singular points (lifts of
fixed points).

• The dependence on the Poincaré conjecture can be avoided by doing more geometry
(smoothing out singularities) and appealing to Hamilton’s classification of 3-manifolds
with positive Ricci curvature.

The theorem above of course provides support for the classical Hopf conjecture that
there is no metric on S2 × S2 with positive curvature. Indeed if there is one, it can have
at most a finite isometry group. One can speculate that on the list in the theorem we
have all the closed simply connected 4-manifolds in M0. Topologically, this would follow
from the ellipticity conjecture.

Problem 8.6. Does the conclusion of the above result hold for S1-manifolds in M0−?

We point out that there is also a classification of closed simply connected T2-manifolds
in M0 in dimension five due to F. Galaz-Garcia and C. Searle [GaS2].

In general, the symmetry rank symrank(M) of a Riemannian manifoldM is the rank of
its isometry group. In positive curvature, there are naturally much stronger restrictions
on the symmetry rank expressed in the following rigidity and “pinching” theorems due
to Grove–Searle [GS1] and Wilking [W3] respectively.

Theorem 8.7 (rank rigidity). Any Mn ∈ M+ has symrank(M) ≤ �n+1
2 � with equality

if and only if M is diffeomorphic to either Sn, CPn/2, or a lense space Sn/Zk.

Moreover, the actions are also known (standard on the model spaces).

Theorem 8.8 (rank pinching). Any simply connected n-manifold M ∈ M+ such that
symrank(M) ≥ n/4 + 1 and n �= 7 is homotopy equivalent to a CROSS.

In this (not strongest, but uniform) formulation, results have been combined: it is
due to Wilking for n ≥ 10 and to Fang–Rong [FR2] for 7 < n < 10, and is covered
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by the rigidity theorem in dimensions n < 7. As, e.g, the Aloff–Wallach examples
Ap,q = SU(3)/S1p,q all have isometry group of rank 3, the conclusion fails in dimension 7.

When symrank(M) = �n+1
2 �− 1, we say that M has almost maximal symmetry rank.

Here one has classification in all dimensions but 6 and 7.

Problem 8.9. Classify Mn ∈ M+ with almost maximal symmetry rank when n = 6
and 7.

Recall that the soft symmetry rank pinching theorem asserts that M ∈ M+ with
linear symmetry rank growth (slope roughly 1/4, cf. Theorem 8.8) up to homotopy
equivalence are rank 1 symmetric space.

In intriguing work pioneered by L. Kennard [Ke1, Ke2, AKe] it was discovered that
even a logarithmic growth on the symmetry rank for manifolds Mn ∈ M+ yields strong
restrictions along the lines of the classical Hopf conjectures, including positivity and
bounds on the Euler characteristic, obstructions for products to have positive curvature,
etc. Here the main tools are Wilking’s connectivity theorem combined with algebraic
topology.

Very recently, an in depth analysis of fixed point sets or torus actions in positive
curvature has led to the following Corollary by Kennard and Wilking [KW]: an even-
dimensional manifold of positive curvature of symmetry rank 5 has Euler characteristic
at least 2.

Even the weakest symmetry rank assumption (having an isometric S1-action) yields
obstructions in support of the Chern conjecture in high dimensions [Ro1, Ro2].

Theorem 8.10 (Rong). Given n, there is w(n) such for any S1-manifold Mn ∈ M+,
π1(M) has a cyclic subgroup of index at most w(n). In particular, if Zp × Zp ⊂ π1(M)
for some prime p, then p ≤ w(n).

Special isometric group actions. An isometric action G×M → M is said to be polar
if it admits a so-called section, i.e., an immersed manifold σ : Σ → M whose image
intersects all G-orbits orthogonally. Extreme cases include transitive actions, and actions
by a discrete group. In the first case Σ is a point, and in the latter Σ = M . Unless
otherwise stated, we assume throughout that we are not in these extreme cases. More
interestingly, any cohomogeneity one isometric action is polar.

An exclusive yet rich class of examples are provided by isotropy representations and
-actions of symmetric spaces. This includes the adjoint action of a compact Lie group,
where the section is a maximal torus.

The basic general theory for polar actions was developed independently by Szentze [Sz]
and Palais–Terng [PTe]. It is important that sections are totally geodesic, and that all
isotropy representations are polar representations. Moreover, the stabilizer group of any
section modulo its kernel is a discrete group Π and Σ/Π = M/G.

When M is simply connected, it turns out ([Al, AT], see also [GZ2]) that Π is a
reflection group, W, i.e., it is generated by reflections. Here a reflection is simply an
isometric involution r with a fixed point component of codimension one. We refer to
such a component as a mirror for r. A connected component c of the complement of all
mirrors in Σ is called an open chamber of Σ, and its closure C is simply a chamber. Again
assuming that M is simply connected and G is connected, W will act simply transitively
on the set of all (open) chambers, and M/G = Σ/W = C. Here the boundary ∂C of C is
the union of its faces, each face being the intersection of a mirror with C of codimension
one.

In the setting above, where W acts simply transitively on the set of all chambers, one
can reconstruct M together with its G action from its polar data, i.e., from a chamber
C and the isotropy groups and representations along C, see [GZ2]. Based on this, a
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classification of all closed simply connected polar manifolds of dimension at most five
was carried out in [Go].

Alternatively, one can also viewM together with its polar G action combinatorially via
its so-called associated homogeneous chamber system C(M ;G) = ∪g∈G gC consisting of
all chambers in all sections of M . Here two chambers gC and hC are said to be adjacent
if and only if they have a common face, or equivalently, g h−1 is in a face isotropy group
of C. It is a crucial fact that in this case all so-called residues of C(M ;G) are canonically
identified with an associated chamber system for a slice representation, which in turn all
are spherical Tits buildings.

In this combinatorial setup, there is a natural metric on the chamber system C(M ;G),
namely, the induced length metric. Its induced topology is called the thin topology. There
is also a combinatorial notion of chamber system covers, which in special important cases
coincide with topological covers relative to the thin topology. The fundamental group of
this space is typically enormous, also when the chambers are simple, e.g., contractible.
The Hausdorff topology on the set of closed subsets of M will often give rise to a natural
topology on the chamber system’s universal cover. Together with the thin topology, this
will then be an interesting object related to M with its topology. When this all works

(e.g., when M ∈ M+ ⊂ M0), the universal cover C̃(M ;G) of C(M ;G) with its new thick
topology will be a principal bundle P over M .

Remark 8.11. In general, although quite special as G-manifolds, polar actions and man-
ifolds constitute a rich and for many problems manageable class, which is likely to play
an important future role in a variety of geometric problems.

In the context of lower curvature bounds, the examples of T2-actions we have discussed
in dimension 4 already indicate that all lower curvature bounds (fixing a diameter) are
needed. However, the following problem is wide open.

Problem 8.12. Describe closed simply connected polar manifolds in M0− of cohomo-
geneity at least two.

Although the same question for the class M0 is still far from solved, much progress has
been made and a clear goal has emerged (see [Go] for dimensions at most five though).

For the class M+, the following complete answer was obtained in [FGT1, FGT2].

Theorem 8.13 (smooth polar rigidity). A closed simply connected polar G-manifold
M ∈ M+ of cohomogeneity at least two is equivariantly diffeomorphic to a rank one
symmetric space with a polar G-action.

In all cases, the natural point of departure is to understand the chambers, section(s),
and the associated reflection group W. From convexity and critical point theory one
obtains the following classification result [FGT1].

Theorem 8.14. A closed manifold Σ ∈ M+ with a reflection group W admits a W-inva-
riant metric of constant curvature 1.

In particular, Σ is either Sn or the real projective space, and W (or its lift to Sn) is a
finite Coveter group.

Unlike the case of positive curvature, when the polar manifold M ∈ M0 the section
Σ need not be closed, but at least the action by W is co-compact. In this case, one has
the following (see [FG1]).

Theorem 8.15. Let Σ̃ be the universal cover of a Σ ∈ M0 with a co-compact reflection

group W, and let Ŵ be the lifted reflection group on Σ̃. Then W is a product of Coxeter
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groups

Ŵ = Ŵ0 ×
�−1∏
i=1

Ŵi × Ŵ�,

where Ŵ0 is affine, and the remaining factors are spherical. Correspondingly, Σ̃ splits

isometrically and Ŵ-invariantly as

Σ̃ = Rk ×
�−1∏
i=1

Ski ×Θ� ×N,

where Ski ∈ M0 is a standard sphere with a linear Ŵi-action, Θ� ∈ M0 is a compact
simply connected (iterated) open book, and N can be any simply connected compact

manifold in M0 on which all Ŵi act trivially.

This splitting theorem stems from the corresponding metric splitting of the chamber
C = Σ/W = M/G into Euclidean simplices (including intervals), spherical simplices (of
dimension at least two), and (iterated) open book chamber and any closed non-negatively
curved manifold (the latter corresponds to taking the product with a manifold on which
G acts trivially).

We say that a simply connected polar manifold in M0 is indecomposable if its or-
bitspace has only one factor, i.e., an interval (cohomogeneity one), a Euclidean or spher-
ical simplex of dimension at least two, or an (iterated) open book chamber.

Surprisingly, it seems now almost certain that any such M is the base of a principal
bundle whose total space splits as a product accordingly, when no book chamber is present
(cf. [FG2]). Moreover, the general case reduces to the non-book case in the sense that it
fibers over a non-book polar manifold with book polar fibers. Also perhaps surprisingly,
book polar manifolds of non-negative curvature are in a sense well understood. This then
reduces the efforts of understanding polar manifolds in M0 to the indecomposable ones.
The indecomposable manifolds with spherical simplex as orbit space are understood via
[FGT1] and those with Euclidean simplex as orbit space are expected to be closely related
(i.e., up to principal bundles) via affine Bruhat–Tits buildings to symmetric spaces with
polar actions.

§9. Complete open manifolds

With the exception of Riemannian manifolds M with secM ≥ 0, we have throughout
confined our treatment to closed, i.e., compact manifolds without boundary.

The tools and to a large extent the methods discussed here can equally well be used in
the setting of complete open Riemannian manifolds M with secM ≥ k, allowing k < 0
(noting that k > 0 implies that M is compact). So far, however, the author is not aware
of any work in this general direction.

In particular, the following appears to be a (simple or hard?) open basic

Problem 9.1. Does any n-manifold M with n ≥ 2 admit a complete Riemannian metric
with secM ≥ −1? If not, determine obstructions and describe those who do admit such
metrics.
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