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A SURVIVAL GUIDE FOR FEEBLE FISH

D. BURAGO, S. IVANOV, AND A. NOVIKOV

Dedicated to Yu. D. Burago
on the occasion of his 80th birthday

Abstract. As avid anglers, the authors are interested in the survival chances of fish
in turbulent oceans. This paper addresses this question mathematically. It is shown
that a fish with bounded aquatic locomotion speed can reach any point in the ocean
if the fluid velocity is incompressible, bounded, and has small mean drift.

§1. Introduction

Suppose a locally Lipschitz vector field V (x) and a set of bounded controls

At = {α ∈ L∞([0, t];Rd) : ‖α‖∞ ≤ 1}
are given. For each x ∈ R

d and a control α ∈ At, the function Xα
x (s) is defined as a

unique solution of

(1)
d

ds
Xα

x (s) = V (Xα
x (s)) + α(s), s ∈ [0, t], Xα

x (0) = x.

The travel time from x ∈ R
d to y ∈ R

d is how long it takes to reach y from x with
optimal control:

(2) τ (x, y) = inf
{
t ≥ 0 | Xα

x (t) = y, for some α ∈ At

}
.

If τ (x, y) is finite for any x, y ∈ R
d, then τ (x, y) can be viewed as a “non-symmetric

metric” on R
d. For us the value of the control α(s) is precisely the strength of aquatic

locomotion of fish at time s, and V (x) is the velocity field of the ambient ocean. The
finiteness of travel time between any x and y guarantees fish can travel anywhere it
wants. Naturally, fish can rely on its strength in calm water, that is when ‖V ‖L∞ < 1,
but what happens in violent storms? Here we intend to clarify the situation in this less
obvious regime ‖V ‖L∞ � 1.

There are two natural obstructions to the finiteness of τ (x, y). The first one is com-
pressibility. If V has a sink at x0, then, depending on the strength of the flow near x0,
we may have τ (x0, y) = ∞ for all y �= x0. The second obstruction is a strong mean drift
of V . Indeed, if V is simply a large constant vector, then τ (x, y) = ∞ for many x and y.
For example, if V = (v1, 0, . . . , 0), v1 � 1, then τ (x, y) = ∞ for points x and y if the
first coordinate of x is larger than the first coordinate of y. In order to rule out these
two natural obstructions, we assume V is incompressible,

(3) div V = 0,
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and it has small mean drift:

(4) lim
L→∞

sup
x∈Rd

∥∥∥∥ 1

Ld

∫
[0,L]d

V (x+ y) dy

∥∥∥∥ = 0.

We also assume that V is bounded:

(5) ‖V ‖L∞(Rd) ≤ M < ∞.

Our main result is the following.

Theorem 1.1. Suppose V is locally Lipschitz, bounded (5), incompressible (3), and has
small mean drift (4). Then τ (x, y) < ∞ for all x, y ∈ R

d.

If the vector field is globally Lipschitz, we have the following estimate on travel times.

Theorem 1.2. Suppose V is incompressible (3), has small mean drift (4), and V ∈
Lip(K), i.e.,

(6) ‖V (x)− V (y)‖ ≤ K|x− y|, ∀x, y ∈ R
d.

Then the travel-time estimate

(7) τ (x, y) ≤ C1‖x− y‖+ C2,

holds with some C1 and C2 that depend on V only.

In the two-dimensional case, estimate (7) was obtained in [3] under slightly different
assumptions on V . This estimate was used in [3] to characterize effective behavior of
solutions of the random two-dimensional G-equation, a certain Hamilton–Jacobi partial
differential equation that arises in modeling propagation of flame fronts in turbulent
media [4, 5]. Subsequently, effective behavior of solutions of the random G-equation was
characterized in [1] for any dimension. The approach in [1] is different from that in [3].
In particular, it relies on ergodic properties of the flow V instead of its geometry.

Throughout the rest of the paper we assume that d ≥ 3. The case of d = 2 easily
follows by adding an auxiliary coordinate.

Remark 1.3. We do not know whether the Lipschitz condition (6) in Theorem 1.2 is
necessary. More precisely, we do not know if it can be replaced by the conditions of
local Lipschitz continuity and boundedness (5). Note that the conditions of Lipschitz
continuity (6) and small mean drift (4) imply the boundedness (5).

One possible approach is to sacrifice a part of the available control and use this part
to push V into some compact class of vector fields. Then we can use an argument similar
to that in the proof of Theorem 1.2.

Remark 1.4. One may wonder whether uniform convergence is essential in (4). That is,
we ask if Theorem 1.1 remains valid if we replace (4) by the following assumption:

(8) lim
L→∞

∥∥∥∥ 1

(2L)d

∫
[−L,L]d

V (x+ y) dy

∥∥∥∥ = 0

for every x ∈ R
d. The answer is no. A counter-example exists already in two dimensions.

Consider the vector field V on R
2 given by

V (x1, x2) = 10 · (sgn(x2), sgn(x1)).

It is discontinuous, but this can be fixed by convolution with a suitable mollifier. The
resulting field is bounded, incompressible, and it satisfies (8). On the other hand, the
fish cannot leave the region {x1 ≥ 1, x2 ≥ 1}.
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Remark 1.5. As could be seen from the proof, the small mean drift assumption (4) in
Theorem 1.1 can be replaced by a more technical quantitative assumption. Namely it
suffices to assume there is L0 > 0 such that∥∥∥∥ 1

Ld

∫
[0,L]d

V (x+ y) dy

∥∥∥∥ ≤ ε = ε(d,M)

for all L > L0. Similarly, the parameters determining the constants in Theorem 1.2 are
the uniform bound M , the Lipschitz constant K, and the above-mentioned L0.

Motivating ideas of the proof. Let us start with some motivations. These are not
proofs but they indicate what brought us to a relatively technical argument presented
below.

A feasible counter-example to Theorem 1.1 would look like this. Consider a hyper-
surface S ⊂ R

d dividing the space into two regions R and R′. Suppose that for every
x ∈ S, the vector V (x) is directed inward R and its normal component with respect to S
is greater than 1. Then, if the fish starts at a point in R, it can never cross S outwards
and hence cannot leave R.

In fact, any counter-example should look like this. Indeed, let R be the set of all
points that our fish can reach from its initial position. Then a simple technical argument
(see §2) shows that the boundary ∂R is locally the graph of a Lipschitz function. And
since the fish cannot leave R, the flow at the boundary is directed inward R with the
normal component bounded away from zero. With a little help of the Geometric Measure
Theory, one sees that Lipschitz surfaces are as good as smooth ones for our purposes.
Thus, Theorem 1.1 is equivalent to the non-existence of a hypersurface S with the above
properties.

Now, let us consider some simple cases. First of all, if the reachable set R is compact,
then the contradiction is obvious. Since the flow field at the boundary points strictly
inwards, the flux through the boundary is nonzero, and this contradicts the incompress-
ibility condition.

A more interesting situation to consider is the case where R is a tube (a neighborhood
of a straight line) and there is a parallel tube with opposite flow to cancel the mean
drift. Since the normal component of the flow field on the boundary is bounded away
from zero, the total flux though the boundary is unbounded. This and incompressibility
imply that V is unbounded, contrary to our assumptions.

Things are however more complicated since a priori the tubes can branch or widen
or have more complicate structure. The main part of our strategy is to show that this
“branching” must be exponential and there is not enough room for this in the Euclidean
space.

Remark 1.6. Our proof is not constructive. It does not give us an actual trajectory
that the fish can follow to reach a given point. The optimal trajectory can be found
by studying how the reachable set evolves in time. This could be done by solving the
G-equation, since a certain spatial level set of its solution at a fixed time t is precisely
the boundary of the set of all points that our fish can reach before t.

Our motivating ideas are formulated in a very informal way so far. Let us proceed
with actual proofs of the theorems.

§2. Local geometry of reachable sets

Throughout the rest of the paper we assume that V is a vector field in R
d satisfying

the assumptions of Theorem 1.1. The letters C and c denote various positive constants
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depending on V . The same letter C may denote different constants, even within one
formula. We fix the notation M for the bound on ‖V ‖, see (5).

We denote by S the closure of a set S ⊂ R
d. We refer to [2] for basic properties of

rectifiable sets in R
d. For a k-dimensional rectifiable set S ⊂ R

d, 0 ≤ k ≤ d, we denote
by |S| its k-dimensional volume. For a (d − 1)-rectifiable co-oriented set S we denote
by flux(V, S) the flux of V through S. (Recall that co-orientation of a hypersurface is a
choice of one of the two normal directions.)

In this section we establish basic properties of the set of points reachable from a fixed
point x ∈ R

d. For technical reasons, we prefer to work with open reachable sets, defined
as follows.

Definition 2.1. For x ∈ R
d and τ > 0, we denote by Rτ

x the set of points reachable
from x in positive time less than τ using controls strictly smaller than 1. That is,

Rτ
x =

{
y ∈ R

d | y = Xt
α(x) for some t ∈ (0, τ ) and α ∈ At such that ‖α‖∞ < 1

}
.

We define the reachable set Rx of x by Rx =
⋃

τ>0 Rτ
x.

Clearly Rτ
x and Rx are open sets. We are going to show that the boundary ∂Rx enjoys

some regularity properties.

Definition 2.2. Given a point y ∈ R
d, a vector v ∈ R

d, and a parameter λ ∈ (0, 1), we
define an open cone

Cλ
y (v) = {y + tw | t > 0, w ∈ R

d, ‖w − v‖ < λ}.

If ‖v‖ > λ, then Cλ
y (v) is an open “round cone” with its apex at y. If ‖v‖ < λ, then

Cλ
y (v) = R

d. If ‖v‖ = λ, then Cλ
y (v) is an open half-space. For fixed v and λ, the cones

Cλ
y1
(v) and Cλ

y2
(v) are parallel translates of each other.

Lemma 2.3. Let R = Rx and λ ∈ (0, 1). Then for every y0 ∈ ∂R there exists a
neighborhood U of y0 such that for every y ∈ R ∩ U one has Cλ

y (v0) ∩ U ⊂ R, where
v0 = V (y0).

Proof. Let U � y0 be a convex neighborhood so small that ‖V (y) − v0‖ < 1 − λ for all
y ∈ U . First, consider y ∈ R ∩ U . Starting at x and using controls strictly bounded
by 1, our fish can reach y and then follow any path t → y + tw, ‖w − v0‖ < λ, until it
leaves U . Hence, Cλ

y (v0) ∩ U ⊂ R for any y ∈ R ∩ U .

If y ∈ ∂R ∩ U , the cone Cλ
y (v0) is the limit of cones Cλ

y′(v0), y
′ ∈ R ∩ U , y′ → y.

More precisely, for every z ∈ Cλ
y (v0) we have z ∈ Cλ

y′(v0) for all y
′ ∈ R sufficiently close

to y. Since the desired property is already verified for y′ ∈ R, it follows that it holds for
y ∈ ∂R. �

Lemma 2.4. ∂Rx is a locally Lipschitz hypersurface, and Rx locally lies to one side of
∂Rx.

Proof. Let R = Rx and y0 ∈ ∂R. Fix λ = 1
2 and let U be a neighborhood of y0

constructed in Lemma 2.3. Since y0 is a boundary point of R, Lemma 2.3 implies that
Cλ

y (v0) �= R
d for any y. Choose a Cartesian coordinate system in R

d such that the
vector v0 = V (y0) is nonnegatively proportional to the last coordinate vector. In these
coordinates, every cone Cλ

y (v0) is the epigraph of the function Fy : R
d−1 → R given by

Fy(u) = yn + C ‖u − u0‖, where C =
√
‖v‖2 − 1, yn is the last coordinate of y, and u0

is the projection of y to the first coordinate hyperplane. This fact and Lemma 2.3 imply
that ∂R ∩ U is the graph of a C-Lipschitz function and the set R ∩ U lies above this
graph. The lemma follows. �
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Lemma 2.4 implies that ∂Rx is a (d − 1)-dimensional locally rectifiable set and it
has a tangent hyperplane at almost every point. We equip ∂Rx with a co-orientation
determined by the choice of the normal pointing inwards Rx.

Lemma 2.5. For every measurable set S ⊂ ∂Rx, flux(V, S) ≥ |S|.

Proof. It suffices to verify that, for every y0 ∈ ∂Rx such that ∂Rx has a tangent hyper-
plane at y0, we have 〈v0, n〉 ≥ 1, where v0 = V (y0) and n is the inner normal to ∂Rx

at y0. Suppose the contrary and fix λ between 〈v0, n〉 and 1. By Lemma 2.3, Rx contains
a set Cλ

y0
(v0) ∩ U , where U is a neighborhood of y0. The cone Cλ

y0
(v0) contains the ray

{y0 + tw | t > 0}, where w = v0 − n〈v0, n〉. The vector w is orthogonal to n and hence
belongs to the tangent hyperplane to ∂Rx at y0. Thus, the tangent hyperplane has a
nonempty intersection with Cλ

y0
(v0), a contradiction. �

§3. Flux estimates

First we show that the average flux trough a large (d− 1)-dimensional cube is small.
This is the only place in the proof where we use the small mean drift assumption.

Lemma 3.1. For every ε > 0 there exists A0 > 0 such that the following holds. If F is
a (d− 1)-dimensional cube with edge length A > A0, then

(9) | flux(V, F )| ≤ εAd−1.

Proof. We may assume that F = {0} × [0, A]d−1. By the small mean drift property (4),
there exists L0 such that

(10)

∥∥∥∥ 1

Ld

∫
[0,L]d

V (x+ y) dy

∥∥∥∥ < ε/2

for every L > L0 and all x ∈ R
d. If A > L0, then A = mL, where m ∈ Z and

L0 ≤ L ≤ 2L0. Consider the layer

Q = [0, L]× [0, A]d−1.

It can be partitioned into cubes with edge length L, hence (10) implies that

1

LAd−1

∥∥∥∥
∫
Q

V (x) dx

∥∥∥∥ < ε/2.

The mean value theorem implies that there is t ∈ [0, L] such that a similar inequality
holds for the slice Ft = {t} × [0, L]d−1 of Q by the hyperplane {x1 = t}. Namely

1

LAd−1
| flux(V, Ft)| =

1

Ad−1

∣∣∣∣
∫
Ft

〈V (x), e1〉 dx
∣∣∣∣ < ε/2,

where integration on the right-hand side is taken against the (d−1)-dimensional volume.
Let Qt = [0, t] × [0, A]d−1. Incompressibility implies that the flux of V through the
boundary ∂Qt is zero. This boundary contains two “large” cubic faces F and Ft, and
the area of the remaining part is “small”:

|∂Qt \ (F ∪ Ft)| = (2d− 2)tAd−2 ≤ CLAd−2.

Hence,

| flux(V, F )| ≤ ε

2
Ad−1 + CLMAd−2.

Choosing A sufficiently large we obtain (9). �

Denote by It the n-dimensional cube with edge length 2t centered at zero: It = [−t, t]d.
The following two lemmas concern estimates on the flux of V through subsets of ∂It.
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Lemma 3.2. Let D be a subset of ∂It with a (d− 2)-rectifiable boundary ∂D. Then

(11) | flux(V,D)| ≤ C|∂D|(d−1)/(d−2),

where C = C(d,M).

Proof. By incompressibility,

| flux(V,D)| = | flux(V, ∂It \D)|.

Hence,

| flux(V,D)| ≤ M min
{
|D|, |∂It \D|

}
.

By the isoperimetric inequality,

|∂D| ≥ Cmin
{
|D|, |∂It \D|

}(d−2)/(d−1)

for some C = C(d). The last two inequalities imply (11). �

Lemma 3.3. For every ε > 0 there exist A0 > 0 and C0 = C0(ε, V ) > 0 such that
for every t > A0 the following holds. If D is a subset of ∂It with a (d − 2)-rectifiable
boundary ∂D, then

(12) | flux(V,D)| ≤ C0|∂D|+ εtd−1.

Proof. By Lemma 3.1, there exists A0 > 0 such that the flux of V through every (d−1)-di-
mensional cube with edge length A > A0 is bounded by ε

2dA
d−1. If t > A0, then

t = mA, where m ∈ Z and A0 ≤ A ≤ 2A0. We divide ∂It into (d− 1)-dimensional cubes
Qi, i = 1, 2, . . . , 2dmd−1, with edge length A. For each i, define Pi = |∂D ∩ Qi| and
Si = min{|Qi ∩D|, |Qi \D|}. By the isoperimetric inequality,

Si ≤ CP
(d−1)/(d−2)
i

for some C = C(d). And, trivially,

Si ≤ |Qi| = Ad−1.

Combining these two inequalities, we obtain

(13) Si = S
(d−2)/(d−1)
i S

1/(d−1)
i ≤ CPiA.

By the choice of A0 we have

| flux(V,Qi)| ≤
ε

2d
|Qi|.

Hence, ∣∣| flux(V,Qi ∩D)| − | flux(V,Qi \D)|
∣∣ ≤ ε

2d
|Qi|.

Since at least one of the terms | flux(V,Qi∩D)| and | flux(V,Qi \D)| is bounded by MSi,
it follows that

| flux(V,Qi ∩D)| ≤ MSi +
ε

2d
|Qi| ≤ CPiA+

ε

2d
|Qi|.

Summing up over all i and setting C0 = 2CA0 yields (12). �
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§4. Proof of Theorem 1.1

Theorem 1.1 is an immediate corollary to the following lemma.

Lemma 4.1. For every x ∈ R
d, the reachable set Rx is the entire R

d.

Proof. Arguing by contradiction, assume that Rx �= R
d for some x ∈ R

d. Lemma 2.4
implies that ∂Rx = ∂Rx and hence Rx �= R

d. For t > 0 denote

Dt = Rx ∩ ∂It, St = ∂Rx ∩ It, Lt = ∂Rx ∩ ∂It,

where It is the cube defined in §3. Since ∂Rx is a nonempty locally Lipschitz hypersur-
face, we have |St| > 0 for all t > t0, where t0 is the distance from 0 to ∂Rx and |St| is
the (d− 1)-dimensional volume of St.

The sets Lt are slices of ∂Rx by level sets of the 1-Lipschitz function x → max |xi|.
Hence, Lt is a (d − 2)-rectifiable set for almost every t. In the sequel we consider only
those values t > t0 for which Lt is (d−2)-rectifiable. In particular, the (d−1)-dimensional
volume of Lt is zero. This implies that Lt = ∂Dt, where ∂Dt denotes the boundary of
Dt in ∂It. Let P (t) = |Lt| = |∂Dt| denote the (d− 2)-dimensional volume of this set. By
the co-area inequality,

|St| ≥ A(t) :=

∫ t

0

P (s) ds.

Observe that the union Dt ∪ St is the boundary of the set Rx ∩ It. In addition,
Dt∩St = Lt, which is (d−2)-dimensional. Hence, by the incompressibility condition (3),

| flux(V,Dt)| = | flux(V, St)| ≥ |St|,
where the last inequality follows from Lemma 2.5. Thus,

(14) | flux(V,Dt)| ≥ |St| ≥ A(t).

By Lemma 3.2,

| flux(V,Dt)| ≤ CP (t)(d−1)/(d−2).

In particular, P (t) > 0 for t > t0. It follows that A(t) > 0 for all t > t0 and

d
dtA(t) = P (t) ≥ cA(t)(d−2)/(d−1)

for some c > 0 and almost every t > t0. Therefore, A(t) ≥ c0(t− t0)
d−1 and hence

| flux(V,Dt)| ≥ c0(t− t0)
d−1,

where c0 > 0 is some constant depending on V . Now we apply Lemma 3.3 to ε = c0/3
and obtain

(15) c0(t− t0)
d−1 ≤ | flux(V,Dt)| ≤ CP (t) +

c0
3
td−1.

For all sufficiently large t we have (t − t0)
d−1 > 2

3 t
d−1 and therefore CP (t) + c0

3 t
d−1 ≥

2c0
3 td−1. Hence, c0

3 t
d−1 ≤ CP (t). Thus, (15) implies

| flux(V,Dt)| ≤ CP (t)

for all sufficiently large t. Combining this with (14) yields d
dtA(t) ≥ cA(t) for all suffi-

ciently large t. Hence, A(t) grows exponentially.
On the other hand,

| flux(V,Dt)| ≤ M |∂It| ≤ Ctd−1.

This and (14) imply that A(t) grows at most polynomially. This contradiction proves
Lemma 4.1 and Theorem 1.1. �

Corollary 4.2. For every compact set B ⊂ R
d there exists τ0 = τ0(V,B) > 0 such that

τ (x, y) ≤ τ0 for all x, y ∈ B.
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Proof. Fix x0 ∈ B. Recall that Rx0
is the union of nested open sets Rτ

x0
, τ > 0. Since

Rx0
= R

d and B is compact, it follows that B ⊂ Rτ1
x0

for some τ1 > 0. Thus, τ (x0, y) ≤ τ1
for all y ∈ B.

To complete the proof, we show that x0 can be reached from any point x ∈ B in a
uniformly bounded time. This is equivalent to reaching x from x0 in the flow defined
by the opposite vector field −V . Applying the above argument to −V yields that there
is τ2 > 0 such that τ (x, x0) ≤ τ2 for all x ∈ B. Hence, τ (x, y) ≤ τ0 := τ1 + τ2 for all
x, y ∈ B. �

§5. Proof of Theorem 1.2

Now we assume that V satisfies the assumptions of Theorem 1.2. To prove Theorem 1.2
it suffices to verify the following: there is a constant C > 0 such that τ (x, y) ≤ C for all
x, y ∈ R

d satisfying ‖x− y‖ ≤ 1.
Suppose the contrary. Then there exist two sequences of points {xn} and {yn} in R

d

such that ‖xn − yn‖ ≤ 1 and τ (xn, yn) > n for all n. Consider the shifted vector fields
Vn given by

Vn(x) = V (x− xn).

By the Arzela–Ascoli theorem, there exists a subsequence {Vni
} that converges to a

vector field V0 uniformly on compact sets. The vector field V0 inherits boundedness,
Lipschitz continuity, and the small mean drift property (4) from V .

Thus, we can apply Theorem 1.1 and Corollary 4.2 to V0 in place of V . By means of
rescaling, this works even if the control is 1

2 -bounded, that is if we consider the travel
times

(16) τ̃(x, y) = inf
{
t ≥ 0 | Xα/2

x (t) = y for some α ∈ At

}
.

By Corollary 4.2, there is τ0 such that τ̃ (x, y) ≤ τ0 for all x, y from the unit ball centered
at 0, where τ̃ is defined by (16) for the vector field V0. In particular, the travel times
τ̃(0, yn − xn) are bounded by τ0. Since our vector field is bounded, all trajectories
realizing these travel times are confined to some ball BR(0). For ni large enough we have
‖Vni

− V0‖ < 1
2 on BR(0), and hence all such trajectories are also trajectories for Vni

with 1-bounded control. Thus, τ (xn, yn) ≤ τ̃(0, yn − xn) ≤ τ0, a contradiction.
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