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ON THE STABILIZERS OF FINITE SETS
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on the occasion of his 80th birthday

Abstract. The subgroups HU of the R. Thompson group F that are stabilizers of
finite sets U of numbers in the interval (0, 1) are studied. The algebraic structure
of HU is described and it is proved that the stabilizer HU is finitely generated if
and only if U consists of rational numbers. It is also shown that such subgroups are
isomorphic surprisingly often. In particular, if finite sets U ⊂ [0, 1] and V ⊂ [0, 1]
consist of rational numbers that are not finite binary fractions, and |U | = |V |, then
the stabilizers of U and V are isomorphic. In fact these subgroups are conjugate
inside a subgroup F < Homeo([0, 1]) that is the completion of F with respect to
what is called the Hamming metric on F . Moreover the conjugator can be found
in a certain subgroup F < F which consists of possibly infinite tree-diagrams with
finitely many infinite branches. It is also shown that the group F is non-amenable.

§1. Introduction

The R. Thompson group F is one of the most interesting infinite finitely generated
groups. It is usually defined as a group of piecewise linear increasing homeomorphisms of
the unit interval with all break points of derivative finite dyadic fractions (i.e., numbers
from Z[ 12 ]) and all slopes powers of 2. The group has many other descriptions (for some of
them see §2). The group F is finitely presented, does not have free noncyclic subgroups,
and satisfies many other remarkable properties which are the subject of numerous papers.
One of the main questions about F is whether it is amenable (the problem was first men-
tioned in print by Ross Geoghegan). Incorrect proofs of amenability and non-amenability
of F are published quite often, and some of these papers (despite having incorrect proofs)
are quite interesting because they show deep connections of F with diverse branches of
mathematics. For example, [26] shows why a mathematical physicist would be interested
in the R. Thompson group F , paper [22] shows a deep connection with logic and Ramsey
theory, and [27] shows a connection with graphs on surfaces. Quite recently Vaughan
Jones discovered a striking connection between F and planar algebras, subfactors and
the knot theory [21]. It turned out that just like braid groups, elements of F can be
used to construct all links. He also considered several linearized permutational represen-
tations of F on the Schreier graphs of some subgroups of F including the subgroup

#–
F

defined in terms of the corresponding sets of links. This motivated our renewed interest
in subgroups of F [17, 18]. It turned out that Jones’ subgroup

#–

F is quite interesting. For
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example, even though it is not maximal, there are finitely many (exactly two) subgroups

of F bigger than
#–

F , i.e.,
#–

F is of quasifinite index in F [18].
Other subgroups of interest include the stabilizers HU of finite sets U ⊂ (0, 1) first

considered by Savchuk [24, 25] who proved that the Schreier graph of F/HU is amenable
for every finite U . In [18] we showed that each HU is also of quasifinite index: every
subgroup of F containing HU is of the form HV , where V ⊆ U .

Savchuk [24] noticed that if U contains an irrational number, then HU is not finitely
generated. It is easy to see that if U consists of numbers from Z[ 12 ], thenHU is isomorphic
to the direct product of |U | + 1 copies of F and hence is (2|U | + 2)-generated. Thus if
U ⊂ Z[ 12 ], then the isomorphism class of HU depends only on the size of U . In fact if

|U | = |V | and U, V ⊂ Z[ 12 ], then it is easily seen that HU and HV are conjugate in F .
This leaves open the following.

Problem 1.1. What is the structure of HU for an arbitrary finite U? When is HU

finitely generated? When are HU and HV isomorphic?

In this paper, we continue the study of subgroups HU and answer the questions from
Problem 1.1. Every subset U of (0, 1) is naturally subdivided into three subsets U =
U1∪U2∪U3, where U1 consists of numbers from Z[ 12 ] (i.e., numbers of the form .u where

u is a finite word in {0, 1}), U2 consists of rational numbers not in Z[ 12 ] (i.e., numbers

of the form .psN where p, s are finite binary words and s contains both digits 0 and 1),
and U3 consists of irrational numbers. We shall call U1, U2, U3 the natural partition of U .
We show that HU is finitely generated if and only if U consists of rational numbers,
that is, U3 is empty. In that case we find the minimal number of generators of HU and
classify subgroups HU up to isomorphism. In particular, we show (Theorem 4.1) that if
U1 = U3 = ∅, then, up to isomorphism, HU depends only on the size |U |. For example,
H{ 1

3} is isomorphic to H{ 1
7 }. Moreover if τ (U) is the type of U , i.e., the word in the

alphabet {1, 2, 3} where the i letter of τ (U) is 1 if the ith number in U (with respect
to natural order) is from Z[ 12 ], 2 if the ith number in U is rational not from Z[ 12 ], and

3 if the ith number is irrational, then HU is isomorphic to HV provided τ (U) ≡ τ (V )1

(Theorem 4.1).

Note that H{ 1
3 } and H{ 1

7 } are obviously not conjugate in F or even in P̃L2(R), the

group of piecewise linear homeomorphisms of R with all break points in Z[ 12 ] and all
absolute values of slopes powers of 2 (and so not in Aut(F ) [6]). We are going to prove
(see Theorem 7.7) that if τ (U) ≡ τ (V ), then HU and HV are conjugate in Homeo([0, 1])
and, in fact, in a relatively small subgroup F of Homeo([0, 1]). We will also show that one
can construct a completion F of F with respect to a certain metric (which is similar to
the Hamming metric on the symmetric group Sn) and show that the natural embedding
F → F extends to an embedding F → F . The groups F and F are interesting on their
own. We prove, in particular, that F contains a non-Abelian free subgroup, so F is a
non-amenable completion of F .

Remark 1.2. Note that Theorem 4.1 (the isomorphism theorem for some subgroups HU )
follows from Theorem 7.7 (the conjugacy theorem for some subgroups HU ). Nevertheless,
we decided to keep Theorem 4.1 because its proof gives additional algebraic information
about subgroups HU .

Here is a combination of several results proved in this paper.

Theorem 1.3. Let U be a finite set of numbers from (0, 1), and let U = U1 ∪U2 ∪U3 be
the standard partition, r = |U |, mi = |Ui|, i = 1, 2, 3. Then

1p ≡ q denotes letter-by-letter equality of words p, q.
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1. (Theorem 3.2) HU is isomorphic to a semidirect product

HU
∼= [F, F ]r+1

� Z
2m1+m2+2.

2. (Theorem 5.9) The subgroup HU is finitely generated if and only if U3 is empty
(that is, U consists of rational numbers). In that case the smallest number of
generators of HU is 2m1 +m2 + 2.

3. (Theorem 6.1) Let U3 = ∅. Then the subgroup HU is undistorted in F .

In §8, we list some open problems.

Remark 1.4. After the first versions of our paper appeared on arXiv, Ralph Strebel
informed us that several results of this paper, in particular Theorem 3.2, can be proved
for the generalizations of the R. Thompson groups considered in [3].

§2. Preliminaries on F

2.1. F as a group of homeomorphisms. Recall that F consists of all piecewise-
linear increasing self-homeomorphisms of the unit interval with slopes of all linear pieces
powers of 2 and all break points of the derivative in Z[ 12 ]. The group F is generated by
two functions x0 and x1 defined as follows [10]:

x0(t) =

⎧⎪⎨
⎪⎩
2t if 0 ≤ t ≤ 1

4 ,

t+ 1
4 if 1

4 ≤ t ≤ 1
2 ,

t
2 + 1

2 if 1
2 ≤ t ≤ 1,

x1(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
t if 0 ≤ t ≤ 1

2 ,

2t− 1
2 if 1

2 ≤ t ≤ 5
8 ,

t+ 1
8 if 5

8 ≤ t ≤ 3
4 ,

t
2 + 1

2 if 3
4 ≤ t ≤ 1.

The composition in F is from left to right.
Every element of F is completely determined by how it acts on the set Z[ 12 ]. Every

number in (0, 1) can be described as .s, where s is an infinite word in {0, 1}. For each
element g ∈ F there exists a finite collection of pairs of (finite) words (ui, vi) in the
alphabet {0, 1} such that every infinite word in {0, 1} starts with exactly one of the ui’s.
The action of F on a number .s is the following: if s starts with ui, we replace ui by vi.
For example, x0 and x1 are the following functions:

x0(t) =

⎧⎪⎨
⎪⎩
.0α if t = .00α,

.10α if t = .01α,

.11α if t = .1α,

x1(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
.0α if t = .0α,

.10α if t = .100α,

.110α if t = .101α,

.111α if t = .11α,

where α is any infinite binary word.
For the generators x0, x1 defined above, the group F has the following finite presen-

tation [10]:

F =
〈
x0, x1 | [x0x

−1
1 , xx0

1 ] = 1,
[
x0x

−1
1 , x

x2
0

1

]
= 1

〉
,

where ab denotes b−1ab.
Sometimes, it is more convenient to consider an infinite presentation of F . For i ≥ 1,

let xi+1 = x−i
0 x1x

i
0. In these generators, the group F has the following presentation [10]:

〈xi, i ≥ 0 | xxj

i = xi+1 for every j < i〉.
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2.2. Elements of F as pairs of binary trees. Often, it is more convenient to describe
elements of F using pairs of finite binary trees drawn on a plane. Trees are considered up
to isotopies of the plane. Elements of F are pairs of full finite binary trees (T+, T−) which
have the same number of leaves. Such a pair will sometimes be called a tree-diagram.

If T is a (finite or infinite) binary tree, a branch in T is a maximal simple path starting
from the root. Every non-leaf vertex of T has two outgoing edges: the left edge and the
right edge. If every left edge of T is labeled by 0 and every right edge is labeled by 1,
then every branch of T is labeled by a (finite or infinite) binary word u. We will usually
ignore the distinction between a branch and its label.

Let (T+, T−) be a tree-diagram, where T+ and T− have n leaves. Let u1, . . . , un

(respectively, v1, . . . , vn) be the branches of T+ (respectively, T−), ordered from left to
right. For each i = 1, . . . , n we say that the tree-diagram (T+, T−) has a pair of branches
ui → vi. The function g in F corresponding to this tree-diagram takes binary fraction
.uiα to .viα for every i and every infinite binary word α. We will also say that the
element g takes the branch ui to the branch vi. The tree-diagrams of the generators of
F , x0 and x1, appear in Figure 1.

Figure 1. (a) The tree-diagram of x0. (b) The tree-diagram of x1. In
both figures, T+ is on the left and T− is on the right.

A caret is a binary tree composed of a single vertex with two children. If (T+, T−) is a
tree-diagram, then attaching a caret to the ith leaf of both T+ and T− does not affect the
function in F represented by the tree-diagram (T+, T−). The inverse action of reducing
common carets does not affect the function either (the pair (T+, T−) has a common caret
if leaves number i and i + 1 have a common father in T+ as well as in T−). Two pairs
of trees (T+, T−) and (R+, R−) are said to be equivalent if one results from the other by
a finite sequence of inserting and reducing common carets. If (T+, T−) does not have a
common caret, then (T+, T−) is said to be reduced. Every tree-diagram is equivalent to
a unique reduced tree-diagram. Thus, the elements of F can be represented uniquely by
reduced tree-diagrams [10].

An alternative way of describing the function in F corresponding to a given tree-
diagram is the following. For each finite binary word u, we let the interval associated
with u, denoted by [u], be the interval [.u, .u1N]. If (T+, T−) is a tree-diagram for f ∈ F ,
we let u1, . . . , un be the branches of T+ and v1, . . . , vn be the branches of T−. Then the
intervals [u1], . . . , [un] (respectively, [v1], . . . , [vn]) form a subdivision of the interval [0, 1].
The function f maps each interval [ui] linearly onto the interval [vi].

Below, when we say that a function f has a pair of branches ui → vi, the meaning is
that some tree-diagram representing f has this pair of branches. In other words, this is
equivalent to saying that f maps [ui] linearly onto [vi].

Remark 2.1 (see [10]). The tree-diagram where both trees are just singletons plays the
role of identity in F . Given a tree-diagram (T 1

+, T
1
−), the inverse tree-diagram is (T 1

−, T
1
+).
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If (T 2
+, T

2
−) is another tree-diagram, then the product of (T 1

+, T
1
−) and (T 2

+, T
2
−) is defined

as follows. There is a minimal finite binary tree S such that T 1
− and T 2

+ are rooted
subtrees of S (in terms of subdivisions of [0, 1], the subdivision corresponding to S is
the intersection of the subdivisions corresponding to T 1

− and T 2
+). Clearly, (T 1

+, T
1
−) is

equivalent to a tree-diagram (T+, S) for some finite binary tree T+. Similarly, (T 2
+, T

2
−)

is equivalent to a tree-diagram (S, T−). The product (T 1
+, T

1
−) · (T 2

+, T
2
−) is (the reduced

tree-diagram equivalent to) (T+, T−).

Obviously, the mapping of tree-diagrams to functions in F respects operations defined
in Remark 2.1.

2.3. Choosing elements in F . In most proofs in this paper, we choose elements with
a given set of pairs of branches, or elements which map certain intervals or numbers from
[0, 1] in a predetermined way. In doing so, we usually apply the next lemma. It follows
directly from the proof of [6, Lemma 2.1].

Lemma 2.2. Let [a1, b1], . . . , [am, bm], [c1, d1], . . . , [cm, dm] be closed subintervals of [0, 1]
(possibly of length 0, i.e., points) with endpoints from Z[ 12 ]. Assume that the interiors of
the intervals [a1, b1], . . . , [am, bm] (respectively, [c1, d1], . . . , [cm, dm]) are pairwise disjoint
and that the intervals [a1, b1], . . . , [am, bm] (respectively, [c1, d1], . . . , [cm, dm]), considered
as sub-intervals of [0, 1], are ordered from left to right. Assume in addition that the
following conditions are satisfied:

1) [ai, bi] has empty interior if and only if [ci, di] has empty interior;
2) 0 ∈ [a1, b1] if and only if 0 ∈ [c1, d1];
3) 1 ∈ [am, bm] if and only if 1 ∈ [cm, dm];
4) for all i = 1, . . . ,m − 1, the intervals [ai, bi] and [ai+1, bi+1] share a boundary

point if and only if the intervals [ci, di] and [ci+1, di+1] share a boundary point.

Then there is an element f ∈ F that maps each interval [ai, bi], i = 1, . . . ,m onto the
interval [ci, di]. In addition, if for some i, [ai, bi] has positive length and bi−ai

di−ci
is an

integer power of 2 (in particular, if both [ai, bi] and [ci, di] are dyadic intervals), then f
can be taken to map [ai, bi] linearly onto [ci, di].

Remark 2.3. The proof of Lemma 2.1 in [6] also implies (in the notations of Lemma 2.2)
that if for each i we choose an element gi ∈ F that maps [ai, bi] onto [ci, di], then there is
an element f ∈ F such that for all i ∈ {1, . . . ,m}, the restriction of f to [ai, bi] coincides
with gi.

Remark 2.4. Unless explicitly stated otherwise, all closed intervals considered below have
positive lengths.

2.4. On branches and fixed points. In this section we consider the relation between
the set of fixed points of an element f ∈ F and a tree-diagram (T+, T−) representing it.
Let (T+, T−) be a tree-diagram of an element f ∈ F . Let ui → vi, i = 1, . . . , n, be the
pairs of branches of (T+, T−). Since f is linear on each interval [ui], if the interval is not
fixed (i.e., if the words ui and vi are different), then the interval [ui] contains at most
one fixed point. This fixed point can be found as follows.

Let i ∈ {1, . . . , n} and assume that ui ≡ vi, We can assume that |ui| ≤ |vi| by replacing
f by f−1 if necessary. If ui is not a prefix of vi, then the intervals [ui] and [vi] are disjoint
and there are no fixed points in [ui]. Otherwise, vi ≡ uisi for some nonempty suffix si.
The number αi = .uis

N

i is the unique number fixed in [ui]. Note that if si ≡ 0k or si ≡ 1k

for some k ∈ N, then αi is from Z[ 12 ]. Otherwise αi is a rational (but not in Z[ 12 ]) fixed
point of f .
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Corollary 2.5 (Savchuk [24]). Let f ∈ F and assume that f fixes an irrational number
α. Then f fixes a neighborhood (α− ε, α+ ε) of α.

The discussion above also implies the following.

Lemma 2.6. Let f ∈ F and assume that f fixes a rational number α /∈ Z[ 12 ]. Let

α = .psN, where s is a minimal period of α. Then f has a pair of branches of the form
psm1 → psm2 for some m1,m2 ≥ 0.

Proof. Let (T+, T−) be a tree-diagram for f , and let u → v be a pair of branches of
(T+, T−) such that α ∈ [u]. Since α is fixed by f , α ∈ [v] and we can assume that |u| ≤ |v|.
Similarly, by considering a non reduced form of (T+, T−) we can assume that u = psm1

for some m1 ≥ 0. If v ≡ u, we are done. Otherwise, let v ≡ uw for some nonempty word
w. The unique fixed point of f in [u] is then .uwN. Thus, α = .psN = .usN = .uwN.
Since s is a minimal period of α, w ≡ sk for some k ∈ N. Thus, v ≡ psm1+k and for
m2 = m1 + k we get the result. �

Lemma 2.6 implies the following.

Corollary 2.7. Let α = .psN be a rational number not in Z[ 12 ], and assume that s is a
minimal period of α. If f ∈ F fixes α and has slope 2a at α, then a is divisible by the
length of s.

Proof. By Lemma 2.6, f has a pair of branches of the form psm1 → psm2 for some
m1,m2 ≥ 0. The slope of f on the interval [psm1 ] is 2(m1−m2)|s|. �

2.5. Natural copies of F . Let f be a function in the Thompson group F . The support
of f , denoted Supp(f), is the closure in [0, 1] of the subset {x ∈ (0, 1) : f(x) = x}. We
say that f has support in an interval J if the support of f is contained in J . Note that
in this case the endpoints of J are necessarily fixed by f . Hence, the set of all functions
from F with support in J is a subgroup of F . We denote this subgroup by FJ .

Let S be a subset of [0, 1]; the notation Stab(S) will be used for the pointwise stabilizer
of S in F . Thus, if f has support in a closed interval [a, b], then f ∈ Stab([0, a] ∪ [b, 1]).
We note that if f has support in an interval J and g ∈ F , then fg has support in the
interval g(J). Similarly, F g

J = Fg(J).
The Thompson group F contains many copies of itself (see [7]). The copies of F we will

be interested in will be of the following simple form. Let a and b be numbers from Z[ 12 ] and
consider the subgroup F[a,b]. We claim that F[a,b] is isomorphic to F . Note that F can be
viewed as a subgroup of PLF2(R) of all piecewise linear homeomorphisms of R with finite
number of finite dyadic break points and absolute values of all slopes powers of 2. Let
f ∈ PLF2(R) be a function that maps 0 to a and 1 to b (such a function clearly exists).
Then F f is the subgroup of PLF2(R) of all orientation preserving homeomorphisms with
support in [a, b], that is, F f = F[a,b].

Let u be a finite binary word and [u] the interval associated with it. The isomorphism
between F and F[u] can also be defined by using tree-diagrams. Let g be an element of
F represented by a tree-diagram (T+, T−). We map g to an element in F[u], denoted by
g[u] and referred to as the copy of g in F[u]. To construct the element g[u] we start with a
minimal finite binary tree T that contains the branch u. We take two copies of the tree
T . To the first copy, we attach the tree T+ at the end of the branch u. In the second
copy we attach the tree T− at the end of the branch u. The resulting trees are denoted
by R+ and R−, respectively. The element g[u] is the one represented by the tree-diagram
(R+, R−). Note that if g consists of pairs of branches vi → wi, i = 1, . . . , k, and B is
the set of branches of T which are not equal to u, then g[u] consists of pairs of branches
uvi → uwi, i = 1, . . . , k, and p → p, p ∈ B.
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For example, the copies of the generators x0, x1 of F in F[0] are depicted in Figure 2.
It is obvious that these copies generate the subgroup F[0].

Figure 2. (a) The tree-diagram of (x0)[0]. (b) The tree-diagram of (x1)[0].

The isomorphism above guarantees that if f, g ∈ F , then f[u]g[u] = (fg)[u]. Using this
isomorphism, we define an addition operation in the Thompson group F as follows. We
denote by 1 the trivial element in F . We define the sum of an element g ∈ F with the
trivial element 1, denoted by g ⊕ 1, to be the copy of g in F[0]. Similarly, the sum of 1
and g, denoted by 1⊕g, is the copy of g in F[1]. If g, h ∈ F we define the sum of g and h,

denoted by g⊕ h, to be the product (g⊕1)(1⊕h); i.e., g⊕ h is an element of Stab({ 1
2})

that acts as a copy of g on [0] and as a copy of h on [1]. It is easily seen that for g = 1
or h = 1 this definition coincides with the previous one. Note that x1 = 1 ⊕ x0. In
particular, x0 and 1⊕x0 generate the whole F . If we denote by ζ the function t �→ 1− t

from Homeo([0, 1]), then F ζ = F and (g ⊕ h)ζ = hζ ⊕ gζ . One can check that xζ
0 = x−1

0 .
Since (x0 ⊕ 1)ζ = 1 ⊕ x−1

0 = x−1
1 and x−1

0 , x−1
1 clearly generate F , we see that x0 and

x0 ⊕ 1 generate F .
Note also that if G is a subgroup of F , then the subgroup 1⊕G = {1⊕ g : g ∈ G} is

isomorphic to G. Similarly for G⊕ 1.

§3. The structure of stabilizers of finite sets

It is known [10] that the derived subgroup of F is exactly the subgroup F(0,1) of all
functions with support in (0, 1). Equivalently, [F, F ] is the subgroup of all functions with
slope 1 both at 0+ and at 1−.

Lemma 3.1. Let a < b be any two numbers in [0, 1]. Then the group F(a,b) of all
functions with support in (a, b) is isomorphic to the derived subgroup of F .
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Proof. We prove that F(a,b) is isomorphic to F(0,1) = [F, F ]. Let {aj}j∈N and {bj}j∈N be

sequences of numbers from Z[ 12 ] such that

(1) {aj}j∈N is strictly decreasing and converges to a;
(2) {bj}j∈N is strictly increasing and converges to b; and
(3) a1 < b1.

Similarly, let {cj}j∈N and {dj}j∈N be sequences of numbers from Z[ 12 ] such that

(1) {cj}j∈N is strictly decreasing and converges to 0;
(2) {dj}j∈N is strictly increasing and converges to 1; and
(3) c1 < d1.

Recall that F[aj ,bj ] is the subgroup of F of all elements with support in [aj , bj ]. Thus,
F(a,b) is the increasing union of subgroups

F(a,b) =
⋃
j∈N

F[aj ,bj ]

(each of these subgroups is a copy of F , see Subsection 2.5). Similarly,

F(0,1) =
⋃
j∈N

F[cj ,dj ].

To prove isomorphism between F(a,b) and F(0,1) it suffices to find a family of compatible
isomorphisms ψj : F[aj ,bj ] → F[cj ,dj ], j ∈ N. By compatible we mean that for all j > 1,
the restriction of ψj to F[aj−1,bj−1] coincides with ψj−1.

We choose elements gj ∈ F defined inductively for j ∈ N, such that

(1) for each j, gj(aj) = cj and gj(bj) = dj ; and
(2) for each j > 1, the element gj coincides with the element gj−1 on the interval

[aj−1, bj−1].

Such a choice is clearly possible by Remark 2.3.
Notice that for each j ∈ N, F[aj ,bj ]

gj = F[cj ,dj ]. Similarly, if j > 1 and h ∈ F[aj−1,bj−1],
then hgj = hgj−1 . Indeed, that follows from h having support in [aj−1, bj−1] and condition
(2) in the choice of gj .

Thus, one can define a compatible family of isomorphisms ψj : F[aj ,bj ] → F[cj ,dj ],
by taking ψj to be the isomorphism of conjugation by gj . This naturally induces an
isomorphism F(a,b) → F(0,1) because

⋃
[aj , bj ] = (a, b) and

⋃
[cj , dj ] = (0, 1). �

Theorem 3.2. Let U be a finite set of numbers in (0, 1). Assume that U = U1∪U2 ∪U3

is the natural partition of U . Let mi = |Ui|, i = 1, 2, 3, r = |U | = m1 +m2 +m3. Then
HU is isomorphic to a semidirect product

HU
∼= [F, F ]r+1

� Z
2m1+m2+2.

Since [F, F ] is simple, the rank of the first integral homology group of HU is 2m1+m2+2.

Proof. For each α ∈ U1 we choose closed intervals Lα and Rα of positive length with
endpoints in Z[ 12 ] such that α is the right endpoint of Lα and left endpoint of Rα. We
can choose the intervals Lα and Rα to be sufficiently small so that they do not contain
points from U2 ∪ U3 and the interiors of all these intervals are pairwise disjoint.

For α ∈ U1, we choose elements gα and fα such that gα has support in Lα and slope
2 at α− and fα has support in Rα and slope 2 at α+.

For each β ∈ U2 we have β = .pβs
N

β for some finite binary words pβ and sβ , where sβ
is a minimal period of β. Let Cβ, for β ∈ U2, be pairwise disjoint open intervals with
endpoints in Z[ 12 ], such that β ∈ Cβ for all β ∈ U2. Assume also that all Cβ are disjoint
from the union of all Lα and Rα, α ∈ U1, and do not contain any numbers from U3.
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For each β ∈ U2 we choose an element hβ such that hβ has support in Cβ and has a pair

of branches pβs
k
β → pβs

k−1
β for some k ∈ N (the number k can be chosen independently

of β). In particular, hβ fixes β and has slope 2|sβ | at β.
Finally, we choose two additional elements corresponding to the fixed points 0 and 1.

Let N0, N1 be closed intervals with disjoint interiors containing 0 and 1 (respectively) and
having endpoints in Z[ 12 ]. We assume that N0 and N1 are disjoint from all the intervals
Lα, Rα, Cβ chosen above and do not contain any numbers from U3. We choose elements
f and g such that f has support in N0 and slope 2 at 0+ and g has support in N1 and
slope 2 at 1−.

Note that the elements gα, fα(α ∈ U1), gβ(β ∈ U2), f, g belong to HU . We let G
be the subgroup of HU generated by these elements. Since the interiors of supports of
these elements are pairwise disjoint, they pairwise commute. Thus, G is isomorphic to
Z
2n+m+2.
Let γ1, . . . , γr be the elements of U in increasing order. Let γ0 = 0, γr+1 = 1. Denote

by S the group of all elements of F that fix open neighborhoods of each γi, i = 0, . . . , r+1.
Clearly S ≤ HU .

We claim that HU is generated by S and G. Indeed, let h ∈ HU . By Corollary 2.5,
h fixes an open neighborhood of each irrational number in U . We claim that one can
multiply h from the right by a suitable element y ∈ G so that the slope of hy at every
point γi, i = 0, . . . , r + 1 would be 1 (then obviously hy ∈ S and so h ∈ 〈S ∪G〉).

Assume that the slope of h at 0+ is 2� for some 	. Then hf−� has slope 1 at 0+.
Multiplying h by f−� does not affect the slope at any point γj , j > 0. Thus, we can
replace h by hf−�. Proceeding in this manner, one can make the slope at each point γj
be 1 by multiplying from the right by elements of G (we use fα, gα for α ∈ U1, gβ for
β ∈ U2 and g for j = r + 1).

To finish the proof we observe that S is a normal subgroup of HU and so HU = SG.
We claim that S ∩ G is trivial. Indeed, the slopes of an element y ∈ G at (both sides)
of the numbers from U determine the element y uniquely. Thus, the only element of G
that fixes an open neighborhood around each γ ∈ U is the identity. Thus, HU = S �G.
It remains to note that the group S is isomorphic to the direct product

F(γ0,γ1) × F(γ1,γ2) × · · · × F(γr,γr+1)

and by Lemma 3.1 is isomorphic to [F, F ]r+1. �

Corollary 3.3. If U and V are finite sets of numbers from (0, 1) and |U | = |V |, then
HU and HV are not isomorphic.

Proof. Indeed, by Theorem 3.2 the derived subgroup of HU is isomorphic to the direct
product of |U |+1 copies of the simple group [F, F ]. Thus, it has 2|U|+1 normal subgroups.
So it cannot be isomorphic to a direct power of a different number of simple groups. �

The following is an immediate corollary to the proof of Theorem 3.2 (see [3, Exam-
ple A12.13]).

Corollary 3.4. The R. Thompson group F is a semidirect product of the derived sub-
group [F, F ] and the Abelian subgroup generated by x0 ⊕ 1 and x1 = 1⊕ x0.

§4. Isomorphism between stabilizers of finite sets

4.1. Isomorphic stabilizers of finite sets. Let U = {γ1, . . . , γn} be a set of numbers
from [0, 1] (here and below we assume that γ1, . . . , γn are listed in increasing order). Let
U = U1∪U2∪U3 be the natural partition of U . Then we can define the type τ (U) to be a
word in the alphabet {1, 2, 3} by taking the word γ1γ2 . . . γn and replacing each γj ∈ Ui



60 G. GOLAN AND M. SAPIR

by the letter i. Note that, by Corollary 3.3, if U, V ⊆ (0, 1) and |τ (U)| = |τ (V )|, then
HU and HV are not isomorphic.

Theorem 4.1. If U and V are two finite sets of numbers from (0, 1) and τ (U) ≡ τ (V ),
then the subgroups HU and HV are isomorphic.

Note that the converse of Theorem 4.1 does not hold. For example, Lemma 4.10
below implies that if τ (U) is equal to τ (V ) read backwards, then HU is isomorphic to
HV . Moreover, in Subsection 4.2 below we show that HU is a direct product where the
factors correspond to subwords of τ (U). If HU and HV are direct products with the
same factors, then clearly, HU

∼= HV . Finding a necessary and sufficient condition for
HU and HV to be isomorphic is still an open problem.

To prove Theorem 4.1, we will realize HU and HV as iterated ascending HNN-exten-
sions. Assuming τ (U) ≡ τ (V ), we will prove that the base groups of the HNN-extensions
are isomorphic and the actions of the stable letters commute with the isomorphism
between the relevant base groups. That will imply the result.

We need the following three lemmas.

Lemma 4.2. Let a, b ∈ [0, 1] be such that a < b. Let x, y ∈ (a, b) ∩ Z[ 12 ] be such that
x < y. Then F[a,b] is generated by F[a,y] and F[x,b].

Proof. Let f ∈ F[a,b]. If f(x) < y, then f([a, x]) ⊂ [a, y) and there exists a function

h ∈ F[a,y] such that h coincides with f on the interval [a, x]. Then the function fh−1

fixes the interval [a, x]. In particular, fh−1 ∈ F[x,b] and so f ∈ F[x,b]F[a,y]. If f(x) ≥ y,
then f(y) > y. There is a function g ∈ F[x,b] such that g(f(y)) = y. Then y is a fixed
point for fg, so fg ∈ F[a,y]F[y,b] ⊆ F[a,y]F[x,b]. �

Lemma 4.3. Let a, b, c ∈ (0, 1) be such that a < b and a < c. Let y ∈ (a, b)∩(a, c)∩Z[ 12 ].
Then there exists an isomorphism ψ : F[a,b) → F[a,c) such that

(1) ψ is the identity map on F[a,y]; and
(2) For any x ∈ (a, y), ψ(F[x,b)) = F[x,c).

Proof. We adapt the proof of Lemma 3.1. Let {bj}j∈N be an increasing sequence of
numbers in [a, b) ∩ Z[ 12 ] that converges to b and is such that b1 = y. Let {cj}j∈N be

an increasing sequence of numbers in [a, c) ∩ Z[ 12 ] that converges to c, and assume that
c1 = y. To define an isomorphism

ψ : F[a,b) =
⋃

F[a,bj ] → F[a,c) =
⋃

F[a,cj ],

we choose a sequence of elements gj in a similar way to that in Lemma 3.1. We let g1
be an element that fixes the interval [a, y]. In particular, g1(b1) = c1. For each j > 1,
we let gj be an element such that gj(bj) = cj and gj |[a,bj−1] = gj−1|[a,bj−1]. The choice
of elements gj determines compatible isomorphisms ψj : F[a,bj ] → F[a,cj ], where for each
j, ψj is the isomorphism of conjugation by gj . The family of isomorphisms ψj gives the
required isomorphism ψ.

It suffices to prove that ψ satisfies conditions (1) and (2). If h ∈ F[a,y] = F[a,b1], then
ψ(h) = ψ1(h) = hg1 = h, where the last equality follows from g1 fixing the support of
h. Thus, condition (1) holds. Let x ∈ (a, y), and let f ∈ F[x,b). Then f ∈ F[x,bj ] for
some j ∈ N and so ψ(f) = fgj . Notice that Supp(ψ(f)) = gj(Supp(f)) ⊆ gj([x, bj ]) =
[x, cj ] ⊆ [x, c). Thus, ψ(F[x,b)) ⊆ F[x,c). Considering ψ−1 instead of ψ gives the reverse
inclusion. �

The proof of the following lemma is similar to the proof of Lemma 4.3.

Lemma 4.4. Let a, b, c ∈ (0, 1) be numbers such that a < b and c < b. Let y ∈
(a, b) ∩ (c, b) ∩ Z[ 12 ]. Then there exists an isomorphism ψ : F(a,b] → F(c,b] such that
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(1) ψ is the identity map on F[y,b]; and
(2) For any x ∈ (y, b), ψ(F(a,x]) = F(c,x].

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. We start with replacing HV by a subgroup HW that is closer to
HU in some sense. Let U = U1 ∪ U2 ∪ U3 be the natural partition. For each β ∈ U2, let
β = .pβs

N

β , where sβ is a minimal period. By replacing the prefixes pβ by longer prefixes

pβs
k
β if necessary, we can assume that the intervals [pβ], β ∈ U2, are pairwise disjoint

and that each of these intervals contains exactly one element of U ∪{0, 1}, the number β.
(Recall that [pβ ] = [.pβ, .pβ1

N], so β = .pβs
N

β is always in [pβ].)
Similarly, let V = V1 ∪ V2 ∪ V3 be the natural partition of V . For each γ ∈ V2, let

γ = .qγu
N
γ , where uγ is a minimal period of γ. Assume as above, that the prefixes qγ are

long enough, so that the intervals [qγ ], γ ∈ V2, are pairwise disjoint and contain exactly
one number from V ∪ {0, 1}, the number γ. We claim that HV is isomorphic to a group
HW (constructed below) such that τ (W ) ≡ τ (U) ≡ τ (V ) and W = W1 ∪W2 ∪W3 (the
natural partition of W ) satisfies the following conditions.

(1) W1 = U1.
(2) For each δ ∈ W2, δ = .pβu

N
γ , where β and γ occupy the same position in the

ordered sets U and V (respectively) as δ in W (that is, the two natural order
preserving bijections ηwu : W → U and ηwv : W → V take δ to β and δ to γ,
respectively).

Indeed, the conditions on the intervals [pβ ] and [qγ ] and Lemma 2.2 guarantee that there
exists f ∈ F such that

(1) for each γ ∈ V1, f(γ) ∈ U1; and
(2) for each γ ∈ V2, f has a pair of branches qγ → pηvu(γ) = pβ, where ηvu is the

natural order preserving bijection from V to U .

Conjugating HV by f yields a group HW as described, where W = f(V ). Indeed, since
f ∈ F , for i = 1, 2, 3 we have Wi = f(Vi). Hence, condition (1) for f guarantees that
W1 = U1. Since f does not change the tail uN

γ of γ ∈ V2, it maps γ = .qγu
N
γ to δ = .pβu

N
γ .

It will suffice to prove the isomorphism of HU and HW . We start by constructing
isomorphic subgroups KU ≤ HU and KW ≤ HW .

Let I be the interval [0, 1]. We remove from I the endpoints 0 and 1, all the points
in U , as well as the entire intervals [pβ ] for β ∈ U2. The result is a set JU ⊆ [0, 1]. If
|U | = n, then JU is a union of n + 1 open intervals (ai, bi), i = 1, . . . , n + 1, ordered
from left to right. We define KU to be the subgroup generated by all F[ai,bi], that is, the
direct product of these subgroups:

KU =
n+1∏
i=1

F[ai,bi].

Clearly, KU fixes all points in U . In particular, KU ≤ HU .
Similarly, removing from I the endpoints 0 and 1, all numbers from W , as well as the

intervals [pβ] for β ∈ U2 results in a union of n+1 open intervals (ci, di) for i = 1, . . . , n+1.
We let

KW =
n+1∏
i=1

F[ci,di].

Note that ai, bi, ci, di are endpoints of the removed subintervals or points from U1 ∪
U3 ∪W3. Hence, each ai, bi, ci, di is either in Z[ 12 ] or an irrational number. Furthermore,

if ai (respectively, bi) is in Z[ 12 ] then ci = ai (respectively, di = bi). If ai (respectively, bi)
is irrational, then ci (respectively, di) is also irrational (this follows from the equality of
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types τ (U) and τ (W )). We shall be interested in an isomorphism from KU to KW with
specific properties. For that, in any interval (ai, bi) where exactly one of the endpoints
is in Z[ 12 ] (and hence exactly one of the endpoints of (ci, di) is in Z[ 12 ] and coincides with

the finite dyadic endpoint of (ai, bi)), we choose a number yi ∈ (ai, bi) ∩ (ci, di) ∩ Z[ 12 ]
(notice that the intersection cannot be empty because the intervals (ai, bi) and (ci, di)
share an endpoint from Z[ 12 ]).

Lemma 4.5. There exists an isomorphism φ : KU → KW such that for each i =
1, . . . , n+ 1, we have the following.

1. φ(F[ai,bi]) = F[ci,di].

2. If ai and bi are in Z[ 12 ], then φ restricted to F[ai,bi] is the identity.

3. If ai is in Z[ 12 ] and bi is irrational, then φ restricted to F[ai,yi] is the identity and
for any x ∈ (ai, yi), φ(F[x,bi)) = F[x,di).

4. If ai is irrational and bi is in Z[ 12 ] then the restriction of φ to F[yi,bi] is the
identity and for any x ∈ (yi, bi), φ(F(ai,x]) = F(ci,x].

Proof. To define the isomorphism φ it suffices to define for each i = 1, . . . , n + 1 an
isomorphism φi : F[ai,bi] → F[ci,di] and let φ = φ1 × · · · × φn+1. That would guarantee
condition (1).

If ai and bi are both irrational, then F[ai,bi] = F(ai,bi), and by Lemma 3.1, it is
isomorphic to F(ci,di) = F[ci,di]. We let φi be any isomorphism between the groups.

If ai and bi are both in Z[ 12 ], then [ai, bi] = [ci, di], and we take φi to be the identity
automorphism of F[ai,bi]. This guarantees that φ will satisfy condition (2) of the lemma.

If ai is in Z[ 12 ] and bi is irrational, then ci = ai and di is irrational. Thus, F[ai,bi] =

F[ai,bi) and F[ci,di] = F[ai,di). Since yi ∈ (ai, bi) ∩ (ai, di) ∩ Z[ 12 ], we apply Lemma 4.3 to
find an isomorphism φi so that condition (3) of the lemma would be satisfied.

Similarly, if ai is irrational and bi is in Z[ 12 ], then ci is irrational and di = bi. Thus,

F[ai,bi] = F(ai,bi] and F[ci,di] = F(ci,bi]. Since yi ∈ (ai, bi) ∩ (ci, bi) ∩ Z[ 12 ], we apply
Lemma 4.4 to find an isomorphism φi so that condition (4) of the lemma would be
satisfied. �

Next, we choose m = |U2| = |W2| commuting elements gβ ∈ HU for β ∈ U2 and m
commuting elements fδ ∈ HW for δ ∈ W2. To do so, we first choose a number from Z[ 12 ]

in each interval [ai, bi], where at least one of the endpoints is in Z[ 12 ]. If ai is in Z[ 12 ]

and bi is irrational, we choose a number xi ∈ Z[ 12 ] in (ai, yi) = (ci, yi). Similarly, if ai is

irrational and bi is in Z[ 12 ] we choose a number xi ∈ Z[ 12 ] in (yi, bi) = (yi, di). If ai and

bi are both in Z[ 12 ] we let xi =
ai+bi

2 .

Recall that the elements of U2 are of the form β = .pβs
N

β , and the elements in W2

are δ = .pδu
N

δ ∈ W2. Let, again, ηwu be the order-preserving bijection W → U . For
every β ∈ U2 and δ = η−1

wu(β), we have pδ = pβ. We choose the element gβ ∈ HU and
fδ ∈ HW as follows. By construction, β belongs to an interval (bi, ai+1) for some i, where
bi = .pβ, ai+1 = .pβ1

N are in Z[ 12 ]. Let xi be the number from Z[ 12 ] chosen in [ai, bi], and

let xi+1 be the number from Z[ 12 ] chosen in [ai+1, bi+1].
We define gβ and fδ to be functions such that

(1) gβ and fδ have support in [xi, xi+1];
(2) gβ has a pair of branches pβsβ → pβ and fδ has a pair of branches pβuδ → pβ;
(3) gβ and fδ coincide on the interval [ai+1, xi+1] = [ci+1, xi+1] and map it linearly

onto the right half of itself;
(4) gβ and fδ coincide on the interval [xi, bi] = [xi, di] and map it linearly onto the

left half of itself.
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Figure 3. The function gβ .

By Lemma 2.2, one can indeed choose elements gβ , fδ as described (for an illustration of
the function gβ , see Figure 3). We note that since the interiors of the intervals [xi, xi+1]
are pairwise disjoint, the elements gβ , β ∈ U2, pairwise commute, and the elements
fδ, δ ∈ W2, commute as well. We let GU = 〈gβ, β ∈ U2〉 and GW = 〈fδ, δ ∈ W2〉. Clearly,
GU

∼= GW
∼= Z

m.

Lemma 4.6. HU is generated by KU and GU . Similarly, HW is generated by KW

and GW .

Proof. Notice that the elements gβ, β ∈ U2, belong toHU . Indeed, for each β ∈ U2, gβ has
a pair of branches pβsβ → pβ . As such, it fixes β = .pβs

N

β . It also fixes all other numbers

from U because these numbers are not in the support of gβ . Thus, 〈KU ∪GU 〉 ⊆ HU .

For the reverse inclusion, recall that KU =
∏n+1

i=1 F[ai,bi] is the subgroup of F of all
functions that fix all points in U as well as all intervals [pβ] for β ∈ U2. Now let h ∈ HU .
By Lemma 2.6, for each β ∈ U2, the function h has a pair of branches of the form

pβs
�β
β → pβs

rβ
β for some 	β, rβ ≥ 0. Let α be the smallest number in U2 and consider

the element hα = g−�α
α hgrαα . Since g−�α

α has a pair of branches pα → pαs
�α
α , h has a pair

of branches pαs
�α
α → pαs

rα
α , and grαα has a pair of branches pαs

rα
α → pα, the function hα

has a pair of branches pα → pα. In other words, it fixes the interval [pα]. Notice that for
all β ∈ U2 such that β = α, the support of gα is disjoint from [pβ ]. Thus, the functions

h and hα have the same pairs of branches pβs
�β
β → pβs

rβ
β for β ∈ U2 \ {α}. Considering

other numbers from U2 one by one, we find an element ghg′, where g, g′ ∈ GU , that fixes
all intervals [pβ] for β ∈ U2. Since ghg

′ also fixes all points in U , we have that ghg′ ∈ KU .
Thus, h ∈ GUKUGU . �

To finish the proof we prove that the group HU (respectively, HW ) is an iterated
ascending HNN-extension of the group KU (respectively, KW ) with m-stable letters.

For this we are going to use the following simple and well-known fact (see, for example,
[14, Lemma 2]).

Lemma 4.7. Suppose that a group G contains a subgroup K and an element t such that

(1) G is generated by K and t;
(2) tn ∈ K for all n > 0;
(3) Kt ≤ K.

Then G is isomorphic to an ascending HNN-extension of K with stable letter t.

For each β ∈ U2 we have

KU
gβ ≤ KU .
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Indeed, KU is the group of all functions with support in S = [a1, b1] ∪ · · · ∪ [an+1, bn+1].
Since for every β ∈ U2

Supp(gβ) ∩ S = [xi, bi] ∪ [ai+1, xi+1],

where β ∈ (bi, ai+1) and gβ maps [xi, bi] ∪ [ai+1, xi+1] into itself, the support of each
function in KU

gβ is inside S.
Let U2 = {β1, . . . , βm}. Since the gβ, β ∈ U2, commute, for each j = 2, . . . ,m we have

〈KU , gβ1
, . . . , gβj−1

〉gβj ≤ 〈KU , gβ1
, . . . , gβj−1

〉.
Since in addition HU is generated by KU and gβ , β ∈ U2, and gkβj

does not belong

to 〈KU , gβ1
, . . . , gβj−1

〉 for every k > 0 and every j ≥ 1, the group HU is an iterated
HNN-extension of KU with m stable letters gβ , β ∈ U2, by Lemma 4.7. Similarly, HW

is an iterated HNN-extension of KW with m stable letters fδ1 , . . . , fδm , where W2 =
{δ1, . . . , δm}.

Theorem 4.1 will follow if we prove that the actions of gβ1
, . . . , gβm

on KU and the
actions of fδ1 , . . . , fδm on KW commute with the isomorphism φ : KU → KW from
Lemma 4.5.

We choose a generating set Y of KU by fixing a generating set of F[ai,bi] for each
i = 1, . . . , n + 1 and letting Y be the union of these sets. If ai and bi are either both
from Z[ 12 ] or both irrational, we take the entire group F[ai,bi] as a generating set of itself.

If ai is from Z[ 12 ] and bi is irrational, recall that there are chosen numbers xi < yi in

(ai, bi) ∩ Z[ 12 ]. We take F[ai,yi] ∪ F[xi,bi] as a generating set of F[ai,bi] (notice that by

Lemma 4.2, this union generates F[ai,bi]). Similarly, if ai is irrational and bi is from Z[ 12 ],

then there are chosen numbers yi < xi from Z[ 12 ] in (ai, bi). We take F[ai,xi] ∪ F[yi,bi] as
a generating set of F[ai,bi].

The following lemma completes the proof of Theorem 4.1.

Lemma 4.8. For each h ∈ Y and β ∈ U2 we have

φ(hgβ ) = φ(h)fδ ,

where δ = η−1
wu(β).

Proof. By the construction of Y , h ∈ F[ai,bi] for some i. Suppose that the support of gβ
is disjoint from [ai, bi]. Then hgβ = h. By Condition (1) in Lemma 4.5, φ(h) ∈ F[ci,di].

Since the support of fδ is disjoint from [ci, di], we get φ(h)
fδ = φ(h) = φ(hgβ ) as required.

Thus, we can assume that the support of gβ intersects [ai, bi]. This implies that β
belongs to either the interval [bi−1, ai] or to the interval [bi, ai+1]. We only consider the
first case, the other case being similar.

Consider the interval (ai, bi). The number ai is from Z[ 12 ]. If bi is also from Z[ 12 ],
then by Condition (2) of Lemma 4.5, the restriction of φ to F[ai,bi] is the identity. In
particular φ(h) = h. Notice that gβ maps the interval [ai, bi] into a subinterval of itself.
Thus, hgβ also belongs to F[ai,bi]. Therefore, φ(hgβ ) = hgβ . Thus, it suffices to prove

that hgβ = hfδ . That follows immediately from Conditions (1) and (3) in the definition
of gβ and fδ. Indeed, these conditions imply that gβ and fδ coincide on the support of h.

Next, we assume that bi is irrational. Since h ∈ F[ai,bi] ∩ Y , either h ∈ F[ai,yi] or
h ∈ F[xi,bi]. In the first case, by Condition (3) in Lemma 4.5, we have φ(h) = h.
Similarly, since gβ maps the interval [ai, yi] onto a subinterval of itself, the conjugate hgβ

also belongs to F[ai,yi]. As such, φ(hgβ ) = hgβ and it suffices to prove that hgβ = hfδ .
That follows as before from the fact that gβ and fδ coincide on the support of h. If
h ∈ F[xi,bi] = F[xi,bi), then gβ commutes with h (indeed, their supports have disjoint
interiors). By condition (3) from Lemma 4.5, φ(h) ∈ F[xi,ci), which implies that φ(h)

commutes with fδ. As such, φ(hgβ ) = φ(h) = φ(h)fδ . �
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That completes the proof of Theorem 4.1. �

4.2. Algebraic structure of stabilizers of finite sets. The proof of Theorem 4.1
gives us more explicit information about the structure of the stabilizer HU for a finite
set U , as described in the rest of this section. If U = {α} for α ∈ (0, 1) such that α /∈ U2,
then

HU = F[0,α]F[α,1]
∼= F[0,α] × F[α,1].

Indeed, this is obvious for α ∈ U1. If α ∈ U3, then every element of HU fixes an open
neighborhood of α and thus belongs to the direct product F[0,α]×F[α,1] = F[0,α)×F(α,1].
Similarly, let U = {α1, . . . , αn} ⊆ (0, 1). Let U = U1 ∪ U2 ∪ U3 be the natural partition.
If U2 = ∅, then

HU = F[0,α1] × F[α1,α2] × · · · × F[αn−1,αn] × F[αn,1].

If U2 = ∅ and |U1 ∪ U3| = k, then U1 ∪ U3 separates U2 into a union of k + 1 disjoint
subsets U2,1, . . . , U2,k+1 (some of which might be empty). Let i1, . . . , ik be the indexes
such that αij ∈ U1 ∪ U3. Since HU = HU2

∩ HU1∪U3
, the above equation (for the case

where U2 = ∅) implies that

HU = (F[0,αi1
] ∩HU2,1

)× (F[αi1
,αi2

] ∩HU2,2
)× . . .

× (F[αik−1
,αik

] ∩HU2,k
)× (F[αik

,1] ∩HU2,k+1
).

For a set of numbers V = {β1, . . . , βm} in [0, 1], if β1, βm /∈ U2, we let

BV = F[β1,βm] ∩HV \{β1,βm}.

Theorem 4.1 implies the following.

Lemma 4.9. Let U = {α1, . . . , αn} and V = {β1, . . . , βn} be sets of numbers from [0, 1].
Suppose that τ (U) ≡ τ (V ) and α1, αn ∈ U2. Then the groups BU and BV are isomorphic.

Proof. It follows from the proof of Theorem 4.1. Indeed, using conjugation by an orien-
tation preserving element of PLF2(R), one can assume that U and V are sets of numbers
in (0, 1). By Theorem 4.1, we see that

HU = F[0,α1] ×BU × F[αn,1] and HV = F[0,β1] ×BV × F[βn,1].

are isomorphic. The isomorphism constructed in the proof of Theorem 4.1 maps F[0,α1]

onto F[0,β1], F[αn,1] onto F[βn,1], and BU onto BV . �

Let U = {α1, . . . , αn} ⊆ [0, 1] be such that α1, αn /∈ U2. By Lemma 4.9, the
isomorphism class of BU depends only on τ (U). Thus, if w ≡ τ (U), we will use
the notation Bw for the group BU . If α1, αn ∈ U1, then Lemma 4.9 implies that
Bw

∼= BU\{α1,αn}∪{0,1} = HU\{α1,αn}.

Lemma 4.10. Let U = {α1, . . . , αn} and V = {β1, . . . , βn} be finite sets of numbers in
[0, 1] such that τ (U) does not start or end with 2. Assume that the word τ (U) is equal
to τ (V ) read backwards. Then BU is isomorphic to BV .

Proof. If one conjugates BV , where V = {β1, . . . , βn}, by the function ζ(t) = 1 − t in
Homeo([0, 1]), one gets BW , where W = {1−βn, . . . , 1−β1} ⊆ [0, 1]. Since τ (U) ≡ τ (W ),
the result follows from Lemma 4.9. �

Now let U = {α1, . . . , αn} be a finite set of numbers in (0, 1). Let α0 = 0, αn+1 =
1 and U ′ = U ∪ {α0, αn+1}. Let w ≡ τ (U ′). Let us represent w as the product
1u1i1u2i2 . . . uk+11, where ij ∈ {1, 3}, j = 1, . . . , k, and each word ui contains only
letter 2. The discussion above and Lemma 4.9 clearly imply that

HU
∼= B1u1i1 ×Bi1u2i2 × · · · ×Bikuk+11.
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Note that by Lemma 4.10, to completely describe the structure of HU , we only need to
describe the groups Bw, where w is a word of one of the following 6 kinds: 11, 33, 13,
12m1, 32m3 and 12m3 for m ∈ N. We note that B11 is isomorphic to F , B33 is isomorphic
to the derived subgroup of F (see Lemma 3.1) and that B13 is isomorphic to the normal
subgroup L of F of all functions with slope 1 at 1 (indeed, B13

∼= F[0,π4 )
∼= F[0,1) = L by

Lemma 4.3). The group Bw is more difficult to describe in the remaining 3 cases. We
leave the cases w ≡ 32m3 and w ≡ 12m3 to the reader. For w ≡ 12m1,m ∈ N, the proof
of Theorem 4.1 shows the following.

Lemma 4.11. Let U be a set of m rational numbers in (0, 1)\Z[ 12 ]. Then HU
∼= B12m1 is

isomorphic to an iterated ascending HNN-extension of K = Fm+1 with m stable letters
t1, . . . , tm such that tj commutes with ti and Ktj < K, so each tj corresponds to an
endomorphism of K. That endomorphism φj is defined as follows. We denote by ιi the
injection of F into the ith direct summand of Fm+1. Then

φj : ιi(x0) → ιi(x0) for all i /∈ {j, j + 1},
ιi(x1) → ιi(x1) for all i /∈ {j, j + 1},
ιj(x0) → ιj(x0x

−1
1 ),

ιj(x1) → ιj(x
2
1x

−1
2 x−1

1 ),

ιj+1(x0) → ιj+1(x0x1x
−1
0 ),

ιj+1(x1) → ιj+1(x1).

Proof. This follows from an analysis of the proof of Theorem 4.1 in the case where
U = U2. In the notations of the proof, the intervals [ai, bi] for i = 1, . . . ,m + 1 all

have endpoints in Z[ 12 ]. Thus, the group KU =
∏m+1

i=1 F[ai,bi] is isomorphic to the direct
sum of m + 1 copies of F . Each of the generators gβj

fixes the intervals [ai, bi] for all
i = {j, j + 1} and thus acts trivially on F[ai,bi]. In addition, gβj

fixes the left half of
[aj , bj ] and maps the right half of [aj , bj ] to its own left half. Similarly, gβj

fixes the right
half of [aj+1, bj+1] and maps the left half of [aj+1, bj+1] to its right half. Using these
facts and the isomorphism of F[aj ,bj ] with F and F[aj+1,bj+1] with F one gets the above
description of the endomorphism φj . �

Notice that Lemma 4.11 implies that if U = U2, then HU has a generating set with
3m + 2 generators. In the following section we will improve this result and find the
minimal number of generators.

§5. Stabilizers of finite sets of rational numbers

Let U ⊂ (0, 1) be a finite set of rational numbers. In this section, we are going to
show that the rank of the first homology group of HU with integral coefficients (given by
Theorem 3.2) coincides with the smallest number of generators of HU .

We first consider the case where U = U2. Recall (see Subsection 2.5), that if f ∈ F
and u is a finite binary word, then f[u] denotes the copy of f in F[u]. Recall also that if
f consists of pairs of branches vi → wi, then f[u] consists of pairs of branches uvi → uwi

and some pairs of branches p → p. We will need the following three lemmas.

Lemma 5.1. Let u be a finite binary word, and let g ∈ F be an element with a pair
of branches u → u0. Let f ∈ F and consider the copy f[u] of f in F[u]. Then f[u]

g =
(f ⊕ 1)[u]. That is, conjugating the copy of f in F[u] by g gives the copy of f ⊕ 1 in F[u].

Proof. First, notice that (f ⊕ 1)[u] = f[u0]. To prove that f[u]
g is equal to the copy of f

in F[u0] we will show that f[u]
g has support in the interval [u0] and that for any pair of

branches v → w of f , the element f[u]
g takes the branch u0v to the branch u0w.
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Since f[u] has support in [u] and g maps the interval [u] onto [u0], the conjugate f[u]
g

has support in the interval [u0]. For any pair of branches v → w of f , the copy f[u] has
a pair of branches uv → uw. The pair of branches u → u0 of g implies that f[u]

g has

a pair of branches u0v → u0w for any such v and w. Indeed, g−1 takes u0v to uv, f[u]
takes uv to uw, and g takes uw to u0w. �

Similarly, we have the following.

Lemma 5.2. Let u be a finite binary word, and let g ∈ F be an element with a pair
of branches u → u1. Let f ∈ F and consider the copy f[u] of f in F[u]. Then f[u]

g =
(1⊕ f)[u]. That is, conjugating the copy of f in F[u] by g gives the copy of 1⊕ f in F[u].

Lemma 5.3. Let u be a finite binary word. Let h� and hr be functions in F with supports
disjoint from [u]. Let ρ� be a function in F that takes the branch u to u0 and fixes all
points in the support of h�. Similarly, let ρr ∈ F be a function that takes the branch u to
u1 and fixes all points in the support of hr. Let f� = h�(x0)[u] and fr = hr(x0)[u]. Then
(x0)[u] belongs to the subgroup 〈f�, fr, ρ�, ρr〉.

Proof. Let G = 〈f�, fr, ρ�, ρr〉. We consider the conjugate of f� by ρ�. Since ρ� fixes
all points in the support of h�, the functions ρ� and h� commute. By Lemma 5.1,
(x0)[u]

ρ� = (x0 ⊕ 1)[u]. Thus, f�
ρ� = h�(x0 ⊕ 1)[u] ∈ G. Similarly, using Lemma 5.2

we get fr
ρr = hr(1 ⊕ x0)[u] = hr(x1)[u]. Note that x0 ⊕ 1 = x2

0x
−1
1 x−1

0 . Since [u] is
disjoint from the support of hr, (x0)[u] and (x1)[u] commute with hr. Thus, we have

fr
2(fr

ρr)−1f−1
r = (x2

0x
−1
1 x−1

0 )[u] = (x0 ⊕ 1)[u] ∈ G. That implies that h� ∈ G and, in
turn, that (x0)[u] ∈ G. �

Theorem 5.4. Let U = U2. Then HU has a generating set with |U | + 2 elements (in
fact, a generating set of this size can be described explicitly).

Proof. Let U = U2 = {α1, . . . , αm}. We start as in the proof of Theorem 4.1 by con-
structing a subgroup KU and elements g1, . . . , gm such that KU and g1, . . . , gm generate
HU . As above, KU will be the direct product of groups of the form F[ai,bi]. It will be
convenient to assume that [ai, bi] are dyadic intervals.

For j = 1, . . . ,m, let αj = .pjs
N

j , where sj is a minimal period. We assume that the
prefixes pj are long enough so that the intervals [p1], . . . , [pm] are pairwise disjoint and
such that 0 /∈ [p1] and 1 /∈ [pm].

Let T be an arbitrary finite binary tree with 2m + 1 leaves represented by binary
words v1 . . . , v2m+1. The m intervals associated with the even numbered branches, that
is, [v2], [v4], . . . , [v2m], are pairwise disjoint, 0 /∈ [v2], and 1 /∈ [v2m]. Thus, by Lemma 2.2
there exists an element f ∈ F with pairs of branches pj → v2j for j = 1, . . . ,m. Conju-
gatingHU by f results in a groupHV , where V = {β1, . . . , βm} and for each j = 1, . . . ,m,
βj = v2js

N

j . Clearly, it suffices to prove that HV is (m + 2)-generated. For the rest of
the proof, we rename the set V and its elements by U and α1, . . . , αm, respectively.

Notice that if one removes from I = [0, 1] the endpoints 0, 1 and the intervals [v2], . . . ,
[v2m], one remains with a union of m + 1 open intervals (ai, bi) for i = 1, . . . ,m + 1. It
is obvious that [ai, bi] = [v2i−1]. Thus, we define the subgroup

KU =
m+1∏
i=1

F[v2i−1].

Next, we choose elements g1, . . . , gm ∈ HU . Unlike in the proof of Theorem 4.1, we do
not require that the elements commute. For each j = 1, . . . ,m we let gj be an element



68 G. GOLAN AND M. SAPIR

with the following pairs of branches:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
v2j−1 → v2j−10,

v2jsj → v2j ,

v2j+1 → v2j+11,

vk → vk, for all k ∈ {1, . . . , 2m+ 1} \ {2j − 1, 2j, 2j + 1}.

Note that the existence of an element gj with the required pairs of branches follows from
Lemma 2.2.

Lemma 5.5. The group HU is generated by the subgroup KU and the elements g1, . . . , gm.

Proof. The proof is identical to the proof of Lemma 4.6. Indeed, the only conditions in
the definition of the elements g1, . . . , gm necessary for the proof are that gj has a pair of
branches v2jsj → v2j and that the support of gj is disjoint from the interval [v2k] for all
k = j. Then, given an element h ∈ HU , one can multiply h from the left and from the
right by powers of g1, . . . , gm to get an element h′ ∈ KU . �

Lemma 5.6. The group HU is generated by the set

S = {(x0)[v1], (x0)[v3], . . . , (x0)[v2m−1], (x0)[v2m+1], g1, . . . , gm}.

Proof. By Lemma 5.5 and the definition of KU , it suffices to prove that for all j =
1, . . . ,m + 1, the subgroup 〈S〉 contains the subgroup F[v2j−1]. For each j = 1, . . . ,m,
the element gj has a pair of branches v2j−1 → v2j−10. Thus, by Lemma 5.1,

(x0)[v2j−1]
gj = (x0 ⊕ 1)[v2j−1].

Since (x0)[v2j−1] and (x0⊕1)[v2j−1] generate F[v2j−1], we have the inclusion F[v2j−1] ⊆ 〈S〉.
For j = m + 1, we note that gm has a pair of branches v2m+1 → v2m+11. Thus, by
Lemma 5.2,

(x0)[v2m+1]
gm = (1⊕ x0)[v2m+1] = (x1)[v2m+1].

Since (x0)[v2m+1] and (x1)[v2m+1] generate F[v2m+1], it is also contained in 〈S〉. �

To prove that HU is (m + 2)-generated, we choose two elements x and y in KU as
follows. If m is odd, we let

x =

m+1
2∏

i=1

(x0)[v4i−3] and y =

m+1
2∏

i=1

(x0)[v4i−1].

If m is even, we let

x =

[ m
2∏

i=1

(x0)[v4i−3]

]
(x0)[v2m−1] and y =

[ m
2∏

i=1

(x0)[v4i−1]

]
(x0)[v2m+1].

Notice that in both cases, all elements appearing in the product defining x have disjoint
supports, thus all elements in the product commute. The same is true for the product
defining y.

We claim that HU is generated by x, y, g1, . . . gm. By Lemma 5.6, it suffices to prove
the following.

Lemma 5.7. The group H = 〈x, y, g1, . . . , gm〉 contains the elements (x0)[v2j−1] for
j = 1, . . . ,m+ 1.
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Proof. We first consider the case where m is odd. Recall that in that case,

x =

m+1
2∏

i=1

(x0)[v4i−3].

For each k ∈ {2, . . . , m+1
2 } we apply Lemma 5.3 with u ≡ v4k−3,

h� = hr =

m+1
2∏

i=1
i �=k

(x0)[v4i−3],

ρ� = g2k−1 and ρr = g2k−2. Note, that all the conditions of Lemma 5.3 are satisfied.
Indeed, the support of h� = hr is disjoint from [u] = [v4k−3], ρ� = g2k−1 fixes all intervals
[vi] for i /∈ {4k− 3, 4k− 2, 4k− 1} and in particular fixes the support of h�. Similarly, ρr
fixes the support of hr. By construction, ρ� = g2k−1 takes u ≡ v4k−3 to u0 and ρr takes
u to u1. Note that f� and fr from the lemma are both equal to x. Thus, by Lemma 5.3,

(x0)[v4k−3] ∈ 〈f�, fr, ρ�, ρr〉 = 〈x, g2k−1, g2k−2〉 ⊆ 〈x, g1, . . . , gm〉.

If one multiplies x by the inverses of (x0)[v4k−3] for k = 2, . . . , m+1
2 , one remains with

(x0)[v1]. Thus, (x0)[v1] ∈ 〈x, g1, . . . , gm〉 as well.
Next, one should consider the element

y =

m+1
2∏

i=1

(x0)[v4i−1].

If one applies the same arguments as above, one sees that for all k ∈ {1, . . . , m+1
2 },

the element (x0)[v4k−1] is in 〈y, g1, . . . , gm〉. Combining, we conclude that for all j ∈
{1, . . . ,m+ 1}, the element (x0)[v2j−1] belongs to H, as necessary.

The proof for m even is very similar. Recall that in that case, we have

x =

[ m
2∏

i=1

(x0)[v4i−3]

]
(x0)[v2m−1] and y =

[ m
2∏

i=1

(x0)[v4i−1]

]
(x0)[v2m+1].

We apply Lemma 5.3 with u ≡ v2m−1,

h� =

m
2∏

i=1

(x0)[v4i−3], hr =

[ m−2
2∏

i=1

(x0)[v4i−1]

]
(x0)[v2m+1],

ρ� = gm and ρr = gm−1. One can check that all the conditions in Lemma 5.3 are satisfied.
Notice, in addition, that f� from the lemma is equal to x and fr = y. Thus, Lemma 5.3
implies that (x0)[v2m−1] ∈ 〈f�, fr, ρ�, ρr〉 ⊆ H. Multiplying x and y by ((x0)[v2m−1])

−1

results in elements

x′ =

m
2∏

i=1

(x0)[v4i−3] and y′ =

[ m−2
2∏

i=1

(x0)[v4i−1]

]
(x0)[v2m+1].

Proceeding as in the case where m is odd, for each k = 2, . . . , m
2 one can apply Lemma

5.3 with u ≡ v4k−3, h� = hr = x′((x0)[v4k−3])
−1, ρ� = g2k−1 and ρr = g2k−2. As a

result, one sees that (x0)[v4k−3] ∈ 〈x′, g1, . . . , gm〉 for k = 2, . . . , m
2 . Multiplying x′ by the

inverses of (x0)[v4k−3] for k = 2, . . . , m
2 shows that (x0)[v1] ∈ 〈x′, g1, . . . , gm〉. In a similar

way, one shows that (x0)[v4k−1] ∈ 〈y′, g1, . . . , gm〉 for k = 1, . . . , m−2
2 , and as such so does

(x0)[v2m+1]. All together, we have that for all j ∈ {1, . . . ,m+ 1}, the element (x0)[v2j−1]

belongs to H, which completes the proof of the lemma. �
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The proof of Theorem 5.4 is complete. �

Remark 5.8. Suppose now that U1 is not empty (but U3 = ∅). If |U1| = k, then the
numbers from U1 separate U2 into a disjoint union U2,1 ∪ · · · ∪U2,k+1 of subsets (some of
which might be empty). By the results of Subsection 4.2, HU is isomorphic to the direct
product of subgroups HU2,i

. Note that if U2,i = ∅, then HU2,i
∼= F .

This allows us to compute the presentation of HU and, in particular, the minimal
number of generators of that subgroup.

Theorem 5.9. Let U be a finite set of rational numbers in (0, 1), and let U = U1∪U2 be
its natural partition. Then the smallest number of generators of HU is 2|U1|+ |U2|+ 2.

Proof. The fact that the smallest number of generators of HU cannot be smaller than
2|U1|+ |U2|+ 2 follows from Theorem 3.2. Let us prove the upper bound. The proof is
by induction on the number n = |U1|. If n = 0, the result is Theorem 5.4. Assume that
n > 0 and m = |U2|. Let α be the smallest number in U1 and assume that there are
c ≥ 0 numbers in U2 smaller than α. From Remark 5.8 it follows that HU is isomorphic
to the direct product of HV and HW , where V = V2, |V | = c, |W1| = n−1, |W2| = m−c.
Thus, the induction hypothesis shows that HV is generated by c+2 elements and HW is
generated by 2(n− 1) +m− c+ 2 elements. Hence, the direct product HU

∼= HV ×HW

is generated by 2n+m+ 2 elements. �

§6. Finitely generated subgroups HU are undistorted

Recall that if G is a group generated by a finite set S and H is a subgroup of G
generated by a finite set T , then the distortion function δS,T is the smallest function
N → N such that if an element h ∈ H is a product of n elements of S, then it is a product
of at most δS,T (n) elements of T . For fixed G,H but different (finite) S, T , the functions
δS,T are equivalent2. The subgroup H is said to be undistorted in G if the distortion
function is linear. Although many subgroups of the Thompson group F are known to be
undistorted (see, for example, [19, 9, 20, 28]), F has distorted subgroups [20, 13].

Theorem 6.1. Let U be a finite set of rational numbers in (0, 1). Then the subgroup
HU is undistorted in F .

Proof. Let U = {α1, . . . , αn}. If |U1| = k, then U1 separates U2 into a union of k + 1
disjoint subsets U2,1, . . . , U2,k+1. Let i1, . . . , ik be the indexes such that αij ∈ U1. Let
α0 = 0, αn+1 = 1, i0 = 0 and ik+1 = n+ 1. By the results of Subsection 4.2,

HU = B{αi0
,...,αi1

} ×B{αi1
,...,αi2

} × · · · ×B{αik−1
,...,αik

} ×B{αik
,...,αik+1

},

where B{αij−1
,...,αij

} = F[αij−1
,αij

] ∩HU2,j
for j = 1, . . . , k + 1.

Since a direct product is undistorted if and only if each factor is undistorted, it suffices
to prove that if a < b belong to [0, 1] ∩ Z[ 12 ] and U ′ = U ′

2 is a set of rational numbers in
(a, b), then F[a,b] ∩HU ′ is undistorted in F . We claim that F[a,b] is undistorted in F and
that F[a,b] ∩HU ′ is undistorted in F[a,b]. That will imply that F[a,b] ∩HU ′ is undistorted
in F .

Proposition 9 in [9] implies that F[0, 12 ]
and F[ 12 ,1]

are undistorted in F . Clearly, one

can replace 1
2 by any number α ∈ (0, 1)∩Z[ 12 ] by conjugting F by a function f ∈ F such

that f( 12 ) = α. Hence, if a = 0 or b = 1, then F[a,b] is undistorted in F . Otherwise,

a, b ∈ (0, 1). Let g ∈ PLF2(R) be a function such that g(0) = 0, g( 12 ) = a, and g(1) = b,

2Two functions f, g : N → N are called equivalent if for some c > 1, 1
c
f(n

c
) − c ≤ g(n) ≤ cf(cn) + c

for every n ∈ N.
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then F g = F[0,b] and F[ 12 ,1]
g = F[a,b]. It follows that F[a,b] is undistorted in F[0,b]. Since

F[0,b] is undistorted in F , it follows that F[a,b] is undistorted in F .
To prove that F[a,b]∩HU ′ is undistorted in F[a,b] we note that there is an isomorphism

from F[a,b] to F that maps F[a,b] ∩HU ′ onto a subgroup HU ′′ ≤ F , where U ′′ = U ′′
2 and

|U ′′| = |U ′|. Clearly, it suffices to prove that HU ′′ is undistorted in F . In other words, it
suffices to prove the theorem for subsets U such that U = U2.

Let U = U2. We shall use the proof of Theorem 5.4. Let h ∈ HU be a product of at
most n elements from {x0, x1}. Then, viewed as a reduced tree-diagram, h has at most
cn vertices for some constant c. By the proof of Lemma 5.5, HU is equal to GKUG,
where KU is a direct product of m + 1 copies F[v2i−1] of F , i = 1, . . . ,m + 1 (where
m = |U |), and G is the subgroup generated by the elements g1, . . . , gm defined before
Lemma 5.5.

Let us take the generators [x0]v2i−1
, [x1]v2i−1

in each F[v2i−1] and all the elements
g1, . . . , gm as the elements of a generating set T of HU .

The proof of Theorem 5.4 shows that by multiplying h from the left and from the
right by powers of g1, . . . , gm one can get an element h′ in KU . The number of elements
g1, . . . , gm required for the product is bounded from above by the number of vertices of
h. Hence, the element h′ has at most cn+ cn(c1+ · · ·+ cm) vertices, where c1, . . . , cm are
constants depending on g1, . . . , gm. Then h′ = h1 · · ·hm+1, where hi ∈ F[v2i−1], hence
all hi have pairwise disjoint supports. Then each hi is represented by a diagram with at
most din vertices, where di is a constant. By Property B of Burillo (see [9, 2]), hi is a
product of at most d′in generators from {[x0]v2i−1

, [x1]v2i−1
}. Hence h is a product of at

most c′n generators of HU for some constant c′. �

§7. Isomorphism vs conjugacy

In this section we show that the isomorphism between HU and HV (provided τ (U) ≡
τ (V )) is induced by conjugacy in some bigger group. In fact, we construct a chain
F < F < F < Homeo([0, 1]) such that F is similar to F and consists of possibly infinite
tree-diagrams, F is the completion of F with respect to a certain natural metric, and
HU , HV are conjugate inside F . This strengthens Theorem 4.1.

7.1. The completion of F with respect to the Hamming metric. Let μ be the
standard Lebesgue measure on [0, 1]. Consider the following metric on the group F :

distH(f, g) = μ(Supp(fg−1)) + μ(Supp(f−1g))

or, equivalently,

distH(f, g) = μ({x | f(x) = g(x)}) + μ({x | f−1(x) = g−1(x)}).
Clearly, distH is a distance function on F .
The metric distH is similar to the standard Hamming metric on the symmetric group

Sn although, unlike the Hamming metric on Sn, distH is not invariant with respect to
left or right multiplication by elements of F . Thus, we shall call distH the Hamming
metric on F .

Remark 7.1. It is easy to show that the group operations of F (the multiplication and
the inverse) are continuous with respect to distH . This follows from the fact that for
every f ∈ F and every ε > 0 there exists δ > 0 such that if μ(S) < δ, then μ(f(S)) < ε
(one can take δ = ε

2n , where 2
n is the maximal slope of f). Note that this fact is not true

for arbitrary f ∈ Homeo([0, 1]). Hence, although distH can be obviously extended to the
whole Homeo([0, 1]), the multiplication in Homeo([0, 1]) is not continuous with respect
to distH .
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The Hamming metric is of course related in a standard way to the norm |f | =
μ(Supp(f)). A similar norm on the group of diffeomorphisms of arbitrary manifolds
was considered in [8, Example 1.19]. For the group of measure preserving maps of a
measure space, this is sometimes called the uniform metric [15].

Definition 7.2. We denote by F the (Rǎikov) completion of F with respect to distH
(see [1, Section 3.6]). It consists of Cauchy sequences (fn), n ≥ 1, of elements of F with
two sequences (fn), (gn) being equivalent if

lim
n→∞

(distH(fn, gn)) = 0.

Theorem 7.3. The standard embedding F → Homeo([0, 1]) extends to an embedding
F → Homeo([0, 1]).

Proof. Let a sequence of functions (gm) in F be Cauchy with respect to the Hamming
metric. We claim that the sequence (gm) converges uniformly to a function g. Indeed,
for each ε there is some n ∈ N such that for all m1,m2 > n we have distH(gm1

, gm2
) < ε.

It suffices to prove that for the same n, for every x ∈ [0, 1], the diameter of the set
Bn(x) = {gm(x) : m > n} is at most ε. Assume that for some x the diameter of Bn(x) =
{gm(x) : m > n} is greater than ε, and let a, b be elements of Bn(x) such that a < b and
b− a > ε. Let m1,m2 > n be such that gm1

(x) = a and gm2
(x) = b. Clearly, g−1

m1
([a, b])

is contained in [x, 1]. Similarly, g−1
m2

([a, b]) is contained in [0, x]. As such, for all y in the

open interval (a, b) we have g−1
m1

(y) = g−1
m2

(y). Therefore, distH(gm1
, gm2

) ≥ b− a > ε, in
contradiction to the assumption.

Thus, (gm) converges uniformly in [0, 1]. Let g(x) be the limit of (gm(x)) for each
x ∈ [0, 1]. Then g(0) = 0, g(1) = 1. Moreover g(x) is a nondecreasing function. Indeed,
if x < y, then for each m we have gm(x) < gm(y) and in particular the limits satisfy
g(x) ≤ g(y).

Note that the sequence (g−1
m ), m ≥ 1, is also a Cauchy sequence (by the definition

of distH). Hence, we can define a function g′(x) as limm→∞ g−1
m (x). We claim that

gg′(x) = x for all x ∈ [0, 1]. Indeed, assume that for some x, gg′(x) = y = x. We can
assume that y > x, the argument for y < x being similar. Let ε = y−x

4 , and let n ∈ N be

such that for allm1,m2 > n, distH(gm1
, gm2

) < ε. Since g−1
m (g(x)) has limit g′(g(x)) = y,

there is m1 > n such that |g−1
m1

(g(x)) − y| < ε. Let y1 = g−1
m1

(g(x)). By assumption,

|y1−y| < ε. Therefore, for z = x+y
2 we have z ∈ (x, y1). Let c = gm1

(z) < gm1
(y1) = g(x).

Clearly, gm1
([x, z]) ⊆ [0, c]. Since the sequence gm(x) converges to g(x) and c < g(x),

for some m2 > m1 we have gm2
(x) > c. In particular, gm2

([x, z]) ⊆ [c, 1]. It follows that
[x, z] ⊆ {t : gm1

(t) = gm2
(t)}. Thus, distH(gm1

, gm2
) ≥ z − x = 2ε, in contradiction to

m1,m2 being greater than n. Thus, gg′(x) = x for all x ∈ [0, 1]. A similar argument
shows that g′g(x) = x. Thus, g is a one-to-one increasing function [0, 1] → [0, 1], hence
g is an element of Homeo([0, 1]).

Now, let (hm) be a Cauchy sequence in F equivalent to (gm), and let h be the pointwise
limit of (hm), that is, for every x ∈ [0, 1], h(x) = limm→∞ hm(x). We claim that g = h.
Indeed, assume by contradiction that g(x) = h(x) for some x ∈ (0, 1). Without loss of
generality we can assume that g(x) < h(x). Let a, b be such that g(x) < a < b < h(x).
By the definition of g(x) and h(x), for every sufficiently large m, we have gm(x) < a and
hm(x) > b. Thus, g−1

m ([a, b]) ⊆ [x, 1] and h−1
m ([a, b]) ⊆ [0, x]. As before, this implies that

for all sufficiently large m, distH(gm, hm) ≥ b − a, in contradiction to (gm) and (hm)
being equivalent Cauchy sequences.

Thus, mapping a Cauchy sequence (gm) in F to its pointwise-limit as defined above
gives a well-defined mapping ψ from F to Homeo([0, 1]).
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Showing that the map ψ : F → Homeo([0, 1]) is a homomorphism is a straightforward
exercise. It follows from the uniform convergence of Cauchy sequences in F and the
uniform continuity of the limit functions. Clearly, the restriction of ψ to F coincides
with the standard embedding of F into Homeo([0, 1]).

We claim that ψ is injective. To prove the claim, assume that (fm) is a Cauchy
sequence of elements in F with limm→∞ fm(x) = x for every x ∈ [0, 1]. We need to prove
that then

lim
m→∞

distH(fm,1) = 0.

Suppose that this is not true. Then we can assume that for infinitely many

m : μ(Supp(fm)) > d for some d > 0.

Restricting to a subsequence, we can assume that for all m, μ(Supp(fm)) > d. Since
(fm) is Cauchy, there is n ∈ N such that distH(fm, fn) < d for all m > n.

For each k ∈ N, let

Ck =
⋂
m>k

Supp(fnf
−1
m ).

Then the sequence Ck, k ∈ N is an increasing sequence of closed subsets of [0, 1]. We
claim that

⋃
k∈N

Ck contains the interior of Supp(fn), denoted by Int(Supp(fn)). Indeed,
let x ∈ Int(Supp(fn)) and assume by contradiction that x /∈ Ck for all k. Then for all
k ∈ N, there is some m > k such that x /∈ Supp(fnf

−1
m ), so that fm(x) = fn(x).

It follows that the value fn(x) appears infinitely many times in the sequence (fm(x)).
Since the sequence (fm(x)) is convergent, we must have limm→∞ fm(x) = fn(x) = x, in
contradiction to the assumption.

Thus, the union of Ck, k ∈ N, contains the interior of the support of fn. Since Ck is
increasing, we have

lim
k→∞

μ(Ck) = μ
( ⋃

k∈N

Ck

)
≥ μ(Supp(fn)) > d.

It follows that there is some k > n such that μ(Ck) > d. This clearly implies that
distH(fk+1, fn) > d in contradiction to the choice of n. �

7.2. A subgroup of F . Let T be an infinite binary tree. Then there is a natural
left-to-right (lexicographic) order on the branches of T , and a natural subdivision of
the unit interval into possibly infinite number of intervals corresponding to the branches
of the tree. Infinite branches of T correspond to intervals with empty interior of that
subdivision. Other intervals have finite dyadic endpoints.

Definition 7.4. Consider the set F of triples (T+, T−, φ) where T+, T− are binary trees
and φ is a bijection from the set of branches of T+ to the set of branches of T− satisfying
the following properties:

(1) T+ and T− have the same finite number of infinite branches;
(2) if a branch p in T+ is to the left of branch q, then φ(p) is to the left of φ(q) in

T−;
(3) φ takes infinite branches to infinite branches.

If T+ and T− are finite trees, then the function φ taking leaves of T+ to leaves of T−
is defined uniquely. So F is naturally a subset of F .

One can extend the equivalence relation (inserting and reducing pairs of common
carets as in Subsection 2.2) and the group operations of F , multiplication and taking
inverse (see Remark 2.1), to the set F , making F a group containing F as a subgroup.
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Every triple (T+, T−, φ) in F corresponds to a homeomorphism γ = γ(T+, T−, φ) of
[0, 1] that takes linearly each interval [p] of the partition corresponding to a branch p
of T+ to the interval [φ(p)] corresponding to the branch φ(p) of T−. Properties 1, 2, 3
of Definition 7.4 imply that γ is indeed a homeomorphism of [0, 1]. Note that for every
point x of [0, 1], except for finitely many points corresponding to infinite branches of T+,
the homeomorphism γ has left and right derivatives at x that are powers of 2, and all
break points of the derivative of γ, except for finitely many points, are from Z[ 12 ]. As for
the R. Thompson group F , this gives an embedding of F into Homeo([0, 1]) that extends
the natural embedding of F . We shall identify F with its image in Homeo([0, 1]).

Remark 7.5. Let g = (T+, T−, φ) be a triple in F , and let ω → ω′ be a pair of infinite
branches of g (i.e., ω is a branch of T+, ω

′ is a branch of T−, and φ(ω) = ω′). Then
ω ends with an infinite tail of zeros (respectively, ones) if and only if ω′ ends with an
infinite tail of zeros (resp. ones). Indeed, the infinite branch ω has a predecessor in the
set of branches of T+ if and only if it terminates with a tail of zeros. It has a successor
in the set of branches of T+ if and only if it terminates with a tail of ones. Similarly, for
the branch ω′ of T−. The result follows since φ is order preserving.

Theorem 7.6. The image of F in Homeo([0, 1]) is inside F , viewed as a subgroup of
Homeo([0, 1]).

Proof. Let g = (T+, T−, φ) be a triple in F . It suffices to show that there is a se-
quence (gm),m ≥ 1, of elements in F that converges to g in the Hamming metric on
Homeo([0, 1]). Let ωi → ω′

i, i = 1, . . . , n, be the pairs of infinite branches of (T+, T−, φ).
For every m ∈ N and every i = 1, . . . , n, let ui,m (respectively, vi,m) be the prefix of ωi

(respectively, ω′
i) of length m. For each i, the sequence [ui,m], m ∈ N (respectively, [vi,m],

m ∈ N) is a nested sequence of intervals with intersection {.ωi} (respectively, {.ω′
i}). If

ωi has an infinite tail of zeros (respectively, ones), then for every sufficiently large m,
[ui,m] is a right (respectively, left) neighborhood of .ωi. By Remark 7.5, in that case, for
all sufficiently large m, [vi,m] is a left (respectively, right) neighborhood of .ω′

i. If ωi is
not eventually constant, then .ωi belongs to the interior of [ui,m] for all m ∈ N. In that
case, by Remark 7.5, for each m ∈ N, .ω′

i belongs to the interior of [vi,m].
Let m0 ∈ N be such that for each i = 1, . . . , n, if ωi is eventually constant, then

ωi ≡ ui,m0
aNi and ω′

i ≡ vi,m0
aNi , where ai ∈ {0, 1}. Then for each m ≥ m0, [ui,m] is

a left (respectively, right, two-sided) neighborhood of .ωi if and only if [vi,m] is a left
(respectively, right, two-sided) neighborhood of .ω′

i.
Let m ≥ m0. Since g is continuous and g(.ωi) = .ω′

i, i = 1, . . . , n, there exists some
m′ ≥ m such that for all i = 1, . . . , n, g([ui,m′ ]) ⊆ [vi,m]. Consider the subtree Sm′ of T+

of all vertices x such that none of the ui,m′ ’s is a strict prefix of the path from the root
to x. Then Sm′ is a rooted binary subtree of T+. Clearly, Sm′ does not have any infinite
branch. Since Sm′ is a binary tree, that implies that it has only finitely many branches.
Clearly, n of these branches are u1,m′ , . . . , un,m′ .

The rest of the branches of Sm′ are some branches of T+. For any branch u of Sm′ that
is not one of the branches u1,m′ , . . . , un,m′ , there is a branch v of T− such that v = φ(u).
There exists a function gm ∈ F whose tree-diagram contains all these branches u → φ(u).
In particular, gm coincides with g on [0, 1]\[u1,m′ ]∪· · ·∪[un,m′ ] ⊇ [0, 1]\[u1,m]∪· · ·∪[un,m].
The choice of m′ implies that g−1

m coincides with g−1 on [0, 1] \ [v1,m] ∪ · · · ∪ [vn,m]. It
follows that the sequence (gm),m ≥ m0, converges to g in the Hamming metric on
Homeo([0, 1]). �

Theorem 7.7. If U and V are two finite sets of numbers in (0, 1) and τ (U) ≡ τ (V ),
then the subgroups HU and HV are conjugate in F .
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To prove Theorem 7.7, we need the following two lemmas.

Lemma 7.8. Let α = .puN and β = .pvN be two rational numbers in (0, 1) that are not in
Z[ 12 ]. Then the stabilizers H{α} and H{β} are conjugate in F . Moreover, the conjugator
f can be chosen to have support in [p].

Proof. We can assume that u and v are minimal periods of α and β.
Let (R+, R−) be a reduced tree-diagram with pairs of branches ui → vi, i ∈ N, such

that for some k ∈ {2, . . . , n− 1}, uk = u and vk = v. We let f1 = (T 1
+, T

1
−) be the copy

of (R+, R−) in F[p]. The pairs of branches of (T 1
+, T

1
−) are of the form pui → pvi for

i = 1, . . . , n, along with pairs of branches b → b for some words b such that p is not a
prefix of b.

We construct tree-diagrams (T j
+, T

j
−) by induction on j ∈ N, so that for each j, the

tree-diagram (T j
+, T

j
−) has a pair of branches puj → pvj . For j = 1, we are done. If

(T j
+, T

j
−) is already constructed, we attach a copy of the tree R+ to the end of the branch

puj of T j
+ and a copy of the tree R− to the end of the branch pvj of the tree T j

−. We let

(T j+1
+ , T j+1

− ) be the resulting tree-diagram.

Let fj = (T j
+, T

j
−). We let f be the “limit” of the tree-diagrams fj for j ∈ N, in the

following sense. The triple f can be defined by listing its pairs of branches p → q, where
p and q are either both finite or both infinite, and φ(p) = q.

The pairs of branches of (T+, T−, φ) are pujui → pvjvi for j ≥ 0, i ∈ {1, . . . , n} \ {k};
pairs of branches b → b for some words b such that p is not a prefix of b (namely, the
pairs of branches of (T 1

+, T
1
−) of this form) and the pair of infinite branches puN → pvN.

It is obvious that f ∈ F and that, as an element of Homeo([0, 1]), f has support in [p].

We claim that H{α}
f = H{β}. It suffices to show the inclusion ⊆ (to prove the other

inclusion one would just replace f by f−1). Let g ∈ H{α}. We view f as a function from

Homeo([0, 1]). By definition, f(α) = β. It is obvious that gf fixes β because g fixes α
and f(α) = β.

It remains to show that gf ∈ F , that is, as a pair of trees, gf has only finitely many
pairs of branches. To prove that, it suffices to find a partition of [0, 1] into a finite number
of intervals I1, . . . , Is with finite dyadic endpoints and elements g1, . . . , gs from F such
that for every k = 1, . . . , s, f coincides with gk on Ik.

Since g(α) = α, there are natural numbers m1,m2 ≥ 1 such that g has a pair of
branches pum1 → pum2 (see Lemma 2.6). It is easily seen that by the definition of f , on
[0, 1]\ [pvm1 ] (which is a union of two intervals), the function gf coincides with f−1

m1
gfm2

.
Consider a number x from [pvm1 ]. Then x = .pvm1ω for some infinite binary word ω.
It is easy to check that gf maps x to y = .pvm2ω. Thus, if g1 is any element of F that
has the pair of branches pvm1 → pvm2 , then gf coincides with g1 on [pvm1 ]. Therefore,
gf ∈ F . �
Lemma 7.9. Let α and β be two irrational numbers in (0, 1). Then H{α} and H{β} are
conjugate in F . If α and β belong to a dyadic interval [p], then the conjugator of H{α}
and H{β} in F can be taken to have support in [p].

Proof. The proof is similar to the proof of Lemma 3.1. Let α = .ω and β = .ω′. For
i ∈ N, we define prefixes ui of ω inductively as follows. For i = 1, we let u1 be an
arbitrary finite prefix of ω. If the prefix ui is defined, we let ui+1 be the minimal prefix
of ω such that ui is a prefix of ui+1 and ui+1 ≡ uis, where the suffix s contains both digits
0 and 1. We define prefixes vi of ω

′ in a similar way. We note that [ui] (respectively, [vi])
is a nested sequence of dyadic intervals whose intersection is {α} (respectively, {β}). We
note also that for each i, [ui+1] (respectively, [vi+1]) is contained in the interior of [ui]
(respectively, [vi]).
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We construct a sequence of elements fi = (T i
+, T

i
−) in F such that for any i, (T i

+, T
i
−)

has the pair of branches ui → vi. For i = 1 we let (T 1
+, T

1
−) be a tree-diagram with a

pair of branches u1 → v1. For any i > 1, we let (T i
+, T

i
−) be a tree-diagram which has

a pair of branches ui → vi and has all the pairs of branches of (T i−1
+ , T i−1

− ), other than
the pair of branches ui−1 → vi−1. This is possible by Remark 2.3.

We let the triple f = (T+, T−, φ) be defined (as a collection of pairs of branches) as
follows. The only pair of infinite branches in f is ω → ω′. The pairs of finite branches are
all the pairs of branches u → v of (T i

+, T
i
−) other than the pair ui → vi, for each i ∈ N.

Note that every finite pair of branches of f occurs in all but finitely many tree-diagrams
(T i

+, T
i
−). Clearly, for i ∈ N, f coincides with fi on [0, 1] \ [ui].

We claim that Hf
{α} = H{β}. It suffices to show the inclusion ⊆. Let g ∈ H{α}. By

definition, f(α) = β. Thus, gf fixes β since g fixes α. To show that gf ∈ F , we note that
by Corollary 2.5, since g fixes α, it fixes a neighborhood [ui] of α for a sufficiently large
i ∈ N. Since f and fi coincide on [0, 1] \ [ui], in particular they coincide on the support
of g. It follows that gf = gfi ∈ F .

If α and β belong to [p], then we let the prefix u1 of ω and the prefix v1 of ω′ be
u1 ≡ v1 ≡ p. Then one can take the function f1 in the sequence above to be the identity
(with a pair of branches p → p). Continuing the construction of the sequence {fi} as
above, we see that the limit function f has support in [p]. �

Proof of Theorem 7.7. Let U = U1 ∪ U2 ∪ U3 be the natural partition of U . For each
β ∈ U2 ∪ U3 we choose a small dyadic interval [pβ ] such that β ∈ [pβ] (i.e., β = .pβω
for some infinite binary word ω). We can assume that the intervals [pβ], β ∈ U2 ∪ U3

are pairwise disjoint and that each of these intervals contains exactly one element of
U ∪ {0, 1}, the number β.

Since τ (U) ≡ τ (V ), using conjugation in F if necessary (as in the proof of Theo-
rem 4.1), we can assume that the set V = V1 ∪ V2 ∪ V3 satisfies the following conditions.

(1) V1 = U1.
(2) For each δ ∈ V2∪V3, δ ∈ [pβ], where β occupies the same position in the ordered

set U as δ does in V .

By Lemmas 7.8 and 7.9, for each β ∈ U2 ∪U3 there is a homeomorphism fβ ∈ F with

support in [pβ] such that H{β}
fβ = H{δ}. It is easy to check that f =

∏
β∈U2∪U3

fβ ∈ F
conjuagtes HU to HV . �

7.3. F and F are not amenable.

Theorem 7.10. The group F contains a non-Abelian free subgroup.

Proof. Let O be the set of all finite tuples of elements of F . Since O is countable,
there is a bijection φ : N → O. One can list the elements of F using the function φ, by
listing the elements of the tuple φ(1), followed by the elements of the tuple φ(2) and so
on. Clearly, every element of F is listed infinitely many times. Also, if we associate a
function ψ : N → F with this listing, then for any tuple t in O of length k there is some
n ∈ N such that t = (ψ(n), . . . , ψ(n + k − 1)). For each i ∈ N, we let (Ri

+, R
i
−) be the

reduced tree-diagram of ψ(i).
Let T be the minimal infinite binary tree with 0N as a branch (i.e., the branches of

T are 0N, 0k1 for all k ≥ 0). We construct an element of F as follows. Let T+, T− be
two copies of T . For each k > 0 we attach to the tree T+ the tree Rk

+ at the end of

the branch 0k1. Similarly, to the end of the branch 0k1 of T− we attach the tree Rk
−.

We denote the resulting tree-diagram with the natural mapping φ by (T+, T−, φ) and
let g be the function in F represented by it. We note that for all k ≥ 0, if α ∈ [0k1],
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then g(α) ∈ [0k1]. In addition, for any k ∈ N and any number α = .0k1ω, we have
g(α) = g(.0k1ω) = .0k1ω′, where (ψ(k))(.ω) = .ω′. In other words, when restricted to
the interval [0k1], g coincides with the copy of ψ(k) in F[0k1].

Let f be an element of the Thompson group F with a pair of branches 00 → 0. We
claim that the group generated by g and f is free. Assume by contradiction that w(x, y)
is a word in {x, y, x−1, y−1} such that w(x, y) is not trivial in the free group over {x, y}
and such that w(g, f) = 1. Since for every k > 1, g maps the interval [0k1] onto itself
and f maps [0k1] onto [0k−11], it is easy to check that the sum of powers of y in the word
w(x, y) must be 0. Thus, w(x, y) is equivalent in the free group to a word in conjugates
of x by powers of y. Clearly, we can assume that all conjuagtors are positive powers of y.

We note that for all k, j ∈ N, the function gf
j

restricted to [0k1] coincides with the
copy of ψ(k + j) in F[0k1]. Indeed, for any α = .0k1ω,

gf
j

(α) = f j(g(f−j(α))) = f j(g(f−j(.0k1ω)))

= f j(g(.0k+j1ω)) = f j(.0k+j1ω′) = .0k1ω′,

where ω′ here is such that (ψ(k + j))(.ω) = .ω′.
One can think of the situation as follows. If one fixes k ∈ N and considers only the

dyadic interval [0k1] , then for every j > 0, the function gf
j

restricted to the chosen
interval behaves exactly like (the relevant copy of) the function ψ(k+ j) of F . As noted
above, the word w(f, g) can be viewed as a word w′ in conjugates of g by positive powers
of f . If 	 different conjugates gf

r1
, . . . , gf

r� participate in the word, we can replace
each of them by a letter in an alphabet {z1, . . . , z�} and consider the resulting word
w′(z1, . . . , z�). Since F does not satisfy any law (see [23, Theorem 5.6.37]), there is a
sequence of elements f1, . . . , f� in F such that w′(f1, . . . , f�) = 1. It remains to notice
that since the function ψ enumerates all tuples of elements of F , one after the other, it
is possible to choose k such that ψ(k + ri) = fi for all i = 1, . . . , 	. Then the word w′ in
the conjugates gf

r1
, . . . , gf

r� behaves exactly as the (copy of the) function w′(f1, . . . , f�)
in the interval [0k1]. As noted, it is not the identity. �

§8. Open problems

8.1. The number of isomorphism classes of maximal subgroups of F . Note that
in every noncyclic countable free group every maximal subgroup of infinite index is free
of countable rank. Thus, even though the set of maximal subgroups of infinite index of
a noncyclic free group is of cardinality continuum, there is only one isomorphism class
of these subgroups. From the results of [24] it follows that the set of maximal subgroups
of infinite index of F also has cardinality continuum (it contains all subgroups H{α},
α ∈ (0, 1)). Still, the results of this paper and [18] show that, up to isomorphism,
only 4 maximal subgroups of F of infinite index are known. The representatives of
isomorphism classes are H{ 1

2 }, H{ 1
3}, H{

√
2

2 } and a subgroup that is isomorphic to the

Thompson group F3 (which consists of piecewise linear functions [0, 1] → [0, 1] where
slopes are powers of 3 and break points are 3-adic). In [18] we also showed how to
implicitly construct many other maximal subgroups of F , but we do not know whether
these subgroups are isomorphic to each other or to some of the 4 maximal subgroups
listed above. It is quite possible that one can construct copies of Fn as maximal subgroups
of infinite index in F for every n > 2 . Thus up to isomorphism, there should be at least
countably many maximal subgroups of F of infinite index.

Problem 8.1. Is the set of isomorphism classes of maximal subgroups of F countable?

Note that a similar problem is interesting for many other groups (say, SLn(Z), whose
maximal subgroups have been extensively studied by Margulis and Soifer). Note also
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that for some finitely generated groups, say, direct products of two noncyclic free groups,
the set of isomorphism classes of maximal subgroups is uncountable [12].

8.2. Distortion and closed subgroups. Closed subgroups of F were defined in [18].
The first author in [16] showed that one can alternatively define closed subgroups as
follows.

Definition 8.2. Let h ∈ F . Then the components of h are all elements of F that coincide
with h on a closed interval [a, b] with finite dyadic a, b and are identity outside [a, b] (in
that case h necessarily fixes a and b). A subgroup H ≤ F is closed if for any h ∈ H, the
subgroup H contains all components of h.

It is clear from this definition that for every (not necessarily finite) set U ⊆ (0, 1) the
stabilizer HU of U is closed. It is quite possible that Theorem 6.1 can be generalized to
arbitrary closed subgroups of F .

Problem 8.3. Is it true that every finitely generated closed subgroup of F is undistorted?

Note that it is an open problem (see [18]) whether all maximal subgroups of infinite
index in F are closed. If the answer is “yes” and the answer to Problem 8.3 is affirmative,
then all finitely generated maximal subgroups of F would be undistorted (because the
subgroups of finite index in any finitely generated group are obviously undistored).

Note also that by [18] the distortion function of every finitely generated closed sub-
group of F is recursive, because the membership problem for every such subgroup is
decidable.

8.3. Subgroups of quasifinite index. The examples of Jones’ subgroup
#–
F and Sav-

chuk’s subgroups HU show that subgroups of F are of quasifinite index surprisingly often.
Using the 2-core of subgroups of F as defined in [18], one can construct more examples
of subgroups of F of infinite index that have quasifinite index in F .

Problem 8.4. Is there an algorithm to check if a finite set of elements of F generates a
maximal subgroup or a subgroup of quasifinite index?

Note that the first author has found an algorithm checking whether a finite set of
elements of F generates the whole F [16].
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