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Abstract. Let E be an elliptic curve without CM that is defined over a number
field K. For all but finitely many non-Archimedean places v of K there is a reduction
E(v) of E at v that is an elliptic curve over the residue field k(v) at v. The set of
v’s with ordinary E(v) has density 1 (Serre). For such v the endomorphism ring
End(E(v)) of E(v) is an order in an imaginary quadratic field.

We prove that for any pair of relatively prime positive integers N and M there
are infinitely many non-Archimedean places v of K such that the discriminant Δ(v)

of End(E(v)) is divisible by N and the ratio
Δ(v)
N

is relatively prime to NM . We
also discuss similar questions for reductions of Abelian varieties.

The subject of this paper was inspired by an exercise in Serre’s “Abelian �-adic
representations and elliptic curves” and questions of Mihran Papikian and Alina
Cojocaru.

§1. Introduction

Let K be a field, K its algebraic closure, Gal(K) = Aut(K/K) the absolute Galois
group of K. Let A be an Abelian variety of positive dimension over K. We write
End(A) for its endomorphism ring and End0(A) for the corresponding finite-dimensional
semisimple Q-algebra End(A)⊗Q. One may view End(A) as an order in End0(A).

Let n be a positive integer that is not divisible by char(K). We write A[n] for the
kernel of multiplication by n in A(K). It is well known that A[n] is a finite Galois
submodule of A(K); if we forget about the Galois action then the commutative group
A[n] is a free Z/nZ-module of rank 2 dim(A). If � is a prime different from char(K)
then we write T�(A) for the Z�-Tate module of A that is defined as a projective limit of
commutative groups (Galois modules) A�i where the transition map A[�i+1] → A[�i] is
multiplication by �. It is well known that T�(A) is a free Z�-module of rank 2 dim(A)
provided with continuous Galois action

ρ�,A → AutZ�
(T�(A)).

In particular, T�(A) carries the natural structure of Gal(K)-module. On the other hand,
the natural action of End(A) on An gives rise to the embedding

End(A)⊗ Z/nZ ↪→ EndGal(K)(A[n]).
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If (as above) we put n = �i then these embedding are glueing together to the embedding
of Z�-algebras

(∗) End(A)⊗ Z� ↪→ EndGal(K)(T�)(A)).

Tate [19, 20] conjectured that if K is finitely generated then the embedding (∗) is actually
a bijection and proved it when K is a finite field. The case when char(K) > 2 was done
by the author [21, 22], the case when char(K) = 0 by Faltings [4, 5] and the case when
char(K) = 2 by Mori [10] (see also [29, 26, 27]).

Now let us consider the 2 dim(A)-dimensional Q�-vector space

V�(A) = T�(A)⊗Z�
Q�

and identify T�(A) with the Z�-lattice

T�(A)⊗ 1 ⊂ T�(A)⊗Z�
Q� = V�(A).

This allows us to identify AutZ�
(T�(A)) with the (compact) subgroup of AutQ�

(V�(A))
that consists of all automorphisms that leave invariant T�(A) and consider ρ�,A as the
�-adic representation

ρ�,A : Gal(K) → AutZ�
(T�(A) ⊂ AutQ�

(V�(A)).

(By definition, T�(A) is a Galois-stable Z�-lattice in V�(A).) We write G�,A for the image

G�,A := ρ�,A(Gal(K)) ⊂ AutZ�
(T�(A)) ⊂ AutQ�

(V�(A)).

It is known [15] that G�,A is a compact �-adic subgroup of AutQ�
(V�(A)). Extending the

embedding (∗) by Q�-linearity, we get the embedding of Q�-algebras

(∗∗) End0(A)⊗Q Q� = End(A)⊗Q� ↪→ EndGal(K)(V�)(A)) ⊂ EndQ�
(V�(A)).

When K is finitely generated then the Gal(K)-module V�(A) is semisimple: the case of
finite fields was done by A. Weil [11], the case when char(K) > 2 was done by the author
[21, 22], the case when char(K) = 0 by Faltings [4, 5] and the case when char(K) = 2 by
Mori [10] (see also [26]). The semisimplicity of the Galois module V�(A) means that the
G�,A-module V�(A) is semisimple.

Example 1.1 (see [20]). Let k be a finite field and

σk : k → k, x �→ x#(k)

the Frobenius automorphism of its algebraic closure. Then σk is a topological generator
of Gal(k). If B is an Abelian variety over k of positive dimension then by Tate’s theorem
on homomorphisms

End(B)⊗ Z� = EndGal(k)(T�(B))

coincides with the centralizer Endσk
(T�(B)) of σk in EndZ�

(T�(B). In addition, σk induces
a semisimple (diagonalizable over Q�) linear operator FrB in V�(B). The ring End(B) is
commutative if and only if the characteristic polynomial

PFrB (t) = det(tId− σk, V�(B)) ∈ Q�[t]

has no multiple roots. (Actually this polynomial has integral coefficients and does not
depend on a choice of � �= char(k).)

Let G�,A ⊂ GL(V�(A)) be the Zariski closure of

G�,A ⊂ AutQ�
(V�(A)) = GL(V�(A))(Q�)

in the general linear group GL(V�(A)) over Q�. By definition, G�,A is a linear Q�-algebraic
subgroup of GL(V�(A)). WhenK is finitely generated, the semisimplicity of the G�,A-mo-
dule V�(A) means that (the identity component of) G�,A is a reductive algebraic group
over Q�. If, in addition, char(K) = 0 then by a theorem of Bogomolov [1, 2, 16], G�,A is
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an open subgroup in G�,A(Q�). It is known [16] that if the group G�,A is connected for
one prime � then it is connected for all primes.

1.2. Let K be a number field. For all but finitely many non-Archimedean places v of K
one may define the reduction A(v), which is an Abelian variety of the same dimension
as A over the (finite) residue field k(v) of A at v; see [18]. If � does not coincide with the
residual characteristic of v then each extension v of v to K gives rise to an isomorphism
of Tate modules T�(A(v)) ∼= T�(A) that, in turn, gives rise to the natural isomorphisms

EndZ�
(T�(A(v))) ∼= EndZ�

(T�(A)), AutZ�
(T�(A(v))) ∼= AutZ�

(T�(A)).

Under this isomorphism

FrA(v) ∈ AutZ�
(T�(A(v))) ⊂ EndZ�

(T�(A(v)))

corresponds to a certain element

Frobv,A,� ∈ G�,A ⊂ AutZ�
(T�(A)) ⊂ EndZ�

(T�(A)) ⊂ EndQ�
(V�(A)),

which is called the Frobenius element attached to v in G�,A. (All Frobv,A,�’s for a given
v constitute a conjugacy class in G�,A.) This implies that the polynomial PFrA(v)

(t)
coincides with the characteristic polynomial

Pv,A(t) := det(t Id− Frobv,A,�, V�(A))

of Frobv,A,�. In particular, End(A(v)) is commutative if and only if Pv,A(t) has no
multiple roots.

In the general case, if we denote by

Z(Frobv,A,�)0 ⊂ EndZ�
(T�(A))

the centralizer of Frobv,A,� in EndZ�
(T�(A)) then from Tate’s theorem on homomor-

phisms (Example 1.1) it follows that Z(Frobv,A,�)0 is isomorphic as a Z�-algebra to
End(A(v))⊗ Z�.

By the Chebotarev density theorem, the set of all Frobv,A,�’s (for all v) is everywhere
dense in G�,A [15, Chapter I].

Our main result is the following statement.

Theorem 1.3. Let A be an Abelian variety of positive dimension over a number field K.
Suppose that the groups G�,A are connected. Let P be a finite nonempty set of primes
and suppose that for each � ∈ P we are given an element

f� ∈ G�,A(Q�) ⊂ AutQ�
(V�(A))

such that its characteristic polynomial

Pf�(t) = det(t Id− f�, V�(A)) ∈ Q�[t]

has no multiple roots. Let

Z(f�)0 ⊂ EndZ�
(T�(A))

be the centralizer of f� in

EndZ�
(T�(A)) ⊂ EndQ�

(V�(A)).

Then the set of non-Archimedean places v of K such that the residual characteristic
char(k(v)) does not belong to P, the Abelian variety A has good reduction at v, and

End(A(v))⊗ Z�
∼= Z(f�)0 ∀� ∈ P

has positive density. (In addition, for all such v the ring End(A(v)) is commutative.)
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Example 1.4. Let A be an Abelian variety of positive dimension over a number field
K and suppose that the groups G�,A are connected. Let r be a positive integer and let
�1, . . . , �r be r distinct primes. Suppose that for each �i we are given a non-Archimedean
place vi of K such that its residual characteristic char(k(vi)) �= �i, the Abelian variety A
has good reduction A(vi) at vi and the endomorphism ring End(A(vi)) is commutative.
This implies that the characteristic polynomial of each Frobenius element Frobvi,A,� ∈
G�,A has no multiple roots. Recall that the centralizer Z(Frobvi,A,�)0 is isomorphic
as Z�-algebra to End(A(vi)) ⊗ Z�. Let us put P = {�1, . . . , �r}. From Theorem 1.3 it
follows that the set of non-Archimedean places v ofK such that the residual characteristic
char(k(v)) does not belong to P, the abelian variety A has good reduction A(v) at v,
and

End(A(v))⊗ Z�i
∼= End(A(vi))⊗ Z�i ∀i = 1, . . . , r

has positive density.

Example 1.5. Let E be an elliptic curve without complex multiplication that is defined
over a number field K. By a theorem of Serre [15, Chapter IV, Section 2.2],

G�,E = GL(V�(E)).

In particular, G�,E is connected and isomorphic to the general linear group GL(2) over
Q� while

G�,E(Q�) = AutQ�
(V�(E)).

LetP be a finite nonempty set of primes. For each � ∈ P we fix a commutative semisimple
2-dimensional Q�-algebra C�. Let us choose an order O� in C�, i.e., a Z�-subalgebra of
C� (with the same 1) that is a free Z�-submodule of rank 2. Let us fix an isomorphism
of free Z�-modules

O�
∼= T�(E),

which extends by Q�-linearity to the isomorphism of Q�-vector spaces

C� = O� ⊗Z�
Q�

∼= T�(E)⊗Z�
Q� = V�(E).

Multiplication in C� gives rise to an embedding

C� ↪→ EndQ�
(V�(E));

further we will identify C� with its image in EndQ�
(V�(E)). Clearly, C� coincides with

its own centralizer in EndQ�
(V�(E)). On the other hand, one may easily check (using the

inclusion 1 ∈ O�) that

O� = {u ∈ C� | u(T�(E)) ⊂ T�(E)}.
This implies that O� coincides with the centralizer of C� in

EndZ�
(T�(E)) ⊂ EndQ�

(V�(E)).

Since C� is 2-dimensional, there exists f� ∈ C� such that the pair {1, f�} is a basis of the
Q�-vector space C�. Replacing f� by 1 + �Mf� for sufficiently big positive integer M , we
may and will assume that

f� ∈ C∗
� ⊂ AutQ�

(V�(E)).

Clearly, the centralizer Z(f�)0 of f� in EndZ�
(T�(E)) coincides with the centralizer of C�

in EndZ�
(T�(E)). This implies that

Z(f�)0 = O� ∀� ∈ P.

Applying Theorem 1.3, we conclude that the set of non-Archimedean places v of K such
that the residual characteristic char(k(v)) does not belong to P, the elliptic curve E has
good reduction at v, and

End(E(v))⊗ Z�
∼= O� ∀� ∈ P
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has positive density.
For example, if F is an imaginary quadratic field with the ring of integers OF and N

is a positive integer, then we consider the order Λ = Z + N · OF of conductor N in F
and the collection of Z�-algebras

O� := Λ⊗ Z� ∀� ∈ P.

We see that the set Σ(E,F,N) of all non-Archimedean places v of K such that the
residual characteristic char(k(v)) does not belong to P, the elliptic curve E has good
ordinary reduction at v, and

End(E(v))⊗ Z�
∼= Λ⊗ Z� ∀� ∈ P

has positive density. In particular, this set is infinite.

Corollary 1.6. Let E be an elliptic curve without CM that is defined over a number

field K. Let N and M be relatively prime positive integers. Consider the set Σ̃(E,M,N)
of non-Archimedean places v of K such E has good ordinary reduction at v, the resid-
ual characteristic char(k(v)) does not divide NM , the discriminant Δ(v) of the order
End(E(v)) is divisible by N and the ratio Δ(v)/N is relatively prime to MN . Then

Σ̃(E,M,N) contains a set of positive density. In particular, Σ̃(E,M,N) is infinite.

Remark 1.7. Actually, one can prove that Σ̃(E,M,N) has density, which is, of course,
positive.

Remark 1.8. The discriminant Δ(v) is not divisible by a prime � if and only if either

End(E(v))⊗Q� = Q� ⊕Q� ⊃ Z� ⊕ Z� = End(E(v))⊗ Z�

or End(E(v)) ⊗ Q� is a field that is an unramified quadratic extension of Q� and
End(E(v))⊗ Z� is the ring of integers in this quadratic field.

Proof of Corollary 1.6. Let P be the set of prime divisors of MN . Choose an imaginary
quadratic field F , whose discriminant is prime to NM and put Λ = Z +N · OF . Then

Σ̃(E,M,N) contains all the places of Σ(E,F,N) except the finite set of places with
residual characteristic dividing M . The set Σ(E,F,N) has positive density (see Example
1.5), which would not change if we remove finitely many places from it. �

Remark 1.9. Serre [15, Chapter IV, Section 2.2, Exercises on pp. IV–13] sketched a proof
of the following assertion.

The set of non-Archimedean places v of K such that char(k(v)) does not belong to P,
the elliptic curve E has good ordinary reduction at v and

End(E(v))⊗Q�
∼= C� ∀� ∈ P

has positive density. In particular, if one defines the set ΣP(E) of all places v such that E
has good ordinary reduction at v, the residual characteristic char(k(v)) does not belong
to P, and the discriminant of the quadratic field End(E(v))⊗Q is divisible by all � ∈ P
then ΣP(E) is infinite. (See also [13, Corollary 2.4 on p. 329].)

Theorem 1.10. Let g ≥ 2 be an integer, n = 2g+1 or 2g+2. Let P be a nonempty finite
set of primes and suppose that for each � ∈ P we a given a field K(�) of characteristic
different from �, a g-dimensional simple Abelian variety B(�) over K(�) that admits a
polarization of degree prime to � and such that End0(B(�)) is a number field of degree 2g.
(For example, if B is a principally polarized g-dimensional simple complex Abelian variety
of CM type then we may take B(�) = B for all � ∈ P.)

Let K be a number field and f(x) ∈ K[x] a degree n irreducible polynomial whose
Galois group over K is either the full symmetric group Sn or the alternating group An.
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Consider the genus g hyperelliptic curve Cf : y2 = f(x) and its Jacobian A, which is a
g-dimensional Abelian variety over K.

Let Σ be the set of all non-Archimedean places v of K such that A has good reduction at
v, the residual characteristic char(k(v)) does not belong to P and the Z�-rings End(A)⊗Z�

and End((B�))⊗ Z� are isomorphic for all � ∈ P. Then Σ has density > 0.

The paper is organized as follows. In §2 we discuss �-adic symplectic groups that
arise from polarizations on Abelian varieties. §3 deals with trace forms and realated
symplectic structures. §4 deals with centralizers of certain generic elements of linear
reductive groups over Q�. §5 deals with applications of the Chebotarev density theorem
for infinite Galois extensions of number fields with �-adic Galois groups. In §6 we prove
Theorems 1.3 and 1.10.

§2. Polarizations and symplectic groups

Let B be an Abelian variety of positive dimension g over a field K and let � be a prime
that is different from char(K). We write

χ� : Gal(K) → Z∗
� ,

the cyclotomic character that defines the Galois action on all �-power roots of unity. Let
λ be a polarization on B. Then λ gives rise to the altermating nondegenerate Z�-bilinear
form

eλ,� : T�(B)× T�(B) → Z�

such that

eλ,�(ρ�,B(σ)x, ρ�,B(σ)y) = χ�(σ)eλ,�(x, y)

for all σ ∈ Gal(K) and x, y ∈ T�(B); in addition, eλ,� is perfect/unimodular if and only if
deg(λ) is not divisible by � (see [7]). Let us consider the (compact) group of symplectic
similitudes

Gp(T�(B), eλ,�) = {u ∈ AutZ�
(T�(B)) | ∃c ∈ Z∗

� such that eλ,�(ux, uy) = c · eλ,�(x, y)
for all x, y ∈ T�(B)}. Clearly,

G�,B = ρ�,A(Gal(K)) ⊂ Gp(T�(B), eλ,�) ⊂ AutZ�
(T�(B)) ⊂ AutQ�

(V�(B)).

Extending eλ,� by Q�-linearity to V�(B) = T�(B) ⊗Z�
Q�, we obtain the altermating

nondegenerate Z�-bilinear form

V�(B)× V�(B) → Q�,

which we continue to denote eλ,�. Clearly,

eλ,�(ρ�,B(σ)x, ρ�,B(σ)y) = χ�(σ)eλ,�(x, y)

for all σ ∈ Gal(K) and x, y ∈ V�(B). Let us consider the group of symplectic similitudes

Gp(V�(B), eλ,�) = {u ∈ AutQ�
(V�(B)) | ∃c ∈ Q∗

� such that eλ,�(ux, uy) = c · eλ,�(x, y)
for all x, y ∈ V�(B)}. Clearly, Gp(T�(B), eλ,�) is the open compact subgroup of the
(locally compact) group Gp(V�(B), eλ,�) that coincides with the intersection

Gp(V�(B), eλ,�) ∩AutZ�
(T�(B)).

We have

G�,A ⊂ Gp(T�(B), eλ,�) ⊂ Gp(V�(B), eλ,�) ⊂ AutQ�
(V�(B)).

We write Gp(V�(B), eλ,�) ⊂ GL(V�(B)) for the connected linear reductive algebraic group
of symplectic similitudes over Q� attached to eλ,�. Its group of Q�-points

Gp(V�(B), eλ,�)(Q�) = Gp(V�(B), eλ,�) ⊂ AutQ�
(V�(B)) = GL(V�(B))(Q�).
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Let us consider the finite-dimensional semisimple Q-algebra

End0(B) = End(B)⊗Q.

We have the natural isomorphisms of Q-algebras

[End(B)⊗ Z�]⊗Z�
Q� = End(B)⊗Q� = [End(B)⊗Q]⊗Q Q� = End0(B)⊗Q Q�.

By (∗∗), there is a natural embedding

End0(B)⊗Q Q� = End(B)⊗Q� ↪→ EndQ�
(V�(B)).

We may view End0(B) as a certain Q-subalgebra of End0(B)⊗Q Q�, identify the latter
with its image in EndQ�

(V�(B)), and get

End0(B) ⊂ End0(B)⊗Q Q� ⊂ EndQ�
(V�(B)).

The polarization λ gives rise to the Rosati involution [7, 11]

End0(B) → End0(B), u �→ u′

such that
eλ,�(ux, y) = eλ,�(x, u

′y) ∀x, y ∈ V�(B).

This involution extends by Q�-linearity to the involution of the semisimple finite-dimen-
sional Q�-algebra End0(B)⊗Q Q�,

End0(A)⊗Q Q� → End0(B)⊗Q Q�, u �→ u′,

such that
eλ,�(ux, y) = eλ,�(x, u

′y) ∀x, y ∈ V�(B).

This implies that
u ∈ [End0(B)⊗Q Q�]

∗ ⊂ AutQ�
(V�(B))

lies in Gp(V�(B), eλ,�) if and only if

u′u ∈ Q∗
� Id.

The following statement will be used in the proof of Theorem 1.10.

Theorem 2.1. Suppose that End0(B) is a number field of degree 2g. Then there exists
an element u ∈ End(B) and a positive integer q ∈ Z such that

End0(B) = Q[u], u′u = q, u ∈ Gp(V�(B), eλ,�)

and the characteristic polynomial Pu(t) = det(t Id−u, V�(B)) of u has no multiple roots.
In addition, the centralizer Z(u)0 of u in EndZ�

(T�(B)) ⊂ EndQ�
(V�(B)) coincides

with End(B)⊗ Z�.

In the course of the proof of Theorem 2.1 we will use the following statement that will
be proven at the end of this section. (See also [23, Section 4].)

Lemma 2.2. Let Q be a field of characteristic zero, F0/Q a finite algebraic field exten-
sion, and F/F0 a quadratic field extension. Let τ ∈ Gal(F/F0) be the only nontrivial
element (involution) of the Galois group of F/F0. Then there exists u ∈ F such that
F = Q[u] and u · τu = 1.

Proof of Theorem 2.1. From Albert’s classification [11] (see also [12]) it follows that the
field F := End0(B) is a CM field and the Rosati involution coincides with the complex
conjugation z �→ z on F and R := End(B) is an order in F . Recall that F is a purely
imaginary quadratic extension of its totally real number subfield F0 and the complex
conjugation is the only nontrivial element of the Galois group of F/F0.

We have
F� := F ⊗Q� = End0(B)⊗Q Q� ⊂ EndQ�

(V�(B)).



88 YU. G. ZARHIN

Clearly, all elements of the commutative semisimple Q�-algebra F� act as semisimple
linear operators in V�(B). The F�-module V�(B) is free of rank 1 [18, Section 4, The-
orem 5(1)]. This implies that F� coincides with its own centralizer EndF�

(V�(B)) in
EndQ�

(V�(B)). On the other hand, the intersection

F� ∩ EndZ�
(T�(B))

coincides with

R� := R⊗ Z� = End(B)⊗ Z�

[18, Section 4, Theorem 5(1)].
Suppose that we have constructed an element u ∈ R = End(B) such that F =

End0(B) = Q[u] and u′u = q for some positive integer q. This implies that the centralizer
Z(u) of u in EndQ�

(V�(B)) coincides with the centralizer EndF�
(V�(B)) of F�, i.e., equals

F�. It follows that the centralizer Z(u)0 of u in EndZ�
(T�(B)) coincides with the the

intersection F� ∩EndZ�
(T�(B)), i.e., equals R�. In addition, since F� is the centralizer of

u in EndQ�
(V�(B)) and

dimQ�
(F�) = 2g = dimQ�

(V�(B)),

the characteristic polynomial Pu(t) of u has no multiple roots. We have

eλ,�(ux, uy) = eλ,�(x, u
′uy) = eλ,�(x, q · y) = q · eλ,�(x, y)

for all x, y ∈ V�(B). This implies that

u ∈ Gp(V�(B), eλ,�).

Now let us construct such an u. Applying Lemma 2.2 (to Q = Q), we obtain the existence
of u1 ∈ F with Q[u1] = F and u′

1 · u1 = 1. Then there is a positive integer m such that
u := mu1 lies in R. Clearly,

Q[b] = Q[u1] = F, u′ = mu′
1, u′ · u = m2u′

1 · u1 = m2 · 1 = m2.

Now one has only to put q = m2. �

Proof of Lemma 2.2. Recall that for each u ∈ F the Q-subalgebra Q[u] of F generated
by u is actually a subfield, i.e., coincides with the (sub)field Q(u).

Since F/F0 is quadratic, F = F0(
√
δ) for some nonzero δ ∈ F0. We have

F = F0 + F0 ·
√
δ, τ (

√
δ) = −

√
δ

and F0 coincides with the subfield of τ -invariants in F .
Suppose that there is a nonzero β0 ∈ F0 such that F0 = Q(δβ2

0). Replacing if necessary
β0 by 2β0, we may and will assume that

δβ2
0 + 1 �= 0.

Let us put

β =
δβ2

0 − 1

δβ2
0 + 1

+
2β0

δβ2
0 + 1

·
√
δ.

Clearly,

β /∈ F0, τ (β) =
δβ2

0 − 1

δβ2
0 + 1

− 2β0

δβ2
0 + 1

·
√
δ, τ (β) · β = 1

and therefore Q(β) contains τ (β) = 1/β, which implies that it contains both
δβ2

0−1

δβ2
0+1

and
2β0

δβ2
0+1

·
√
δ. This implies that Q(β) contains δβ2

0 and therefore contains Q(δβ2
0). Since

Q(δβ2
0) = F0, the subfield Q(β) contains F0 and we have

F0 ⊂ Q(β) ⊂ F.
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Since F0 does not contain β, F0 �= Q(β) and therefore Q(β) = F . We have

Q[β] = Q(β) = F.

This ends the proof if we find β0 ∈ F0 with

F0 = Q(δβ2
0).

Now let us construct such a β0. If F0 = Q we may take any

β0 ∈ Q = F, β0 �= 0, β2
0 �= −1

δ
.

Now suppose that F0 �= Q. Since F0/Q is separable, there is γ ∈ F0 with F0 = Q(γ).
Clearly, γ /∈ Q ⊂ Q; in particular, γ �= 0. Since separable F0/Q contains only finitely
many field subextensions of Q, there are two distinct positive integers i, j ∈ Z ⊂ Q such
that the subfields Q(δ(γ+ i)2) and Q(δ(γ+ j)2) do coincide. (Notice that i2 �= j2.) This
implies that 2δ(j − i)γ lies in Q(δ(γ + i)2), i.e.,

δ · γ ∈ Q(δ(γ + i)2) = Q(δ(γ + j)2).

This implies that both

(γ + i)2

γ
=

δ · (γ + i)2

δ · γ and
(γ + j)2

γ
=

δ · (γ + j)2

δ · γ
lie in Q(δ(γ + i)2). This implies that

(2i− 2j) +
i2 − j2

γ
=

(γ + i)2

γ
− (γ + j)2

γ
∈ Q(δ(γ + i)2).

Since i2 �= j2, we conclude that 1/γ lies in Q(δ(γ + i)2) and therefore

Q(γ) = F0 ⊃ Q(δ(γ + i)2) ⊃ Q(1/γ) = Q(γ) = F0.

This implies that Q(δ(γ + i)2) = F0 and we may put β0 = γ + i. �

We finish this section with the following elementary (and probably well-known) state-
ment that will be used later in Example 4.6.

Lemma 2.3. Let Q be a field of characteristic zero and C a finite-dimensional commu-
tative semisimple Q-algebra. Then there exists an invertible element u of C such that
C = Q[u].

Proof. It is well known that commutative semisimple C splits into a finite direct sum

C =
r⊕

i=1

Ci

where each Ci is an overfield of Q. It is also clear that Ci/Q is a finite algebraic field
extension. Since we live in characteristic zero, each Ci/Q is separable and therefore there
exists nonzero zi ∈ Ci such that Ci = Q[zi]. Let Pi(t) ∈ Q[t] be the minimal polynomial
of zi over Q. By definition, Pi(t) is an irreducible monic polynomial of degree [Ci : Q].
We have

Z ⊂ Q ⊂ Q ⊂ Ci.

We may choose integers ni ∈ Z in such a way that all Pi(t+ ni) are distinct and do not
vanish at zero; in particular, they all are monic irreducible and therefore relatively prime
to each other. Clearly, Pi(t+ ni) is the minimal polynomial of zi − ni over K. Clearly,
Qj = Q[zi] = Q[zi − ni]. This implies that the field Ci is isomorphic as Q-algebra to the
quotient Q[t]/Pi(t+ni)Q[t]. This implies that the Q-algebra Q[t]/{

∏r
i=1 Pi(t+ni)}Q[t]

is isomorphic to the direct sum ⊕r
i=1Ci = C. Now one may take as u the image of t

in C. �
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§3. Trace forms

3.1. Let � be a prime. Let F0/Q� be a field extension of finite degree g. Let O0 = O0,�

be the ring of integers of the �-adic field F0,� := F0, which carries the natural structure
of a free Z�-module of rank g. We fix a uniformizer π ∈ O0 that generates the maximal
ideal in O0. We write

Tr0 := TrF0/Q�
: F0 → Q�

for the (Q�-linear) trace map from F0 to Q�. It is well known that the symmetric Q�-bi-
linear trace form

BTr : F0 × F0 → Q�, x, y �→ Tr0(xy)

is nondegenerate. This means that the homomorphism of Q�-vector spaces

φTr : F0 → HomQ�
(F0,Q�)

that assigns to each a ∈ F0 the Q�-linear map

BTr(a, ?) : F0 → Q�, x �→ BTr(a, x) = Tr0(ax)

is an isomorphism. Recall that the natural homomorphism of Z�-algebras

O0 ⊗Z�
Q� → F0, x⊗ c �→ c · x

is an isomorphism. This implies that the restriction map

HomQ�
(F0,Q�) → HomZ�

(O0,Q�)

is an isomorphism of Z�-modules. (Further we will identify these modules, using this
isomorphism.) We have

HomZ�
(O0,Z�) ⊂ HomZ�

(O0,Q�) = HomQ�
(F0,Q�).

The preimage

D−1 := φ−1
Tr (HomZ�

(O0,Z�)) ⊂ F0

is the inverse different, which is a fractional ideal in F0 that contains O0 [14, Chapter III,
Section 3]. Since the obvious Z�-bilinear pairing of free Z�-modules of rank g

O0 ×HomZ�
(O0,Z�) → Z�

is unimodular, the Z�-bilinear pairing of free Z�-modules of rank g

O0 ×D−1 → Z�, (x, y) �→ Tr0(xy)

is also unimodular. Notice that there is a nonnegative integer d such that

D−1 = π−dO0 ⊂ F0.

This implies that the symmetric Z�-bilinear pairing

B̃Tr : O0 ×O0 → Z�, x, y �→ Tr0(π
−dxy)

is unimodular.

Let T = T� be a free O0-module of rank 2 provided with an alternating O0-bilinear
unimodular form

e0 : T × T → O0.

Since T has rank 2, such a form exists and is unique, up to multiplication by an element
of O∗

0 . This implies that if u is an automorphism of T then

e0(ux, uy) = det(u) · e0(x, y) ∀x, y ∈ T.

Consider the 2-dimensional O0 ⊗Z�
Q� = F0-vector space

V = V� := T ⊗Z�
Q�



ENDOMORPHISM RINGS OF REDUCTIONS OF ELLIPTIC CURVES 91

and extend e0 by F0-linearity to the alternating nondegenerate F0-bilinear form

V × V → F0,

which we continue to denote e0. Clearly, if u ∈ AutF0
(V ), then

e0(ux, uy) = det(u) · e0(ux, uy) ∀x, y ∈ V.

Here and above

det : AutF0
(V ) ∼= GL(2, F0) → F ∗

0

is the determinant homomorphism.

Lemma 3.2. The alternating Z�-bilinear form

e = e� : T × T → Z�, x, y �→ Tr0(π
−de0(x, y))

is unimodular.

Proof. Let l : T → Z� be a Z�-linear map. We need to prove that there is exactly one
z ∈ T such that

l(x) = Tr0(π
−de0(x, z)) ∀x ∈ T.

In order to do that, we choose a basis {f1, f2} of the free O0-module T . Then l gives rise
(and is uniquely determined by) two Z�-linear maps

li : R → Z�, a �→ l(a · ei)
for i = 1, 2. We have

l(a1f1 + a2f2) = l1(a1) + l2(a2) ∀a1, a2 ∈ O0.

Since B̃Tr is unimodular, there exists exactly one ci ∈ O0 with

li(a) = B̃Tr(a, ci) ∀a ∈ O
for i = 1, 2. This implies that

l(a1f1 + a2f2) = B̃Tr(a1, c1) + B̃Tr(a2, c2)

= Tr0(π
−d · a1c1) + Tr0(π

−d · a2c2) = Tr0(π
−d · [a1c1 + a2c2]).

Since e0 is unimodular, there is exactly one z ∈ T with

e0(f1, z) = c1, e0(f2, z) = c2.

This implies that

e0(a1f1 + a2f2, z) = a1c1 + a2c2

and therefore

l(a1f1 + a2f2, z) = Tr0[π
−d · e0(a1f1 + a2f2, z)] = e(a1f1 + a2f2, z). �

3.3. Let C = C� be a 2-dimensional commutative semisimple F0-algebra. Then C is
either a quadratic field extension F of F0 or is isomorphic (as an F0-algebra) to the
direct sum F0 ⊕ F0. Suppose that R = R� ⊂ C is an O0-subalgebra of C that is a free
O0-module of rank 2. Clearly, the natural homomorphism of O0-algebras

R ⊗O0
F → C, x⊗ a �→ ax

is an isomorphism.
Suppose that C = F is a field (that is a quadratic extension of F0). Then O0 ⊂

R ⊂ O where O is the ring of integers in the �-adic field F . This implies that there is a
nonnegative integer i such that

R = Ri := O0 + πiO ⊂ O = R0.
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Conversely, for any nonnegative integer i the O0-(sub)algebra O0 + πiO ⊂ C is a free
O0-module of rank 2.

Suppose that C := F0 ⊕ F0 and let us put

O := O0 ⊕O0 ⊂ F0 ⊕ F0 = C.

We view O0 as a O0-subalgebra of O via the diagonal embedding. Then

O0 ⊂ R ⊂ O.

This implies that there is a nonnegative integer such that

R = Ri := O0 + πiO ⊂ O = R0.

Conversely, for any nonnegative integer i the O-(sub)algebra O0 + πiO ⊂ C is a free
O0-module of rank 2.

We fix an isomorphism T ∼= R of free O0-modules of rank 2. This provides T with
the natural structure of free R-module of rank 1 and gives rise to the embedding of
R-algebras

R ↪→ EndO0
(T ),

which extends by F0-linearity the embedding of F0-algebras

C = R⊗O0
F0 ↪→ EndO0

(T )⊗O0
F = EndF0

(T ⊗O0
F ) = EndF0

(V ).

Further we will identify C with its image in EndF0
(V ). Clearly, V becomes a free C-mo-

dule of rank 1. In particular, the centralizer of C in EndF0
(V ) coincides with C. Since

T is a free R-module of rank 1, the centralizer of C in EndO0
(T ) ⊂ EndF0

(V ) coincides
with

R ⊂ C ⊂ EndF0
(V ).

Actually, we can do better and view V as the 2g-dimensional Q�-vector space and T as
the Z�-lattice of rank 2g in V . Indeed, C is a finite-dimensional semisimple Q�-algebra
of Q�-dimension 2g that acts faithfully on the 2g-dimensional Q�-vector space V . This
implies that the centralizer of C even in EndQ�

(V ) coincides with C and the centralizer
of C in EndZ�

(T ) ⊂ EndQ�
(V ) coincides with

R ⊂ C ⊂ EndQ�
(V )

(recall that T is a free R-module of rank 1 and therefore the centralizer of R in EndZ�
(T )

coincides with R). If

u ∈ C∗ ⊂ AutF0
(V )

and c = det(u) ∈ F ∗
0 actually lies in Q∗

� then

e(ux, uy) = Tr0(π
−de0(ux, uy))

= Tr0(π
−dc · e0(x, y)) = c · Tr0(π−d · e0(x, y)) = c · e(x, y)

for all x, y ∈ V . This implies that u lies in the group Gp(V, e) of symplectic similitudes.

Lemma 3.4. There exists

u = u� ∈ C∗ = C∗
�

that lies in Gp(V, e) = Gp(V�, e�) and such that

Q�[u�] = Q�[u] = C = C�.

In particular, the centralizer of u� in EndZ�
(T�) ⊂ EndQ�

(V�) coincides with

R = R� ⊂ C ⊂ EndQ�
(V�).
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Proof. Suppose that C is a quadratic overfield F of F0. Let τ be the only nontrivial
element (involution of Gal(F/F0). Then V becomes a one-dimensional vector space over
F but we view V as a 2-dimensional F0-vector space and each u ∈ F acts on V as
an F0-linear operator that is multiplication by u. Then the determinant det(u) of this
operator is the norm of u with respect to F/F0, i.e,,

det(u) = u · τ (u).
This implies that if u · τ (u) = 1 then u lies in the symplectic group Sp(V, e) ⊂ Gp(V, e).
So, we need to find u ∈ F ∗ with

u · τu = 1, Q�[u] = F.

But the existence of such u is guaranteed by Lemma 2.2 and we are done.
Suppose that C = F0 ⊕ F0. Let

u = (u1, u2) ∈ F ∗
0 × F ∗

0 = C∗.

Clearly det(u) = u1u2 ∈ F ∗
0 . This implies that if u2 = u−1

1 then

det(u) = u1u2 = u1u
−1
1 = 1

and u lies in the symplectic group Sp(V, e) ⊂ Gp(V, e). By Lemma 2.3, there exists a
nonzero u1 ∈ F0 with Q�[u1] = F0. Replacing u1 by �Nu1 for sufficiently large positive
integer N , we may and will assume that

0 �= u1 ∈ �O0 ⊂ πO0

and therefore u−1
1 /∈ O0. This implies that the degree g minimal polynomial P1(t) ∈ Q�[t]

of u1 over Q� has coefficients in Z�, which is not the case for the degree g (monic)
minimal polynomial P2(t) ∈ Q�[t] of u2 = u−1

1 over Q�. Since both P1 and P2 are
monic irreducible over Q�, they are relatively prime. This implies that if we put u =
(u1, u

−1
1 ) ∈ F0 ⊕ F0 then the Q�-(sub)algebra Q�[u] of F0 ⊕ F0 is isomorphic to the

quotient Q�[t]/P1(t)P2(t)Q�[t] and therefore has Q�-dimension

deg(P1P2) = g + g = 2g = dimQ�
(F0 ⊕ F0)

and therefore

Q�[u] = F0 ⊕ F0 = C. �

§4. Linear algebraic groups over Q�

The content of this section was inspired by exercises in Serre’s book [15, Chapter IV,
Section 2.2].

4.1. Let V be a vector space of finite positive dimension d over Q�. We write Id for
the identity automorphism of V . Let T be a Z�-lattice in V of (maximal) rank d. For
every u ∈ EndQ�

(V ) we write Z(u) for its centralizer in EndQ�
(V ) and Q�[u] for the

Q�-subalgebra in EndQ�
(V ) generated by u. We have

Id, u ∈ Q�[u] ⊂ Z(u) ⊂ EndQ�
(V ).

Consider the intersection

Z(u)0 := Z(u) ∩ EndZ�
(T ) ⊂ EndZ�

(T ) ⊂ EndQ�
(V ).

Clearly, Z(u)0 coincides with the centralizer of u in EndZ�
(T ) ⊂ EndQ�

(V ). It is also
clear that Z(u)0 is a Z�-subalgebra (order) in Z(u) and the natural map

Z(u)0 ⊗Z�
Q� → Z(u), u⊗ c �→ cu

is an isomorphism of Q�-algebras.
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If u ∈ EndQ�
(V ) then we consider its characteristic polynomial

Pu(t) = det(t Id− u, V ) ∈ Q�[t]

and define Δ(u) ∈ Q� as the discriminant of Pu(t). For each g ∈ AutQ�
(V )

Pgug−1(t) = Pu(t), Δ(gug−1) = Δ(u).

The polynomial Pu(t) has no multiple roots if and only if Δ(u) �= 0. If this is the case
then u is a semisimple (diagonalizable over Q�) linear operator in V , the subalgebra

Q�[u] ⊂ EndQ�
(V )

is a commutive semisimple Q�-(sub)algebra of Q�-dimension d, which coincides with Z(u).
Let G ⊂ GL(V ) be a connected reductive linear (sub)group of positive dimension.

Clearly G(Q�) is a closed subgroup of AutQ�
(V ) with respect to the �-adic topology. One

may view

Δ: u �→ Δ(u)

as a regular function on the affine algebraic varietyG. We assume that Δ is not identically
zero on G.

Lemma 4.2. Let G be an open compact subgroup in G(Q�). Then the subset

GΔ := G ∩ {Δ = 0} ⊂ G

has measure zero with respect to the Haar measure on G.

Proof. The group G carries the natural structure of an open compact �-adic subgroup
of G(Q�); in addition, if N is the dimension of G then N coincides with the dimension
of G. Clearly, every nonempty open (with respect to the �-adic topology) subset of G is
dense in G with respect to the Zariski topology. This implies that the interior of GΔ with
respect to the �-adic topology is empty. Notice that GΔ is a closed analytical subspace of
G that is stable under conjugation. It is known [17, Section 4.2] that there is a positive
integer a such that for each positive integer n there is an open subgroup G(n) in G with
index

(G : G(n)) = a�nN .

In addition, there is a positive integer b such that the image Cn of GΔ in the finite group
G/G(n) consists of at most b�n(N−1) elements ([17, Example at the end of Section 4.1
and formula (73) of Section 4.2]). Since the (normalized) Haar measure of each coset of
the subgroup G(n) in G is 1/(G : G(n)), we conclude that the Haar measure of GΔ does
not exceed

m(n) =
b�n(N−1)

a�nN
.

Since m(n) tends to 0 while n tends to ∞, the Haar measure of GΔ is zero. �

4.3. Let u be an element of G(Q�) with Δ(u) �= 0, i,e., Pu(t) has no multiple roots. Then
u is semisimple and regular in GL(V ) and therefore is a semisimple regular element of G.
Recall that the subalgebra

Q�[u] ⊂ EndQ�
(V )

is a commutative semisimple d-dimensional Q�-(sub)algebra that coincides with Z(u).
Let T be the maximal torus in G that contains (regular) u. Since such a T is unique

[3, Chapter IV, Section 12.2], it is defined over Q� and we have

u ∈ T(Q�) ⊂ G(Q�) ⊂ AutQ�
(V ).

Consider the subset T′(u) ⊂ T(Q�) that consists of all

u ∈ T(Q�) ⊂ G(Q�) ⊂ AutQ�
(V )
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such that Δ(u) �= 0. Clearly, T′(u) is open everywhere dense in T(Q�) with respect to
the �-adic topology, it contains u and all its elements are semisimple regular in G and
commute with u. Then for each u ∈ T′(u)

Z(u) ⊂ EndQ�
(V )

is also a commutative semisimple Q�-(sub)algebra of Q�-dimension d that coincides with
Q�[u]; it also contains u and therefore contains Q�[u], which is also d-dimensional. This
implies that

Q�[u] = Z(u) = Z(u) = Q�[u] ⊂ EndQ�
(V )

and therefore

Z(u)0 = Z(u)0 ⊂ EndZ�
(T )

for all u ∈ T′(u).
Let us consider the map of �-adic manifolds

Ψu : G(Q�)× T′(u) → G(Q�), (g, u) �→ gug−1.

Clearly, Δ does not vanish on the image of Ψ.
It is known ([6, p. 469, Proof of Theorem 2.1], see also [8, Proof of Proposition 7.3])

that the tangent map to Ψu is everywhere surjective (recall that every u ∈ T′(u) is
regular in G). This implies that Ψu is an open map, i.e., the image under Ψu of any
open subset of G(Q�) × T′(u) is open in G(Q�). In particular, if G is an open compact
subgroup in G(Q�) then T′(u)G = T′(u) ∩ G is a (nonempty) open subset in G whose
closure contains Id and therefore the image Ψu(T

′(u)G×G) is an open subset in G whose
closure contains Id. Notice that

Z(gug−1) = gZ(u)g−1 ∀g ∈ G.

If, moreover,

G ⊂ AutZ�
(T ) ⊂ AutQ�

(V )

then

Z(gug−1)0 = gZ(u)0g
−1 = gZ(u)0g

−1 ∀g ∈ G.

In particular, the Z�-algebras Z(gug
−1))0 and Z(u)0 are isomorphic. In addition, if u ∈ G

then

u ∈ Ψu(T
′(u)G ×G).

Theorem 4.4. Let G be an open compact subgroup in G(Q�) that lies in

AutZ�
(T ) ⊂ AutQ�

(V ).

Let u be an element of G(Q�) such that its characteristic polynomial

Pu(t) = det(t Id− u, V ) ∈ Q�[t]

has no multiple roots. Let us consider the set X(u, T,G) of all elements u ∈ G such that
the Z�-algebra Z(u)0 is isomorphic to Z(u)0. Then X(u, T,G) is a nonempty open subset
in G that is stable under conjugation. Its boundary lies in GΔ and contains Id.

Remark 4.5. Suppose that u1 and u2 are elements of G(Q�) with

Δ(u1) �= 0, Δ(u2) �= 0.

Consider elements

u1 ∈ X(u1, T,G), u2 ∈ X(u2, T,G).

We have isomorphisms of Z�-algebras

Z(u1)0 ∼= Z(u1)0, Z(u2)0 ∼= Z(u2)0.
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This implies that either Z(u1)0 and Z(u2)0 are isomorphic and

u1 ∈ X(u2, T,G), u2 ∈ X(u1, T,G)

or they are not isomorphic and

u1 /∈ X(u2, T,G), u2 /∈ X(u1, T,G).

It follows that the subsets X(u1, T,G), and X(u2, T,G) either coincide or do not meet
each other.

Proof of Theorem 4.4. It is clear that X(u, T,G) is stable under conjugation, u lies in
X(u, T,G) while Id does not belong toX(u, T,G). In the notation above, Ψu(T

′(u)G×G)
is an open subset in G whose closure contains Id (and therefore Id lies on the boundary)
and such that for each u ∈ Ψu(T

′
G×G) the Z�-algebra Z(u)0 is isomorphic to Z(u)0. This

implies that X(u, T,G) contains open Ψu(T
′(u)G ×G) ⊂ G. In particular, X(u, T,G) is

nonempty and its closure in G contains Id. It remains to prove that X(u, T,G) is open.
Let u1 be an element of X(u, T,G). Clearly,

X(u, T,G) = X(u1, T,G).

On the other hand, the centralizer Z(u1) of u1 in EndQ�
(V ) is isomorphic to Z(u), i.e., is a

semisimple commutative Q�-algebra of Q�-dimension d where d = dimQ�
(V ). This means

that the characteristic polynomial of u1 has no multiple roots and therefore (replacing u
by u1) we may define T′(u1), Ψu1

, and T′(u1)G. Since u1 is an element of G, it lies in
the open subset Ψu1

(T′(u)G ×G) of G. On the other hand,

Ψu1
(T′(u)G ×G) ⊂ X(u1, T,G) = X(u, T,G)

which proves the openness of X(u, T,G).
We still have to check that Δ vanishes identically on the boundary of X(u, T,G). In

order to do that, recall (Remark 4.5) that if

u ∈ G, Δ(u) �= 0

then either X(u, T,G) = X(u, T,G) or these two open subsets of G do not meet each
other. Taking into account that u ∈ X(u, T,G), we obtain that

{G \GΔ} \X(u, T,G)

coincides with the union of all (open) X(u, T,G) where u runs through the (same!) set
{G \ GΔ} \ X(u, T,G). This implies that G \ {GΔ ∪ X(u, T,G)} is an open subset in
G that obviously does not meet X(u, T,G). This implies that the closure of X(u, T,G)
lies in

X(u, T,G) ∪GΔ.

Since X(u, T,G) is open, its boundary lies in GΔ. On the other hand, we saw in Sub-
section 4.3 that Id lies in the closure of X(u, T,G) but not in X(u, T,G). This implies
that Id lies on the boundary of X(u, T,G). �

Example 4.6. Suppose that G = GL(V ). Let C be a d-dimensional semisimple com-
mutative Q�-algebra and R ⊂ C an order in C, i.e., a Z�-subalgebra of C (with the
same 1) that is a free Z�-module of rank d. By Lemma 2.3, there exists u ∈ C∗ such that
C = Q�[u]. We fix an isomorphism of free Z�-modules R ∼= T and use it in order to pro-
vide T with the structure of a free R-module of rank 1. Tensoring by Q�, we obtain the
natural structure of a R⊗Z�

Q� = C-module on T⊗Z�
Q� = V . This gives us theQ�-algebra

embedding C ↪→ EndQ�
(V ) in such a way that R ⊂ C lands in EndZ�

(T ) ⊂ EndQ�
(V ).

Further we will identify C and R with their images in EndQ�
(V ) and EndZ�

(T ) respec-
tively. (In particular, we may view u as an element of C∗ ⊂ AutQ�

(V ).) Since u lies
in semisimple commutative C ⊂ EndQ�

(V ), it is a semisimple linear operator in V .
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This provides V with the natural structure of a free C-module of rank 1; in particular,
the centralizer EndC(V ) of C in EndQ�

(V ) coincides with C. Similarly, T becomes a
free R-module of rank 1 and the centralizer EndR(T ) of R in EndZ�

(T ) coincides with
R. It follows that the centralizer of u in EndQ�

(V ) coincides with C and therefore the
centralizer Z(u)0 of u in EndZ�

(T ) ⊂ EndQ�
(V ) coincides with R. In particular, the

Q�-dimension of the centralizer of semisimple u in EndQ�
(V ) coincides with dimQ�

(V )
and therefore the characteristic polynomial of u has no multiple roots.

Let X(R, T,G) be the set of all u ∈ G such that Z(u)0 is isomorphic as a Z�-algebra
to R. Then

X(R, T,G) = X(u, T,G).

From Theorem 4.4 it follows that X(R, T,G) is an open nonempty subset of G, whose
closure contains the identity element and the boundary has measure zero with respect
to the Haar measure on G.

Example 4.7. Suppose d = 2g is even, C is a g-dimensional semisimple commutative
Q�-algebra and R ⊂ C is an order in C. Let T be a a free R-module of rank 1. Then V =
T ⊗Z�

Q� is a free R⊗Z�
Q� = C-module of rank 1. We may view T as a rank g Z�-lattice

(and a R-submodule) in V . Consider the freeR-module T = T ⊕HomZ�
(T ,Z�) of rank 2,

which is a rank 2g Z�-lattice in the 2g-dimensional vector space V = V ⊕HomQ�
(V ,Q�).

Notice that V carries the natural structure of a free C-module of rank 2 and we have a
natural embedding

C ⊕ C ↪→ EndQ�
(V)⊕ EndQ�

(HomQ�
(V ,Q�))

⊂ EndQ�
[V ⊕HomQ�

(V ,Q�)] = EndQ�
(V)

such that each (u1, u2) ∈ C ⊕ C sends (x, l) ∈ V ⊕ HomQ�
(V ,Q�) to (u1x, lu2). Further

we will identify C ⊕ C with its image in EndQ�
(V). Under this identification the subring

R⊕R ⊂ C ⊕ C lands in

EndZ�
(T )⊕ EndZ�

(HomZ�
(T ,Z�)) ⊂ EndZ�

(T ⊕ HomZ�
(T ,Z�)) = EndZ�

(T).

Clearly, C⊕C coincides with its own centralizer in EndQ�
(V) and R⊕R coincides with its

own centralizer in EndZ�
(T). Notice that the Q�-dimensions of C ⊕C and V do coincide.

There is a perfect alternating Z�-bilinear form

e : T×T → Z�, (x1, l1), (x2, l2) �→ l1(x2)− l2(x1)

for all

x1, x2 ∈ T , l1, l2 ∈ HomZ�
(T ,Z�).

This form extends by Q�-linearity to the nondegenerate alternating Q�-bilinear form

V ×V → Q�, (x1, l1), (x2, l2) �→ l1(x2)− l2(x1)

∀x1, x2 ∈ V , l1, l2 ∈ HomZ�
(V ,Q�),

which we also denote by e.
Let G = Gp(V, e) ⊂ GL(V) be the (connected) reductive algebraic Q�-group of sym-

plectic similitudes of V attached to e. We have

G(Q�) = Gp(V, e)(Q�) = Gp(V, e).

If u1 ∈ C∗ and q ∈ Q∗
� then the element (u1, qu

−1
1 ) ∈ (C ⊕ C)∗ ⊂ AutQ�

(V) lies in
Gp(V, e). When q = 1 this element lies in Sp(V, e).

Using Example 4.6, choose u1 ∈ C∗ ⊂ AutQ�
(V) such that the characteristic poly-

nomial Pu1
(t) has no multiple roots, Q�[u1] = C and the centralizer Z[u1]0 of u1 in

EndZ�
(T ) ⊂ EndQ�

(V) coincides with R. We may choose q in such a way that the char-
acteristic polynomial Pqu−1

1
(t) = (t/q)gPu1

(q/t) of qu−1
1 has no common roots with Pu(t).
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(For example, pick an integer N such that none of the roots of Pu(t) is of the form ±�N

and put q = �2N .) Then the characteristic polynomial of

u = (u1, qu
−1
1 ) ∈ (C ⊕ C)∗ ⊂ AutQ�

(V)

coincides with the product (t/q)gPu1
(q/t) ·Pu1

(t) and therefore has no multiple roots. It
follows that Q�[u] = C ⊕C and therefore the centralizer of u in EndQ�

(V) coincides with
C ⊕ C and therefore the centralizer Z(u)0 of u in EndZ�

(T) ⊂ EndQ�
(V) coincides with

R⊕R.
Let G ⊂ AutZ�

(T) be an open compact subgroup in Gp(V, e). Let X(R ⊕R,T, G)
be the set of all u ∈ G such that Z(u)0 is isomorphic as a Z�-algebra to R⊕R. Then

X(R⊕R, T,G) = X(u,T, G).

From Theorem 4.4 it follows that X(R⊕R,T, G) is an open nonempty subset of G whose
closure contains the identity element and the boundary has measure zero with respect
to the Haar measure on G.

Corollary 4.8. Let G be a compact profinite topological group. Let P be a nonempty
finite set of primes.

Suppose that for each � ∈ P we are given the following data.

• A Q�-vector space V� of finite positive dimension d� provided with a Z�-lattice
T� ⊂ V� of rank d�.

• A connected reductive linear algebraic subgroup G� ⊂ GL(V�) of positive dimen-
sion.

• An element

u� ∈ G�(Q�) ⊂ AutQ�
(V�)

such that its characteristic polynomial

Pu�
(t) = det(t Id− u�, V ) ∈ Q�[t]

has no multiple roots. We write Z(u�)0 for the centralizer of u� in EndZ�
(T�) ⊂

EndQ�
(V�).

• A continuous homomorphism of topological groups

ρ� : G → AutZ�
(T�) ⊂ AutQ�

(V�),

whose image

G� := ρ�(G) ⊂ AutZ�
(T�) ⊂ AutQ�

(V�),

is an open subgroup in G�(Q�).

Consider the subset Y� ⊂ G that consists of all σ ∈ G such that the centralizer Z(ρ�(σ))0
of ρ�(σ) in EndZ�

(T�) ⊂ EndQ�
(V�) is isomorphic (as a Z�-algebra) to Z(u�)0.

Consider the product-homomorphism

ρ :=
∏
�∈P

ρ� : G →
∏
�∈P

G�, σ �→ {ρ�(σ)}�∈P.

Then the image ρ(G) is an open subgroup of finite index in
∏

�∈P G� and the intersec-
tion

Y :=
⋂
�∈P

Y� ⊂ G

of all Y� is an open nonempty subset in G that is stable under conjugation and its closure
contains the identity element of G.
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Proof. Clearly, (every Y� and therefore) Y is stable under conjugation. From Theorem 4.4
it follows that every

X(u�, T�, G�) ⊂ G�

is an open nonempty subset of G� and its closure contains the identity element of G�.
Clearly,

Y� = ρ−1
� (X(u�, T�, G�)) ⊂ G.

This implies that every Y� is an open nonempty subset in G and its closure contains the
identity element of G. This implies that Y is also open. It remains to check that Y is
nonempty and its closure contains the identity element. In order to do that, notice that
each G� contains an open subgroup of finite index that is a pro-�-group. So, there is an
open subgroup G1 of finite index in G such that G�,1 := ρ�(G1) is a pro-�-group. Clearly,
G�,1 is a closed subgroup of finite index in G� and therefore is open in G� and therefore
is open in G�(Q�) as well.

Let us consider the product-homomorphism

ρ1 : G1 →
∏
�∈P

G�,1, σ �→ {ρ�(σ)}�∈P.

The image ρ1(G1) ⊂
∏

�∈P G�,1 is a compact subgroup that maps surjectively on each
factor G�,1. Since the G�,1’s are pro-�-groups for pairwise �, we have

ρ1(G1) =
∏
�∈P

G�,1,

i.e., ρ1 is surjective. (Compare with [8, Proof of Proposition 7.1]. Actually, this argument
goes back to Serre [15, Chapter IV, Section 2.2, Exercise 3c on pp. IV–14].) Since ρ1 is
surjective,

Y ∩ G1 = ρ−1
1 (

∏
�∈P

X(u�, T�, G�,1)) ⊂ G1

is nonempty (as the preimage of a nonempty subset) and its closure contains the identity
element of G1. �
Corollary 4.9. We keep the notation and assumptions of Corollary 4.8. Assume ad-
ditionally that G is a closed subgroup of

∏
�∈P G� and ρ� : G → G� coincides with the

corresponding projection map (for all � ∈ P). Then G is an open subgroup of finite index
in

∏
�∈P G�,

Y = G ∩
∏
�∈P

X(u�, T�, G�) ⊂ G

is on open nonempty subset of G while the boundary of Y in G contains the identity
element of G and has measure zero with respect to the Haar measure on G.
Proof. Clearly, G is compact. From Corollary 4.8 it follows that G is an open subgroup
of finite index in

∏
�∈P G�. By the definition of Y ,

Y = G ∩
∏
�∈P

X(u�, T�, G�) ⊂
∏
�∈P

G�.

It follows that the closure Y of Y lies in∏
�∈P

[X(u�, T�, G�) � (G�)Δ] ⊂
∏
�∈P

G�.

Recall (Corollary 4.8) that Y is open in G. This implies that the boundary ∂Y of Y lies
in the (finite) union Z of products

Zp := (Gp)Δ ×
∏

�∈P,� �=p

G�
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for all p ∈ P . By Lemma 4.2, (Gp)Δ has measure zero with respect to the Haar measure
on Gp. This implies that each product-set Zp has measure zero with respect to the Haar
measure on

∏
�∈P G�. It follows that their union Z and therefore its subset ∂Y have

measure zero with respect to the Haar measure on
∏

�∈P G�. Since ∂Y lies in G, which
is an open subgroup of finite index in

∏
�∈P G�, the boundary ∂Y has measure zero with

respect to the Haar measure on G as well. �

Remark 4.10. Since Y is open nonempty in G, its measure (with respect to the Haar
measure) is positive.

§5. Frobenius elements

Let P be a finite nonempty set of primes. Let K be a number field and L ⊂ K a Galois
extension of K that is unramified outside a finite set of places of K. Let G := Gal(L/K)
be the Galois group of L/K.

Let v be a non-Archimedean place of K. Let us choose an extension v of v to K. Let
D(v) ⊂ Gal(K) be the decomposition group of v and I(v) ⊂ D(v) the (normal) inertia
(sub)group of v. It is known that the quotient D(v)/I(v) is canonically isomorphic to the
absolute Galois group Gal(k(v)) of the finite residue field k(v) at v. In particular, this
quotient has a canonical generator φv that corresponds to the Frobenius automorphism
in Gal(k(v)).

There is a natural continuous surjective homomorphism (restriction map)

resL : Gal(K) � Gal(L/K)

that kills I(v) if and only if v is unramified in L. If this is the case then the restriction
resL induces a continuous homomorphism D(v)/I(v) → Gal(L/K) and we call the image
of φv the Frobenius element at v in Gal(L/K) and denote it

Frobv,L ∈ Gal(L/K).

All the Frobv,L’s (for a given v) constitute a conjugacy class in Gal(L/K).
If L′/K is a Galois subextension of L/K, then the corresponding Frobenius element

Frobv,L′ ∈ Gal(L′/K)

coincides with the image of Frobv,L under the natural surjective homomorphism (restric-
tion map)

Gal(L/K) � Gal(L′/K).

We will need the following variant of Chebotarev’s density theorem that is due to
Serre [15, Chapter I, Section 2.2, Corollary 2].

Lemma 5.1. Let X be a subset of the Galois group G = Gal(L/K) that is stable under
conjugation. Assume that the boundary of X has measure 0 with respect to the Haar
measure on G. Then the set of non-Archimedean places v of K such that the corresponding
Frobenius elements Frobv lie in X has positive density.

We will apply Lemma 5.1 in the following situation.
The field L is a compositum of infinite Galois extensions K(�/K) for all � ∈ P. The

inclusions K ⊂ K(�) ⊂ L induces a continuous surjective homomorphism

ρ� : G = Gal(L/K) � Gal(K(�)/K),

which we denote by

ρ� : G � Gal(K(�)/K).
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The product-homomorphism

ρ : G →
∏
�∈P

Gal(K(�)/K), σ �→ {ρ�(σ)}�∈P

is an embedding, whose (homeomorphic) image is a certain closed subgroup of the product∏
�∈P Gal(K(�)/K) that maps surjectively on each factor. Further we will identify G with

this closed subgroup in
∏

�∈P Gal(K(�)/K).

Lemma 5.2. Suppose that for each � ∈ P we are given the following data.

• A Q�-vector space V� of finite positive dimension d� provided with a Z�-lattice
T� ⊂ V� of rank d�.

• A connected reductive linear algebraic subgroup G� ⊂ GL(V�) of positive dimen-
sion.

• An element
u� ∈ G�(Q�) ⊂ AutQ�

(V�)

such that its characteristic polynomial Pu�
(t) = det(t Id − u�, V ) ∈ Q�[t] has no

multiple roots.
• A compact subgroup

G� ⊂ AutZ�
(T�) ⊂ AutQ�

(V�)

that is an open subgroup in G�(Q�).
• An isomorphism of compact groups

Gal(K(�)/K) ∼= G�.

Further we will identify these two groups via this isomorphism and G with a
certain closed subgroup of

∏
�∈P G� that maps surjectively on each factor. We

keep the notation ρ� for the projection map

G � G�.

For each � ∈ P and σ ∈ G, we have

ρ�(σ) ∈ G� ⊂ AutZ�
(T�) ⊂ AutQ�

(V�).

• For each � ∈ P, consider the subset Y� ⊂ G that consists of all σ ∈ G such that
the centralizer Z(ρ�(σ))0 of ρ�(σ) in EndZ�

(T�) ⊂ EndQ�
(V�) is isomorphic (as a

Z�-algebra) to Z(u�)0.

Also consider the intersection

Y =
⋂
�∈P

Y� ⊂ G ⊂
∏
�∈P

G�.

Then the set of non-Archimedean places v of K such that the corresponding Frobenius
elements Frobv lie in Y has density > 0.

Proof. We put X := Y ⊂ G. We know that Y is stable under conjugation, has posi-
tive measure, and its boundary has measure 0 with respect to the Haar measure on G
(Remark 4.10 and Corollary 4.8). Now the result follows from Lemma 5.1. �
Remark 5.3. Suppose that for each � ∈ P we are given an open normal subgroup G′

� in
G� of finite index. Put

G′ = G ∩
∏
�∈P

G′
� ⊂ G, Y ′ = Y ∩ G′ ⊂ G′.

Then G′ is an open subgroup of finite index in G and therefore is closed in G. We know
that Y is open in G and its boundary contains the identity element. This implies that
Y ′ is an open nonempty subset of G; in particular, it has positive measure with respect
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to the Haar measure on G. Since each G′
� is normal in G�, the subgroup

∏
�∈P G′

� is
normal in

∏
�∈P G� and therefore G′ is normal in G, which implies that Y ′ is a subset of

G that is stable under conjugation. On the other hand, the boundary of Y ′ lies in the
boundary of Y and therefore also has measure zero with respect to the Haar measure
on G. Now Lemma 5.1 implies that the set of non-Archimedean places v of K such that
the corresponding Frobenius elements Frobv lie in Y ′ has density > 0.

5.4. Let P be a nonempty finite set of primes, A an Abelian variety of positive dimension
g over a number field K. We put

d = 2g, V� = V�(A), T� = T�(A), ρ� = ρ�,A,

G = Gal(K), G� = ρ�,A(Gal(K)) = G�,A.

We define K(�) ⊂ K as the field
⋃∞

i=1 K(A[�i]) of definition of all �-power torsion points
on A. From the definition of Tate modules it follows that K(�) coincides with the subfield
of ker(ρ�,A)-invariants inK and Gal(K(�)/K) = G�,A. Let v be a non-Archimedean place

of K and v an extension of v to K. Assume that A has good reduction at v and the
residual chacacteristic of v is different from �. Then

Frobv,K(�) = Frobv,A,� ∈ G�,A = Gal(K(�)/K)

([18, Section 2], [15, Chapter I]). On the other hand, recall (Section 1.2) that there is an
isomorphism of Z�-algebras

(***) Z(Frobv,A,�)0 ∼= End(A(v))⊗ Z�.

Theorem 5.5. Let g be a positive integer. Let P be a nonempty finite set of primes.
Suppose that for every � ∈ P we are given the following data.

• A 2g-dimensional Q�-vector space V� provided with alternating nondegenerate
Z�-bilinear form

e� : V� × V� → Q�.

We write Gp(V�, e�) ⊂ AutQ�
(V�) for the corresponding group of symplectic simil-

itudes.
• An element

u� ∈ Gp(V�, e�) ⊂ AutQ�
(V�)

such that the characteristic polynomial

Pu�
(t) = det(t Id− u�, V�) ∈ Q�[t]

has no multiple roots. Let Z(u�) be the centralizer of u� in EndQ�
(V�), which is

a commutative semisimple Q�-algebra of dimension 2g.
• A Z�-lattice T� of rank 2g in V� such that the restriction of e� to T� × T� takes
values in Z� and the corresponding alternating Z�-bilinear form

T� × T� → Z�, x, y �→ e�(x, y)

is perfect. Let Z(u�)0 for the centralizer of u� in

EndZ�
(T�) ⊂ EndQ�

(V�),

which is an order in Z(u�) and coincides with the intersection

Z(u�) ∩ EndZ�
(T�).

Let A be a g-dimensional Abelian variety over a number field K that admits a polar-
ization λ such that its degree deg(λ) is not divisible by � for all � ∈ P. Suppose that
G�,A = Gp(V�(A), eλ,� for all primes �.
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Let Σ be the set of non-Archimedean places of K such that A has good reduction at v,
the residual characteristic of v does not belong to P and the Z�-algebras End(A(v))⊗Z�

and Z(u�)0 are isomorphic for all � ∈ P.
Then Σ has positive density.

Remark 5.6. If G�,A = Gp(V�(A), eλ,�) for one prime � then it is true for all primes [24].
Such A are sometimes called Abelian varieties of GSp type. If A is an abelian variety
of GSp type then the set of non-Archimedean places v of K such that End0(A(v)) is a
degree 2g CM field has density 1 [30].

Proof. For each � ∈ P, let us fix a symplectic isomorphism

φ� : (T�(A), eλ,�) ∼= (T�, e�).

Extending φ� by Q�-linearity, we obtain a symplectic isomorphism

(V�(A), eλ,�) ∼= (V�, e�),

which we continue to denote by φ�. Clearly,

Gp(V�(A), eλ,�) = φ−1
� Gp(V�), e�)φ�.

Let us put

u′
� = φ−1

� u�φ ∈ φ−1
� Gp(V�), e�)φ� = Gp(V�(A), eλ,�) ⊂ AutQ�

(V�(A).

Clearly, the characteristic polynomial of u′
� has no multiple roots (since it coincides with

the characteristic polynomial of u�) and the centralizer Z(u′
�)0 is isomorphic as Z�-algebra

to Z(u�)0.
Now Theorem 5.5 follows from Lemma 5.2 combined with (∗∗∗). �

§6. Proof of main results

Proof of Theorem 1.3. In light of Subsection 5.4, the result follows from Lemma 5.2
combined with (∗∗∗). �

Proof of Theorem 1.10. Recall that A is a Jacobian and therefore admits a canonical
principal polarization λ. This implies that the corresponding alternating Z�-bilinear
form

eλ,� : T�(A)× T�(A) → Z�

is unimodular. It is also known [24] that our assuptions on the Galois group of f(x)
imply that

GA,� = Gp(V�(A), eλ,�)

for all primes �.
For each � ∈ P the Abelian varietyB(�) admits a polarization say, μ� of degree prime

to �. This implies that the corresponding alternating Z�-bilinear form

eμ�,� : T�(B
(�))× T�(B

(�)) → Z�

is unimodular. We put

V� = V�(B
(�)), T� = T�(B

(�)), e� = eμ�,�.

Since both alternating forms eλ,� and eμ,� are unimodular and the ranks of free Z�-mo-

dules T�(A) and T�(B
(�)) do coincide, there is a symplectic isomorphism of free Z�-mo-

dules
φ�i : T�(A) ∼= T�(B

(�)),

which extends by Q�-linearity to the symplectic isomorphism of Q�-vector spaces

V�(A) ∼= V�(B
(�)),
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which we continue to denote φ. Clearly,

Gp(V�(A), eλ,�) = φ−1Gp(V�(B
(�)), eμ,�)φ.

Using Theorem 2.1, pick

u� ∈ End((B(�))) ⊂ EndQ�
(V�(B

(�)) = EndQ�
(V�)

such that its characteristic polynomial has no multiple roots, u� lies in

Gp(V�(B
(�)), eμ,�) = Gp(V�, e�),

and the centralizer Z(u�)0 of u� in EndZ�
(T�(B

(�))) = EndZ�
(T�) coincides with the set

End((B(�)))⊗ Z�. Now the result follows from Theorem 5.5. �

§7. Complements

Theorem 7.1. Let g ≥ 2 be an integer, n = 2g+1 or 2g+2. Let P be a nonempty finite
set of primes and suppose that for each � ∈ P we are given a g-dimensional semisimple
commutative Q�-algebra C� and an order R� in C�.

Let K be a number field and f(x) ∈ K[x] a degree n irreducible polynomial whose
Galois group over K is either the full symmetric group Sn or the alternating group An.
Let us consider the genus g hyperelliptic curve Cf : y2 = f(x) and its Jacobian A, which
is a g-dimensional Abelian variety over K.

Let Σ be the set of all non-Archimedean places v of K such that A has good reduction at
v, the residual characteristic char(k(v)) does not belong to P and the Z�-rings End(A)⊗Z�

and R� ⊕R� are isomorphic for all � ∈ P. Then Σ has density > 0.

Proof. Recall that A admits a principal polarization λ and for each prime �

eλ,� : T�(A)× T�(A) → Z�

is the corresponding alternating perfect Z�-bilinear pairing. Let � be a prime that lies
in P. We put

R = R�, C = C�
and fix a free R = R�-module T = T� of rank 1 (e.g., T� = R�). Let

V = V�, T = T�, V = V�

be as in Example 4.7. In particular, T� is a free Z�-module of rank 2g that is a lattice
in the 2g-dimensional Q�-vector space V.

In addition, using Example 4.7, we obtain an alternating perfect Z�-bilinear form

e� : T� ×T� → Z�

and an element

u� ∈ Gp(V�, e�) ⊂ AutQ�
(V�)

such that the centralizer Z(u�)0 in EndZ�
(T�) ⊂ EndQ�

(V�) is isomorphic to R� ⊕R�.
Now the result follows from Theorem 5.4. �

Theorem 7.2. Let g ≥ 2 be an integer, n = 2g + 1 or 2g + 2. Let P be a nonempty
finite set of primes and suppose that for each � ∈ P we are given the following data.

• A degree g field extension F0,�/Q�. We write O0,� for the ring of integers in the
�-adic field F0,�.

• A 2-dimensional semisimple commutative F0,�-algebra C�.
• An O0,�-subalgebra R� of C� that is a free O0,�-module of rank 2.
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Let K be a number field and f(x) ∈ K[x] a degree n irreducible polynomial whose
Galois group over K is either the full symmetric group Sn or the alternating group An.
Consider the genus g hyperelliptic curve Cf : y2 = f(x) and its Jacobian A, which is a
g-dimensional Abelian variety over K.

Let Σ be the set of all non-Archimedean places v of K such that A has good reduction at
v, the residual characteristic char(k(v)) does not belong to P and the Z�-rings End(A)⊗Z�

and R� are isomorphic for all � ∈ P. Then Σ has density > 0.

Proof. The proof is literally the same as the proof of Theorem 7.1 with the only modifi-
cation: we need to use Lemma 3.4 instead of Example 4.7. �
Remark 7.3. Let N be a positive integer. The assertions of Theorems 1.3, 1.10, 5.5,
7.1, 7.2 (respectively, of Example 1.5 and Corollary 1.6) remain true if we impose an
additional condition on the places v that the residual characteristic of v does not divide
N and A(v)[N] lies in A(v)(k(v)) (respectively, E(v)[N] lies in E(v)(k(v))). Indeed, let
P′ be the set of prime divisors of N. Then the proofs remain the same with the only

modification: we should deal with the finite set of primes P̃ = P∪P′ (instead of P) and

apply Remark 5.3 (instead of Lemma 5.2) to G� = G�,A for all � ∈ P̃,

G′
� = G�,A ∩ [Id +N · EndZ�

(T�(A))] ⊂ G�,A = G�

if � | N and
G′

�,A = G�,A = G�

if � does not divide N. It would be interesting to compute explicitly the corresponding
densities (at least, in the case of elliptic curves) or just to study their asymptotic behavior.

Remark 7.4. In Theorems 1.3, 1.10, 5.5, 7.1, 7.2 we assume that Gal(f) = Sn or An

only in order to make sure that the Jacobian is of GSp type. See [24, 25, 28] where we
discuss the cases of smaller Gal(f)’s when the Jacobian is still of GSp type and therefore
Theorems 1.3, 1.10, 5.5, 7.1, 7.2 remain true.
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349–366; Erratum 75 (1984), 381. MR0718935 (85g:110261) MR0732534 (85g:11026b)
[5] , Complements to Mordell, Rational Points (Bonn, 1983/1984) Aspects, Math. E6, Vieweg

& Sohn, Braunschweig, 1984, pp.203–227. MR766574
[6] G. Harder, Eine Bemerkung zum schwachen Approximationssatz, Arc. Math. 19 (1968), 465–471.

MR0241427
[7] S. Lang, Abelian varieties, 2nd ed., Springer-Verlag, Berlin, 1983. MR713430
[8] M. Larsen and R. Pink, On �-independence of algebraic monodromy groups in compatible systems

of representations, Invent. Math. 107 (1992), no. 3, 603–636. MR1150604

[9] J. S. Milne, Étale cohomology, Princeton Univ. Press, vol. 33, Princeton Math. Ser., Princeton, NJ,
1980. MR559531

[10] L. Moret-Bailly, Pinceaux de variétés abéliennes, Astérisque 129 (1985). MR797982
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