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ON THE TOTAL CURVATURE

OF MINIMIZING GEODESICS

ON CONVEX SURFACES

N. LEBEDEVA AND A. PETRUNIN

Dedicated to Yu. D. Burago
on the occasion of his 80th birthday

Abstract. A universal upper bound is given for the total curvature of a minimizing

geodesic on a convex surface in the Euclidean space.

§1. Introduction

In this paper we give an affirmative answer to the question asked by Dmitry Burago;
the same question was also stated in [1, 2] and [3]. Namely, we prove the following.

1.1. Main theorem. The total curvature of a minimizing geodesic on a convex surface
in R

3 cannot exceed 10001000.

The value 2 · π is the optimal bound for the analogous problem in the plane. The
total curvature of a minimizing geodesic on a convex surface in R

3 can exceed 2 · π and
the optimal bound is expected to be slightly bigger than 2 · π. The former example was
constructed by Bárány, Kuperberg, and Zamfirescu in [3].

Let us list other related results.

• In [4], Liberman gave a bound on the total curvature of a short geodesic in terms
of the ratio diameter and inradius of K. In the proof he used an analog of
Lemma 3.1 discussed below.

• In [5], Usov gave an optimal bound for the total curvature of geodesics on the
graphs of �-Lipschitz convex function. Namely, he proved that if f : R2 → R is
�-Lipschitz and convex, then any geodesic in its graph

Γf =
{
(x, y, z) ∈ R

3 | z = f(x, y)
}

has total curvature of at most 2 · �. An amusing generalization of Usov’s result
was given by Berg in [6].

• In [7], Pogorelov conjectured that the spherical image of a geodesic on a convex
surface must be (locally) rectifiable. It is easy to check that the length of the
spherical image of a geodesic cannot be smaller than its total curvature, so this
conjecture (if true) would be stronger than Liberman’s theorem. Counterexam-
ples to various forms of this conjecture were found by Zalgaller in [8], Milka in [9],
and Usov in [10]; these results were partly rediscovered later by Pach in [2].
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• In [3], Bárány, Kuperberg, and Zamfirescu constructed a corkscrew minimizing
geodesic on a closed convex surface; that is, a minimizing geodesic that twists
around a given line arbitrarily many times. They also rediscovered the results of
Liberman and Usov mentioned above.

Idea of the proof. First we show that it suffices to estimate total curvature for the
minimizing geodesics with almost constant velocity vector, say γ̇(t) ≈ i.

To estimate total curvature in this case it suffices to estimate the integral∫
〈γ̈(t), j〉 · dt

for a vector j ⊥ i. To understand the idea of this estimate, imagine that the surface is
lighten in the direction of j, so that it is divided into the dark and light sides by a curve
ω. On the diagram you see different combinatorics in which γ meets ω.

ω

In the first case the total curvature is estimated by the integral of the Gauss curvature
of the regions squeezed between γ and ω. This follows from the Tongue Lemma 4.2,
which is a heart of our proof.

The second case might look impossible, but the corkscrew geodesic constructed in [3]
can meet ω in this order. Here we show that the total curvature of the twists grows
geometrically from a middle twist to the ends and at the ends the integral of the full
twists cannot be larger than 2 · π. This suffices to estimate the total curvature of the
whole geodesic.

The last case is a mixture of the first two and it is done by mixing both techniques.

§2. Preliminaries

Total curvature. Recall that the total curvature of a curve γ : [0, �] → R
3 (briefly

TotCurv γ) is defined as the supremum of the sums of exterior angles for the polygonal
lines inscribed in γ.

Note that for a polygonal line σ, its total curvature coincides with the sum of its
exterior angles.

If γ is a smooth curve with unit-speed parametrization, then

TotCurv γ =

∫ �

0

κ(t) · dt,

where κ(t) = |γ̈(t)| is the curvature of γ at t.

2.1. Proposition. Assume γn : I → R
3 is a sequence of curves converging pointwise to

a curve γ∞ : I → R
3. Then

lim inf
n→∞

TotCurv γn ≥ TotCurv γ∞.

Proof. Fix a polygonal line σ∞ inscribed in γ∞. Let γ∞(t0), . . . , γ∞(tk) be its vertices
as they appear on γ∞. Consider the polygonal line σn inscribed in γn with the vertices
γn(t0), . . . , γn(tk). Note that

TotCurv σn → TotCurv σ∞ as n → ∞.
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By the definition of the total curvature,

TotCurv σn ≤ TotCurv γn.

The statement follows because the broken line σ∞ can be chosen in such a way that
TotCurv σ∞ is arbitrarily close to TotCurv γ∞. �

Convergence of sets. Given a closed set Σ ⊂ R
3, denote by distΣ the distance function

from Σ, i.e.,

distΣ(x) = inf{|x− y| | y ∈ Σ}.
We say that a sequence of closed sets Σn ⊂ R

3 converges to a closed set Σ∞ ⊂ R
3 if

for any x ∈ R
3 we have distΣn

(x) → distΣ∞(x) as n → ∞.

Convex surfaces. By a convex surface Σ in the Euclidean 3-space R
3 we understand

the boundary of a closed convex set K with nonempty interior. If K is compact, we say
that the Σ is closed.

Assume Σ is smooth. If at every point of Σ the principle curvatures are positive, we
say that Σ is strongly convex.

2.2. Proposition. Assume Σn is a sequence of convex surfaces that converge to a con-
vex surface Σ∞. Then for any minimizing geodesic γ∞ in Σ∞ there is a sequence of
minimizing geodesics γn in Σn that converge pointwise to γ∞ as n → ∞.

Proof. Assume that γ∞ : [0, �] → Σ∞ is parametrized by its arc-length.
Fix a subinterval [a, b] ⊂ (0, �). Set p∞ = γ∞(a) and q∞ = γ∞(b). Let pn, qn ∈ Σn be

two sequences of points that converge to p∞ and q∞, respectively.
Denote by γn a minimizing geodesic from pn to qn in Σn. Note that γn converges to

γ∞|[a,b] as n → ∞.
Taking the subinterval [a, b] closer and closer to [0, �] and applying diagonal procedure,

we get the result. �

§3. Liberman’s lemma

In this section we give a slight generalization of the construction given by Liberman
in [4]; see also [11].

Development. Let γ : [0, �] → R
3 be a curve parametrized by arc-length, and suppose

a point p does not lie on γ.
Assume that γ̃p : [0, �] → R

2 is a plane curve parametrized by arc-length and p̃ is a
point in the plane such that

|p̃− γ̃(t)| = |p− γ(t)|
for any t ∈ [0, �]; moreover, the direction from p̃ to γ̃(t) changes monotonically (clockwise
or counterclockwise). Then γ̃p is called the development of γ with respect to p.

γ̃p(a)γ̃p(b)

p̃

γ̃p(a)γ̃p(b)

p̃

Convex development. Concave development.
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We say that the development γ̃p is convex (concave) in the interval [a, b] if the arc
γ̃p|[a,b] cuts a convex bounded (respectively, unbounded) domain from the solid an-

gle ∠p̃γ̃p(a)

γ̃p(b)
.

We say that γ̃p is locally convex (concave) in the interval [a, b] if any point x ∈ [a, b]
admits a closed neighborhood [a′, b′] in [a, b] such that γ̃p is convex (respectively, concave)
in the interval [a′, b′].

If we pass to the limit of this construction as p moves to infinity along a half-line in
the direction of a unit vector u, then the limit curve is called the development of γ in
the direction u and is denoted by γ̃u.

We can define the development γ̃u directly: (1) the development γ̃u : [0, �] → R
2 is

parametrized by arc-length, (2) for a fixed unit vector ũ ∈ R
2, we have

〈ũ, γ̃u(t)〉 = 〈u, γ(t)〉

for any t ∈ [0, �], and (3) the projection of γ̃u(t) to the line normal to ũ is monotone in t.
We may assume that ũ is the vertical vector in the coordinate plane. In this case we

say that γ̃u is concave (convex) in the interval [a, b] if the lune bounded by arc γ̃u|[a,b] and
the segment [γ̃u(a)γ̃u(b)] is convex and lies above (respectively, below) the line segment
[γ̃u(a)γ̃u(b)].

Dark and light sides. Suppose Σ ⊂ R
3 is a convex surface, p ∈ Σ, and z �= p.

We say that p lies on the dark (light) side of Σ from z if none of the points p+t ·(p−z)
lie inside of Σ for t > 0 (respectively, for t < 0). The intersection of the dark and the
light side is called the horizon of z; it is denoted by ωz.

Note that if z lies inside Σ, then all the points of Σ lie on the dark side from z and
its horizon ωz is empty.

If Σ is smooth, we can define the outer normal vector νp to Σ at p. In this case
p lies on the dark (light) side of Σ from z if and only if 〈p − z, νp〉 ≥ 0 (respectively,
〈p−z, νp〉 ≤ 0). If in addition Σ is closed and strongly convex, then the horizon is empty
for z inside Σ, and it is formed by a closed smooth curve for z outside Σ.

We could also define the light/dark sides and the horizon in the limit case, as p escapes
to infinity along a half-line in direction u.

The last notions can be defined directly. We say that a point p ∈ Σ lies on the dark
(light) side for the unit vector u if none of the points p + u · t lie inside Σ for t > 0,
(respectively, t < 0). As before, the intersection of the light and the dark side is called
the horizon of u and it is denoted by ωu.

In the smooth case, this definition means that 〈νp,u〉 ≥ 0 (respectively, 〈νp,u〉 ≤ 0).
If in addition Σ is closed and strongly convex, then ωu is a closed smooth curve.

3.1. Liberman’s lemma. Assume γ is a geodesic on a convex surface Σ ⊂ R
3. Then

for any point z /∈ Σ the development γ̃z is locally convex (locally concave) if γ lies on the
dark (respectively, light) side of Σ from z.

Similarly, for any unit vector u, the development γ̃u is locally convex (locally concave)
if γ lies on the dark (respectively, light) side of Σ for u.

Note that for any space curve γ and any unit vector u we have

TotCurv γ̃u ≤ TotCurv γ.

On the other hand, the total curvature of few developments gives an estimate for the
total curvature of the original curve. For example, if i, j,k is the orthonormal basis, then

TotCurv γ ≤ TotCurv γ̃i +TotCurv γ̃j +TotCurv γ̃k.
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If γ lies completely on the dark (or light) side for the direction u, then by Liberman’s
lemma we get

TotCurv γ̃u ≤ π.

It follows that if γ crosses the horizons ωi, ωj , and ωk at most N times, then

TotCurv γ ≤ TotCurv γ̃i +TotCurv γ̃j +TotCurv γ̃k ≤ (N + 1) · π.
Therefore, to violate Main Theorem, γ must cross the horizons ωi, ωj , and ωk a huge
number of times.

§4. Curvature of development

Let Σ ⊂ R
3 be a closed smooth strongly convex surface and γ : [0, �] → Σ a unit-speed

geodesic. Assume that for some unit vector u, the geodesic γ crosses the horizon ωu

transversely at t0 < · · · < tk. Set αi = �(γ̇(ti),u)− π
2 for each i. Note that |αi| ≤ π

2 .
The values ti and αi will be called, respectively, the meeting moments and the meeting

angles of the geodesic γ with the horizon ωu.
We introduce the new notation

TotCurvu γ
def
= TotCurv γ̃u.

From Liberman’s Lemma 3.1, we get the following.

4.1. Corollary. Let Σ ⊂ R
3 be a strongly convex smooth surface, γ : [0, �] → Σ a unit-

speed geodesic, and u is a unit vector. Assume that γ crosses the horizon ωu transversely
and t0 < · · · < tk are its meeting moments and α0, . . . , αk its meeting angles with the
horizon ωu. Then

TotCurvu γ ≤ 3 · π + 2 ·
∣∣α0 − α1 + · · ·+ (−1)k · αk

∣∣.
As you will see in what follows, in order to find the required estimate for the total

curvature of a geodesic, we will get an upper bound for the sum∣∣α0 − α1 + · · ·+ (−1)k · αk

∣∣.
Finding such an upper bound is the most important ingredient in the proof of the Main
Theorem.

Proof. By Liberman’s lemma,

TotCurvu(γ|[ti−1,ti]) = ±(αi−1 − αi),

where the sign is “+” if γ[ti,ti+1] lies on the dark side and “−” if it lies on the light side
from u. Summing all this up, we get

TotCurvu
(
γ|[t0,tk]

)
=

∣∣α0 − 2 · α1 + · · ·+ (−1)k−1 · 2 · αk−1 + (−1)k · αk

∣∣.
By Liberman’s lemma, we also have

TotCurvu
(
γ|[0,t0]

)
,TotCurvu

(
γ|[tk,�]

)
≤ π.

Since α0, αk ≤ π
2 , the statement follows. �

If Σ is a surface in R
3 and p ∈ Σ, then we denote by Kp the Gauss curvature of Σ

at p.

ωu

γ

γ(ti) γ(ti)
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Assume a, b are the meeting moments of the minimizing geodesic γ with ωu. The arc
γ|[a,b] will be called an ωu-tongue if there is an immersed disk ι : D � Σ such that the
closed curve ι|∂D is formed by the joint of the arc γ|[a,b] and an arc of ωu. In this case
the immersion ι is called the disk of the tongue.

4.2. Tongue lemma. Let u be a unit vector, let γ : [a, b] → Σ be a minimizing geodesic
on the strongly convex surface Σ ⊂ R

3 which is an ωu-tongue, and ι : D � Σ its disk.
Then ∫

D

Kι(x) · dι(x) areaΣ

takes one of the values

α− β, −α+ β, π − α− β, π + α+ β (mod 2 · π).

In particular,

(1)
∣∣α− β

∣∣ ≤ ∫
D

Kι(x) · dι(x) areaΣ .

If in addition the image ι(D) lies completely in the dark or the light side for u, then

(2) TotCurv γ ≤
∫
ι(D)

Kp · dp areaΣ .

Proof. Since γ is a geodesic, the parallel translation along γ sends γ̇(a) to γ̇(b).
Note also that u belongs to the tangent plane to Σ at any point on the horizon ωu;

in particular, u extends to a parallel tangent vector field on ωu.
It follows that parallel translation along ι|∂D rotates the tangent plane by the angle

±(π2 + α)± (π2 + β).

To prove the main statement of the lemma, it remains to apply the Gauss–Bonnet for-
mula.

Denote by R the right-hand side in (1). Note that R ≥ 0 and |α|, |β| ≤ π
2 . From the

main statement of the lemma it then follows that the minimal possible value for R is∣∣α− β
∣∣.

To prove (2), note that in this case ι is an embedding. Further, note that the spherical
image of the dark side of Σ is a hemisphere. Therefore, 2 · π is the integral of the Gauss
curvature along the dark side. It follows that∫

D

Kι(x) · dι(x) areaΣ =

∫
ι(D)

Kp · dp areaΣ < 2 · π.

By Liberman’s lemma, the statement follows. �

§5. Almost straight arcs

Let ε > 0. We say that a curve γ : [a, b] → R
3 is ε-straight if

(1− ε) · length γ ≤ |γ(b)− γ(a)|.

5.1. Lemma. Assume ε > 0 and n is a positive integer such that n · ε > 2. Then any
minimizing geodesic on a convex surface Σ in R

3 can be subdivided into ε-straight arcs
γ1, . . . , γn.

Proof. Let θ ∈ (0, π) be such that

1− cos θ = ε.
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Assume two points p and q lie on the convex surface Σ. Denote by νp and νq the outer
normal vectors at p and q, respectively. Note that if

�(νp, νq) ≤ 2 · θ,
then any minimizing geodesic from p to q on Σ is ε-straight.

Let γ : [0, �] → Σ be a minimizing geodesic parametrized by its arc-length.
Assume γ[t,�] is not ε-straight. Set t′ to be the maximal value in [t, �) such that the

interval [t, t′] is ε-straight. Consider a sequence 0 = t0 < t1 < · · · < tn < � such that
ti+1 = t′i for each i. Denote by νi the outer unit normal vector to Σ at γ(ti). From above
we get

�(νi, νj) ≥ 2 · θ
for all i and j. In other words, the open balls Bθ(νi) do not overlap in S

2.
It remains to note that

area[Bθ(νi)] = 2 · π · ε and areaS2 = 4 · π.
Hence, the result follows. �

5.2. Corollary. Assume γ : [0, �] → Σ is a unit-speed minimizing geodesic on the convex
surface Σ in R

3. Then diam γ ≥ �
10 .

Proof. Apply Lemma 5.1 for ε = 1
2 . �

§6. An arc in an almost constant direction

6.1. Proposition. For any ε > 0 there is δ > 0 such that the following holds true.
If γ : [a, b] → Σ is a minimizing geodesic on a smooth strongly convex surface Σ in R

3,
then there is an interval [a′, b′] ⊂ [a, b] such that

TotCurv(γ|[a′,b′]) > δ · TotCurv γ
and

�(γ̇(t),u) < ε

for a fixed unit vector u and any t ∈ [a′, b′].
Moreover, if ε = 1

10 , then we can take δ = 1
100100 .

In the proof we will need the following two lemmas.

6.2. Lemma. For any ε there is δ > 0 such that the following holds true.
Assume γ is a curve, v1 and v2 are two vectors in R

3, and 0 ≤ α1, α2 ≤ π are such
that

ε < �(v1,v2) < π − ε,

αi − δ < �(vi, γ̇(t)) < αi + δ.

Then there is a vector u such that �(u, γ̇(t)) < ε.
Moreover, if ε < 1

10 , then one can take δ = ε10.

The proof of the above lemma is straightforward computation; we omit it.

6.3. Lemma. For any ε > 0 there is δ > 0 such that the following holds true.
Let γ : [a, b] → Σ be a δ-straight minimizing geodesic on a smooth strongly convex

surface Σ in R
3. Set vγ = γ(b)− γ(a). Then there in a subinterval [a′, b′] in [a, b] such

that
TotCurv(γ|[a′,b′]) ≥ δ · TotCurv γ

and
α− ε ≤ �(γ̇(t),vγ) ≤ α+ ε
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for some fixed α and any t ∈ [a′, b′].
Moreover, if ε < 1

10 , then one can take δ = ε10.

Proof. Without loss of generality we may assume that a = 0, b = 2, and

TotCurv(γ|[1,2]) ≥ 1
2 · TotCurv γ.

Set p = γ(0). Let θ ∈ (0, π) be such that 1− cos θ = δ. Note that

(1) �(vγ , γ(t)− p) ≤ �(γ̃p(1)− p̃, γ̃p(2)− p̃) < θ

for any t ≥ 1.
By Liberman’s lemma,

TotCurvp(γ|[1,2]) < π + θ.

Assume N = π
θ +1�. Then we can subdivide γ|[1,2] into N arcs γ1, γ2, . . . , γN such that

(2) TotCurvp(γn) ≤ θ

for each n.
From (1) and (2), it follows that for each n, there is αn with

αn − θ ≤ �(γ̇n(t),vγ) ≤ αn + θ.

The arc γn with the maximal total curvature will solve the proposition.
It remains to choose δ so that θ(δ) < ε

100 . �

Proof of Proposition 6.1. Set γ0 = γ.
Fix δ > 0, set n =  2

δ �. By Lemma 5.1, the geodesic γ0 can be subdivided into n
arcs that are δ-straight. We choose the arc γ′

0 with maximal total curvature. Assuming
δ < 1

10 , we get

TotCurv γ′
0 ≥ δ

10 · TotCurv γ0.
Let α1 be the angle and γ1 the arc in γ′

0 provided by Lemma 6.3. In particular,

TotCurv γ1 ≥ δ · TotCurv γ′
0 ≥ δ2

10 · TotCurv γ0.

If α1 ≤ ε
2 or α1 ≥ π − ε

2 and δ is sufficiently small, then the statement holds true for
the arc γ1 and the vector u = ±vγ′

0
.

Otherwise we repeat the above construction for γ1. Namely, apply Lemma 5.1 to the
geodesic γ1 and denote by γ′

1 the δ-straight arc with maximal total curvature. If δ is
small, we get

(3) ε
3 < �(vγ′

1
,vγ′

0
) < π − ε

3 .

Again, we get

TotCurv γ′
1 ≥ δ

10 · TotCurv γ1 ≥ δ3

100 · TotCurv γ0.
Next, we apply Lemma 6.3 to γ′

1. Denote by γ2 and α2 the angle and the sub-arc
of γ′

1. Again

TotCurv γ2 ≥ δ4

100 · TotCurv γ0.
The curve γ2 runs under nearly constant angle to vγ′

0
and vγ′

1
. The inequality (3)

makes it possible to apply Lemma 6.2. Hence, the main statement in the proposition
follows.

Straightforward computations prove the last statement. �
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§7. Drifting geodesics

In this section we fix the notation to be used further without additional explanation.
Fix a system of (x, y, z)-coordinates on the Euclidean space; denote by (i, j,k) the

standard basis.
A plane parallel to, say, the (y, z)-coordinate plane will be called a (y, z)-plane.

7.1. Definition. A smooth curve γ : [0, �] → R
3 is said to be i-drifting if both ends γ(0)

and γ(�) lie on the x-axis and �(γ̇(t), i) < 1
10 for all t.

(λ,μ, ν)-frame. Let Σ be a convex surface and γ : [0, �] → Σ an i-drifting minimizing
geodesic with unit-speed parametrization.

Given t ∈ [0, �], consider the oriented orthonormal frame λ(t), μ(t), ν(t) such that ν(t)
is the outer normal to Σ at γ(t), the vector μ(t) lies in a (y, z)-plane and therefore the
vector λ(t) lies in the plane spanned by ν(t) and the x-axis. We assume in addition that
〈λ, i〉 ≥ 0.

Since 〈γ̇(t), i〉 > 0, we have ν(t) �= i, so that the frame (λ, μ, ν) is uniquely determined
for any t ∈ [0, �].

Angle functions. Set

φ(t) = �(i, γ̇(t)), ψ(t) = π
2 − �(i, ν(t)), θ(t) = π

2 − �(μ(t), γ̇(t)).
From the above definitions it follows that |θ(t)|, |ψ(t)| ≤ π

2 and for each t there is a right
spherical triangle with legs |θ(t)|, |ψ(t)| and hypotenuse φ(t). In particular, cos θ ·cosψ =
cosφ. We get the following.

7.2. Claim. For any t we have

φ(t) ≥ |ψ(t)| and φ(t) ≥ |θ(t)|.

Applying Liberman’s lemma in the direction i, we also get the following.

7.3. Claim. If an arc γ|[a,b] lies in the dark (light) side for i, then the angle function φ is
monotone nondecreasing (respectively, nonincreasing) in [a, b].

§8. Plane sections

Assume γ is a curve on a smooth strongly convex surface Σ in R
3. Consider a plane

L passing through two points of γ, say p = γ(a) and q = γ(b) with a < b. Let L± be
half-planes in L bounded by the line trough p and q. Set σ± = Σ ∩ L±.

8.1. Observation. If γ is a minimizing geodesic in the smooth strongly convex surface
Σ ⊂ R

3 and a, b, and σ± are as above, then

lengthσ± ≥ length(γ|[a,b]).

To prove the observation, it suffices to note that the σ± are smooth convex plane
curves connecting p to q in Σ.

Based on this observation, we give a couple of estimates on drifting minimizing
geodesics.

Let γ : [a, b] → R
3 be a curve and � a line that does not pass through points of γ.

Assume φ : [a, b] → R is a continuous azimuth angle of γ in the cylindrical coordinates
with the axis �. If

|φ(b)− φ(a)| ≥ 2 · n · π,
we will say that γ goes around the line � at least n times.
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8.2. Proposition. Assume γ : [0, �] → Σ is an i-drifting minimizing geodesic in the con-
vex surface Σ ⊂ R

3, a subsegment [a, b] is included in [0, �], and the following conditions
are fulfilled.

(i) The points γ(a) and γ(b) lie in a half-plane with boundary line formed by the
x-axis and the arc γ|[a,b] goes around the x-axis, at least once.

(ii) The x-coordinate of γ(a) is larger than the x-coordinate of 1
2 · (γ(0) + γ(�)).

Then γ(b) lies on the dark side for i.

Proof. Let us apply Observation 8.1 to the plane containing the x-axis, γ(a) and γ(b).
We may assume that γ(0) is the origin of the (x, y, z)-coordinate system, and that

the two points p = γ(a) and q = γ(b) lie in the (x, z)-coordinate half-plane with x ≥ 0,
denoted by Π. We may assume that σ+ ⊂ Π. Let (xp, 0, zp) and (xq, 0, zq) be the
coordinates of p and q.

From the assumptions we get xp < xq < 2 · xp.
Suppose the contrary, then γ(b) lies on the light side for i. Then from the convexity

of the curve Π ∩ Σ we get

lengthσ+ ≤
√

(xq − xp)2 + z2p.

On the other hand, since γ|[a,b] goes around the x-axis at least once, we get

length γ|[a,b] ≥
√
(xq − xp)2 + (zp + zq)2.

These two estimates contradict Observation 8.1. �

8.3. Corollary. If Σ, γ, �, a, and b are as in the Proposition 8.2 and the arc γ|[a,b] goes
around the x-axis at least twice, then the arc γ|[b,�] lies on the dark side with respect to
i.

Proof. Fix b′ ∈ [b, �]. Note that one can find a′ ∈ [a, b] such that the assumptions of
Proposition 8.2 are fulfilled for the interval [a′, b′]. Applying the proposition, we get the
result. �

8.4. Proposition. Assume γ : [0, �] → Σ is an i-drifting minimizing geodesic in the
convex surface Σ ⊂ R

3. Assume that the arc γ|[b,�] lies on the dark side of Σ with respect
to i. If b ≤ s < t ≤ � and the point γ(s) lies in the plane Π through γ(t) spanned by ν(t)
and λ(t), then

φ(s) ≤ ψ(t).

Proof. We apply Observation 8.1 to the plane Π and p = γ(s) and q = γ(t).
Let xp and xq be the x-coordinates of p and q.
Since γ|[s,t] lies on the dark side, its Liberman development γ̃|[s,t] with respect to i is

concave. In particular,

length(γ|[s,t]) = length(γ̃|[s,t]) ≥ xq−xp

cosφ(s) .

On the other hand, the convexity of σ+ implies that

lengthσ+ ≤ xq−xp

cosψ(t) .

It remains to apply Observation 8.1. �
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§9. s-pairs

Let Σ ⊂ R
3 be a strongly convex surface and γ : [0, �] → Σ an i-drifting minimizing

geodesic.
We may assume that the horizon ωj is a smooth curve and γ intersects the horizons

transversely.
Let t0 < t1 < · · · < tk be the meeting moments of γ with ωj . Set

φn = φ(tn), ψn = ψ(tn), θn = θ(tn).

Note that θn = ±αn so we can say sn · θn = (−1)m · αn for some sequence of signs
si = ±1. In particular,

α0 − α1 + · · ·+ (−1)k · αk = s0 · θ0 + s1 · θ1 + · · ·+ sk · θk.

Note that for the right choice of orientation, if sn = +1, then νγ(t) moves clockwise in

S
2 at tn and if sn = −1, then it moves counterclockwise.
We say that a pair of indices i < j forms an s-pair if

j∑
n=i

sn = 0 and

j′∑
n=i

sn > 0

for i < j′ < j.
If you exchange “+1” and “−1” in s by “(” and “)” respectively, then (i, j) is an s-pair

if and only if the ith bracket forms a pair with the j-bracket.
Note that any index i appears in at most one s-pair and for any s-pair (i, j) we have

• si = 1; that is, the ith bracket must be opening.
• sj = −1; that is, the jth bracket must be closing.

In particular,

si · θi + sj · θj = θi − θj == (−1)i · αi + (−1)j · αj .

+

+

+

+ − +

+ −

−

−

−

−
γ(ti) γ(tj)

Tongue interpretation. Assume (i, j) is an s-pair. Note that in this case there is an
arc of ωj from γ(ti) to γ(tj) with monotonic x-coordinate. Moreover, a disk of the tongue
has this arc in the boundary.

The proof can be guessed from the diagram. It shows a lift of γ in the universal cover
of the strip of Σ between (y, z)-planes containing γ|[ti,tj ]; the solid horizontal lines are
the lifts of ωj .
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We say that q is the depth of an s-pair (i, j) (briefly, q = depths(i, j)) if q is the
maximal number such that there is a q-long nested sequence of s-pairs starting with
(i, j). For example, the s-pair on the diagram has depth 5.

More precisely, the depth of (i, j) is the maximal number q for which there is a sequence
of s-pairs (i, j) = (i1, j1), (i2, j2), . . . , (iq, jq) such that

i = i1 < · · · < iq < jq < · · · < j1 = j.

Note that the s-pairs of the same depth do not overlap, i.e., if depth(i, j) = depth(i′, j′)
for two distinct s-pairs (i, j) and (i′, j′), then either i < j < i′ < j′ or i′ < j′ < i < j.

The following proposition follows directly from the discussion above.

9.1. Proposition. Let (i, j) be an s-pair. Then the arcs γ|[ti,tj ] and an arc of ωj bound
an immersed disk in Σ that lies between (y, z)-planes through γ(ti) and γ(tj). Moreover,
the maximal multiplicity of the disk is at most depths(i, j).

9.2. Corollary. Denote by Sq the subset of indices {1, . . . , k} that are the parts of s-pairs
with depth q. Then ∣∣∣∣ ∑

n∈Sq

(−1)n · αn

∣∣∣∣ =
∣∣∣∣ ∑
n∈Sq

sn · θn
∣∣∣∣ ≤ 4 · π · q.

Proof. For each n denote by Kn the integral of the Gauss curvature of the part of the
surface Σ with the x-coordinate less than the x-coordinate of γ(tn). Note that

0 ≤ K1 ≤ · · · ≤ Kk ≤ 4 · π.
By Proposition 9.1 and the Tongue Lemma, we get

si · θi + sj · θj = θi − θj ≤ q · (Kj −Ki).

The statement follows, because the s-pairs with the same depth do not overlap. �

9.3. Corollary. Assume

q = max
1≤i<j≤k

{∣∣∣∣
j∑

n=i

sn

∣∣∣∣
}
.

Then ∣∣∣∣
k∑

n=1

sn · θn
∣∣∣∣ ≤ 2 · q ·

(
q +

3

2

)
· π.

Proof. Denote by S the set of all indices that appear in some s-pair.
Note that the depth of any s-pair is at most q. That is,

S = S1 ∪ · · · ∪ Sq.

By Corollary 9.2,

(1)

∣∣∣∣∑
n∈S

sn · θn
∣∣∣∣ ≤ 2 · q · (q + 1) · π.

Set R = {1, . . . , k} \ S; this is the set of indices that do not appear in an s-pair.
Given r, set i ∈ Qr if

i∑
n=1

sn = r.

Note that Qr �= ∅ for at most q values of r, and in each set Qr there are at most 2 indices
that do not appear in an s-pair; that is, Qr ∩R has at most two indices for each r.
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Since |an| < π
2 , we get ∣∣∣∣ ∑

n∈R

sn · θn
∣∣∣∣ ≤ q · π.

This inequality together with (1) implies the claim. �

§10. Geometric growth

10.1. Claim. Assume ψ(t) > ε for t ∈ [ti, ti+1] and si = si+1. Then

|θi+1 − θi| > π · sin ε.
Proof. Note that the arc γ|[ti,ti+1] is a tongue with embedded disk ι : D2 → Σ. Since

ψ(t) > ε, the spherical image ν ◦ ι(D2) of ι(D2) lies in a half-disk of radius π
2 − ε in S

2.
Note that

K(ι(D2)) = area(ν ◦ ι(D2)) < π · (1− sin ε).

It remains to apply Tongue Lemma 4.2. �
10.2. Claim. Assume γ lies on the dark side for i. Then for any pair of indices j > i such
that ∣∣∣∣

j∑
n=i

sn

∣∣∣∣ > 5,

we have
φj >

3
2 · φi.

Proof. By Claim 7.3, we may assume that

j∑
n=i

sn = 6.

Let j′ be the smallest index such that∣∣∣∣
j′∑

n=i

sn

∣∣∣∣ = 5.

Note that for any b > tj there is a ∈ [ti, tj ] such that interval [a, b] satisfies the
assumptions of Proposition 8.4. In particular, ψ(b) > φi for any b > tj . Applying
Claim 10.1, we get |θj | > π

2 · φi or |θj′ | > π
2 · φi. By Claim 7.3, φn is monotone

nondecreasing, and φn ≥ |θn| for any n, in both cases we get

φj >
π
2 · φi,

and the result follows. �
10.3. Proposition. If γ is an i-drifting minimizing geodesic on the dark side for i, then

TotCurvj γ ≤ 100 · π.
Proof. We may assume that γ crosses the j-horizon ωj transversely. Let t0 < · · · < tk
be the meeting moments of γ with ωj and s0, . . . , sk the signs.

Recall that Sq denotes the subset of indices {1, . . . , k} that appear in an s-pair with
depth q. By Corollary 9.2, ∣∣∣∣ ∑

n∈Sq

sn · θn
∣∣∣∣ ≤ 4 · q · π.

In particular, ∣∣∣∣ ∑
n∈S1∪···∪S5

sn · θn
∣∣∣∣ ≤ 40 · π.
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Set R = {1, . . . , k} \ (S1 ∪ · · · ∪ S5); this is the set of indices that appear in s-pairs
with depth at least 6 as well as those that do not appear in any s-pair.

By Claim 7.2, ∣∣∣∣ ∑
n∈R

sn · θn
∣∣∣∣ ≤ ∑

n∈R

|θn| ≤
∑
n∈R

φn.

To estimate the last sum, we shall use the results in §10. First, we subdivide R into 5
subsets R1, . . . , R5 by setting n ∈ Rm if m ≡ n (mod 5).

Given n ∈ Rm, denote by n′ the smallest index in Rm that is larger than n; n′ is defined
for any n ∈ Rm except the largest one. According to Claim 10.2, φn′ > 3

2 · φn; that is,

the sequence (φn)n∈Rm
grows faster than the geometric progression with coefficient 3

2 .
Since φn is monotone nondecreasing in n, we get∑

n∈Rm

φn < 3 · φk.

It follows that ∑
n∈R

φn < 15 · φk ≤ 15
2 · π.

By Corollary 4.1,

TotCurvj γ ≤ 2 · π + 2 · [α0 − α1 + · · ·+ (−1)k · αk] < 100 · π. �

§11. Assembling the proof

Assume γ : [0, �] → Σ is a minimizing geodesic in a convex surface Σ ⊂ R
3.

By Propositions 2.1 and 2.2, we may assume that Σ is closed, strongly convex, and
smooth and the geodesic γ has finite length.

According to Proposition 6.1, we can pass to an i-drifting arc γ′ of γ for some (x, y, z)-
coordinate system such that

(1) TotCurv γ′ > 1
100100 · TotCurv γ.

We shall use the notation of §7 for γ′.
Rotating the (y, z)-coordinate plane, we can ensure that

TotCurv γ′ ≤ 10 · TotCurvj γ′

and that γ′ crosses the horizon ωj transversally.
By Corollary 8.3, we can subdivide γ′ into at most three arcs:

• Left arc γ′
− that lies on the light side for i.

• Middle arc γ′
0 that rotates around the x-axis at most 4 times.

• Right arc γ′
+ that lies on the dark side for i.

Indeed, choose an arc γ′|[a,b] on the right from the (y, z)-plane through 1
2 ·(γ′(0)+γ′(�))

that rotates around the x-axis 2 times and assume that b takes the minimal possible value.
Note that if γ′(s) lies on the (y, z)-plane through 1

2 · (γ′(0) + γ′(�)), then [s, b] ⊃ [a, b]
and any subarc of [s, b] rotates around the x-axis at most 2 times.

By Corollary 8.3, we can take γ′
+ = γ′|[b,�]; in case there is no such arc [a, b], we assume

that γ′
+ is not present. Repeat the construction reverting the direction of the x-axis; we

get the lower arc γ′
−. The remaining arc is assumed to be γ′

0; note that any subarc of γ′
0

is divided by the (y, z)-plane through 1
2 · (γ′(0) + γ′(�)) into two each of which rotates

around the x-axis at most 2 times. Therefore, the number of rotations of any arc in γ′
0

is at most 4.
Let us estimate the total curvature of γ′

−, γ
′
0, and γ′

+ separately.
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By Proposition 10.3, we get

(2) TotCurvj γ
′
+ ≤ 100 · π.

Similarly,

(3) TotCurvj γ
′
− ≤ 100 · π.

By Corollary 9.3,

(4) TotCurvj γ
′
0 ≤ 100 · π.

Together with (2), (3), and (4) the last inequality implies that

TotCurvj γ
′ ≤ 300 · π.

Now, the result follows from (1). �
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