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“IRRATIONAL” CONSTRUCTIONS

IN CONVEX GEOMETRY

V. MILMAN AND L. ROTEM

Dedicated to Yu. Borago

on the occasion of his 80th birthday

Abstract. Several ways to define various “irrational” functions of convex bodies,
like the geometric mean or power functions, are discussed.

§1. Introduction

We begin by quickly recalling some basic definitions from convex geometry. We refer
the reader to [20] for more information. We shall denote by Kn

s the class of origin-
symmetric convex bodies in R

n, i.e., convex sets K ⊆ R
n such that K is compact, has

nonempty interior, and K = −K. While some of the definitions given in this note make
sense for nonsymmetric bodies, symmetry will be important for the main results.

For a convex K ∈ Kn
s its support function hK : Rn → [0,∞) is defined by

hK(y) = max
x∈K

〈x, y〉 .

The function hK uniquely defines the body K. The Minkowski sum K+T of two convex
bodies K and T is defined by

K + T = {x+ y : x ∈ K, y ∈ T} .

Similarly, for λ > 0 we define λK =
{
λx : x ∈ K

}
. The Minkowski sum and the support

function are related by the identity hλK+T = λhK + hT .
Ellipsoids will play a special role in this note. For us an ellipsoid will always mean a

centered ellipsoid, which is a linear image of the Euclidean ball

Bn
2 = {x : |x| ≤ 1}.

For every ellipsoid E there exists a unique positive definite linear map uE such that
hE(y) =

√
〈uEy, y〉, where 〈 · , · 〉 denotes the standard scalar product on R

n. Conversely,

for every positive definite map u the function h(y) =
√
〈uy, y〉 is the support function of

some ellipsoid. It follows that one may identify the class of ellipsoids in R
n with the class

of all n × n positive definite matrices. However, let us warn the reader that if E1 and
E2 are ellipsoids then E1 + E2 is usually not an ellipsoid. The sum of two ellipsoids is an
ellipsoid if one replaces the standard notion of Minkowski addition with the 2-addition,
as defined by Firey ([9]) and studied extensively by Lutwak and others (see, e.g., [12, 13]).
We will not need 2-additions in this note.
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For a body K, the support function hK is a norm on R
n. Its unit ball is the polar

body of K, which is denoted by K◦:

K◦ = {y ∈ R
n : 〈x, y〉 ≤ 1 for all x ∈ K} .

The polarity map K 	→ K◦ can be characterized as the unique order reversing involution
on R

n. To be exact, we have the following result.

Theorem 1. Fix n > 1, and let T : Kn
s → Kn

s be a map such that:

• T is an involution: T T K = K for every K ∈ Kn
s .

• T is order reversing: if K1 ⊆ K2 for some K1,K2 ∈ Kn
s , then T K1 ⊇ T K2.

Then there exists an invertible symmetric linear map u such that T K = uK◦.

For the class Kn
s , this theorem follows from a result of Gruber ([10]). Similar results

on different classes of convex bodies were proved by Artstein-Avidan and Milman ([1])
and by Böröczky and Schneider ([6]).

The class of convex functions is also equipped with a unique order reversing involution.
More formally, let Cvx

(
R

n
)
denote the class of lower semicontinuous convex functions

ϕ : Rn → (−∞,∞]. The Legendre transform, mapping a function ϕ to

ϕ∗(y) = sup
x∈Rn

(ϕ(x)− 〈x, y〉)

is an order reversing involution. As was shown by Artstein-Avidan and Milman in [2], it
is essentially the only such transform:

Theorem 2. Fix n > 1, and let T : Cvx
(
R

n
)
→ Cvx

(
R

n
)
be a map such that:

• T is an involution: T (T ϕ) = ϕ for all ϕ ∈ Cvx
(
R

n
)
.

• T is order reversing: if ϕ1 ≤ ϕ2, then T ϕ1 ≥ T ϕ2.

Then there exists a constant C ∈ R, a vector v ∈ R
n, and an invertible symmetric linear

map u such that (
T ϕ

)
(x) = ϕ∗(ux+ v) + 〈x, v〉+ C.

On the set of positive numbers there is also a very natural order reversing bijection —
the inversion map x → x−1. Because of this similarity between the polarity map, the
Legendre transform and the inversion map, we would like to think about the polar body
K◦ and the Legendre transform ϕ∗ as the inverses “K−1” and “ϕ−1”. Under this inter-
pretation, most constructions we know in convexity are “rational constructions” — built
by a finite number of additions and “inversions”. It appears that the time has come for
“irrational constructions” as well. For example, in [15] Molchanov used this ideology to
build continued fractions of convex bodies and convex functions. In particular, if K ⊇ Bn

2

is a compact convex body then the process(
K + (K + (K + · · · )◦)◦

)◦
converges to a limit Z. This Z is the unique solution of the “quadratic equation” Z◦ =
Z+K. More generally, one may also consider periodic continued fractions with period> 1
to be solutions of more generalized quadratic equations.

Another paper in this direction is [19], where a surprising identity for convex functions
is proved using the same ideology.

§2. Geometric mean of convex bodies.

Ellipsoidal version

For every ellipsoid E we have uE◦ = (uE)
−1. In other words, the polarity operation

on the class of ellipsoids corresponds to the inversion u 	→ u−1 on the class of positive
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definite matrices. The inversion map is also an order-reversing involution, when the order
is the standard matrix order: u1 � u2 if u1 − u2 is positive semidefinite.

For two positive definite matrices u and v, their arithmetic mean is of course u+v
2

and their harmonic mean is
(
u−1+v−1

2

)−1
. The geometric mean of such matrices is more

difficult to define: if u and v commute then uv is positive definite and one may simply

consider (uv)
1
2 , but if the matrices do not commute then this square root is not well

defined. However, there exists a useful notion of such a geometric mean, which was first
discovered by Pusz and Woronowicz in [17]. An explicit formula for the geometric mean
of u and v is

(2.1) u#v = u
1
2

(
u− 1

2 vu− 1
2

) 1
2u

1
2 .

This formula does not have an obvious analog for convex bodies because we do not know
what it means to “multiply” two such bodies. However, it turns out that there is another
way to construct u#v. If one defines two sequences {um}∞m=0 and {vm}∞m=0 by

u0 = u v0 = v

um+1 =
um + vm

2
vm+1 =

(
u−1
m + v−1

m

2

)−1

,

then limm→∞ um = limm→∞ vm = u#v. The reader may consult [11] for a survey on
the matrix geometric mean, including a proof that this definition is equivalent to the
previous one.

Based on the analogy between polarity and inversion, one may give the following
definition (see [14]).

Definition 3. Fix convex bodies K,T ∈ Kn
s , define two sequences {Am}∞m=0 and

{Hm}∞m=0 by

A0 = K H0 = T

Am+1 =
Am +Hm

2
Hm+1 =

(
A◦

m +H◦
m

2

)◦
.

The geometric mean of K and T is

g(K,T ) = lim
m→∞

Am = lim
m→∞

Hm.

A proof that these limits exist (in the Hausdorff sense) and are equal to each other
appeared in [14]. A very similar construction for 2-homogeneous functions was carried
out by Asplund in [3], for very different reasons. His paper inspired Milman, who had a
talk on the subject in Vulich Seminar (in 70/71). One of the participants in this seminar
was Fedotov, who later published a short paper on the subject ([8]).

The geometric mean has many desirable properties, which are summarized in the
following proposition.

Proposition 4 (see [14]).

1. g(K,K) = K.
2. g is symmetric in its arguments: g(K,T ) = g(T,K).
3. g is monotone in its arguments: if K1 ⊆ K2 and T1 ⊆ T2, then g(K1, T1) ⊆

g(K2, T2).
4. g satisfies the harmonic mean — geometric mean — arithmetic mean inequality(

K◦ + T ◦

2

)◦
⊆ g(K,T ) ⊆ K + T

2
.

5. [g(K,T )]◦ = g(K◦, T ◦).
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6. g(K,K◦) = Bn
2 .

7. For any linear map u we have g(uK, uT ) = u(g(K,T )). In particular, we get
g(λK, λT ) = λg(K,T ).

It turns out that the geometric mean of ellipsoids is not a new concept. In fact, if E1, E2
are ellipsoids, then g(E1, E2) is also an ellipsoid, and ug(E1,E2) = uE1

#uE2
(this property

was also proved in [14]). Note that this property is somewhat surprising: because we do
not have a property like uE1+E2

= uE1
+ uE2

, the iteration process for the matrices and
the ellipsoids is different. We do not have in general uAm

= um, and in fact Am is almost
never an ellipsoid. Still, in the limit one obtains an ellipsoid, which is exactly the one
represented by the matrix uE1

#uE2
.

Despite its many useful properties, the geometric mean g does not satisfy one impor-
tant property:

Definition 5. We say that a map Φ: Kn
s × Kn

s → Kn
s has the scaling property if for

every K,T ∈ Kn
s and every α, β > 0 we have

Φ(αK, βT ) =
√
αβΦ(K,T ).

This is definitely a natural property to expect from a geometric mean. A 2-dimensional
example, constructed by Magazinov for an appendix of [14], shows that the scaling prop-
erty is not satisfied by the geometric mean as constructed in Definition 3. In [18], the
second author constructed a variant of the geometric mean which shares its good prop-
erties and also has the scaling property. The construction involves a new concept of
geometric Banach limits for sequences of convex bodies:

Definition 6. Let BKn denote the class of uniformly bounded sequences of convex
bodies:

BKn =

{
{Km}∞m=1 :

there exist r, R > 0 such that
r ·Bn

2 ⊆ Km ⊆ R ·Bn
2 for all m

}
.

A geometric Banach limit is a function L : BKn → Kn
s with the following properties.

1. L is shift invariant: L
(
{Km}

)
= L

(
{Km+1}

)
.

2. If Km → K in the Hausdorff metric then L
(
{Km}

)
= K.

3. If Km ⊇ Tm for all m then L
(
{Km}

)
⊇ L

(
{Tm}

)
.

4. For any invertible linear map u we have L
(
{uKm}

)
= uL

(
{Km}

)
.

5. L
(
{λKm}

)
= λL

(
{Km}

)
for all λ > 0.

6. L
(
{K◦

n}
)
= L

(
{Kn}

)◦
.

It is the last property that makes the construction of a geometric Banach limit a
delicate matter. Surprisingly, the construction of L exploits the geometric mean of convex
bodies, even though they are not mentioned in the definition. For the full details, as well
as the construction of the new geometric mean, the reader may consult [18].

Now, we would like to now present another variant of g that has the scaling property,
which may be simpler than the one constructed in [18]. However, for our construction it
is important that the bodies are centrally symmetric, while the Banach limit construction
works just as well for nonsymmetric convex bodies. To present the construction, we need
the following definition.

Definition 7. For K,T ∈ Kn
s , the upper ellipsoidal envelope of K and T is

g(K,T ) =
⋂{

g(E1, E2) : K ⊆ E1 and T ⊆ E2
}
.

Similarly, the lower ellipsoidal envelope of K and T is

g(K,T ) = conv
⋃{

g(E1, E2) : K ⊇ E1 and T ⊇ E2
}
,
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where conv denotes the convex hull.

Using the explicit formula (2.1), it is easy to check that the matrix geometric mean
has the scaling property:

(αu)#(βv) =
√
αβ · (u#v).

The relation ug(E1,E2) = uE1
#uE2

then implies that the geometric mean has the scaling
property for ellipsoids. It follows that the ellipsoidal envelopes also have the scaling
property.

However, each of the ellipsoidal envelopes by itself is not a good candidate to be a
“geometric mean”. For example, there is no reason for the relation g(K,K◦) = Bn

2 to
be true for an arbitrary K ∈ Kn

s . This is a fundamental property which corresponds to
the numerical fact that the geometric mean of x and 1

x is 1.
It turns out that even though each of the envelopes by itself is not a good geometric

mean, they can be combined to create a very good candidate.

Definition 8. The ellipsoidal geometric mean of K and T is

G(K,T ) = g
(
g(K,T ), g(K,T )

)
.

As promised, the ellipsoidal geometric mean satisfies all of the basic properties of the
original geometric mean, and also has the scaling property.

Theorem 9. The ellipsoidal geometric mean has the following properties.

1. G(K,K) = K.
2. G is symmetric in its arguments: G(K,T ) = G(T,K).
3. G is monotone in its arguments: If K1 ⊆ K2 and T1 ⊆ T2 then G(K1, T1) ⊆

G(K2, T2).
4. G satisfies the harmonic mean — geometric mean — arithmetic mean inequality(

K◦ + T ◦

2

)◦
⊆ G(K,T ) ⊆ K + T

2
.

5. [G(K,T )]◦ = G(K◦, T ◦).
6. G(K,K◦) = Bn

2 .
7. For any linear map u we have G(uK, uT ) = u(G(K,T )).
8. G has the scaling property: G(αK, βT ) =

√
αβG(K,T ).

Proof. Properties (2), (3), and (7) are obvious from the corresponding properties of g.
For (5) observe that

g(K,T )◦ = g(K◦, T ◦).

Hence

[G(K,T )]◦ = g
(
g(K,T ), g(K,T )

)◦
= g

(
g(K,T )◦, g(K,T )◦

)
= g

(
g(K◦, T ◦), g(K◦, T ◦)

)
= G(K◦, T ◦).

Property (6) is a consequence of (5). We have G(K,K◦)◦ = G(K◦,K◦◦) = G(K,K◦),
and it is well known that the only solution to the equation X = X◦ is X = Bn

2 .
To prove property (4), fix ε > 0 and a unit vector θ ∈ R

n. Choose an ellipsoids E1
such that E1 ⊇ K and hE1

(θ) ≤ hK(θ) + ε (To see that such an ellipsoid exists, take
the “supporting slab”

{
x ∈ R

n : |〈x, θ〉| ≤ hk(θ)
}
and approximate it by an ellipsoid).

Similarly, choose an ellipsoid E2 such that E2 ⊇ K and hE2
(θ) ≤ hK(θ) + ε. It follows

that

hg(K,T )(θ) ≤ hg(E1,E2)(θ) ≤ h E1+E2
2

(θ) =
hE1

(θ) + hE2
(θ)

2

≤ hK(θ) + hT (θ)

2
+ ε = hK+T

2
(θ) + ε.
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Since this is true for all ε > 0 and all directions θ, we conclude that g(K,T ) ⊆ K+T
2 .

Since the same is trivially true for g(K,T ), we may conclude that

G(K,T ) = g
(
g(K,T ), g(K,T )

)
⊆ g

(
K + T

2
,
K + T

2

)
=

K + T

2
.

Applying the same inequality to K◦ and T ◦ we see that

G(K,T )◦ = G(K◦, T ◦) ⊆ K◦ + T ◦

2
,

and the harmonic mean — geometric mean inequality follows by taking the polar of both
sides. This completes the proof of property (4). Of course, (1) follows immediately.

Finally, for property (8), we already explained why the ellipsoidal envelopes have the
scaling property. But then

G(αK, βT ) = g
(
g(αK, βT ), g(αK, βT )

)
= g

(√
αβ · g(K,T ),

√
αβ · g(K,T )

)
=

√
αβ · g

(
g(K,T ), g(K,T )

)
=

√
αβ ·G(K,T ),

and the proof is complete. �

We do not know if a map Φ: Kn
s ×Kn

s → Kn
s satisfying properties (1)–(8) of the above

theorem must coincide with G.
We conclude this section with several notes. First, as the only self-polar convex body,

the Euclidean ball Bn
2 plays the role of the number 1 or the identity matrix. It follows

that we may think of the body G(K,Bn
2 ) as the square root

√
K. It is interesting to

notice that even though
√
K is defined for every K ∈ Kn

s , the equation
√
X = K does

not always have a solution. This is essentially because

dBM

(√
X,Bn

2

)
≤

√
dBM

(
X,Bn

2

)
,

where dBM denotes the Banach–Mazur distance (see [14]). Combining this with John’s

theorem, we see that dBM

(√
X,Bn

2

)
≤ n

1
4 , so

√
X can never be a cube for example. In

other words, even though every convex body has a square root, not every convex body
has a square.

There exist in the literature other attempts to define the geometric mean of two convex
bodies K and T . In [5], Böröczky, Lutwak, Yang and Zhang constructed the following
“0-mean”, or “logarithmic mean”, of convex bodies:

L(K,T ) =
{
x ∈ R

n : 〈x, θ〉 ≤
√
hK(θ)hT (θ) for all θ ∈ Sn−1

}
(their construction is for arbitrary weights λ and 1− λ; here we only cite the symmetric
case λ = 1

2 ). In other words, L = L(K,T ) is the largest convex body such that hL(θ) ≤√
hK(θ)hT (θ) for all θ ∈ Sn−1.
This definition is similar in many ways to the upper ellipsoidal envelope g(K,T ). To

see this, let

S1 =
{
x :

∣∣〈x, θ〉∣∣ ≤ a
}
,

S2 =
{
x :

∣∣〈x, η〉∣∣ ≤ b
}
,

be two slabs. Even though S1, S2 /∈ Kn
s , since they are not compact, one may approximate

them by ellipsoids and arrive at a natural definition for g(S1, S2). The result will be that
g(S1, S2) = R

n whenever θ 
= η, and

g(S1, S2) =
{
x :

∣∣〈x, θ〉∣∣ ≤ √
ab

}
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if θ = η. From here we see that

L(K,T ) =
⋂ {

g(S1, S2) : K ⊆ S1 and T ⊆ S2

}
,

which is very similar to the definition of g(K,T ). It follows immediately that g(K,T ) ⊆
L(K,T ). Like g the mean L will also have the scaling property, but does not satisfy an
analogue of the polarity probability [g(K,T )]◦ = g(K◦, T ◦).

Another possible “geometric mean” was studied by Cordero-Erausquin and Klartag
in [7], following a previous work of Semmes ([21]). Let u0, u1 : R

n → R be (sufficiently
smooth) convex functions. A p-interpolation between u0 and u1 is a function u : [0, 1]×
R

n → R such that u(0, x) = u0(x), u(1, x) = u1(x), and u(t, x) satisfies the PDE

∂2
ttu =

1

p

〈
(Hessxu)

−1∇∂tu,∇∂tu
〉
.

Here we will care about the case p = 2. Given u0 and u1, it is not clear that this PDE has
a solution, let alone a unique solution. However, it is not hard to check that if u0 = 1

2h
2
K

and u1 = 1
2h

2
T for some bodies K and T , then ut =

1
2h

2
Rt

(assuming it exists) for some
family of convex bodies Rt = Rt(K,T ). The body R1/2(K,T ) is a possible candidate for
the geometric mean whenever it is well defined.

Finally, once the geometric mean is defined, one may use it for other constructions.
For example, the Gauss arithmetic-geometric mean is defined in the same way it is done
for numbers (see, e.g., [16]): given A0, B0 we set

An+1 =
An +Bn

2
, Bn+1 = G(An, Bn).

The common limit limn→∞ An = limn→∞ Bn, which always exists, is the arithmetic-
geometric mean of A0 and B0. We will denote it by Mag(A0, B0). The geometric-
harmonic mean, Mgh(A0, B0), is defined similarly.

Special properties of these two constructions seem interesting to us. For example, it
was proved in [16] that for numbers we have

Mgh(N, 1) =
2

π
log 4N +O(1/N2).

Is there an analog for this result for Mgh(K,Bn
2 )?

§3. Powers of convex bodies

In the previous section we saw how it is possible to first compute the geometric mean
for ellipsoids, and then use its good properties to construct a geometric mean for arbitrary
convex bodies. One may use the same idea to define other functions on the class of convex
bodies: because of the identification between ellipsoids and positive definite matrices, we
can apply many standard functions on the class of ellipsoids.

We consider in this article the case of the power map x 	→ xα. For ellipsoids, the
definition is obvious.

Definition 10. If E is an ellipsoid and α ∈ R, we define the ellipsoid Eα by the relation
uEα = (uE)

α.

This definition makes sense for all α, because uα is well defined and positive definite
for any positive definite matrix u. However, we will concentrate on the case 0 < α < 1,
because in this case the power map is operator monotone.

Definition 11. A map f on the class of positive definite matrices is called operator
monotone if u � v implies f(u) � f(v).
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A proof of this fact that uα is operator monotone whenever 0 < α < 1 can be found
in [4, Theorem V.1.9]. For α > 1 the function u 	→ uα is not operator monotone. In
particular, the square u 	→ u2 is not operator monotone — see Example V.I.2 in [4]. This
is related to our previous remark that not every convex body has a square.

From the monotonicity of u 	→ uα the following result is obvious.

Proposition 12. The maps E 	→ Eα defined on the class of ellipsoids have the following
properties.

1. For every 0 < α < 1, if E1 ⊆ E2 then Eα
1 ⊆ Eα

2 .
2. For every 0 < α < 1, every ellipsoid E and every λ > 0 we have (λE)α = λαEα.
3. For every 0 < α, β < 1 and every ellipsoid E , (Eα)β = Eαβ.

We would like to extend this power map to all centrally symmetric convex bodies.
Thanks to the monotonicity of the power function, we may use the idea of ellipsoidal
envelopes. We choose rather arbitrarily to work with upper envelopes and define:

Definition 13. For every 0 < α < 1 and every K ∈ Kn
s we set

Pα(K) =
⋂{

Eα : K ⊆ E
}
.

The map K 	→ Pα(K) is obviously monotone. Furthermore, if E is any ellipsoid such that
E ⊇ K, then Eα ⊇ Pα(K), which implies that Eαβ = (Eα)β ⊇ Pβ(Pα(K)). Intersecting
over all E we see that Pαβ(K) ⊇ Pβ(Pα(K)). Unfortunately, in general there is no reason
for the identity Pαβ(K) = Pβ(Pα(K)) to hold.

To fix this problem, we refine our definition of the power. Our construction will
be similar in spirit to the construction of the integral using Darboux sums. Fix some
0 < α < 1, and let Π be a finite partition of [α, 1]:

Π : α = t0 < t1 < · · · < tm = 1.

Setting si = ti−1/ti for i = 1, 2, . . . ,, we define

PΠ(K) =
(
Ps1 ◦ Ps2 ◦ · · · ◦ Psm

)
(K),

where ◦ denotes the composition.

We say that a partition Π is a refinement of Π̃ if Π ⊇ Π̃, i.e., Π is obtained from Π̃
by adding points. As the partition Π becomes more refined, the body PΠ(K) becomes
smaller:

Lemma 14. Assume Π ⊇ Π̃ are partitions of [α, 1]. Then for every convex body K ∈ Kn
s

one has PΠ(K) ⊆ P
˜Π(K).

Proof. Of course, it suffices to prove the result when |Π| = |Π̃|+ 1. Let

Π : α = t0 < t1 < · · · < tm = 1

be a partition, and assume Π̃ is obtained from Π by removing the point tk. Denote by
Π1 the partition {t0, t1, . . . , tk−1} and by Π2 the partition {tk+1, tk+2, . . . , tm}. Then

PΠ = PΠ1
◦ Ptk/tk−1

◦ Ptk+1/tk ◦ PΠ2
,

while

P
˜Π = PΠ1

◦ Ptk+1/tk−1
◦ PΠ2

(the operators PΠ1
and PΠ2

are defined in an obvious way, even though Π1 and Π2 are
not partitions of [α, 1]).

As we have already explained, for every convex body T we have

Ptk/tk−1
◦ Ptk+1/tk(T ) ⊆ Ptk+1/tk−1

(T ).
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Choosing T = PΠ2
(K), and using the fact that PΠ1

is monotone, we conclude the proof.
�

We may now define:

Definition 15. For every K ∈ Kn
s and 0 < α < 1 we define

Kα =
⋂
Π

PΠ(K),

where the intersection is taken over all partitions of [α, 1].

Notice that if E is an ellipsoid then PΠ(E) = Eα for every partition Π of [α, 1], which
means this definition is really an extension of Definition 10. Of course, we did not need
Lemma 14 for Kα to be well defined, as one can take intersections of arbitrary families
of convex bodies. However, Lemma 14 is crucial for the following result, which shows
that we can approximate Kα using sets of the form PΠ(K):

Proposition 16. Fix K ∈ Kn
s and 0 < α < 1. Then for every ε > 0 one may find a

partition Π of [α, 1] such that

Kα ⊆ PΠ(K) ⊆ (1 + ε)Kα.

Proof. The inequality Kα ⊆ PΠ(K) holds trivially for every partition Π, so we only need
to prove the second inequality.

To prove it, assume by contradiction that PΠ(K) 
⊆ (1 + ε)Kα for every partition Π.
Set

AΠ = PΠ(K) \ int
(
(1 + ε)Kα

)

= ∅,

where int denotes the interior of a set. We claim that the family {AΠ}Π has the finite
intersection property: the intersection of finitely many sets AΠ1

, AΠ2, . . . , AΠm
is never

empty. Indeed, if we denote Π = Π1 ∪ Π2 ∪ · · · ∪ Πm then AΠ 
= ∅ by assumption, and
AΠ ⊆ AΠi

for i = 1, 2, . . . ,m by Lemma 14.
Since the sets AΠ are all compact, the finite intersection property implies

⋂
Π AΠ 
= ∅.

If we choose a point a in this intersection, then on the one hand a /∈ int
(
(1+ ε)Kα

)
, and

on the other hand a ∈ PΠ(K) for all Π, which implies that a ∈
⋂

Π PΠ(K) = Kα. Since

Kα ⊂ int
(
(1+ ε)Kα

)
, we have arrived at a contradiction, and the proof is complete. �

The main result of this section is that the power mapK 	→ Kα, as defined in Definition
15, has the following properties (as it had for ellipsoids).

Theorem 17. The maps K 	→ Kα defined on Kn
s have the following properties.

1. For every 0 < α < 1, if K ⊆ T then Kα ⊆ Tα.
2. For every 0 < α < 1, every K ∈ Kn

s , and every λ > 0 we have (λK)α = λαKα.
3. For every 0 < α, β < 1 and every K ∈ Kn

s we have (Kα)β = Kαβ.

Proof. Properties (1) and (2) are obvious: these properties pass from Pα(K) to PΠ(K)
and then to Kα.

Next we prove property (3). Let

Π : αβ = t0 < t1 < · · · < tm = 1

be any partition of [αβ, 1], and let k be the maximal index such that tk < α. Let
Π1 = {t0, t1, . . . , tk, α} be a partition of [αβ, α], and Π2 = {α, tk+1, tk+2, . . . , tm} a
partition of [α, 1]. Finally, let

Π̃1 =

{
t0
α
,
t1
α
, . . . ,

tk
α
, 1

}
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be a partition of [β, 1]. Notice that by definition we have PΠ1
= P

˜Π1
. Since Π1 ∪Π2 ⊇ Π

we have

PΠ(K) ⊇ PΠ1∪Π2
(K) = PΠ1

(
PΠ2

(K)
)
= P

˜Π1

(
PΠ2

(K)
)
⊇ P

˜Π1
(Kα) ⊇ (Kα)β .

Since this is true for every partition Π of [αβ, 1], we make intersection over all such
partitions and conclude that Kαβ ⊇ (Kα)β.

For the proof of the opposite inequality we need to use Proposition 16. Fix some
ε > 0. There exists a partition Π2 of [α, 1] such that PΠ2

(K) ⊆ (1 + ε)Kα. Similarly,
there exists a partition Π1 of [β, 1] such that

PΠ1

(
PΠ2

(K)
)
⊆

(
PΠ2

(K)
)β ⊆

(
(1 + ε)Kα

)β
= (1 + ε)β · (Kα)β.

On the other hand, Π = αΠ1 ∪Π2 is a partition of [αβ, 1], so

PΠ1

(
PΠ2

(K)
)
= PαΠ1

(
PΠ2

(K)
)
= PΠ(K) ⊇ Kαβ.

Combining the last two inclusions we see that Kαβ ⊆ (1 + ε)β(Kα)β. Since this is true
for every ε > 0 we have Kαβ ⊆ (Kα)β and the proof is complete. �

The same method can be used to define f(K) for other operator monotone functions f .
As an important example, the function u 	→ log u is operator monotone, which means
that one can define logK using an ellipsoidal envelope. Notice however that the matrix
log u is positive definite if and only if u � Id, where Id is the identity map. It follows
that we may define f(E) only for ellipsoids E such that E ⊇ Bn

2 . Hence the natural
domain of the logarithm is all convex bodies K ∈ Kn

s such that K ⊇ Bn
2 . Unfortunately

this definition of a logarithm does not seem to interact well with powers, in the sense
that usually we do not have

log(Kα) = α logK

like we have for ellipsoids. We think that some modifications to the definitions may fix
this problem.

In conclusion, we illustrated in this article just the very first steps in the development
of an “irrational” theory of convexity. A lot of novel questions appear naturally at every
step of this study. In [14] we explicitly formulated some of them. We also did not discuss
in this note any problems involving the interplay between these new constructions and
geometric (say, volume) inequalities.
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