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SHARP CORRESPONDENCE PRINCIPLE

AND QUANTUM MEASUREMENTS

L. CHARLES AND L. POLTEROVICH

To Yurĭı Dmitrievich Burago

on the occasion of his 80th birthday

Abstract. We prove sharp remainder bounds for the Berezin–Toeplitz quantization
and present applications to semiclassical quantum measurements.

§1. Introduction and main results

1.1. An outlook. The subject of this paper is quantization, a formalism behind the
quantum-classical correspondence, a fundamental principle stating that quantum me-
chanics contains the classical one as a limiting case when the Planck constant � tends
to 0. Mathematically, the correspondence is given by a linear map between smooth
functions on a symplectic manifold and Hermitian operators on an �-depending complex
Hilbert space. It is assumed that, up to error terms (a.k.a. remainders) that are small
with �, some basic operations on functions correspond to their counterparts on opera-
tors. For instance, the Poisson bracket of functions corresponds to (a properly rescaled)
commutator of the operators. In the present paper we study the size of the remainders
focusing on the following facets of this problem.

First, given a quantization, find explicit upper bounds for the remainders. In this di-
rection, we obtain such bounds for several basic quantization schemes, including the stan-
dard Berezin–Toeplitz quantization of closed Kähler manifolds, in terms of the Ck-norms
on functions with k ≤ 3 (see Subsections 1.2 and 1.4 below). The motivation comes
from semiclassical quantum mechanics: having a good control on the remainders, one
can zoom into small regions of the phase space up to the quantum scale ∼

√
�, the

smallest scale allowed by the uncertainty principle. As an illustration, in Subsection 1.5
we present applications to noise production in semiclassical quantum measurements.

Second, according to the classical no-go theorems, no ideal quantizations, i.e., the
ones with vanishing remainders, exist. This naturally leads to the following quantitative
question: can one find a quantization with arbitrarily small remainders? It turns out
that for a meaningful class of quantizations, the answer is negative. The remainders are
subject to constraints that depend only on geometry of the phase space, which is the
essence of the rigidity of remainders phenomenon discussed in Subsection 1.3.

1.2. Sharp remainder estimates. Let (M2n, ω) be a closed symplectic manifold. We
assume that (M,ω) is quantizable, i.e., the cohomology class [ω]/(2π) is integral. We
write {f, g} for the Poisson bracket of smooth functions f and g.
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Fix an auxiliary Riemannian metric ρ on M . For a function f ∈ C∞(M) its Ck-norm
with respect to ρ is denoted by |f |k. For a pair of smooth functions f, g put |f, g|N =∑N

j=0 |f |j · |g|N−j . We write ‖f‖ = |f |0 = max |f | for the uniform norm, and ‖f‖L1
for

the L1-norm of f with respect to the symplectic volume ωn/n!.
We also introduce a reduced version of |f, g|4,

(1) |f, g|1,3 := |f |1 · |g|3 + |f |2 · |g|2 + |f |3 · |g|1
which does not include fourth derivatives, and which plays an important role below.

For a finite-dimensional complex Hilbert spaceH write L(H) for the space of Hermitian
operators on H. The operator norm is denoted by ‖ · ‖op and [A,B] stands for the
commutator AB −BA.

A Berezin quantization of M is given by the following data:

• a subset Λ ⊂ R>0 having 0 as a limit point;
• a family H� of finite-dimensional complex Hilbert spaces, � ∈ Λ;
• a family T� : C(M,R) → L(H�) of positive surjective linear maps such that
T�(1) = id, � ∈ Λ.

That T� is positive means that for any f ∈ C(M,R), f ≥ 0 implies that T�(f) ≥ 0.
We will also assume that there exist α, β, γ and δ > 0 such that for any f, g ∈ C∞(M,R),
we have

(P1) (norm correspondence) ‖f‖ − α|f |2� ≤ ‖T�(f)‖op ≤ ‖f‖;
(P2) (the correspondence principle)∥∥∥− i

�
· [T�(f), T�(g)]− T�({f, g})

∥∥∥
op

≤ β|f, g|1,3�;

(P3) (quasi-multiplicativity) ‖T�(fg)− T�(f)T�(g)‖op ≤ γ|f, g|2�;
(P4) (trace correspondence)∣∣∣∣ trace(T�(f))− (2π�)−n

∫
M

f
ωn

n!

∣∣∣∣ ≤ δ‖f‖L1
�
−(n−1),

for all f, g ∈ C∞(M) and all � ∈ Λ.
A few elementary remarks are in order. The upper bound in (P1) is an immediate

consequence of the positivity of T�. Furthermore, since fg = gf , from (P3) it follows
that [T�(f), T�(g)] = O(�). Property (P2) can be viewed as a refinement of this formula.
Note also that substituting f = 1 into (P4), we see that the dimension of the space H�

tends to ∞ as � → 0.

Theorem 1.1. Every quantizable symplectic manifold admits a Berezin quantization
satisfying (P1)–(P4).

The novelty here is a fine structure of the remainders in (P1)-(P3). In particular,
for quantizable Kähler manifolds, the standard Berezin–Toeplitz quantization satisfies
(P1)–(P4).

Interestingly enough, for fixed ω and ρ, the coefficients α, β and γ are subject to
constraints which manifest the optimality of inequalities (P1)–(P3). We discuss them in
the next section. As a counterpoint, for certain quantization the constant δ in (P4) can
be made arbitrarily small, see Remark 1.4 below. Furthermore, we present applications
of (P1)–(P3) to semiclassical quantum measurements.

The seminal reference on Berezin quantization is the book [BdMG81] by Boutet de
Monvel and Guillemin. In [BMS94, Gui95] or [BU96], it was deduced from [BdMG81] the
existence of a quantization satisfying the following version of (P1)–(P3): for any smooth
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functions f, g we have

‖Th(f)‖op = ‖f‖+O(�), T�(f)T�(g) = T�(fg) +O(�),(2)

[T�(f), T�(g)] =
�

i T�({f, g}) +O(�2),(3)

where the O’s are in the uniform norm and depend on f and g. More recently, Barron et
al [BMMP14] have extended (2) to functions of class C2 and (3) to functions of class C4.
We will prove in this paper that actually (3) holds for functions of class C3 (as we
shall see in Remark 1.12 below, the absence of fourth derivatives in the correspondence
principle (P2) has meaningful applications). Additionally, in Proposition 3.8 below we
prove a slightly stronger version of quasi-multiplicativity (P3). More importantly, we
make explicit the dependence in f and g of the remainders in the sense of (P1)–(P3).

We refer the reader to the lecture notes [LF16] by Y. Le Floch for a skillfully written
exposition of our Theorem 1.1 in the Kähler case and useful preliminaries.

1.3. Rigidity of remainders. Confronting matrix analysis with geometry of the phase
space, we get the following constraints on the remainders in (P1), (P2) and (P3) for any
Berezin quantization.

Theorem 1.2. Let (M,ω) be a closed quantizable symplectic manifold equipped with a
Riemannian metric ρ. There exist positive constants C1, C2, C3 depending on (M,ω, ρ)
such that for every Berezin quantization we have

(i) α ≥ C1;
(ii) β ≥ C2α

−2;
(iii) γ ≥ C3.

The proof is given in §2 below.
The lower bound (ii) on the β-remainder in the correspondence principle (P2) deserves

a special discussion. According to the classical no-go theorem (see, e.g., [GM00] and
references therein), there is no linear map T� : C

∞(M) → L(H�) that sends (up to a
multiplicative constant) Poisson brackets of functions to commutators of operators. In
other words, β �= 0. As we shall see below, the proof of (ii), in addition to (P2), involves
only the norm correspondence (P1) with fixed α. Therefore, in the presence of (P1),
inequality (ii) can be regarded as a quantitative version of the no-go theorem.

Furthermore, the proof of (ii) involves both the lower and the upper bounds in the
norm correspondence (P1). Recall that the latter uses that the Berezin quantization is
positive. Interestingly enough, without the preservation of positivity (ii) is not necessar-
ily valid. For instance, for the geometric quantization of a compact quantizable Kähler
manifold in the presence of the metaplectic correction, the remainder in (P2) is of the or-
der O(�2), see formula (19) in [Cha07]. Let us mention that the preservation of positivity
is crucial for our applications to quantum measurements.

Another mysterious feature of the lower bound (ii) is that it involves the α-remainder
appearing in the norm correspondence (P1). In particular, it does not rule out the
existence of a quantization with the large error coefficient α in the norm correspondence
(P1) and a small error coefficient β in the correspondence principle (P2). At the moment,
we do not know whether such a trade-off between α and β can actually happen. This
leads to the following question.

Question 1.3. Does there exist a constant C4 > 0 such that for every Berezin quanti-
zation β ≥ C4?
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Remark 1.4. There is no rigidity for the δ-remainder in (P4). Indeed, for the Berezin–
Toeplitz quantization with the half-form correction [Cha06, formula (11)] the trace cor-
respondence (P4) upgrades to∣∣∣∣trace (T�(f))− (2π�)−n

∫
M

f
ωn

n!

∣∣∣∣ ≤ δ′ · ‖f‖L1
�
−(n−2),

mind the power −(n−2) on the right-hand side. Thus, decreasing �, we can make δ = δ′�
arbitrarily small.

1.4. Bargmann space. Even though Berezin–Toeplitz quantization of certain noncom-
pact manifolds has been studied since the foundational paper [Ber75] (see [MM08] for
more recent developments), no general statement in the spirit of Theorem 1.1 is currently
available in the absence of compactness. Nevertheless, we perform a case study and ex-
plain how (P1)–(P4) extend to a noteworthy quantization of the symplectic vector space
R2n = Cn, namely to Toeplitz operators in Bargmann space. We also give a general esti-
mate of the remainder in the composition of Toeplitz operators. Surprisingly, we did not
find these results in the literature. The Bargmann space serves as a source of intuition
for several aspects of our exploration of compact manifolds. First, for the Bargmann
space, the quasimultiplicativity (P3) follows from an elementary (albeit tricky) algebraic
consideration and thus enables one to guess the structure of the remainders in the com-
pact case. Second, for the Bargmann space, quantization commutes with the phase-space
rescaling (see formula (63) below). This highlights the significance of the rescaling, which
serves as a useful tool for proving the rigidity of remainders in the compact case.

Recall that for any � > 0, the Bargmann space B� is the space of holomorphic functions

of Cn that are square integrable against the weight e−�
−1|z|2μ. Here μ is the measure

|dz1 . . . dzn dz1 . . . dzn| and |z|2 = |z1|2 + · · · + |zn|2. For any f ∈ L∞(Cn), define the
Toeplitz operator with multiplicator f :

T�(f) = Π�f : B� → B�,

where Π� is the orthogonal projector of L2(Cn, e−�
−1|z|2μ) onto B�. T�(f) is a bounded

operator with uniform norm ‖T�(f)‖op ≤ sup |f |. If f ∈ L1(Cn, μ), one readily checks
that the operator T�(f) is of the trace class, and (P4) holds with the vanishing error
term (i.e., δ = 0).

For any integer k and function f : Cn → C of class Ck, introduce the seminorm

(4) |f |′k = sup
|α|=k,
x∈C

n

|∂αf(x)|.

Let Ck
b(C

n) be the space of functions f of class Ck such that |f |′0, |f |′1, . . . , |f |′k are
bounded.

Theorem 1.5. For any N ∈ N, there exists CN > 0 such that for any f ∈ C2N
b (Cn) and

g ∈ CN
b (Cn), for any � we have

T�(f)T�(g) =

N−1∑
�=0

(−1)���
∑

α∈N
n,

|α|=�

1

α!
T�

(
(∂α

z f)(∂
α
z g)

)
+ �

NRN (f, g),

where ‖RN (f, g)‖op ≤ CN

∑N
m=0 |f |′N+m|g|′N−m.

To our knowledge, the estimate of the remainder is better than what can be found in
the literature. For instance, in [Co92] or [Chi09], the number of derivatives involved in the
estimates depends on the dimension n. However, in [Le10, Section 2.4.3], Lerner obtained
estimates similar to Theorem 1.5 with N = 2 for the quantity T1(f)T1(g) + T1(g)T1(f).



SHARP CORRESPONDENCE PRINCIPLE 181

Interestingly, it seems that Berezin–Toeplitz quantization behaves better than Weyl
quantization. Indeed, in all the results we know, the number of derivatives needed to
estimate the remainder when we truncate the Moyal product, depends on the dimension.
Actually, the Weyl symbol of the Toeplitz operator with multiplicator f is obtained by
smoothing out f , cf. for instance [BS91, Section 5.2] or [Fo89, Section 2.7]. So the
higher derivatives of the Weyl symbol are controlled in a sense by the lower derivatives
of the multiplicator. Another observation is that the norm estimates of pseudodifferential
operators, as for instance in the Calderon–Vaillancourt theorem, are generally obtained
by the Cotlar–Stein lemma, whereas the Schur lemma is generally sufficient to estimate
the norm of Toeplitz operators. However, many authors use Cotlar–Stein lemma for
Toeplitz operators even if it is not necessary. For general results on Weyl quantization
with symbols of limited regularity, we refer the reader to [Sj08].

By Theorem 1.5 with N = 1 and N = 2, we obtain the following version of (P3) and
(P2), respectively: for any f ∈ C2

b(C
n) and g ∈ C1

b(C
n), we have∥∥T�(fg)− T�(f)T�(g)

∥∥
op

≤ γ′(|f |′1|g|′1 + |f |′2|g|′0)�,

and for any f ∈ C4
b(C

n) and g ∈ C2
b(C

n),∥∥∥− i

�

[
T�(f), T�(g)

]
− T�({f, g})

∥∥∥
op

≤ β′(|f |′2|g|′2 + |f |′3|g|′1 + |f |′4|g|′0
)
�,

where the constants γ′, β′ do not depend on f , g. Adapting the proof of (P2) in the
closed symplectic case, we will also show that for any f, g ∈ C3

b(C
n),

(5)
∥∥∥− i

�

[
T�(f), T�(g)

]
− T�({f, g})

∥∥∥
op

≤ β′′(|f |′1|g|′3 + |f |′2|g|′2 + |f |′3|g|′1
)
�.

It would be interesting to calculate the constants α′, β′, β′′ and γ′.
Let us mention finally that by using the explicit form (64) of the Schwartz kernel of

Π� and arguing as in the compact case, one gets a lower bound for ‖T�(f)‖op as in (P1),
provided f is C2-smooth and its uniform norm is attained at some point of Cn. It is
unclear whether the latter condition can be relaxed.

1.5. Joint approximate measurements. In this section we present an application of
our results to joint approximate measurements of semiclassical observables. A slightly
different measurement scheme was discussed in a similar context in [Po14] (see also [PR14,
Chapter 9]). The main novelty is that the sharp remainder bounds enable us to work on
smaller scales including the quantum length scale.

1.5.1. Preliminaries on quantum measurements. We start with some preliminaries
on positive operator-valued measures and quantum measurements (we refer the reader
to [BLW14], [PR14, Chapter 9] and references therein). Recall that L(H) denotes the
space of all Hermitian operators on a finite-dimensional complex Hilbert space H.

Consider a set Θ equipped with a σ-algebra C of its subsets. An L(H)-valued positive
operator-valued measure (POVM)W on (Θ, C) is a countably additive mapW : C → L(H)
that takes each subset X ∈ C to a positive operator W (X) ∈ L(H) and is normalized by
W (Θ) = 1.

In quantum measurement theory, W represents a measuring device coupled with the
system, while Θ is interpreted as the space of device readings. When the system is in a
pure state ξ ∈ H, |ξ| = 1, the probability of finding the device in a subset X ∈ C equals
〈W (X)ξ, ξ〉. Given a bounded measurable function f : Θ → R, one can define the integral
EW (f) :=

∫
Θ
f dW ∈ L(H) as follows. Introduce a measure μW,ξ(X) = 〈W (X)ξ, ξ〉 on

Θ and put 〈EW (f)ξ, ξ〉 =
∫
Θ
f dμW,ξ, for every state ξ ∈ H. In a state ξ, the function f
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becomes a random variable on Θ with respect to the measure μW,ξ with the expectation
〈EW (f)ξ, ξ〉.

Example 1.6. An important class of POVMs is formed by the projector valued measures
P , for which all the operators P (X), X ∈ C are orthogonal projectors. For instance,
every quantum observable A ∈ L(H) with N pairwise distinct eigenvalues gives rise to
the projector-valued measure P := {Pi} on the set ΘN := {1, . . . , N} and a function

λ : ΘN → R such that A =
∑N

i=1 λiPi is the spectral decomposition of A. At a state
ξ, the probability of the outcome λ = λi equals pi = 〈Pξ, ξ〉, which agrees with the
standard statistical postulate of quantum mechanics: the observable A takes value λi

with probability pi. Let us mention that at a pure state ξ the expectation of A equals
〈Aξ, ξ〉 and the variance Var(A, ξ) equals 〈A2ξ, ξ〉 − 〈Aξ, ξ〉2.

Example 1.7. POVMs naturally appear in the context of quantization. This will be
fundamental for our discussion on quantum measurements of semiclassical observables.
Let Θ = M be a quantizable symplectic manifold equipped with the Borel σ-algebra.
Consider a Berezin quantization (T� : C(M,R) → L(H�), � ∈ Λ). The maps T� being
positive, by Riesz theorem, we have EG�

(f) = T�(f) for a POVM G� of M . Fix a
sequence of quantum states ξ� ∈ H�, |ξ�| = 1. In this case the measure μG�,ξ� governs
the distribution of the quantum state ξ� in the phase space. Limits of such measures as
� → 0, which are called semiclassical defect measures (or Husimi measures), has been
studied in the literature, see, e.g., [Z12, Chapter 5].

A somewhat simplistic description of quantum measurement is as follows: an experi-
mentalist, after setting a quantum measuring device (i.e., an L(H)-valued POVM W on
Θ), performs a measurement whose outcome, at every state ξ, is the measure μW,ξ on
Θ. Given a function f on Θ (experimentalist’s choice), this procedure yields an unbiased
approximate measurement of the quantum observable A := EW (f). The expectation of A
in every state ξ coincides with the one of the measurement procedure (hence unbiased),
in spite of the fact that actual probability distributions determined by the observable A
(see Example 1.6 above) and the pair (f, μW,ξ) could be quite different (hence approxi-
mate). In particular, in general, the variance increases under an unbiased approximate
measurement: Var(f, μW,ξ) = Var(A, ξ) + 〈ΔW (f)ξ, ξ〉, where

ΔW (f) := EW (f2)− EW (f)2

is the noise operator. This operator, which is known to be positive, measures the in-
crement of the variance. Furthermore, ΔW (f) = 0 provided W is a projector-valued
measure, and hence every quantum observable admits a noiseless measurement in the
light of Example 1.6.

Example 1.8. In the setting of Example 1.7, the noise operator ΔG�
(f) is given by the

expression T�(f
2) − T�(f)

2 appearing on the left-hand side of the quasimultiplicativity
property (P3). Look now at the case when ξ is an eigenvector of T�(f) with an eigenvalue
λ for a smooth classical observable f on M . The expectation of f with respect to μG�,ξ

equals λ, while the variance coincides with the noise 〈ΔG�
(f)ξ, ξ〉. By (P3), the latter

does not exceed γ|f, f |2�. It follows from the Chebyshev inequality that for every r > 0
(perhaps depending on �)

(6) μG�,ξ({|f − λ| ≥ r}) ≤ γ|f, f |2�
r2

.

This inequality manifests the fact that in the semiclassical limit the eigenfunctions are
concentrated near the energy level {f = λ}, see, e.g., [Z12, 6.2.1]. Note also that (6)

provides a meaningful estimate for the concentration at the quantum length scale r ∼
√
�.
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To compare with, the usual method to estimate the left-hand side of (6) is to build a
local inverse of T (f) − λ on the region {|f − λ| ≥ r}. In this way, we prove that
μG�,ξ({|f − λ| ≥ r}) is in O(�∞) for smooth f and fixed r. More precisely, assuming
that f is smooth, for any N and r > 0 one has

μG�,ξ({|f − λ| ≥ r}) ≤ CN (f, r)�N ,

where CN (f, r) is a positive constant independent of �.

Let A,B ∈ L(H) be a pair of quantum observables. A joint unbiased approximate
measurement of A and B consists of an L(H)-valued POVM W on some space Θ and a
pair of random variables f and g on Θ such that EW (f) = A and EW (g) = B.

Definition 1.9. The minimal noise associated with the pair (A,B) is given by

ν(A,B) := inf
W,f,g

‖ΔW (f)‖1/2op · ‖ΔW (g)‖1/2op ,

where the infimum is taken over all W, f, g as above. (Note: the space Θ is not fixed, it
is varying together with the POVM W .)

The following unsharpness principle (see [PR14, Theorem 9.4.16]) provides a lower
bound on the minimal noise:

(7) ν(A,B) ≥ 1

2
· ‖[A,B]‖op.

It reflects impossibility of a noiseless joint unbiased approximate measurement of a pair
of noncommuting observables.

Fix now any scheme T� of Berezin quantization of a closed quantizable symplectic
manifold (M,ω). Let G� be the corresponding L(H�)-valued POVM on M , i.e., T�(f) =∫
f dG� for every smooth function f on M . In the light of Examples 1.7 and 1.8 above,

the unsharpness principle yields

‖T�(f
2)− T�(f)

2‖1/2op · ‖T�(g
2)− T�(g)

2‖1/2op

≥ ν(T�(f), T�(g)) ≥
1

2
· ‖[T�(f), T�(g)]‖op for all f, g ∈ C∞(M).

(8)

Combining this with (P3) and (P2), we get the following estimate for the minimal noise
of a pair of semiclassical observables.

Proposition 1.10.

(9) γ|f, f |1/22 |g, g|1/22 � ≥ ν(T�(f), T�(g)) ≥
1

2
· (�‖{f, g}‖ − β�2|f, g|1,3).

1.5.2. Joint measurements of the sign. Fix a monotone increasing function u : R →
[−1, 1] that equals −1 on (−∞,−1], satisfies u(z) = z when z is near 0, and equals
1 on [1,+∞). For a function f on M and a positive s � 1, the classical observable
fs := u(f(x)/s) can be viewed as a smooth approximation to the sign of f(x). We refer
to s as the fuzziness parameter.

Suppose that that the set {f = 0, g = 0} is nonempty and

(10) sup
{f=0,g=0}

|{f, g}| > 0.

Assume also that 0 < s ≤ t � 1. In what follows we are focusing on simultaneous approx-
imate measurements of T�(fs) and T�(gt), the semiclassical observables that correspond
to the signs of f and g with the fuzziness parameters s and t, respectively. Note that the
operators (1 + T�(fs))/2 and (1 + T�(gt))/2 can be interpreted as “quasiprojectors” to
the phase space regions {f > 0} and {g > 0}, respectively. Since f and g do not Poisson
commute, such a measurement is in general noisy due to the unsharpness principle.
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Suppose now that s = r�p and t = R�q with R, r > 0, p ≥ 0, q ≥ 0, and p + q ≤ 1.
The standing assumption s ≤ t yields p ≥ q, and r ≤ R if p = q.

Theorem 1.11. Let 0 ≤ q ≤ p ≤ 1/2. There exists constants c+ > c− > 0 depending
only on f, g, u and the metric such that

(11) c−s
−1t−1

� ≤ ν(T�(fs), T�(gt)) ≤ c+s
−1t−1

�

for all sufficiently small � and, in case p = 1/2, for all sufficiently large r.

In particular, if p < 1/2, the minimal noise ν is positive and ∼ �1−p−q, and at the
quantum length scale p = q = 1/2, it is bounded from below by c+R

−1r−1 > 0.

Proof. The result immediately follows from Proposition 1.10. Indeed the upper bound
in (9) is not greater than c1s

−1t−1�, and the lower bound is not less than

(12) c2s
−1t−1

�− c3s
−3t−1

�
2 = c2�s

−1t−1(1− c4�s
−2),

where the ci are positive constants depending only on f, g, u and the metric. Note that
the positivity of c2 follows from assumption (10) on the Poisson non-commutativity of
f and g. Since s−2� = r−2�1−2p, we see that (11) holds for all sufficiently small � if
p < 1/2 and for all sufficiently small � and all sufficiently large r if p = 1/2. �

This result deserves a discussion.

Remark 1.12. Now we are ready to explain the advantages of the reduced expression
|f, g|1,3 (see formula (1)) appearing in the remainder term of the correspondence principle
(P2) as compared to |f, g|4, which includes fourth derivatives. To this end, replace for a
moment |f, g|1,3 in the remainder of (P2) by |f, g|4. Then, accordingly, the lower bound
(12) will be modified as

c2�s
−1t−1 − c3�

2s−4.

The first term on the right-hand side is ∼ �1−p−q and the second term is ∼ �2−4p. Thus,
for the positivity of the right-hand side it is necessary that 3p − q ≤ 1. This inequality
is violated, for instance, in the case where p = 1/2, q = 0, i.e., s ∼ r�1/2 and t ∼ 1.
However, this case can be handled by using the reduced remainder. Indeed, inequality
(11) above yields ν ∼ R−1r−1�1/2 for p = 1/2, q = 0.

Remark 1.13. Consider the following example. Let

M = S2 = {x2 + y2 + z2 = 1} ⊂ R
3

be the standard sphere equipped with the symplectic form of the total area 2π. Put
f = x and g = y. According to the prediction of [Po14] (which was made for a slightly
different measurement scheme), the noise ν of such a measurement satisfies

(13) ν � �

Area(Π)
,

where Π is a “rectangle”

Π = {|x| � s, |y| � t, z > 0} ⊂ S2.

Inequality (13) was proved in [Po14] for s, t ∼ 1. Our methods confirm this prediction for
smaller fuzziness parameters, including the quantum length scales s ∼ r�1/2, t ∼ R�1/2

as well as s ∼ r�1/2, t ∼ 1. Indeed, observe that Area(Π) ≈ st and hence inequality (13)
follows from (11). Note that for s ∼ r�1/2, t ∼ R�

1/2 the rectangle Π is a “quantum
box”: its area is ∼ rR�, the minimal possible (in terms of the power of �) area occupied
by a quantum state.
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Remark 1.14. The minimal noise ν is well defined for arbitrary small fuzziness parameters
s, t. When s and t are smaller than the quantum length ∼

√
�, it is unclear how to

calculate/estimate the minimal noise ν by standard methods of semiclassical analysis.
Indeed, the derivatives of fs and gt blow up and the remainders in (P2), (P3) dominate
the leading terms. In particular, the lower bound in (9) could become negative, and
hence useless. We refer to a forthcoming paper [LFPS16] for a progress in this direction.

1.6. Phase space localization on quantum length scale. Our next application of
the fine structure of the remainders in the Berezin quantization deals with phase space
localization of a quantum particle at small scales. We use a model proposed in [Po14].

Let U = {U1, . . . , UN} be a finite open cover of a closed quantizable symplectic mani-
fold M . Given a partition of unity {f1, . . . , fN} subordinate to U , consider the following
registration procedure: if the system is prepared in a quantum state ξ ∈ H�, |ξ| = 1, it is
registered in the set Ui with probability 〈T�(fi)ξ, ξ〉. Here the cover and the partition of
unity may depend on �. The registration procedure enables one to localize a semiclassical
system in the phase space.

For x ∈ Q := [−1, 1]N put fx :=
∑

xifi. Define

N+ := max
x∈Q

‖T�(f
2
x)− T�(fx)

2‖op

and

N− :=
1

2
· max
x,y∈Q

‖[T�(fx), T�(fy)]‖op.

Observe that N+ ≥ N− by the unsharpness principle (8) above.
The above registration procedure is known to exhibit inherent noise which measures

the unsharpness of the registration procedure. We refer to [Po14] and Chapter 9 of [PR14]
for the precise definition. It is important for us that this noise lies in the interval Inoise :=
[N−,N+], which we shall call the noise interval. The fine remainder estimates obtained
in this paper yield meaningful bounds on the noise interval of the phase space localization
procedure on small scales, up to the quantum length scale.

(♣) The choice of the partition of unity. To start with, let us choose a cover of M
together with a subordinate partition of unity in a special way. Fix r0 > 0 sufficiently
small and for 0 < r ≤ r0 consider a maximal r/2-net {zi} of points in M (with respect to
the Riemannian distance d associated with the metric ρ). This means that d(zi, zj) ≥ r/2
for i �= j and {zi} is a maximal collection with this property. Let U be the cover of M
by metric balls Ui := B(zi, r). Let u : [0,+∞) → [0, 1] be a smooth cut-off function
that equals 1 on [0, 0.6] and vanishes on [0.7,+∞). Define functions gi on M by gi(x) =
u(d(x, zi)/r). It was shown in [Po14] that for all sufficiently small r < r0(M,ω, ρ) there
exists p (depending only on the dimension of M) such that every x ∈ M is covered by
at most p balls Ui. Moreover, the balls B(zi, 0.6r) cover M . Thus, the functions

fi :=
gi∑N
i=1 gi

, i = 1, . . . , N,

form a partition of unity subordinate to U , and moreover, there exists C > 0 such that
for every r ∈ (0, r0) and every i = 1, . . . , N

(14) |fi|k ≤ Cr−k, k = 1, 2, 3.

In what follows we focus on the registration procedure associated with the cover U and
the partition of unity {fi} described in (♣), where the radius r ∈ (0, r0] plays the role of
a parameter. The next result provides bounds for the corresponding noise interval.
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Theorem 1.15. There exist constants 0 < c− < c+ and κ > 0 depending only on
(M,ρ, ω) such that

(15) Inoise ⊂ [c−�r
−2, c+�r

−2]

for any sufficiently small � > 0 and r ∈ [κ�1/2, r0].

Few remarks are in order. Choose R > 0, ε ∈ [0, 1/2] and apply Theorem 1.15 to
r = R�

1/2−ε. If ε = 1/2 and R ∈ (0, r0) is independent of �, then the noise is strictly
positive and of order ∼ � as � → 0. This result, which was proved in [Po14], does
not require fine remainder estimates. The latter enter the play when ε < 1/2. Let us
emphasize also that for ε = 0 and a fixed R ≥ κ, i.e., on the quantum length scale, the
noise is strictly positive and of order ∼ 1 as � → 0.

We also mention that the registration procedure above satisfies noise-localization un-
certainty relation:

(16) Noise×max
i

Size (Ui) ≥ c�,

where Size is a properly defined symplectic invariant of Ui, and c > 0 is independent of �.
Indeed, Noise ∼ �r−2 and since the Ui are Riemannian balls of a sufficiently small radius
r, the size of Ui is ∼ r2. Relation (16) was established in [Po14] for the case ε = 1/2
(i.e., for r ∼ 1) for any partition of unity subordinate to the cover {Ui}. Here we work
on smaller scales up to the quantum length scale. As a price for that, we have to assume
that the derivatives of the functions forming the partition of unity are controlled by (14).

Proof of Theorem 1.15. Throughout the proof we denote by c1, c2, . . . positive constants
independent of r and �. We assume that r ≤ r0.

Observe that, by (14),

(17) |fx|k ≤ pCr−k, k = 1, 2, 3.

Thus by (P3),

N+ ≤ c1�r
−2.

In [Po14, Example 4.5 and formula (28)] it was shown that

μ := max
x,y∈Q

‖{fx, fy}‖ ≥ c2r
−2.

By (P1), (P2), and (17), we have

N− ≥ 1

2
· μ�− c3�

2 max
x,y∈Q

(|{fx, fy}|2 + |fx, fy|1,3) ≥ c4�r
−2 − c5�

2r−4 ≥ �r−2
(
c4 −

c5
κ2

)

provided r ≥ κ�1/2. If κ is sufficiently large, then c4 − c5/κ
2 = c6 > 0. Combining the

upper bound on N+ with the lower bound on N−, we get the desired result. �

Remark 1.16. A reader with a semiclassical background has certainly recognized some
symbol in exotic classes in Theorems 1.11 and 1.15. Recall that these symbols are smooth
functions depending on � and satisfying an estimate of the type |∂αf | ≤ Cα�

−δ|α| for
some fixed δ ∈ [0, 1/2]. The theory of pseudodifferential operators can be extended to
these symbols, providing an important tool in semiclassical analysis. Here these symbols
appear in the functions fs, gt of Theorem 1.11 and in the functions fx of Theorem 1.15.
Observe that (P1)–(P4) are perfectly suited to handle these exotic symbols.
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§2. Constraints on the remainders

In order to illustrate properties (P1)–(P4), we start with proving Theorem 1.2. Our
strategy is to apply these properties to specially chosen symbols pushed to the limits of
pseudo-differential calculus, that is symbols supported in a ball of radius ∼

√
�. Items

(i), (ii), (iii) of the theorem are proved in Subsections 2.2, 2.3 and 2.4, respectively.

2.1. Test balls and scaling relations. Certain constructions below are local, i.e., the
action takes place in a neighbourhood of a point in M . To facilitate the discussion, we
shall fix a test ball B(r) ⊂ M , that is an open ball whose closure lies in a Darboux chart
equipped with coordinates (x1, . . . , x2n). The ball B is given by

{∑
x2
i < r2

}
, where

r ≤ 1. In the chart the symplectic form ω is given by dx1 ∧ dx2 + · · ·+ dx2n−1 ∧ dx2n. It
would be convenient to assume, without loss of generality, that the metric ρ in the chart
is Euclidean. This assumption will change various bounds on the norms of derivatives
|f |N as well as the bounds on the quantities α, β, γ entering (P1)–(P3) by multiplicative
constants whose precise values are irrelevant for our discussion.

In what follows every compactly supported smooth function f ∈ C∞
c (B) is viewed as

a smooth function on M : we extend it by 0.
For a function f ∈ C∞

c (B(1)) and a number s ∈ (0, 1], we define a rescaled function
fs ∈ C∞(B) as follows: fs(x) = f(x/s) for x ∈ B(s) and fs(x) = 0 otherwise. The
following obvious scaling relations turn out to be very useful below:

|fs|k = s−k|f |k, |fs, gs|k = s−k|f, g|k,
|fs, gs|1,3 = s−4|f, g|1,3, |{fs, gs}|k = s−(k+2)|{f, g}s|k.

(18)

2.2. α-remainder. We shall show that, for a test ball B = B2n(1),

(19) α ≥ c · sup
f

‖f‖1+1/n

‖f‖1/nL1
· |f |2

,

where the supremum is taken over all smooth nonconstant nonnegative compactly sup-
ported functions f on B, and c > 0 is a numerical constant. Incidentally, the finiteness
of the supremum on the right-hand side of (19) follows from a generalized interpolation
inequality in [CZ98]. Additionally, our proof shows that the constant c is independent of
the dimension 2n.

Indeed, fix any function f as above. Put fs(x) = f(x/s) with s =
√
t�. Combining

the scaling relations (18) with (P1) and (P4), we see that

‖T�(fs)‖op ≥ ‖f‖ − αt−1|f |2
and

trace(T�(fs)) ≤ (t/(2π))n · ‖f‖L1
(1 + δ�).

Noticing that ‖T�(fs)‖op ≤ trace(T�(fs)) because fs ≥ 0, we get

‖f‖ − αt−1|f |2 ≤ (t/(2π))n · ‖f‖L1
(1 + δ�).

Here t is fixed, and this inequality holds for all �. Sending � → 0, we conclude that

α ≥ u(t) :=
‖f‖ · t− |f |L1

(2π)n · tn+1

|f |2
.

One readily calculates that the maximal value of u equals

c(n) · ‖f‖1+1/n

‖f‖1/nL1
· |f |2

,
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where c(n) = 2πn/(n+1)1+1/n → 2π as n → ∞. This proves (19) with c > 0 independent
on n. �

Remark 2.1. By (P4), d� := dimH� = (2π�)−n ·Vol(M)+O(�−(n−1)). It turns out that
a weaker dimension bound, still capturing the correct order of d� in �, follows from the
norm correspondence (P1):

(20) d� ≥ cα−n
�
−n, c > 0.

The standard quantum mechanical intuition behind this formula is as follows: consider
the partition of M into ∼ Vol(M)�−n “quantum boxes”, i.e., cubes of side ∼

√
�. Since

each box carries ∼ 1 quantum state, and the states corresponding to different boxes are
approximately orthogonal, H contains a subspace of dimension ∼ �−n, which yields (20).
The actual proof follows this idea, with the following amendment. Instead of partitioning
M into quantum boxes, we cover M by ∼ �−n balls of radii ∼

√
� as in (♣) of Subsection

1.6 above, and apply (P1) to a specially chosen subordinate partition of unity. Let us
present the formal argument. Denote by c0, c1, . . . positive constants depending on the
manifold M and the metric ρ. From (♣) it readily follows that for every sufficiently small
r > 0, the manifold M admits a partition of unity f1, . . . , fN with N ≥ c0r

−2n, ‖fi‖ ≥ c1
and |fi|2 ≤ c2r

−2 for all i. By (P1), for all i we have

(21) ‖Ai‖op ≥ c1 − α · c2r−2
�.

Since Ai ≥ 0, it follows that trace(Ai) ≥ ‖Ai‖op. Therefore,

d� = trace(1) =
N∑
i=1

trace(Ai) ≥
N∑
i=1

‖Ai‖op.

Combining (21) with N ≥ c0r
−2n, we get

d� ≥ c0r
−2n(c1 − α · c2r−2

�).

Choosing r = c3α
1/2�1/2 with c3 > 0 sufficiently large, we arrive at (20). �

2.3. β-remainder. Again, we work in a test ball B = B2n(1).

Step 1. Write B = B2n(1). Fix a pair of noncommuting functions f, g ∈ C∞
c (B). Observe

that

‖[T�(f), T�(g)]‖op ≤ 2‖T�(f)‖op · ‖T�(g)‖op ≤ 2‖f‖ · ‖g‖.
We emphasize that the inequality on the right uses the positivity of the Berezin quanti-
zation and in general fails for Weyl-like quantizations (cf. discussion after Theorem 1.2
above). Furthermore,

‖T�({f, g})‖op ≥ ‖{f, g}‖ − α�|{f, g}|2.
Combining these inequalities with the correspondence principle (P2), we see that

(22) �
2(α|{f, g}|2 + β|f, g|1,3) ≥ �‖{f, g}‖ − 2‖f‖ · ‖g‖.

The rest of the proof proceeds by two successive optimizations: first, on the “size” of f, g
through a rescaling to the quantum scale ∼

√
�, and second, on the “shapes” of f and g.

Step 2. Applying the scaling relations to equation (22) above we get

�
2(αs−4|{f, g}|2 + βs−4|f, g|1,3) ≥ �s−2‖{f, g}‖ − 2‖f‖ · ‖g‖.

Put t = s2�−1, a = ‖{f, g}‖, b = 2‖f‖ · ‖g‖ and rewrite this inequality as

α|{f, g}|2 + β|f, g|1,3 ≥ ta− t2b.
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The right-hand side attains the maximum a2/(4b) for t = a/(2b). Note that t = a/(2b)

means that s =
√
a/(2b) · �, and so s ∈ (0, 1) for � sufficiently small. Therefore, for all

f, g ∈ C∞
c (B) with {f, g} �= 0 we have

(23) α|{f, g}|2 + β|f, g|1,3 ≥ ‖{f, g}‖2
8‖f‖ · ‖g‖ .

Step 3. Next, we take f, g in the following special form. Choose non-commuting functions
F,G ∈ C∞

c (B), and put

f = z1/2F sin(z−1G), g = z1/2F cos(z−1G),

where z > 0 plays the role of a parameter. A direct calculation shows that the Poisson
bracket

u := {f, g} = {−F 2/2, G}
is independent of z. At the same time, if ‖F‖ ≤ 1, we have ‖f‖ · ‖g‖ ≤ z.

Recall that by Theorem 1.2 we have a bound α ≥ C1 > 0 with C1 depending only
on (M,ω, ρ). Put Z = ‖u‖2/(12C1|u|2) and observe that for all z ∈ (0, Z] we have
|f, g|1,3 ≤ K · z−3 with some K > 0. Combining this with (23) we conclude that

α|u|2 +Kβz−3 ≥ z−1‖u‖2/8 for all z ∈ (0, Z],

which yields

(24) Kβ ≥ v(z) := z2‖u‖2/8− z3α|u|2 for all z ∈ (0, Z].

Observe now that the function v(z) attains its maximal value cα−2 with c = ‖u‖6/(2 ·
123|u|22) at

z0 = ‖u‖2/(12α|u|2) ∈ (0, Z].

Substituting z0 into (24), we see that β ≥ K−1cα−2, as required.

2.4. γ-remainder. Applying (P3) to T�(fg) and T�(gf) and subtracting we get

‖[T�(f), T�(g)]‖op ≤ 2γ|f, g|2�.
On the other hand, by (P1) and (P2),

‖[T�(f), T�(g)]‖op ≥ �‖{f, g}‖+O(�2).

Combining these inequalities and letting � → 0, we obtain

γ ≥ sup
f,g

‖{f, g}‖
2|f, g|2

> 0,

where the supremum is taken over all pairs of smooth noncommuting functions f and g
on M . �

§3. Quantization of symplectic manifolds

3.1. Preliminaries. Consider a compact manifold M endowed with a volume form μ
and a Hermitian line bundle A → M . The space C0(M,A) of continuous sections of
A has a natural scalar product 〈 · , · 〉 given by integrating the pointwise scalar product

against μ. We denote by ‖ψ‖ = 〈ψ, ψ〉 1
2 the corresponding norm. A bounded operator

P of C0(M,A) is by definition a continuous endomorphism of the normed vector space
(C0(M,A), ‖ · ‖). Its norm is defined by

‖P‖op = sup
‖Ps‖
‖s‖ ,

where s runs over the nonvanishing continuous sections of A. Equivalently, we could
introduce the completion L2(M,A) of the pre-Hilbert space C0(M,A) with 〈 · , · 〉, extend
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P to a bounded operator of L2(M,A), and define ‖P‖op as the norm of the extension.
Actually, the space C0(M,A) is sufficient for our needs, and we will not use its completion
in the sequel.

With any continuous section K of A�A → M2, 1 we associate the endomorphism P
of C0(M,A) given by

(PΨ)(x) =

∫
M

K(x, y) ·Ψ(y)μ(y).

Here the dot stands for the contraction Ay × Ay → C induced by the metric of A. K is
uniquely determined by P and is called the Schwartz kernel of P . M being compact, P is
bounded. The basic estimate we need is the Schur test, see, e.g., [HS78, Theorem 5.2].

Proposition 3.1. Let P be the endomorphism of C0(M,A) with Schwartz kernel K ∈
C0(M2, A � A). Then ‖P‖2op ≤ C1C2 where C1, C2 are the nonnegative real numbers
given by

C1 = sup
x∈M

∫
M

|K(x, · )|μ, C2 = sup
y∈M

∫
M

|K( · , y)|μ.

We shall also need the following easy properties. Let K ∈ C0(M2, A � A) be the
Schwartz kernel of P .

• For any f ∈ C0(M,C), (1 � f)K and (f � 1)K are the Schwartz kernels of Pf
and fP , respectively.

• Let ∇ be a Hermitian connection of A and assume that K is of class C1. Then for
any continuous vector field X of M , (∇X� id)K is the Schwartz kernel of∇X ◦P .
Furthermore, if X is of class C1, the operator P ◦ ∇X : C1(M,A) → C0(M,A)
extends to the bounded operator of C0(M,A) with the kernel −(id � (∇X +
divX))K. Here the divergence is defined by the formula LXμ = div(X)μ.

In the sequel, we often denote an operator and its Schwartz kernel by the same letter.

3.2. Toeplitz operators. As in Subsection 3.1, consider a compact manifold M en-
dowed with a volume form and a Hermitian line bundle A → M . Let H be a finite-
dimensional subspace of C∞(M,A). Let B be the section of A�A defined by

(25) B(x, y) =
N∑
i=1

ei(x)⊗ ei(y), x, y ∈ M,

where (ei, i = 1, . . . , N) is any orthonormal basis of H. The operator Π with Schwartz
kernel B is the projector from C0(M,A) onto H whose kernel is the orthogonal comple-
ment of H in C0(M,A). Even if we are not in a genuine Hilbert space, we call Π an
orthogonal projector. For any f ∈ C0(M), define the Toeplitz operator

T (f) := Πf : H → H.

Here f stands for the multiplication operator by f . The map sending f to T (f) is clearly
linear and positive. Furthermore, T (1) = id.

3.3. Bergman kernels and generalizations. Consider a quantizable symplectic com-
pact manifold (M,ω). Our aim is to produce a Berezin quantization (T� : C0(M) →
L(H�), � ∈ Λ). We will use the integral parameter k instead of � ∈ N 2 having in mind
that � = 1/k. The Hilbert space Hk will be defined as a finite-dimensional subspace
of C∞(M,Ak) with Ak a conveniently defined Hermitian line bundle. The linear map
Tk : C0(M) → L(Hk) will be the corresponding Toeplitz quantization as in Subsection 3.2.

1If E → M and F → N are two vector bundles, E�F → M×N is the vector bundle (π∗
ME)⊗(π∗

NF ),

where πM , πN are the projections from M ×N onto M and N , respectively.
2N is the set Z≥0 of nonnegative integers.



SHARP CORRESPONDENCE PRINCIPLE 191

M being quantizable, it admits a prequantum bundle L, that is a Hermitian line bundle
endowed with a connection ∇ of curvature 1

iω. Consider a complex structure j, which is
not necessarily integrable, but is compatible with ω, meaning that ω(jX, jY ) = ω(X,Y )
for any tangent vectors X,Y ∈ TpM , and if X does not vanish, ω(X, jX) > 0. We denote
by T 1,0M the subbundle ker(j− i) of TM ⊗C. Consider also an auxiliary Hermitian line
bundle A.

For any k ∈ N, let Ak = Lk ⊗ A, and endow the space C0(M,Ak) with the scalar
product defined by integrating the pointwise scalar product against the Liouville volume
μ = ωn/n!. With any finite-dimensional subspace Hk of C∞(M,Ak) we associate a
smooth kernel Bk ∈ C∞(M2, Ak�Ak) defined as in (25). The metrics of L and A induce
the identifications Lx ⊗ Lx � C and Ax ⊗ Ax � C. In the sequel, we shall often view
Bk(x, x) as a complex number through these identifications.

Theorem 3.2. There exists a family (Hk ⊂ C∞(M,Lk⊗A), k ∈ N) of finite-dimensional
subspaces such that for the corresponding family (Bk) and any m ∈ N we have

(26) Bk(x, y) =
( k

2π

)n

Ek(x, y)
∑

�∈Z∩[−m,m/2]

k−�σ�(x, y) +O∞(kn−(m+1)/2),

where 2n is the dimension of M , and

• E is a section of L�L satisfying E(x, x) = 1, |E(x, y)| < 1 if x �= y and for any
vector field Z ∈ C∞(M,T 1,0M), (∇Z � id)E and (id�∇Z)E vanish to second
order along the diagonal of M2 = M ×M ;

• for any � ∈ Z, σ� is a section of A�A. If � is negative, σ� vanishes to order −3�
along the diagonal.

Furthermore, σ0(x, x) = 1 for any x ∈ M .

The notation O∞(kN ) has been introduced by the first author in previous papers
and refers to a uniform control of the section and its successive derivatives. The precise
meaning is as follows. A family (Ψ( · , k) ∈ C∞(M2, Ak � Ak), k ∈ N) is in O∞(kN )
if for any open set U of M2, for any compact subset K of U , for any unitary frames
τA : U → A � A and τL : U → L � L, for any m ∈ N, and for any vector fields X1, . . . ,
Xm of M2, there exists C > 0 such that for any k,

(27) Ψ( · , k) = fkτ
k
L ⊗ τA on U ⇒ sup

K
|X1 . . . Xmfk| ≤ CkN+m.

Observe that one loses a factor k at each derivative, so that condition (27) does not
depend on the choice of the frame τL.

It is not difficult to show that for any σ ∈ C∞(M2, A�A) vanishing to order p along
the diagonal, the family (Ek⊗σ, k ∈ N) is in O∞(k−p/2). So, in Theorem 3.2, the family
(k−�Ek ⊗ σ�) is in O∞(k−�) if � is nonnegative and in O∞(k�/2) if � is negative. We
refer the reader to Subsections 2.2 and 2.3 of [Cha14] for more details and other basic
properties of O∞(kN ).

In the Kähler case, that is when j is integrable and L, A are holomorphic line bundles,
we can define Hk as the space of holomorphic sections of Ak. The corresponding kernel
Bk is called the Bergman kernel. The asymptotics of Bk given in Theorem 3.2 were
deduced in [Cha03] (Corollary 1) from the seminal paper [BdMS76]. A direct proof was
given in [BBS08], cf. also [MM07] and [SZ02] for similar results. In this case, we can
even choose E so that the σ�’s with negative � are identically null.

In the general symplectic case, the spaces Hk are defined in such a way that Bk

admits an asymptotic expansion of this form. The existence of such a quantization was
proved in [Cha14] using the ideas of [BdMG81], cf. also [MM07] and [SZ02] for similar
results. In the construction proposed in [Cha14], we start with any sections E and
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σ0 satisfying the assumptions of Theorem 3.2. We assume also that E(x, y) = E(y, x)

and σ0(x, y) = σ0(y, x), so that the operator Pk with Schwartz kernel
(

k
2π

)n
Ekσ0 is

selfadjoint. One proves that the spectrum Pk concentrates onto 0 and 1, in the sense
that

spec(Pk) ⊂ [−Ck−1/2, Ck−1/2] ∪ [1− Ck−1/2, 1 + Ck−1/2],

where C is a positive constant independent of k. Furthermore, for any k, spec(Pk) ∩
[1− Ck−1/2, 1 + Ck−1/2] consists of a finite number of eigenvalues, each having a finite
multiplicity, and the corresponding eigenvectors are smooth. We define Hk as the sum
of the corresponding eigenspaces

Hk :=
⊕

λ∈spec(Pk)∩[1−Ck−1/2,1+Ck−1/2]

ker(Pk − λ).

Then one proves that the corresponding kernel has the expected behaviour.

3.4. Berezin–Toeplitz operators, (P1) and (P4). Consider a family

(Hk ⊂ C∞(M,Lk ⊗A), k ∈ N)

satisfying the conditions of Theorem 3.2. For any f ∈ C0(M), define the Toeplitz operator

Tk(f) := Πkf : Hk → Hk,

where Πk is the orthogonal projector of C0(M,Ak) onto Hk, as in Subsection 3.2. We
shall show that this construction satisfies properties (P1)–(P4) of Theorem 1.1. We start
with the norm and trace correspondences, because their proofs are very short.

For the estimation of the norm, we will use special vectors of Hk called coherent states.
Let Bk be the Schwartz kernel of Πk. Let x ∈ M and u, v be unitary vectors of Lx and
Ax respectively. Let Ψk be the section of Lk ⊗A defined by

(28) Ψk(y) = Bk(y, x) · (uk ⊗ v) for all y ∈ M,

where the dot stands for the contractions Ak,y ⊗ Ak,x ⊗ Ak,x → Ak,y induced by the
metrics of L and A. Expanding Bk in an orthonormal basis (ek,i, i = 1, . . . , Nk) as in
(25), we see that Ψk belongs to Hk. Furthermore,

(29) ‖Ψk‖2 =

Nk∑
i=1

|ek,i(x)|2 = Bk(x, x),

where we view Bk(x, x) as a number, as explained before Theorem 3.2. We deduce from
Theorem 3.2 that ‖Ψk‖2 ∼ (k/2π)n. When k is sufficiently large, we set Ψn

k = Ψk/‖Ψk‖.

Proposition 3.3. There exists α > 0 such that for any f ∈ C2(M) whose x is a critical
point, and for any k, we have∥∥Tk(f)Ψ

n
k − f(x)Ψn

k

∥∥ ≤ αk−1|f |2.

Furthermore, α does not depend on x, u, and v.

Applying this to a point x where |f | attains its maximum, we deduce that the spectrum
of Tk(f) intersects ‖f‖+ αk−1|f |2[−1, 1]. This implies property (P1).

Proof. Let λ = f(x). Let (U, yi) be a coordinate system centered at x. Let V be a
relatively compact open neighborhood of x contained in U . Write δ =

∑
y2i . Then if x

is a critical point of f , we have

(30) |f(y)− λ| ≤ C1|f |2δ(y) for all y ∈ V,
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where C1 does not depend on y and f . By Theorem 3.2, we have

(31)

∫
V

|Ψn
k|2δ2μ = O(k−2),

∫
M\V

|Ψn
k|2μ = O(k−∞).

Indeed, we can adapt the standard proof of the Kähler case as follows. Recall that
‖Ψk‖2 ∼ (k/2π)n. Furthermore, there exists 0 < r < 1 such that for any y ∈ M \ V we
have |E(y, x)| ≤ r. The second estimate of (31) follows easily from Theorem 3.2. For the
first estimate, we use the fact that there exists C2 > 0 such that |E(y, x)| ≤ e−δ(y)/C2

for any y ∈ V . So, by Theorem 3.2, there exists C3 > 0 such that

|Ψn
k(y)| ≤ kn/2C3e

−kδ(y)/C2 for all y ∈ V,

on U . Write μ = gdy1 ∧ · · · ∧ dy2n and let C4 > 0 be such that |g| ≤ C4 on V . We have∫
U

|Ψopn
k |2δ2μ ≤ knC2

3C4

∫
R2n

e−2k|u|2/C2 |u|4 du

= k−2C2
3C4

∫
R2n

e−2|u|2/C2 |u|4 du.

This proves the first equation in (31).
Now, using equations (31), (30) and the fact that |f(y)−λ| ≤ 2|f |2 on M , we see that

‖(f − λ)Ψopn
k ‖2 =

∫
M

|f(y)− λ|2|Ψopn
k (y)|2μ(y) ≤ Ck−2|f |22

for some C > 0 independent of f . Since ‖Πk‖op ≤ 1, it follows that

‖ΠkfΨ
n
k − λΨn

k‖ ≤ αk−1|f |2,
where α = C1/2. The fact that α may be chosen independently of x, u, and v, follows
from the compactness of M . �

We prove property (P4).

Proposition 3.4. For any k, there exists a sequence (ρ( · , k)) in C∞(M) such that for
any f ∈ C0(M) we have

tr(Tk(f)) =
( k

2π

)n
∫
M

fρ( · , k)μ,

where μ is the Liouville volume. Furthermore, ρ( · , k) = 1 +O(k−1) uniformly on M .

Proof. Denote by hk the metric of Ak. Then

tr(Tk(f)) =
∑
i

〈fek,i, ek,i〉 =
∑
i

∫
M

f(x)hk(ek,i(x), ek,i(x))μ(x)

=

∫
M

f(x)Bk(x, x)μ(x),

where we identify Bk(x, x) with a number as previously. By Theorem 3.2, we know that

Bk(x, x) =
(
k/2π

)n
ρ(x, k), where ρ( · , k) has the asymptotic expansion 1+k−1σ1(x, x)+

k−2σ2(x, x) + . . . �

3.5. Proof of sharp remainder estimates, (P2) and (P3). Our strategy is to
make a detour through the Kostant–Souriau operators and the corresponding Toeplitz
operators, which are well-behaved in terms of commutator estimates. In particular, these
modified Toeplitz operators satisfy a correspondence principle with a remainder better
than (P2), involving only second derivatives. We will then analyse the Toeplitz operators
as perturbation of the former.
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3.5.1. Kostant–Souriau operators. Let us introduce a covariant derivative ∇A of A.
We denote by ∇k the covariant derivative of Lk ⊗ A induced by ∇A and the covariant
derivative ∇ of L. Let f ∈ C1(M) and denote by X its Hamiltonian vector field.3 The
Kostant–Souriau operator associated with f acting on sections of Lk ⊗A is given by

(32) Hk(f) = f + 1
ik∇

k
X .

It was discovered independently by Kostant [Ko70] and Souriau [Sou70] that when A is
the trivial line bundle and ∇A the de Rham derivative, Hk satisfies an exact correspon-
dence principle. For a general pair (A,∇A), we have

(33) [Hk(f), Hk(g)] =
i
kHk({f, g})− 1

k2ΩA(X,Y )

for any f, g ∈ C2(M), where ΩA is the curvature of ∇A.
When f is of class C2, Hk(f) sends C1(M,Ak) into C0(M,Ak), so the same holds

for the commutator [Hk(f),Πk]. By the properties recalled after Proposition 3.1, this
commutator extends to a bounded operator of (C0(M,Ak), ‖ · ‖). When f is smooth, in
[Cha14] it was proved that the norm of [Hk(f),Πk] is in O(k−1). We will extend this to
functions of class C2 and prove that the O(k−1) only depends on the C2-norm of f .

Theorem 3.5. There exists C > 0 such that for any f ∈ C2(M) and any k ∈ N we have∥∥[Hk(f),Πk]
∥∥
op

≤ Ck−1|f |2.

The proof will be given in §4. It is a consequence of Theorem 3.2. Denote by T c
k (f)

the operator

(34) T c
k (f) = ΠkHk(f) : Hk → Hk.

The superscript c stands for correction. Surprisingly, we only need to assume f and g of
class C2 to get the sharp correspondence principle for T c

k .

Proposition 3.6. For any f and g in C2(M), we have

(35) [T c
k (f), T

c
k (g)] =

i
kT

c
k ({f, g}) +O(k−2)|f |2|g|2.

Here it is implicitly meant that the O(k−2)’s do not depend on f or g. More precisely,
the O(k−2) is a term whose uniform norm does not exceed Ck−2, where C depends only
on the family (Hk), but not on f or g. We use the same convention in the sequel.

Proof. A straightforward computation shows that

Πk[Πk, Hk(f)][Πk, Hk(g)]Πk = T c
k (f)T

c
k (g)−ΠkHk(f)Hk(g)Πk.

By Theorem 3.5, the left-hand side is O(k−2)|f |2|g|2. Therefore,

[T c
k (f), T

c
k (g)] = Πk[Hk(f), Hk(g)]Πk +O(k−2)|f |2|g|2.

Using the Kostant–Souriau formula (33) and the fact that ΠkΩA(X,Y )Πk = O(1)|f |1|g|1,
we get (35). �

3In this paper the Hamiltonian vector field Xf of a function f is defined by iXf
ω + df = 0, and the

Poisson bracket is given by {f, g} = −ω(Xf ,Xg).
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3.5.2. Kähler case. We assume in this section that (M,ω, j) is a Kähler manifold, L,
A are holomorphic Hermitian line bundles over M , and the connections ∇ and ∇A are
the Chern connections. Furthermore, Hk is the space of holomorphic sections of Ak.

Lemma 3.7. For any vector field X of M of class C1, we have

Πk∇k
XΠk = −Πk div(Z)Πk,

where Z = 1
2 (X − ijX) and div(Z) is the divergence of Z with respect to the Liouville

form.

Proof. SinceHk consists of holomorphic sections and Z is a section of T 0,1M , Πk∇k
Z
Πk =

0. Since Z is of class C1, the integral
∫
LZ(fμ) vanishes for any smooth function f . We

see that for any s, t ∈ C∞(M,Ak),

〈∇k
Zs, t〉+ 〈s,∇k

Z
t〉+ 〈div(Z)s, t〉 = 0.

Applying this to s, t ∈ Hk, we deduce that Πk(∇Z + div(Z))Πk = 0. Consequently,

Πk∇k
XΠk = Πk∇k

ZΠk +Πk∇k
Z
Πk = −Πk div(Z)Πk,

which was to be proved. �
When X is the Hamiltonian vector field of f ∈ C2(M), we have divX = 0, so that

div(Z) = −i/2 div(jX) = iΔf , where Δ is the holomorphic Laplacian. We deduce
Tuynman’s formula [Tuy87]:

(36) Πki∇XΠk = Πk(Δf)Πk.

Recall that Tk(f) is the Toeplitz operator Πkf : Hk → Hk. By (36), we have

(37) T c
k (f) = Tk(f)− 1

kTk(Δf) = Tk(f) +O(k−1)|f |2.
Let us prove that Tk satisfies the quasi-multiplicativity (P3).

Proposition 3.8. For any functions f ∈ C1(M) and g ∈ C2(M), we have

Tk(f)Tk(g) = Tk(fg) +O(k−1)(|f |0|g|2 + |f |1|g|1),
Tk(g)Tk(f) = Tk(fg) +O(k−1)(|f |0|g|2 + |f |1|g|1).

Proof. Let Y be the Hamiltonian vector field of g. We have

Πkf [Πk, Hk(g)]Πk = Tk(f)Tk(g)− Tk(fg) + ΠkfΠk
1
ik∇

k
Y Πk −Πk

1
ik∇

k
fY Πk.

By Theorem 3.5, the left-hand side is O(k−1)|f |0|g|2. By Lemma 3.7, Πk
1
ik∇k

Y Πk =

O(k−1)|Y |1, so that

ΠkfΠk
1
ik∇

k
Y Πk = O(k−1)|f |0|g|2,

Πk
1
ik∇

k
fY Πk = O(k−1)|fY |1 = O(k−1)(|f |0|g|2 + |f |1|g|1),

(38)

which concludes the proof of the first equation. To get the second, we take the adjoint. �
Finally, we show the sharp correspondence principle (P2).

Proposition 3.9. For any f, g ∈ C3(M), we have

[Tk(f), Tk(g)] =
i
kTk({f, g}) +O(k−2)(|f |1|g|3 + |f |2|g|2 + |f |3|g|1).

Proof. By Proposition 3.8, [Tk(u), Tk(v)] = O(k−1)(|u|0|v|2+ |u|1|v|1) for any u ∈ C1(M)
and v ∈ C2(M). Consequently,

[Tk(Δf), Tk(g)] = O(k−1)(|f |2|g|2 + |f |3|g|1).
Similarly,

[Tk(f), Tk(Δg)] = O(k−1)(|f |1|g|3 + |f |2|g|2).
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Since Tk(u) = O(1)|u|0, we have

[Tk(Δf), Tk(Δg)] = O(1)|f |2|g|2, Tk(Δ{f, g}) = O(1)|f, g|3.
We conclude with Proposition 3.6 by using T c

k (f) = Tk(f)− 1
kTk(Δf). �

3.5.3. Symplectic case. Let us return to the general symplectic case. We do not know
how to generalize Lemma 3.7. Instead, we will use the following result.

Theorem 3.10. There exists C > 0 such that for any Z ∈ C0(M,T 1,0M),

(39)
∥∥ i
k∇

k
Z
Πk

∥∥
op

≤ Ck−1|Z|0 for all k ∈ N,

and if Z is of class C1, then for any

f ∈ C2(M), [Hk(f),
i
k∇

k
Z
Πk] : C∞(M,Ak) → C0(M,Ak)

extends continuously to a bounded operator of (C0(M,Ak), ‖ · ‖k) satisfying
(40)

∥∥[Hk(f),
i
k∇

k
Z
Πk]

∥∥
op

≤ Ck−2(|f |2|Z|0 + |f |1|Z|1) for all k ∈ N.

The proof will be given in §4. A consequence of the first inequality is the following
lemma.

Lemma 3.11. For any X ∈ C1(M,TM), we have

Πk
i
k∇

k
XΠk = O(k−1)|X|1.

Proof. Write X = Z + Z with Z a section of T 1,0M . By (39), we have

(41) Πk
i
k∇

k
Z
Πk = O(k−1)|Z|0.

Taking the adjoint, we get Πk
i
k (∇k

Z + div(Z))Πk = O(k−1)|Z|0. Since div(Z) is in
O(|Z|1) in the uniform norm, we obtain

(42) Πk
i
k∇

k
ZΠk = O(k−1)|Z|1.

Adding (41) and (42), we get the result. �
As a consequence, we have

(43) Tk(f) = T c
k (f) +O(k−1)|f |2.

We also deduce the quasi-multiplicativity (P3).

Proposition 3.12. For any functions f ∈ C1(M) and g ∈ C2(M), we have

Tk(f)Tk(g) = Tk(fg) +O(k−1)(|f |0|g|2 + |f |1|g|1),
Tk(g)Tk(f) = Tk(fg) +O(k−1)(|f |0|g|2 + |f |1|g|1).

Proof. The proof is exactly the same as that of Proposition 3.8 except that we deduce
relations (38) from Lemma 3.11 instead of Lemma 3.7. �

Finally we show the sharp correspondence principle (P2).

Proposition 3.13. For any f, g ∈ C3(M),

[Tk(f), Tk(g)] =
i
kTk({f, g}) +O(k−2)(|f |1|g|3 + |f |2|g|2 + |f |3|g|1).

Proof. Denote by X and Y the Hamiltonian vector fields of f and g. By (43), we have
T c
k ({f, g}) = Tk({f, g}) +O(k−1)|f, g|3. By Lemma 3.11,

[Πk
1
ik∇

k
XΠk,Πk

1
ik∇

k
Y Πk] = O(k−2)|f |2|g|2.

So by Proposition 3.6, it suffices to show that

(44) [ΠkfΠk,Πk
1
ik∇

k
Y Πk] = O(k−2)(|f |1|g|3 + |f |2|g|2).
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Write Y = Z + Z with Z a section of T 1,0M . Doing a straightforward computation, we
obtain

[ΠkHk(f)Πk,Πk
1
ik∇

k
Z
Πk] = Πk[Hk(f),Πk]

1
ik∇

k
Z
Πk +Πk[Hk(f),

1
ik∇

k
Z
Πk]Πk.

By Theorem 3.5 and equation (39), the first term of the left-hand side is O(k−2)|f |2|Z|0.
By (40), the second term is O(k−2)(|f |1|Z|1 + |f |2|Z|0). Consequently,
(45) [ΠkHk(f)Πk,Πk

1
ik∇

k
Z
Πk] = O(k−2)(|f |1|Z|1 + |f |2|Z|0).

Using Lemma 3.11 and equation (39), we deduce from (45) that

(46) [ΠkfΠk,Πk
1
ik∇

k
Z
Πk] = O(k−2)(|f |1|Z|1 + |f |2|Z|0).

Taking the adjoint, we get

(47) [ΠkfΠk,Πk
1
ik (∇

k
Z + div(Z))Πk] = O(k−2)(|f |1|Z|1 + |f |2|Z|0).

By Proposition 3.12, [Tk(f), Tk(v)] = O(k−1)(|f |1|v|1 + |f |2|v|0) for any function v ∈
C1(M). Applying this to v = div(Z) and using (47), we obtain

(48) [ΠkfΠk,Πk
1
ik∇

k
ZΠk] = O(k−2)(|f |1|Z|1 + |f |2|Z|0).

Finally, equation (44) follows from (46) and (48). �

§4. Proofs of Theorems 3.5 and 3.10

Now use explicitly the structure of the kernel Bk given in Theorem 3.2.

4.1. The fundamental estimates. Consider a section E satisfying the same assump-
tions as in Theorem 3.2. The existence of such a section is proved in Lemma 3.2
of [Cha14]. Let U be the open set where E does not vanish. Let ϕ ∈ C∞(U) and
αE ∈ Ω1(U) be defined by

(49) ϕ = −2 ln |E|, ∇L�LE = 1
iαE ⊗ E.

Here ∇L�L is the connection of L�L induced by ∇. So for any vector fields X and Y of

M we have ∇L�L
(X,Y ) = ∇X � id+ id�∇Y , where (X,Y ) is the vector field of M2 sending

(p, q) into X(p)⊕ Y (q).
By Theorem 3.2, ϕ vanishes along the diagonal Δ of M2 and is positive outside Δ.

Furthermore, ϕ and αE possess the following properties:

(i) αE vanishes on TΔ(M
2);

(ii) ϕ vanishes to second order along Δ. For any x ∈ M , the kernel of the Hessian
of ϕ at (x, x) is the tangent space to the diagonal;

(iii) for any f ∈ C∞(M) with Hamiltonian vector field X, g − αE(X,X) vanishes to
second order along Δ, where g(x, y) = f(x)− f(y).

For the proof of these properties, see Proposition 2.15, Remark 2.16, and Proposi-
tion 2.18 in [Cha14].

For any continuous section σ of A�A and k ∈ N, we let Pk(σ) be the operator acting
on C0(M,Lk ⊗ A) with Schwartz kernel knEk ⊗ σ. Here and in the sequel, μ is the
Liouville form ωn/n!.

Lemma 4.1. For any compact subset K of U and any p ∈ N, there exists CK,p such

that for any σ ∈ C0(M2, A�A) whose support is contained in K, we have

for all k ∈ N, ‖Pk(σ)‖op ≤ CK,p|σ|K,pk
−p/2,

where |σ|K,p ∈ R+ ∪ {∞} is the supremum of |σ(z)|(ϕ(z))−p/2 over K \Δ.
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Proof. Assume first that K does not intersect the diagonal of M . Then ϕ takes positive
values on K, so there exists C > 0 such that 1/C ≤ ϕ ≤ C on K. Consequently

|Ek ⊗ σ| ≤ |σ|K,pC
p/2e−k/(2C)

on K and we conclude easily.
Assume now thatK ⊂ V 2 where (V, xi) is a coordinate system ofM such that V 2 ⊂ U .

By Property (ii) and the fact that ϕ is positive outside the diagonal, there exists C > 0
such that

(50) |x− y|2/C ≤ ϕ(x, y) ≤ C|x− y|2

on K. If the support of σ is contained in K, then |σ(x, y)| ≤ Cp/2|σ|K,p|x − y|p on V 2.
Identify V with an open set of R2n. Then we have∫

M

∣∣Pk(σ)(x, y)
∣∣μ(y) ≤ knCp/2|σ|K,p

∫
V

e−k|x−y|2/C |x− y|p dy

≤ knCp/2|σ|K,p

∫
R2n

e−k|x−y|2/C |x− y|p dy

= k−p/2Cp/2|σ|K,p

∫
R2n

e−|x−y|2/C |x− y|p dy

by doing a convenient change of variable

= k−p/2C1|σ|K,p.

In the same way we show that∫
M

∣∣Pk(σ)(x, y)
∣∣μ(x) ≤ k−p/2C2|σ|K,p

for some C2 > 0 independent of σ and k. Applying Proposition 3.1, we conclude that

‖Pk(σ)‖op ≤ C|σ|K,pk
−p/2

with C = max(C1, C2).
Consider now any compact subset K of U . The diagonal Δ being compact, there

exists a finite family (Vi)i=1,...,N of open sets of M such that each Vi is the domain of a
coordinate system, V 2

i ⊂ U , and Δ ⊂
⋃
V 2
i . Then U is covered by the N + 1 open sets

U0 = U \Δ, Ui = V 2
i , i = 1, . . . , N . Choose a subordinate partition of unity fi ∈ C∞(U),

i = 0, . . . , N . If σ is supported in K, fiσ is supported in K ∩ supp fi, and by the first
part of the proof for i = 0 and the second part for i = 1, . . . , �, we have

‖Pk(fiσ)‖op ≤ Ci|fiσ|K∩supp fi,pk
−p/2 ≤ Ci|σ|K,pk

−p/2

for some constants Ci > 0. �

Recall that we denote by Hk(f) the Kostant–Souriau operator (32).

Lemma 4.2. For any p ∈ N and any σ ∈ C∞(M2, A�A) supported in U and vanishing
to order p along the diagonal, there exists C > 0 such that for any f ∈ C2(M), we have

‖Pk(σ)‖op ≤ Ck−p/2,
∥∥[Hk(f), Pk(σ)]

∥∥
op

≤ Ck−p/2−1|f |2.

Proof. This is a consequence of Lemma 4.1. Set K = supp σ. Using Property (ii) as in
(50) and the Taylor formula, we see that |σ|K,p is finite, which proves the first estimate.

To prove the second estimate, we introduce g(x, y) = f(x)− f(y) and the vector field
Y = (X,X) of M2, where X is the Hamiltonian vector field of f . Then on U we have[

(f − i∇X)� id− id� (f + i∇X)
]
E = (g − αE(Y ))E.
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Thus,

[
(f + 1

ik∇
k
X)� id− id� (f − 1

ik∇
k
X)

]
(Ek ⊗ σ) = Ek

((
g − αE(Y ) + 1

ik∇
A�A
Y

)
σ
)
.

Consequently, using the basic facts on Schwartz kernels recalled in Subsection 3.1, we
obtain

(51) [Hk(f), Pk(σ)] = Pk

(
(g − αE(Y ))σ

)
+ 1

ikPk

(
∇A�A

Y σ
)
.

We claim that there exists C > 0 such that for any f ∈ C2(M), we have

(52) |g − αE(Y )| ≤ Cϕ|f |2

on K. This has the consequence that |(g + αE(Y ))σ|K,p+2 ≤ C|f |2|σ|K,p. So by

Lemma 4.1, the first term of the right-hand side of (51) is O(k−p/2−1)|f |2. To prove
(52), introduce a coordinate system (V, xi) such that the closure of V is a compact
subset of U . On V 2 we have

g(x, y) =
2n∑
i=1

gi(x)(yi − xi) +O(ϕ)|f |2

for some functions gi ∈ C1(V ). Similarly, by Property (i), αE vanishes along the diagonal
Δ, whence

αE(Y ) =

2n∑
i=1

hi(x)(yi − xi) +O(ϕ)|X|0.

By Property (iii), (g − αE(Y )) vanishes to second order along Δ, so gi(x) = hi(x) for
any i. Inequality (52) follows.

We shall show that there exists C > 0 such that for any vector field Z of M2 tangent
to Δ, we have

(53) |∇A�A
Z σ| ≤ Cϕp/2|Z|1.

By Lemma 4.1, this has the consequence that the second term on the right in (51) is
O(k−p/2−1)|f |2, which concludes the proof.

Let us prove (53). We denote by O(N) any section vanishing to order N along the

diagonal. Observe that for any vector field Z of M2, ∇A�A
Z σ is O(p − 1). Whenever Z

is tangent to Δ, ∇A�A
Z σ is O(p). So if (V, xi) is a coordinate system as above,

∇A�Aσ =

2n∑
i=1

(dyi − dxi)⊗ ai + dxi ⊗ bi,

where ai = ∇A�A
∂yi

σ is O(p− 1) and bi = ∇A�A
∂xi

+∂yi
σ is O(p).

Now, there exists C ′ > 0 such that for any vector field Z of M2 tangent to Δ of class
C1 and supported in V 2, we have

|(dyi − dxi)(Z)| ≤ C ′ϕ1/2|Z|1, |dxi(Z)| ≤ C ′|Z|0.

This proves (53) for the vector fields supported in V 2. We prove the general case with a
partition of unity argument. �
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4.2. The proof. Recall that we denote by Bk the Schwartz kernel of Πk. Let ψ ∈
C∞(M ×M,R) be supported in U and equal to 1 on a neighborhood of the diagonal. Let
Rk be the operator with Schwartz kernel (1− ψ)Bk. Let (σ�, � ∈ Z) be the same family
as in Theorem 3.2. For any m ∈ N, introduce the operator Rm,k so that

(54) Πk = (2π)−n
∑

�∈Z∩[−m,m/2]

k−�Pk(ψσ�) +Rk +Rm,k.

Each term of the right-hand side of (54) will be denoted generically by Qk. We will prove
that, if m is sufficiently large, then for any vector field Z ∈ C∞(M,T 1,0M) we have[

Hk(f), Qk

]
= O(k−1)|f |2,(55)

i
k∇

k
Z
Qk = O(k−1),(56) [

Hk(f),
i
k∇

k
Z
Qk

]
= O(k−2)|f |2.(57)

After that, we will prove that (56) holds whenever Z is continuous, and (57) holds for
any Z of class C1. Finally we will make explicit the dependence in Z of the O.

The principal terms. For any � ∈ Z, let Q�,k = k−�Pk(ψσ�). By Lemma 4.2, we have

(58) [Hk(f), Q�,k] =

{
O(k−�−1)|f |2 if � ≥ 0,

O(k�/2−1)|f |2 if � ≤ 0.

This proves that Q�,k satisfies (55). To prove the remaining estimates, we use the fact
that

(59) i
k∇

k
Z
Q�,k = Pk(αE(Z, 0)ψσ�) +

i
kPk((∇A

Z
� id)ψσ�

)
,

where αE is as in (49). By Theorem 3.2, αE(Z, 0) vanishes to second order along the
diagonal. By Lemma 4.2, we have

(60) i
k∇

k
Z
Q�,k =

{
O(k−�−1) if � ≥ 0,

O(k�/2−1) if � ≤ 0,

and

(61)
[
Hk(f),

i
k∇

k
Z
Q�,k

]
=

{
O(k−�−2)|f |2 if � ≥ 0,

O(k�/2−2)|f |2 if � ≤ 0,

which proves (56) and (57) for Qk = Qk,�.

The remainders. Denote by B′
k = (1−ψ)Bk and Bm,k the Schwartz kernels of Rk and

Rm,k, respectively. Let ∇k be the connection of Ak � Ak induced by the connections of
A and L.

Recall the class O∞(kN ) introduced after Theorem 3.2. Set

O∞(k−∞) :=
⋂
N>0

O∞(k−N ).

Lemma 4.3. (Bk) belongs to O∞(k−∞). (Bm,k) belongs to O∞(kn−(m+1)/2). In par-
ticular, for any smooth vector fields X1, X2 of M2 and any N we have

∇k
X1

B′
k = O(k−N ), ∇k

X1
∇k

X2
B′

k = O(k−N ),

∇k
X1

Bm,k = O(kn+1/2−m/2), ∇k
X1

∇k
X2

Bm,k = O(kn+3/2−m/2)

uniformly on M2.
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Proof. Observe first that if (Ψ( · , k)) belongs toO∞(kN ) and ξ ∈ C∞(M), then (ξΨ( · , k))
belongs toO∞(kN ). Since the remainder in (26) is inO∞(kn−(m+1)/2), the same holds for
(Bm,k). For the same reason, (Bk) being in O∞(kn), the same holds for (B′

k). Since the
pointwise norm of the section E appearing in (26) satisfies |E| < 1 outside the diagonal,
(Bk) is in O(k−∞) on any compact set not intersecting the diagonal. So (B′

k) is in
O(k−∞). This actually implies that (B′

k) is in O∞(k−∞). Indeed, O∞(kn)∩O(k−∞) =
O∞(k−∞), which follows from the basic interpolation formula: for any open set V of Rm

and compact subset K of V , there exists C > 0 such that for any smooth function f
on V , we have

∑
|α|=1

sup
K

|∂αf | ≤ C
(
sup
V

|f |
)1/2(

sup
V

|f |+
∑
|α|=2

sup
V

|∂αf |
)1/2

.

A proof may be found [Shu78, Lemma 3.2]. �

By writing the Schwartz kernels of [Hk(f), Qk], ∇k
Z
Qk, and [Hk(f),∇k

Z
Qk] in terms

of the Schwartz kernel of Qk, we deduce from Lemma 4.3 that if m is sufficiently large,
then Rk and Rm,k satisfy (55), (56), (57) for smooth f ; so far, without specifying the
dependence of the O’s on f .

To make explicit this dependence, we use the following fact. Consider any family
(τk ∈ C∞(M2, Ak � Ak), k ∈ N) and assume that there exists N ∈ R such that for any
smooth vector field X of M2, we have

∇k
Xτk = O(k−N )

uniformly on M2. Then there exists C > 0 such that, for any continuous vector field X,

(62) |∇k
Xτk| ≤ Ck−N |X|0

onM2. To prove this, we writeX in local smooth frames and use the identities∇k
X1+X2

=

∇k
X1

+ ∇k
X2

and ∇k
gX = g∇k

X . This proves (55) and (57) for Qk = Rk or Rm,k with

actually |f |1 instead of |f |2, because |X0| only depends on the first derivatives of f .

Dependence in Z. We claim that if (Qk, k ∈ N) is such that (56) is true for any Z ∈
C∞(M,T 1,0M), then for any Z ∈ C0(M,T 1,0M) we have

i
k∇

k
Z
Qk = O(k−1)|Z|0.

The proof is the same as that of (62): write Z in local smooth frames of T 1,0M .
Similarly, assume that (56) and (57) hold for any smooth section of T 1,0M ; then for

any Z ∈ C1(M,T 1,0M), we have[
Hk(f),

i
k∇

k
Z
Qk

]
= O(k−2)(|f |2|Z|0 + |f |1|Z|1).

The proof is the same, now with the use of the formula[
Hk(f),

i
k∇

k
gZ

Qk

]
= g

[
Hk(f),

i
k∇

k
Z
Qk

]
+ i

k (X.g) i
k∇

k
Z
Qk,

where X is the Hamiltonian vector field of f .

§5. Bargmann space

In this section, we prove Theorem 1.5 and the version (5) of (P2). It suffices to prove
these estimates for � = 1. Indeed, recall that for any � > 0 and f ∈ L∞(Cn), we denote
by B� the Bargmann space and by T�(f) the Toeplitz operator Π�f : B� → B�. Then we
have a Hilbert space isomorphism

U� : B� → B1, ξ → �
n/2ξ(�1/2 · ).
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We easily check that

(63) T�(f) = U∗
�T1(f�)U�,

where f�(x) = f(�1/2x). Recall the semi-norm | · |′k introduced in (4). Since |f�|′k =

�k/2|f |′k, we see that relation (5) and Theorem 1.5 with � = 1 imply the same results for
any �.

Instead of B1, it will be more convenient to work with the closed subspace B of
L2(Cn, μ) consisting of all functions ξ satisfying ∂ξ/∂zi = − 1

2ziξ for i = 1, . . . , n. B1 and

B are isomorphic Hilbert spaces due to the unitary map ξ → ξe−|z|2/2. Furthermore, for
any f ∈ L∞(Cn), this unitary map conjugates T1(f) with T (f) := Πf : B → B, where Π
is the orthogonal projector of L2(Cn, μ) onto B. So our goal is to prove the following.

Theorem 5.1. For any N ∈ N, there exists CN > 0 such that for any f ∈ C2N
b (Cn) and

g ∈ CN
b (Cn), we have

T (f)T (g) =

N−1∑
�=0

(−1)���
∑

α∈Nn, |α|=�

1

α!
T
(
(∂α

z f)(∂
α
z g)

)
+RN (f, g),

where ‖RN (f, g)‖op ≤ CN

∑N
m=0 |f |′N+m|g|′N−m.

It is well known that the Schwartz kernel of Π is given by

(64) Π(u, v) = (2π)−ne−
1
2 (|u|

2+|v|2)+u·v, u, v ∈ C
n.

It satisfies the identities

|Π(u, v)| = (2π)−ne−
1
2 |u−v|2 ,(65)

Π(u, v)Π(v, w) = (2π)−ne−(v−u)·(v−w)Π(u,w).(66)

Let W : C4n → R be the weight given by

W = 1 + |z1 − z2|+ |z2 − z3|+ |z3 − z4|.

Let N ∈ N. For any measurable function g : C4n → C such that |g|W−N is bounded, we
introduce the following function on C

2n:

K(g)(x1, x4) =

∫
C2n

Π(x1, x2)Π(x2, x3)Π(x3, x4)g(x1, x2, x3, x4) μ(x2)μ(x3).

Lemma 5.2. K(g) is the Schwartz kernel of a bounded operator of L2(Cn, μ). Its uniform
norm satisfies

‖K(g)‖ ≤ CN sup
x∈C4n

(
|g(x)|W−N (x)

)
for some constant CN independent of g.

Proof. This follows from the Schur test. Indeed, by (65), for any x1 ∈ Cn we have∫
Cn

|K(g)(x1, x4)|μ(x4)

≤
∫
C3n

|Π(x1, x2)Π(x2, x3)Π(x3, x4)g(x1, x2, x3, x4)| μ(x2)μ(x3)μ(x4)

≤ CN sup
x∈C4n

(
|g(x)|W−N (x)

)
,
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where CN is the constant

CN =

∫
C3n

e−
1
2 (|x1−x2|2+|x2−x3|2+|x3−x4|2)W (x1, x2, x3, x4)

N μ(x2)μ(x3)μ(x4)

=

∫
C3n

e−
1
2 (|y1|2+|y2|2+|y3|2)(1 + |y1|+ |y2|+ |y3|)N μ(y1)μ(y2)μ(y3).

Similarly,
∫
Cn |K(g)(x1, x4)|μ(x1) ≤ CN supx∈C4n

(
|g(x)|W−N (x)

)
. �

Observe that for f1, f2 ∈ C0
b(C

n), K(1�f1�f2�1) is the product of Toeplitz operators
T (f1)T (f2). In particular K(1� 1� f2 � 1) = T (f2). Here, we denote by 1� f1 � f2 � 1
the functions sending (x1, x2, x3, x4) to f1(x2)f2(x3). In the sequel, abusing notations,
we sometimes write K(f1(z2)f2(z3)) instead of K(1� f1 � f2 � 1).

Lemma 5.3. Let g ∈ C1(C4n) be such that |g|W−N and |f |W−N are bounded, where f
is any partial derivative of g. Then

K
(
(z2,i − z3,i)g

)
= K

(
∂g/∂z2,i

)
, K

(
(z3,i − z2,i)g

)
= K

(
∂g/∂z3,i

)
.

Proof. By (66), we have( ∂

∂z2,i
+ (z2,i − z3,i)

)(
Π(z1, z2)Π(z2, z3)

)
= 0,

( ∂

∂z3,i
+ (z3,i − z2,i)

)(
Π(z2, z3)Π(z3, z4)

)
= 0,

and the result follows by integrating by part. �

Consider now N ∈ N and f, g ∈ C2N
b (Cn). We compute K(f(z2)g(z3)) by replacing

f(z2) with its Taylor expansion around z3,

f(z2) =
∑

α,β∈N
n,

|α|+|β|<2N

1

α!β!
fα,β(z3)(z2 − z3)

α(z2 − z3)
β + rN (z2, z3).

Here for any α, β, we denote by fα,β the derivative ∂α
z ∂

β
z f . Furthermore, for any z2, z3 ∈

Cn, we have

|rN (z2, z3)| ≤ C ′
N |f |′2N

(
1 + |z2 − z3|

)2N
with some constant C ′

N independent of f . By Lemma 5.2,

‖K(rN (z2, z3)g(z3))‖ ≤ C2NC ′
N |f |′2N |g|′0.

Denote by Pα,β the operator K
(
fα,β(z3)(z2 − z3)

α(z2 − z3)
βg(z3)

)
. We have

T (f)T (g) =
∑

α,β∈N
n,

|α|+|β|<2N

Pα,β

α!β!
+K((rN (z2, z3)g(z3)).

In the sequel we say that β ≤ α if β(i) ≤ α(i) for any i = 1, . . . , n.

Lemma 5.4. Let α, β ∈ Nn be such that |α|+ |β| < 2N . If |α| < N and β ≤ α, then

(67) Pα,β =
α!(−1)|α−β|

(α− β)!
T (∂α−β

z (fα,βg)),

and otherwise

(68) ‖Pα,β‖ ≤ CN

N∑
m=0

|f |′N+m|g|′N−m

with some constant CN independent of f and g.
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Proof. First, if for some i we have β(i) > α(i), then by the first identity in Lemma 5.3,
we have Pα,β = 0 and (68) is satisfied. Assume now that β ≤ α. By the first identity in
Lemma 5.3,

Pα,β =
α!

(α− β)!
K
(
fα,β(z3)(z2 − z3)

α−βg(z3)
)
.

If |α| ≥ N , then |α|+ |β|+ |α−β| = 2|α| ≥ 2N , so we can find a multiindex γ ∈ Nn such
that |α|+ |β|+ |γ| = 2N and γ ≤ α− β. By the second identity in Lemma 5.3, we have

Pα,β =
α!(−1)|γ|

(α− β)!
K
(
(z2 − z3)

α−β−γ
(
∂γ
z (fα,βg)

)
(z3)

)
.

Then expanding ∂γ
z (fα,βg) and applying Lemma 5.2 with the weight W−2N , we deduce

that (68) is satisfied. Finally, assume that |α| ≤ N and β ≤ α, so that fα,βg is of class

C|α−β|. Then by second identity in Lemma 5.3, we have

Pα,β =
α!(−1)|α−β|

(α− β)!
K
((
∂α−β
z (fα,βg)

)
(z3)

)
,

and we arrive at (67). �

To finish the proof of Theorem 5.1, we use the following algebraic identity based on
the fact that ∂γ

z fα,β = fα,β+γ .

Lemma 5.5. For any α ∈ Nn, we have∑
β∈N

n,
β≤α

(−1)|α−β|

β!(α− β)!
∂α−β
z (fα,βg) =

1

α!
fα,0g0,α.

Proof. Setting γ = α− β, we have∑
β∈N

n,
β≤α

(−1)|α−β|

β!(α− β)!
∂α−β
z (fα,βg) =

∑
γ∈N

n,
γ≤α

(−1)|γ|

(α− γ)!γ!
∂γ
z (fα,α−γg)

=
∑

δ,γ∈N
n,

δ≤γ≤α

(−1)|γ|

(α− γ)!δ!(γ − δ)!
fα,α−δg0,δ =

∑
δ∈N

n,
δ≤α

1

δ!
C(δ, α)fα,α−δg0,δ,

where

C(δ, α)=
∑

γ∈N
n,

δ≤γ≤α

(−1)|γ|

(α− γ)!(γ − δ)!
=

∑
λ∈N

n,
λ≤α−δ

(−1)|λ−δ|

(α− δ − λ)!λ!
=

{
(−1)|α| if α = δ,

0 otherwise,

which concludes the proof. �

Now we explain the proof of estimate (5). As for the proof of Theorem 1.5, we may
assume that � = 1 and work in B instead of B1. So we need to prove the following.

Theorem 5.6. There exists β′′ such that for any f, g ∈ C3
b(C

n), we have∥∥[T (f), T (g)]− iT ({f, g})
∥∥
op

≤ β′′(|f |′1|g|′3 + |f |′2|g|′2 + |f |′3|g|′1
)
.

Consider the trivial holomorphic line bundle L over Cn with canonical frame s. Define

the metric of L so that |s|2(z) = e−|z|2 . Then the space H of holomorphic sections of
L with finite L2-norm is isomorphic to B1 by the map sending a function ξ ∈ B1 to the

section ξs ∈ H. If we work with the unitary frame t = e−|z|2/2s instead of s, we get an
isomorphism between B and H by sending ξ to ξt. In the sequel, we identify H with B in
this way and more generally, identify the space of continuous sections of L with C0(Cn).
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A straightforward computation shows that the Chern connection ∇ of L is given in
terms of t by

∇t = α⊗ t with α =
i

2

∑
(zidzi − zidzi).

The curvature is 1
iω, where ω is the symplectic form ω = i

∑
dzi ∧ dzi. For any function

f ∈ C1(Cn), introduce the Kostant–Souriau operator

H(f) = f − i∇X ,

where X is the Hamiltonian vector field of f . It acts on functions of class C∞(Cn) by
H(f) = f − iX − iα(X). One easily checks the Kostant–Souriau and Tuynman formulas

[H(f), H(g)] = iH({f, g}), f, g ∈ C1
b(C

n),

ΠH(f)Π = T (f −Δf), f ∈ C2
b(C

n),

where Δ = −
∑

∂2/∂zi∂zi. Furthermore, we have the following result similar to Theo-
rem 3.5.

Lemma 5.7. There exists C > 0 such that for any f ∈ C2
b(C), we have∥∥[H(f),Π]

∥∥
op

≤ C|f2|′.

Proof. By a straightforward computation, we check first that the Hamiltonian vector
field X of f is given by X = i

∑(
(∂f/∂zi)∂zi − (∂f/∂zi)∂zi

)
. Then the Schwartz kernel

of ∇X ◦Π is i
∑

(vi −ui)(∂f/∂zi)(u)Π(u, v). So, the Schwartz kernel of the commutator
[H(f),Π] is m(u, v)Π(u, v) with

m(u, v) = f(u)− f(v)−
∑

(ui − vi)
∂f

∂zi
(v)−

∑
(ui − vi)

∂f

∂zi
(u).

Replacing f(u) by its Taylor expansion at v, we see that

|m(u, v)| ≤ C|f |′2(1 + |u− v|2)
for some constant C independent of f . Applying the Schur test as in the proof of
Lemma 5.2, we conclude the proof. �

Now the proof of Theorem 5.6 is completely similar to that of Proposition 3.9, where
instead of Proposition 3.8 one uses directly Theorem 5.1 with N = 1.
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[Sj08] J. Sjöstrand, Pseudodifferential operators and weighted normed symbol spaces, Serdica Math.
J. 34 (2008), no. 1, 1–38. MR2414412
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