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Abstract. Some known relations for convex polyhedral cones, involving angles or
conical intrinsic volumes, are superficially of a metric character, but have indeed a
purely combinatorial core. This fact is strengthened in some cases, with implications
for valuations on polyhedral cones, and is worked out in the case of the extended
Klivans–Swartz formula.

§1. Introduction

Let C be a convex polyhedral cone in Rd, and let F(C) denote the set of its faces of
dimensions 0, . . . , dimC. For faces F ⊆ G of C, we denote by β(F,G) the internal angle
of G at F and by γ(F,G) the external angle of G at F (see §2). We write o for the face
{o}, where o is the origin of Rd. The angle sum relations∑

F∈F(C)

(−1)dimFβ(F,C) = (−1)dβ(o, C),(1)

∑
F∈F(C)

β(o, F )γ(F,C) = 1,(2)

∑
F∈F(C)

(−1)dimFβ(o, F )γ(F,C) = 0(3)

are well known. Formula (1) is the Sommerville relation. Identities equivalent to gener-
alizations of (2) and (3) appeared first in Santaló’s work on spherical integral geometry;
in particular, a consequence of (2) and (3) is related to the spherical Gauss–Bonnet
theorem. McMullen [12] proved these (and more) relations by a combinatorial approach.

All these relations can be obtained, by integration, from purely combinatorial identi-
ties. A quite general combinatorial version of (1) appeared in [2]; see also §3. For (2)
and (3), let N(C,F ) denote the normal cone of C at its face F . The cones F +N(C,F ),
F ∈ F(C), form a tessellation of Rd. In terms of characteristic functions,

(4)
∑

F∈F(C)

1F+N(C,F )(x) = 1 for x ∈ Rd \ (G1 ∪ · · · ∪Gk),

where G1, . . . , Gk are facets of the cones F + N(C,F ), F ∈ F(C). Integration of this
identity over Rd with the standard Gaussian measure, or over the unit sphere Sd−1 with
respect to the normalized spherical Lebesgue measure, yields relation (2). Similarly, (3)
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can be obtained from the identity

(5)
∑

F∈F(C)

(−1)dimF1F−N(C,F )(x) = 0 for x ∈ Rd \ U,

where U is an exceptional set determined by faces of dimensions less than d − 1. This
identity is due to McMullen; at the beginning of §3 in [12] he indicated a proof, which
was carried out in [17, Theorem 6.5.5].

It is easily seen that (4) can be strengthened to the identity

(6)
∑

F∈F(C)

1relintF+N(C,F )(x) = 1 for x ∈ Rd,

where relint denotes the relative interior. This improvement, namely to an identity for
characteristic functions holding everywhere, is irrelevant for the integration, yet from a
combinatorial point of view, it contains considerably more information.

We can also write (6) as a relation for closed cones, using the identity

(7) 1relintF+N(C,F )(x) =
∑

G∈F(F )

(−1)dimF−dimG1G+N(C,F )(x)

(see §2), which yields

(8)
∑

F∈F(C)

1F+N(C,F )(x) +
∑

F,G∈F(C)
G�F

(−1)dimF−dimG1G+N(C,F )(x) = 1.

Our first goal in this paper is to strengthen (5), proving it without the exceptional set
U . This is in line with some recent efforts, in [9], to remove restrictions for the validity
of certain combinatorial identities for polytopes.

Theorem 1.1. If C ⊂ Rd is a polyhedral cone, not a subspace, then

(9)
∑

F∈F(C)

(−1)dimF1F−N(C,F )(x) = 0

for all x ∈ Rd.

We shall prove Theorem 1.1 in §4, showing that McMullen’s approach in [12], which
uses the incidence algebra of the face lattice, works also at the level of characteristic
functions. For this, we need a version of the Sommerville relation at the same level,
which will be provided in §3.

Recall that a valuation on the set PCd of polyhedral cones in Rd is a mapping ϕ from
PCd into some Abelian group with the property that ϕ(P ∪Q)+ϕ(P ∩Q) = ϕ(P )+ϕ(Q)

whenever P,Q, P ∪Q ∈ PCd.

Corollary 1.1. Let ϕ be a valuation on PCd, and let C ∈ PCd. Then

(10)
∑

F∈F(C)

ϕ(F +N(C,F )) +
∑

F,G∈F(C)

G�F

(−1)dimF−dimGϕ(G+N(C,F )) = ϕ(Rd),

and if C is not a subspace, then

(11)
∑

F∈F(C)

(−1)dimFϕ(F −N(C,F )) = 0.
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By Fk(C) we denote the set of k-dimensional faces of a polyhedral cone C, k ∈
{0, . . . , dimC}. Let Γd denote the standard Gaussian probability measure on Rd. The
conical intrinsic volumes are defined by

vk(C) =
∑

F∈Fk(C)

Γd(F +N(C,F )) =
∑

F∈Fk(C)

β(o, F )γ(F,C)

for C ∈ PCd and k = 0, . . . , d. The second identity follows from a well-known property
of the Gaussian measure (note that vd(C) = Γd(C), and that N(C, o) = C◦, the polar
cone of C). We see that for the special valuation ϕ = vd, (10) and (11) reduce to (2) and
(3) (note that dim(G + N(C,F )) < d in the second sum of (10)). Thus, Corollary 1.1
can be viewed as the most general version of the relations (2) and (3).

Another corollary can be regarded as a general version of the spherical Gauss–Bonnet
relation.

Corollary 1.2. Let ϕ by a valuation on PCd invariant under the orthogonal group O(d),

and let C ∈ PCd. Then

(12) 2
∑

F∈F(C)
2|dimF

ϕ(F +N(C,F )) +
∑

F,G∈F(C)

G�F

(−1)dimF−dimGϕ(G+N(C,F )) = ϕ(Rd).

This follows by adding (10) and (11) and by noting that F −N(C,F ) is the image of
F +N(C,F ) under an orthogonal transformation. Applying (12) to the special valuation
ϕ = vd and assuming that C is not a subspace, we obtain

2
∑
2|k

vk(C) = 1.

For the intersection of the cone C with the unit sphere Sd−1, this yields a version of
the spherical Gauss–Bonnet relation (see, e.g., [17, p. 258], and compare [15, (17.21),
(17.22)]).

Our next topic is the combinatorial core of the extended Klivans–Swartz formula. This
refers to a central hyperplane arrangement A, that is, a finite set of subspaces of Rd of
codimension one. Its intersection lattice L(A) is the set of all intersections of hyperplanes
from A, partially ordered by reverse inclusion. Let μ be the Möbius function of L(A) (see,
e.g., Stanley [20, 3.7], or §2). For j ∈ {0, . . . , d}, let Lj(A) = {S ∈ L(A) : dimS = j}.
The jth-level characteristic polynomial of A is defined by

χA,j(t) =
∑

L∈Lj(A)

∑
S∈L(A)

μ(L, S)tdimS(13)

=

j∑
m=0

ajmtm,(14)

where (14) defines the coefficients ajm, m = 0, . . . , j. We denote by Rj(A) the set of
all j-dimensional cones in the tessellation of Rd induced by A, that is, of all j-faces of
the cones in Rd(A), where the elements of Rd(A) are the closures of the components of
Rd \

⋃
H∈A H. The extended Klivans–Swartz formula says that

(15)
∑

F∈Rj(A)

vk(F ) = (−1)j−kajk

for j ∈ {0, . . . , d} and k ∈ {0, . . . , j}. For j = d, it was proved by Klivans and Swartz [10];
a different proof was given in [8]. The general case is due to Amelunxen and Lotz [1].

The crucial point of (15) is that the left side, which involves the metric functionals vk,
depends only on the partial order of L(A) and thus is a combinatorial quantity. For some
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special cases of (15), from [1] it is obvious that they have a combinatorial character. For
example, if j ∈ {0, 1}, then the values vk(F ) (k ≤ j) are constants, hence (15) follows
from [1, (2.16)]. Also the case k = j of (15) is purely combinatorial, since for L ∈ Lj(A)
we have ∑

F∈Rj(A), F⊆L

vj(F ) = 1,

so that
∑

F∈Rj(A) vj(F ) = |Lj(A)|, as was noted in [1] after Theorem 6.1.

The following theorem reduces the remaining cases of (15) to their combinatorial core.
Recall that subspaces L,M ⊂ Rd are said to be in general position if dim(L ∩ M) =
max{0, dimL + dimM − d}. A subspace L ⊂ Rd is in general position with respect to
L(A) if it is in general position with respect to each element of L(A).

Theorem 1.2. Let A be a central hyperplane arrangement in Rd, and let χA,j(t) =∑j
m=0 ajmtm be its jth-level characteristic polynomial. Let j ∈ {1, . . . , d}. Let L ⊂ Rd

be a subspace that is in general position with respect to L(A).
If dimL = 1, then

(16)
∑

F∈Rj(A)

1{L ∩ F ◦ �= {o}} = 2(−1)jaj0.

If dimL = d− k with k ∈ {1, . . . , j − 1}, then

(17)
∑

F∈Rj(A)

1{L ∩ F �= {o}} = (−1)j−k

[ k∑
i=0

aji +

j∑
i=k+1

aji(−1)i−k

]
.

Relation (16) can be read off from the proof of Theorem 6.1 in [1]. We shall prove
(17) in §5 and show there how Theorem 1.2 yields (15) by integration. This approach
extends the proof that Kabluchko, Vysotsky and Zaporozhets [8] gave for the original
Klivans–Swartz formula (the case where j = d). We think that the combinatorial relation
(17) is of independent interest.

§2. Preliminaries

The d-dimensional real vector space Rd is equipped with its standard scalar product
〈 · , · 〉 and induced norm ‖ · ‖. Its unit sphere is given by Sd−1 = {x ∈ Rd : ‖x‖ = 1}. A
linear hyperplane is a linear subspace of codimension one, and a hyperplane is a translate
of a linear hyperplane. Every hyperplane bounds two closed halfspaces.

By a polyhedron in Rd we understand the intersection of a finite family of closed
halfspaces. The family may be empty, so that by convention also Rd is viewed as a
polyhedron. All polyhedra are convex and closed. A nonempty bounded polyhedron is
called a polytope. A polyhedron P �= ∅ is a polyhedral cone if x ∈ P implies λx ∈ P
for all λ ≥ 0. We denote by Qd the set of polyhedra (since Pd is reserved for the set of
polytopes) and by PCd the set of polyhedral cones in Rd.

The relative interior of a polyhedron (that is, the interior with respect to its affine
hull) is called a ro-polyhedron (this is not a polyhedron, as it is not closed, except if it
is one-pointed). We denote by Qd

ro the set of ro-polyhedra in Rd.
The intersection of a nonempty polyhedron P with a supporting hyperplane is again

a polyhedron; it is called a face of P . The polyhedron P is, by definition, also a face of
itself. A polyhedron P has finitely many faces, of dimensions 0, . . . , dimP . We denote
by Fk(P ) the set of k-dimensional faces of P , for k = 0, . . . , dimP , and by F(P ) the set
of all faces of P .

With a polyhedron P ∈ Qd, we associate the following types of polyhedral cones. The
cone of exterior normal vectors (including the zero vector o) of a polyhedron P at a face
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F is denoted by N(P, F ). The angle cone (also known as tangent cone) of P at a face F
of P is defined by

A(F, P ) = pos(P − z0),

for any z0 ∈ relintF ; here pos denotes the positive hull. The recession cone of P is
defined by

recP = {y ∈ Rd : x+ λy ∈ P for all x ∈ P and all λ ≥ 0}.
At this point, we recall the internal and external angles. With different notation, they

were introduced in [5, Chapter 14] (and generalized in [4]). Let σk denote the spherical
Lebesgue measure on the unit sphere Sk. Let P be a polyhedron, and let F be a face
of P . The internal angle of P at F is defined by

β(F, P ) =
σk−1(A(F, P ) ∩ Sd−1)

σk−1(Sk−1)
with k = dimP.

The external angle of P at F is defined by

γ(F, P ) =
σd−m−1(N(P, F ) ∩ Sd−1)

σd−m−1(Sd−m−1)
with m = dimF.

Let P ∈ Qd be a nonempty polyhedron. For x ∈ Rd, there is a unique point p(P, x) ∈ P
such that ‖x− p(P, x)‖ ≤ ‖x− y‖ for all y ∈ P . This gives rise to the metric projection
p(P, ·) : Rd → P , also called the nearest-point map of P (see, e.g., [16, 1.2]). Since each
polyhedron is the disjoint union of the relative interiors of its faces, for each x ∈ Rd there
is a unique face F ∈ F(P ) with p(P, x) ∈ relintF . Since p(P, x)− x ∈ N(P, F ), relation
(6) follows immediately.

We recall some known facts about valuations. Let S be an intersectional family of
sets, that is, a family satisfying A∩B ∈ S if A,B ∈ S. A valuation on S is a function ϕ
from S into some Abelian group that is additive in the sense that ϕ(A∪B)+ϕ(A∩B) =
ϕ(A) + ϕ(B) for all A,B ∈ S with A ∪ B ∈ S, and satisfies ϕ(∅) = 0 if ∅ ∈ S. The
function ϕ is fully additive if

ϕ(A1 ∪ · · · ∪Am) =
m∑
r=1

(−1)r−1
∑

1≤i1<···<ir≤m

ϕ(Ai1 ∩ · · · ∩ Air)

for all m ∈ N and A1, . . . , Am with A1 ∪ · · · ∪Am ∈ S. We denote by U(S) the family of
all finite unions of elements from S. Then (U(S),∪,∩) is a lattice. The following is Groe-
mer’s [3] (first) extension theorem. The proof can also be found in [16, Theorem 6.2.1].

Theorem 2.1. Let ϕ be a function from an intersectional family S of sets into an Abelian
group such that ϕ(∅) = 0 if ∅ ∈ S. Then the following conditions (a)–(c) are equivalent:

(a) ϕ is fully additive;
(b) if n11A1

+ · · ·+ nm1Am
= 0 with Ai ∈ S and ni ∈ Z for i = 1, . . . ,m, then

n1ϕ(A1) + · · ·+ nmϕ(Am) = 0;

(c) ϕ has an additive extension to the lattice U(S).

A function ϕ on the set PCd of polyhedral cones with values in an Abelian group is
said to be weakly additive if for each C ∈ PCd and each linear hyperplane H with the
corresponding halfspaces H+, H− the relation

ϕ(C) = ϕ(C ∩H+) + ϕ(C ∩H−)− ϕ(C ∩H)

is satisfied. Every additive function on PCd is weakly additive.

Theorem 2.2. Every weakly additive function on PCd with values in an Abelian group
is fully additive on PCd.
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This is similar to the corresponding theorem for polytopes, see [16, Theorem 6.2.3].
It can also be proved in a similar way, replacing polytopes by polyhedral cones and
hyperplanes by linear hyperplanes.

If now ϕ is a valuation on PCd, then by Theorem 2.2 it is fully additive. By Theo-
rem 2.1, it has an additive extension to U(Qd

ro). The elements of U(Qd
ro) are finite unions

of ro-polyhedra and are called generalized ro-polyhedra. For a valuation ϕ on PCd, as-
sertion (b) of Theorem 2.1 with S = PCd is valid. This is the reason why Corollaries 1.1
and 1.2 follow from (8) and (9).

An important example of a valuation is the Euler characteristic. An elementary ex-
istence proof was given by Hadwiger [6] for finite unions of convex bodies. The fact
that his proof extends to unbounded and to relatively open convex sets was pointed out
(and generalized) by Lenz [11]. For completeness, we present here the short extension of
Hadwiger’s proof to generalized ro-polyhedra.

Theorem 2.3 (and Definition). There is a unique real valuation χ on U(Qd
ro), the Euler

characteristic, with
χ(Q) = (−1)dimQ for Q ∈ Qd

ro \ {∅}.
It satisfies χ(P ) = 1 if P ∈ Qd \ {∅} is compact.

Proof. Existence is proved by induction on the dimension. The zero-dimensional case
being trivial, we assume that d ≥ 1 and that the existence of χ has been proved in affine
spaces of dimension less than d. Let u ∈ Rd \ {o}, and let Hλ = {x ∈ Rd : 〈u, x〉 = λ}
for λ ∈ R. For a generalized ro-polyhedron Q ∈ U(Qd

ro), we define

(18) χ(Q) := − lim
μ→−∞

χ(Q ∩Hμ) +
∑
λ∈R

[
χ(Q ∩Hλ)− lim

μ↓λ
χ(Q ∩Hμ)

]
.

This definition makes sense for the following reasons. First, each Q ∩ Hλ, λ ∈ R, is a
generalized ro-polyhedron in an affine space of dimension d − 1, so that χ(Q ∩ Hλ) is
defined. Second, since Q is the disjoint union of finitely many ro-polyhedra Q1, . . . , Qr,
there are finitely many numbers λ1, . . . , λs such that for λ in any of the components of
R \ {λ1, . . . , λs}, the dimension of Qi ∩ Hλ is independent of λ for i = 1, . . . , r (where
dim∅ = −1, by definition). Thus, λ �→ χ(Q ∩Hλ) is constant on each such component.
This shows, third, that all limits in (18) exist, and the sum is finite. The induction
hypothesis implies that the function χ thus defined on U(Qd

ro) is a valuation. Now let
Q ∈ Qd

ro. If Q is contained in some Hλ, then χ(Q) = (−1)dimQ by the induction
hypothesis. If Q is not contained in some Hλ, then the right-hand side of (18) gives
−(−1)dimQ−1 + 0 = (−1)dimQ if Q ∩ Hλ �= ∅ for all large −λ, and otherwise it gives
0 + (0 − (−1)dimQ−1) = (−1)dimQ. Similarly, we obtain χ(P ) = 1 if P ∈ Qd \ {∅} is
compact. The uniqueness of χ is clear, because each Q ∈ U(Qd

ro) is a disjoint union of
ro-polyhedra. �

The following consequence is simple, but useful. It was, in fact, the reason for consid-
ering ro-polyhedra.

Lemma 2.1. If a generalized ro-polyhedron Q ∈ U(Qd
ro) is the disjoint union of ro-

polyhedra Q1, . . . , Qm ∈ Qd
ro, then

m∑
i=1

(−1)dimQi = χ(Q).

In fact, since Qi ∩Qj = ∅ for i �= j, the additivity of χ yields
m∑
i=1

(−1)dimQi =
m∑
i=1

χ(Qi) = χ

( m⋃
i=1

Qi

)
= χ(Q).
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In particular, since a polyhedron P ∈ Qd is the disjoint union of the relative interiors
of its faces, we immediately obtain the Euler relation

(19)
∑

F∈F(P )

(−1)dimF = χ(P ).

For a polyhedral cone C ∈ PCd, it is easily seen that

(20) χ(C) =

{
0 if C is not a subspace,

(−1)dimC if C is a subspace.

Applying this to the angle cone of a polyhedron P ∈ Qd at one of its faces F �= P , we
obtain the local Euler relation

(21)
∑

F⊆J∈F(P )

(−1)dimJ = 0, F ∈ F(P ) \ {P}.

Now we recall some facts about posets (partially ordered sets). Let (S,�) be a finite
partially ordered set. The elements of the incidence algebra I(S) are the real functions ξ
on the ordered pairs (S, T ) of elements of S with the property that ξ(S, T ) = 0 if S �� T .
Addition is the pointwise addition of functions, and multiplication is defined by

(ξ ◦ η)(S, T ) =
∑

J∈I(S)

ξ(S, J)η(J, T ).

This yields an associative algebra. One defines the functions

δ(S, T ) :=

{
1 if S = T ,

0 if S �= T ,
ζ(S, T ) :=

{
1 if S � T ,

0 if S �� T ,

so that δ is the unit element of the incidence algebra. The Möbius function of I(S) is
defined recursively by

μ(S, S) = 1, μ(S, T ) = 0 if S �� T,

μ(S, T ) = −
∑

S	J�T

μ(S, J) if S � T

for S, T ∈ S. Then μ ◦ ζ = δ = ζ ◦ μ.
If P ∈ Qd is a nonempty polyhedron, the Möbius function of its face lattice (F(P ),⊆),

partially ordered by inclusion, is given by

(22) μ(F,G) = (−1)dimG−dimF , F,G ∈ F(P ), F ⊆ G,

(and μ(F,G) = 0 if F �⊆ G). This follows immediately from (21).
To prove (7), let C ∈ PCd and F ∈ F(C). We fix x ∈ Rd and write ψ(M) :=

1M+N(C,F )(x) for subsets M ⊆ F . Let G ∈ F(F ). Since G is the disjoint union of the
relative interiors of its faces, and since F and N(C,F ) are totally orthogonal, we have

ψ(G) =
∑

J∈F(G)

ψ(relint J).

This yields ∑
G∈F(F )

(−1)dimGψ(G) =
∑

G∈F(F )

(−1)dimG
∑

J∈F(G)

ψ(relint J)

=
∑

J∈F(F )

ψ(relint J)
∑

J⊆G∈F(F )

(−1)dimG

= ψ(relintF )(−1)dimF ,
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where (21) was used. This is relation (7).
It remains to prove Theorems 1.1 and 1.2. For the first, we need a combinatorial

version of the Sommerville relation. We prove a more general version, for arbitrary
polyhedra, in the next section.

§3. The combinatorial Brianchon–Gram–Sommerville relation

The combinatorial Brianchon–Gram–Sommerville relation, which we now derive, ex-
tends, at the level of characteristic functions, the classical angle sum relations of Gram
(or Brianchon–Gram) for bounded polyhedra and of Sommerville for polyhedral cones.
Both angle sum relations were unified and extended to arbitrary polyhedra by McMullen
in [13], to which we also refer for historical remarks and references. A formulation at
the level of scissors congruence (less general than (23)) can be found in McMullen [14,
Theorem 4.15]. The result can also be deduced from investigations of Chen [2]. For the
reader’s convenience, we give a shorter proof, extending the approach of McMullen [13],
which in its turn was motivated by a simple proof of Gram’s relation due to Shephard [18].

Theorem 3.1. For a polyhedron P ∈ Qd,

(23)
∑

F∈F(P )

(−1)dimF1relintA(F,P )(x) = (−1)dimP1− recP (x)

for x ∈ Rd \ {o}.

Proof. Let P ∈ Qd and x ∈ Rd \ {o}. If x /∈ lin(P − P ), then both sides of (23) are
zero. Therefore, we need only consider points in lin(P − P ). This means that without
loss of generality we can (and will) assume that dimP = d. For x ∈ Rd \ {o}, let Hx

be a hyperplane orthogonal to x, let Πx be the orthogonal projection to Hx, and let
Px = Πx(P ). Let

F(P, x) := {F ∈ F(P ) : dimF ≤ d− 1, x ∈ intA(F, P )}.
First, suppose that x /∈ − recP . For each F ∈ F(P, x), the projection Πx(F ) is a

polyhedron in Hx, whose relative interior is contained in the relative interior of Px. The
ro-polyhedra

Πx(relintF ) with F ∈ F(P, x)

form a disjoint decomposition of relintPx. Therefore, Lemma 2.1 gives∑
F∈F(P,x)
dimF≤d−1

χ
(
Πx(relintF )

)
= χ(relintPx).

For F ∈ F(P ) with dimF ≤ d− 1 we have

F ∈ F(P, x) ⇔ x ∈ intA(F, P ) ⇔ 1intA(F,P )(x) = 1,

whence ∑
F∈F(P )

dimF≤d−1

(−1)dimF1intA(F,P )(x) = (−1)d−1.

This holds if x /∈ −recP . If x ∈ −recP \ {o}, then F(P, x) = ∅, hence 1intA(F,P )(x) = 0

for all F ∈ Fj(P ), j ∈ {0, . . . , d− 1}. Thus, for arbitrary x ∈ Rd \ {o} we have∑
F∈F(P )

dimF≤d−1

(−1)dimF1intA(F,P )(x) = (−1)d−1
(
1− 1−recP (x)

)
,

which can be written in the form (23) because intA(P, P ) = Rd. �
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Clearly, integrating (23) with the Gaussian measure Γd, we obtain an angle sum
relation, which reduces to (1) in the case of a polyhedral cone.

§4. Proof of Theorem 1.1

We prove a more general relation, for an arbitrary nonempty polyhedron P ∈ Qd. Let
E �= P be a face of P . Then we claim that

(24)
∑

E⊆F∈F(P )

(−1)dimF1A(E,F )−N(P,F )(x) = 0

for x ∈ Rd. For x = o, this follows from (21), hence in the following we may assume that
x ∈ Rd \{o}. Theorem 1.1 is a special case of (24). In fact, if P = C is a polyhedral cone
and E = {o}, then (9) follows from (24), because A(o, F ) = F for the cones F ∈ F(C).

The proof of (24) requires a few preparations. If F is a face of the polyhedron P , we
denote by L(F ) := lin(F −F ) the linear subspace that is parallel to the affine hull of F ,
and by F⊥ the orthogonal complement of L(F ).

Applying (6) to the angle cone A(E,P ), we obtain∑
F ′∈F(A(E,P ))

1relintF ′+N(A(E,P ),F ′) = 1.

Let z0 ∈ relintE. Since the faces F ′ of A(E,P ) are in one-to-one correspondence with
the faces F of P satisfying E ⊆ F and such that F ′ = pos(F − z0), we have

A(E,F ) = F ′ and N(A(E,P ), F ′) = N(P, F ).

It follows that

(25)
∑

E⊆F∈F(P )

1relintA(E,F )+N(P,F ) = 1.

We have A(E,F ) ⊆ L(F ) and N(P, F ) ⊆ F⊥. Hence, if x = x1+x2 with x1 ∈ L(F ) and
x2 ∈ F⊥, then

x ∈ relintA(E,F ) +N(P, F ) ⇔ x1 ∈ relintA(E,F ) ∧ x2 ∈ N(P, F )

⇔ x ∈ relintA(E,F ) + F⊥ ∧ x ∈ N(P, F ) + L(F ).

Therefore, (25) is equivalent to

(26)
∑

E⊆F∈F(P )

1relintA(E,F )+F⊥1N(P,F )+L(F ) = 1.

Next, applying (23) to the angle cone A(E,P ) and observing that recA(E,P ) =
A(E,P ), we obtain

(27)
∑

E⊆F∈F(P )

(−1)dimF1relintA(F,P )(x) = (−1)dimP1−A(E,P )(x)

for x ∈ Rd \ {o}. Let G be a face of P with E ⊆ G. Relation (27) for P = G reads

(28)
∑

E⊆F⊆G

(−1)dimF1relintA(F,G)(x) = (−1)dimG1−A(E,G)(x)

for x ∈ Rd \ {o}. For x /∈ L(G), both sides of (28) are zero. If we write x = x1 + x2 with
x1 ∈ L(G) and x2 ∈ G⊥, we have

1relintA(F,G)+G⊥(x) = 1 ⇔ 1relintA(F,G)(x1) = 1,

1−A(F,G)+G⊥(x) = 1 ⇔ 1−A(F,G)(x1) = 1.
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Therefore, (28) can equivalently be written as

(29)
∑

E⊆F⊆G

(−1)dimF1relintA(F,G)+G⊥(x) = (−1)dimG1−A(E,G)+G⊥(x)

for x ∈ Rd \ {o}.
Now we are in a position to complete the proof of (24). Following McMullen [12],

we use the incidence algebra of the face lattice of P , for which the functions δ, ζ, μ were
defined in §2. We fix a vector x ∈ Rd \ {o} and define the following functions of the
incidence algebra:

B(F,G) = 1relintA(F,G)+G⊥(x),

B(F,G) = (−1)dimG−dimF1−A(F,G)+G⊥(x),

Γ(F,G) = 1N(G,F )+L(F )(x)

for F,G ∈ F(P ). Then relations (29) and (26) (for P = G) say that

μ ◦B = B, B ◦ Γ = ζ.

Therefore,

B ◦ Γ = (μ ◦B) ◦ Γ = μ ◦ (B ◦ Γ) = μ ◦ ζ = δ.

In particular, for F ∈ F(P ) \ {P} this gives

(B ◦ Γ)(F, P ) = 0.

Explicitly, this reads∑
E⊆F∈F(P )

(−1)dimF−dimE1−A(E,F )+F⊥(x)1N(P,F )+L(F )(x) = 0.

It holds for all x ∈ Rd \ {o} and can equivalently be written in the form (24).

§5. Proof of Theorem 1.2

The notation in the following is as in Theorem 1.2 and in §2 in general. Let A be
a central hyperplane arrangement in Rd, and let L ⊂ Rd be a subspace of dimension
k ∈ {2, . . . , d − 1} that is in general position with respect to A. Then AL denotes the
central arrangement in L given by the (k − 1)-subspaces H ∩ L, H ∈ A.

We write rj(A) = |Rj(A)|. As mentioned, relation (16) was essentially proved in [1].
For j = 1, it follows from [1, (2.16)], so let j ≥ 2. Let H be a linear hyperplane which is
in general position with respect to A. Deleting the expectations in the displayed formula
before (6.2) in [1], we see that

rj−1(AH) =
∑

F∈Rj(A)

1{H ∩ F �= {o}} =
∑

F∈Rj(A)

[
1− 1{H ∩ F = {o}}

]
.

Since H is in general position with respect to A, we have H ∩F = {o} ⇔ H⊥∩F ◦ �= {o}
(see [1, Lemma 2.4]). Thus,

rj−1(AH) = rj(A)−
∑

F∈Rj(A)

1{H⊥ ∩ F ◦ = {o}}.

In [1, Lemma 6.2] it was shown that rj−1(AH) = rj(A) − (−1)j2aj0. With H⊥ := L,
this gives (16).

Turning to (17), suppose that L ⊂ Rd is a subspace in general position with respect
to L(A). The case of (17) dimL = 1 (and hence j = d, k = d−1) is trivial, because then

the left-hand side of (17) is equal to 2, and
∑d

i=0 adi = 0 and add = 1 (by the definition
of the Möbius function).



COMBINATORIAL IDENTITIES FOR POLYHEDRAL CONES 219

Let dimL ≥ 2. Let μL denote the Möbius function of L(AL). From the definition of
the Möbius function one can deduce that μ(S, T ) = μL(S ∩ L, T ∩ L) for S, T ∈ L(A)
(see the details in the proof of Lemma 6.2 in [1]). By (13),

χAL,j−k(t) =
∑

L′∈Lj−k(AL)

∑
S∈L(AL)

μL(L
′, S)tdimS

=

j−k∑
r=0

∑
L′∈Lj−k(AL)

∑
S∈Lr(AL)

μL(L
′, S)tr.

Writing

χAL,j−k(t) =

j−k∑
r=0

cjrt
r,

we have

cjr =
∑

L′∈Lj−k(AL)

∑
S∈Lr(AL)

μL(L
′, S) =

∑
L∈Lj(A)

∑
S∈Lr+k(A)

μ(L, S) = aj(r+k).

Therefore,

χAL,j−k(t) = cj0 +

j∑
i=k+1

ajit
i−k.

From

χAL,j−k(1) =
∑

L′∈Lj−k(AL)

∑
S∈L(AL)

μL(L
′, S) =

∑
L∈Lj(A)

∑
S∈L(A)

μ(L, S) = χA,j(1)

we get

cj0 +

j∑
i=k+1

aji =

j∑
r=0

ajr,

which gives

(30) χAL,j−k(t) =
k∑

i=0

aji +

j∑
i=k+1

ajit
i−k.

A result of Zaslavsky [21] (see also [19, Theorem 2.6]) says that

rj(A) = (−1)jχA,j(−1).

This gives

(31)
∑

F∈Rj(A)

1{L ∩ F �= {o}} = rj−k(AL) = (−1)j−kχAL,j−k(−1).

Now (31) and (30) yield (17). This completes the proof of Theorem 1.2.
From the combinatorial result of Theorem 1.2, the extended Klivans–Swartz for-

mula (15) can now be obtained by integration. Let G(d, k) be the Grassmannian of
k-dimensional linear subspaces of Rd, and let νk denote its rotation invariant probability
measure. For cones C ∈ PCd, one defines

Uj(C) =
1

2

∫
G(d,d−j)

1{L ∩ C �= {o}} νd−j(dL), j = 1, . . . , d,

and Ud(C) = Ud+1(C) = 0. It follows from the spherical (or conical) kinematic formula of
integral geometry (see, e.g., [17, 6.63], but observe that the present vj are there denoted
by vj−1) that

vj(C) = Uj−1(C)− Uj+1(C) for j = 1, . . . , d.
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Now integration of (16) with ν1 over G(d, 1) gives on the left-hand side∑
F∈Rj(A)

2Ud−1(F
◦) =

∑
F∈Rj(A)

2vd(F
◦) =

∑
F∈Rj(A)

2v0(F )

(see [17, 6.5]), so that (15) for k = 0 results. For k ≥ 1 we obtain (using that νm-almost
all L ∈ G(d,m) are in general position with respect to L(A) and that νm is normalized),∑
F∈Rj(A)

vk(F ) =
∑

F∈Rj(A)

[
Uk−1(F )− Uk+1(F )

]

=
∑

F∈Rj(A)

[
1

2

∫
G(d,d−k+1)

1
{
L ∩ F �= {o}

}
νd−k+1(dL)

− 1

2

∫
G(d,d−k−1)

1
{
L ∩ F �= {o}

}
νd−k−1(dL)

]

=
1

2
(−1)j−k−1

[ k−1∑
i=0

aji +

j∑
i=k

aji(−1)i−k+1 −
k+1∑
i=0

aji −
j∑

i=k+2

aji(−1)i−k−1

]

= (−1)j−kajk,

which is (15) for k ≥ 1.
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