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A QUEST FOR 5-POINT CONDITION OF ALEXANDROV’S TYPE

A. PETRUNIN

Easy reading for professionals

Abstract. A description of Alexandrov’s 4-point comparison via quadratic forms
is given and a natural 5-point condition which might have future applications is
proposed.

Associated form

We construct a quadratic form Wx on R
n−1 for a given n-point array x = (x1, . . . , xn)

in a metric space X.
For this, we fix a nondegenerate simplex � in R

n−1 and denote by v1, . . . , vn its
vertices. If (e1, . . . , en−1) is the standard basis on R

n−1, we may assume that vi = ei for
i < n and vn = 0.

Let |a− b|X denote the distance between points a and b in the metric space X. Note
that the formula

Wx(vi − vj) = |xi − xj |2X
for all i and j determines uniquely a quadratic form Wx.

This quadratic form Wx will be called the form of the point array x with respect to
the simplex �.

Note that an array x = (x1, . . . , xn) in a metric space X is isometric to an array in
Euclidean space if and only if Wx(v) ≥ 0 for any v ∈ R

n−1.
In particular, the condition Wx ≥ 0 for triples of points means that all three triangle

inequalities hold true.

Alexandrov’s 4-point comparison

Now we discuss the relationship between the form of quadruples and geometry of the
space. In this case � is a tetrahedron on R

3.
From the 3-point case, it follows that Wx is nonnegative on every plane parallel to a

face of the tetrahedron �. In particular, Wx can have at most one negative eigenvalue.
Assume that Wx(w) < 0 for some w ∈ R

3. From the above it follows that w is
transversal to each of 4 planes parallel to a faces of �.

Consider the projection of � along w to a transversal plane. Note that in the projec-
tion the 4 vertices of � lie in general position, that is, no three of them lie on one line.

Quad(4) Quad(3)

Therefore, we can see one of the two combinatorial
pictures shown on the diagram. It is easily seen that
the combinatorics of the picture does not depend on
the choice of w. If we see the diagram on the left,
we say that x is of type Quad(4) and otherwise we
say that it is of type Quad(3).
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The following statements give a relationship between the forms Wx of the quadruple
x and the curvature bounds in the sense of Alexandrov. The proofs are left to the reader.

Assume X is a complete space with intrinsic metric. The following statements hold
true.

• If Wx ≥ 0 for any quadrilateral x = (x1, . . . , x4), then X is isometric to a closed
convex set in a Hilbert space.

• X has no quadruples of type Quad(3) if and only if X has nonnegative curvature
in the sense of Alexandrov; in this case we say that X is an Alex[0] space.

• X has no quadruples of type Quad(4) if and only if X is a CAT[0] space, which
is also called a Hadamard space

5-point conditions

Let us try to do the same for 5-points arrays x = (x1, . . . , x5) in a metric space. Its
form Wx is defined on R

4 and it must be nonnegative on any plane parallel to any of 10
two-dimensional faces of the 4-simplex �. In particular, Wx has at most two negative
eigenvalues.

In the case where Wx has exactly two negative eigenvalues, one can choose a plane Π
such that the restriction of Wx to Π is negative. Let us project� along Π to a transversal
plane. The same argument as in the case of n = 4 shows that after projection the vertices
of� lie in general position. Therefore we may get one of the following three combinatorial
pictures.

Pent(5) Pent(4) Pent(3)

That is, for any 5-point array x, ei-
ther Wx has at most one negative eigen-
value or it has exactly two negative
eigenvalues and belongs to one of the
three types Pent(5), Pent(4) or Pent(3).

We may consider metric spaces that
do not admit 5-point arrays of some of these types. For example, a Pent(̂3,̂4) space is a
complete length-metric space without 5-point arrays of type Pent(3) and Pent(4).

Here are some easy observations about these new classes of metric spaces.

(i) Any CAT[0] space is a Pent(̂3,̂4,̂5) space. In other words, the form Wx for any
5-point array x in any CAT[0] space has at most one negative eigenvalue.

(ii) Any Alex[0] space has no 5-point arrays of type Pent(3) or Pent(4), that is, it is

a Pent(̂3,̂4) space.
(iii) If a complete Riemannian manifold M has no 5-point arrays of type Pent(5),

then it is simply connected and it has nonpositive sectional curvature.

Question. Do Pent(̂3,̂4) spaces have meaningful geometry?

I find this question interesting because the Pent(̂3,̂4) spaces include all CAT[0] as well
as Alex[0] spaces, i.e., all Alexandrov spaces with nonnegative and nonpositive curvature.
Therefore, a positive answer to the above question might lead to a uniform treatment of
these two types of spaces.

We present a couple of examples of properties shared by CAT[0] and Alex[0] spaces.

• Two minimizing geodesics with common ends and yet one common point must
coinside.

• A plane with metric induced by norm is CAT[0] or Alex[0] only if the norm is
Euclidean.

At the moment I do not know if the same holds true for Pent(̂3,̂4) spaces.
Here is another question related to observations (i) and (iii).
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Question. Is it true that any Pent(̂3,̂4,̂5) space with intrinsic metric is CAT[0]?
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