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RECTANGULAR LATTICES OF CYLINDRICAL QUANTUM

WAVEGUIDES. I. SPECTRAL PROBLEMS ON A FINITE CROSS

F. L. BAKHAREV, S. G. MATVEENKO, AND S. A. NAZAROV

Abstract. The spectrum of truncated cross-shaped waveguides is studied under the
Dirichlet conditions on the lateral surface and various boundary conditions on the
ends of the column and the cross bar. The monotonicity and asymptotics of the
eigenvalues are discussed in dependence on the size of a cross whose section may be
fairly arbitrary. In the case of a round section, the estimates found for the second
eigenvalue agree with the asymptotic formulas obtained. Such information is needed
for the spectral analysis of thin periodic lattices of quantum waveguides.

§1. Motivation

In the past 20 years, great attention (see the surveys [1, 2] and other publications)
has been paid to modeling of thin (with diameter O(h), h � 1) lattices of acoustic
and quantum waveguides via one-dimensional problems on graphs. Under this approach,
the spectral Neumann and Dirichlet problems for the Laplace operator are studied, and
their spectra are described as h → +0. Although the deduction of ordinary differential
equations on the graph’s edges is quite easy, the choice of transmission conditions at
the nodes requires a detailed analysis. However, in the case of the Neumann conditions
(acoustic waveguides with rigid walls) the desired transmission conditions are none other
than the classical Kirchhoff transmission rules, meaning that the solution is continuous
and the total node flow is zero. The corresponding results for finite lattices were obtained
in [3, 4, 5] in a fairly general setting.

Figure 1. Rectangular and hexagonal lattices, and a ladder.

The Dirichlet problem on the junction of thin domains (quantum waveguides or acous-
tic waveguides with soft walls) is much less studied. In [5] it was shown that the type
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of the boundary condition is determined by the boundary layer phenomenon near the
multidimensional nodes of the lattice at the threshold value of the spectral parameter.
While for the Neumann problem the threshold is always zero, for the Dirichlet problem
it is positive, and most of the methods available in the first case cease to work. Precisely
for this reason, the number of waveguides’ shapes that have been studied completely is
small. We mention the complete analysis in [6, 7, 8, 9] of the planar rectangular and
hexagonal lattices and the Dirichlet ladder (Figure 1); the last object was explored even
for the two-dimensional equations of isotropic elasticity theory, see [10]. However, all re-
sults mentioned above pertain to the case of planar quantum waveguides, and practically
nothing is known about the spectrum of the Dirichlet problems for multi-dimensional
lattices. The sole exception are the works [11, 12] of the present authors, which are de-
voted to a cross-shaped waveguide formed by two mutually orthogonal circular cylinders
of equal radii and with intersecting axes. It was established that the discrete spectrum
of such a waveguide consists of a single simple eigenvalue Λ∞

1 ∈ (0,Λ†), and that the
homogeneous problem with the threshold value Λ† > 0 of the spectral parameter has no
bounded solutions. This information makes it possible to apply the general results of [5]
and to draw conclusions on the nature of the spectrum of the Dirichlet problem on a
square1 lattice of thin circular quantum waveguides. Namely, the low-frequency range of
the spectrum consists of one spectral segment of length O(e−δ/h), δ > 0, located near the
point h−2Λ∞

1 , and the mid-range spectrum is formed by spectral segments of width O(h)
near the points h−2Λ† + π2n2, n ∈ N = {1, 2, 3, . . . }. These facts ensure a rich family of
gaps with width O(h−2) in the low-frequency and with width O(1) in the mid-frequency
ranges. However, the description of the spectral segments turns out to be incomplete,
because the asymptotics for their endpoints remain unknown, requiring construction of
lower terms in the expansions for eigenvalues, and, thus, also for eigenfunctions of the
model problem on the periodicity cell. The spectral analysis conducted in [5] does not
allow one to judge about the behavior of eigenfunctions as h → +0, and we are going to
fill these gaps.

The formal asymptotic analysis of the spectral problem on a periodicity cell formed
by junction of thin domains, is to a large extent traditional. The main difficulty in the
deduction of refined asymptotic formulas is the justification procedure, which requires
thorough work, because the behavior of the first (concentrated near the crossing) eigen-
function differs much from that of the other eigenfunctions, which are distributed over
all the cross. The necessary preparatory work reduces to verification of auxiliary but
substantial inequalities and goes beyond the scope of general methods of constructing
the higher-order asymptotic terms. These inequalities, together with some additional
properties of eigenvalues for various boundary problems in a finite cross with long arms,
constitute the content of the first part of our work.

§2. Statement of the problem and description of results

Consider the spectral Dirichlet problem

(1) −Δu(x) = λu(x), x ∈ Π∞, u(x) = 0, x ∈ ∂Π∞,

for the Laplace operator on a cross-shaped waveguide Π∞ composed of two circular
cylinders of unit diameter,

Π∞ = Q1 ∪Q2,(2)

Qj =
{
x = (x1, x2, x3) : x2

3−j + x2
3 < 1/4

}
, j = 1, 2.(3)

1The results remain valid for rectangular lattices; for simplicity, in this paper we assume that the
lattices under consideration are square with ligaments of length 1.
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The positive definite selfadjoint operator L of problem (1) is generated (see [13, Chap-
ter 10]) by the nonnegative closed sesquilinear form

�∞[u1, u2] = (∇u1,∇u2)Π∞ ,

defined on the subspace

H =
{
u ∈ H1(Π∞) : u(x) = 0, x ∈ ∂Π∞}

of the Sobolev space H1(Π∞); here ( · , · )Ω is the scalar product in the Lebesgue spa-
ce L2(Ω).

The continuous spectrum of problem (1) occupies the half-line [Λ†,+∞) with the
cut-off point Λ† < 2.35π2, the first eigenvalue of the Dirichlet problem on the circular
cross-section ωj of the cylinders Qj ,

(4) ωj =
{
|x3−j |2 + |x3|2 < 1/4

}
, j = 1, 2.

The discrete spectrum of problem (1) is formed (see [11, 12]) by a unique simple eigenvalue
Λ∞
1 ∈ (0,Λ†). Separation of variables allows us to show that a unique eigenfunction w∞

1

and its gradient decay exponentially at infinity, namely, with β =
√
Λ† − Λ∞

1 we have

(5) w∞
1 (x) = O(e−β|x|) and |∇w∞

1 (x)| = O(e−β|x|) as |x| → ∞.

Also, we consider spectral problems for the Laplace operator on the truncated waveg-
uide

ΠR = QR
1 ∪QR

2 ,(6)

QR
j =

{
x ∈ Qj , |xj | < R

}
, j = 1, 2,(7)

with various boundary conditions on its ends. In the corresponding variational problems

(8) (∇u,∇v)ΠR = Λ(u, v)ΠR , v ∈ HR ⊂ L2(Π
R),

the function spaces HR for eigen- and test-functions are different, but a positive definite
selfadjoint operator is constructed for each of the boundary conditions under considera-
tion:

• the subspace

HR
D :=

{
u ∈ H1(ΠR) : u(x) = 0, x ∈ ∂ΠR

}
corresponds to the Laplacian LR

D with the Dirichlet boundary conditions;
• the subspace

(9) HR
N :=

{
u ∈ H1(ΠR) : u(x) = 0, x ∈ ∂ΠR ∩ ∂Π∞}

corresponds to the Laplacian LR
N with the Neumann boundary conditions;

• the subspace

HR
η :=

{
u ∈ HR

N : u(x)
∣∣
xj=R

= eiηjRu(x)
∣∣
xj=−R

, j = 1, 2
}

corresponds to the Laplacian LR
η with quasiperiodic conditions at the ends that

involve the Floquet parameter η = (η1, η2) ∈ R
2.

In what follows, by LR
� we mean any of these three operators. Since the domain ΠR

is bounded, the subspace HR
� (again, 
 = D,N or 
 = η) compactly embeds in L2(Π

R);

consequently, the spectrum of the operator LR
� is discrete and forms an unbounded

monotone sequence {ΛR
k,�}k∈N. The corresponding eigenfunctions wR

k,�, k ∈ N, will be

orthonormalized in L2(Π
R).
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Remark 1. SinceHR
D ⊂ HR

η ⊂ HR
N , the max-min principle (see, e.g., [13, Theorem 10.2.2],

[14, Theorem XIII.2]) shows that the eigenvalues satisfy

ΛR
k,N ≤ ΛR

k,η ≤ ΛR
k,D, k ≥ 1.

The main result of the paper, to be proved in §3, is the following theorem, which gives
a lower bound for the eigenvalues ΛR

k,N for k ≥ 2.

Theorem 1. There exist numbers R∗ > 1/2 and cN > 0 such that, for all R > R∗, we
have

(10) ΛR
k,N > ΛR

2,N ≥ Λ† + cNR−2, k ≥ 2.

Theorem 1, which will play a central role in the asymptotic analysis in the second
part of the paper, serves only the waveguide (6) formed of the circular cylinders (7);
we consciously ignore the simplest generalizations: the arms of the waveguide may have
different length in all four directions, and the circular cross-sections may be somewhat
deformed (e.g., they may be ellipses with small eccentricity). The remaining sections
of our work are devoted to derivation of asymptotic formulas for the near-threshold
eigenvalues

(11) ΛR
k,� = Λ† + o(1), R → +∞, k ≥ 2,

for which the possible generalizations become substantial. For instance, in accordance
with [19, 20], in an infinite cross (2) formed by the cylinders

(12) Qj =
{
x : xj ∈ R, (x3−j , x3) ∈ ω

}
, j = 1, 2,

with a cross-section ω ⊂ R
2 bounded by a piecewise smooth contour, bounded (stabilizing

or decaying) solutions of problem (1) may occur at the threshold λ = Λ† of the continuous
spectrum. The arising of such solutions considerably affects the one-dimensional model
(cf. the general situation treated in [5] and the specific result (see [11, 12]) about the
absence of such solutions in the case of the waveguide (2), (3)). The identical cross-section
ω for all four arms of the waveguide (2), (12) and the mirror symmetry

(13) (xj , x3) ∈ ω ⇔ (−xj , x3) ∈ ω

with respect to the ordinate axis are assumed in order to simplify the presentation:
e.g., the threshold Λ† in (11), the first eigenvalue M1 of the Dirichlet problem in the
domain ω, corresponds to each of the arms. The first eigenvalue M1 is simple, and the
corresponding eigenfunction Φ1 can be fixed to be positive in ω; in what follows we shall
need the notation M2 > M1 and Φ2 for the second eigenpair.

In principle, many assumptions made in the paper can be removed.
It should be noted that in Remark 5 we correct an inaccuracy occurring in the proof

of Theorem 3 in [12].

§3. Proof of Theorem 1

The collection of eigenvalues of the Dirichlet problem for the Laplace operator in QR
1

with the Dirichlet boundary conditions includes the sequence Λ† + π2n2(2R)−2, n ∈ N.
The corresponding eigenfunctions, extended by zero outside QR

1 , fall into the space HR
D.

Plugging them into the max-min principle for LR
D, we get the inequality

(14) ΛR
k,D ≤ Λ† + π2k2(2R)−2, k ∈ N.

Since this argument does not involve the shape of the cross-section, an upper estimate
similar to (14) admits clear generalizations.

Estimate (10) is much harder to verify; to prove it we shall use the geometric specifics
of the waveguide (6), (7). We start with an auxiliary statement.
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a) b)

Figure 2. Splitting of the truncated waveguide ΠR
• (a), and a planar

image of the waveguide ΠR and of its quarter (b).

Lemma 3.1. There exist numbers R∗ > 1/2 and c > 0 such that for R > R∗ and any
eigenfunction v of LR

N that is odd in x2 (or x1) we have

‖∇v;L2(Π
R)‖2 ≥ Λ†‖v;L2(Π

R)‖2 + c

(
‖v;L2(Π

1/2)‖2 +
∑
j=1,2

∥∥∥ ∂v

∂xj
;L2(Q

R
j )

∥∥∥2).
Proof. If an eigenfunction v is odd in x2, then it is simultaneously an eigenfunction for
the Laplace operator in the upper half of the truncated waveguide

ΠR
• =

{
(x1, x2, x3) ∈ ΠR : x2 > 0

}
,

which is associated with the sesquilinear form

�R• [u1, u2] = (∇u1,∇u2)L2(ΠR
• )

on the domain

HR
•N =

{
u ∈ H1(ΠR

• ) : u(x) = 0 for x ∈ ∂ΠR
• , |xj | �= R, j = 1, 2

}
.

The two-dimensional Friedrichs inequalities on the disk and the half-disk (see Fig-
ure 2, a) imply the relations

‖∇v;L2(Q
+
2 )‖2 ≥ Λ†‖v;L2(Q

+
2 )‖2 + ‖∂2v;L2(Q

+
2 )‖2,(15)

‖∂2v;L2(Q
±
1•)‖2 + ‖∂3v;L2(Q

±
1•)‖2 ≥ Λ•‖v;L2(Q

±
1•)‖2,(16)

where ∂j = ∂/∂xj , Λ• > 5.95π2 is the first eigenvalue of the Dirichlet problem in the
half-disk of unit diameter, and

Q+
2 =

{
x ∈ QR

2 : 1
2 < x2 < R

}
, Q±

1• =
{
x ∈ QR

1 : x2 > 0, 1
2 < ±x1 < R

}
.

Here and in what follows in this section we omit the index R to make formulas shorter.
To obtain estimates on the central part Π

1/2
• = {x ∈ ΠR

• : |x1| ≤ 1/2, x2 ≤ 1/2}, we
use the Dirichlet conditions on a part of its boundary and apply the Friedrichs inequalities
with respect to x2 and x3. This yields the estimates

‖∂2v;L2(Π
1/2
• )‖2 ≥ π2(1− c)‖v;L2(Π

1/2
• )‖2 + c‖∂2v;L2(Π

1/2
• )‖2,(17)

‖∂3v;L2(Π
1/2
• )‖2 ≥ π2‖v;L2(Π

1/2
• )‖2,(18)

where c is a constant to be specified below.

The set Π
1/2
• \Q1 is a union of segments parallel to the x1-axis and having ends on the

upper part of the boundary of the cylinder ∂Q2. Using the one-dimensional Friedrichs
inequalities on these segments, we deduce the estimates

(19) ‖∂1v;L2(Π
1/2
• \Q1)‖2 ≥ π2(1− c)‖v;L2(Π

1/2
• \Q1)‖2 + c‖∂1v;L2(Π

1/2
• \Q1)‖2.
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The surplus of the norm of the squared gradient of the function v on the “half-arms” can

be employed to compensate for the lack of it on the central part Π
1/2
• ∩Q1. In order to

implement this idea, we invoke the following inequality established in [12],

(20)

∫
Q1•

|∂1v(x)|2 dx+ a2
∫
Q−

1•∪Q+
1•

|v(x)|2 dx ≥ μ(R, a)

∫
Q1•∩Π1/2

|v(x)|2 dx,

and moreover, limR→+∞ μ(R, a) = μ∞(a), where μ∞(a) is the smallest positive root of
the transcendental equation

(21)
√
μ tan

(√
μ

2

)
= a.

The notation Q1• means the set ΠR
• ∩Q1. Direct calculations show that μ∞(Λ• −Λ†) >

Λ† − 2π2. Consequently, there exist numbers R∗ > 1/2 and c > 0 such that, for all
R > R∗, we have

(1− c)‖∂1v;L2(Q1•)‖2 + (Λ• − Λ†)‖v;L2(Q
−
1• ∪Q+

1•)‖2

≥ (Λ† − 2π2 + cπ2 + c)‖v;L2(Q1• ∩Π1/2)‖2.

Adding this to estimates (15)–(19) and taking c sufficiently small, we get the required
inequality. �

Remark 2. The first eigenfunction wR
1,N of the operator LR

N (see formulas (8) and (9))
with R > R∗ is even in x1 and x2, because the first eigenvalue is less than Λ†, and the first
eigenfunction does not vanish identically on the central part by the unique continuation
theorem (see, e.g., the book [15, §4.3]).

Remark 3. The quantities Λ† and Λ• can be expressed in terms of roots of Bessel functions
and their derivatives (see, e.g., [16]). Moreover, it is not difficult to calculate the roots
of equation (21).

Lemma 3.2. For R > 1/2 and any f ∈ H1(−R;R), we have∫ R

−R

|f(z)|2 dz ≤ 4R

∫ 1/2

−1/2

|f(z)|2 dz + 2R2

∫ R

−R

|∂zf(z)|2 dz.

Proof. We check the corresponding inequality for a function restricted to (0, R) (the
passage to (−R,R) is obvious). We write the Newton–Leibniz formula

f(z)− f(t) =

∫ z

t

∂zf(τ ) dτ.

The Young and the Cauchy–Schwarz inequalities yield

|f(z)|2 ≤ 2|f(t)|2 + 2

∣∣∣∣
∫ z

t

∂zf(τ ) dτ

∣∣∣∣
2

≤ 2|f(t)|2 + 2

(∫ R

0

|∂zf(τ )| dτ
)2

and

|f(z)|2 ≤ 2|f(t)|2 + 2R

∫ R

0

|∂zf(τ )|2 dτ.

Now, integration in t and z gives the desired result. �

Proof of Theorem 1. Every eigenfunction w of the Laplace operator LR
N can be written

as a sum

w(x) = v1(x) + v2(x) + v(x)
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with functions vj odd in xj and a function v even both in x1 and in x2, and

v1(x) =
1

2

(
w(x1, x2, x3)− w(−x1, x2, x3)

)
,

v2(x) =
1

4

(
w(x1, x2, x3) + w(−x1, x2, x3)− w(x1,−x2, x3)− w(−x1,−x2, x3)

)
,

v(x) =
1

4

(
w(x1, x2, x3) + w(−x1, x2, x3) + w(x1,−x2, x3) + w(−x1,−x2, x3)

)
.

Since the waveguide ΠR has mirror symmetry, the functions v1, v2, and v, whenever
nontrivial, are also eigenfunctions of LR

N . Moreover, they are mutually orthogonal in the
space L2(Π

R). Thus, for each eigenvalue we can find an eigenfunction that is either odd
in one of the variables x1 and x2, or even in both.

If v1 �= 0, we apply Lemma 3.2 to the functions f1(z) = v1(z, x2, x3) and f2(z) =
v1(x1, z, x3) and integrate the resulting inequalities over the circular sections (4). As a
result, we obtain

‖∂jv1;L2(Q
R
j )‖2 +

2

R
‖v1;L2(Q

1/2
j )‖2 ≥ 1

2R2
‖v1;L2(Q

R
j )‖2, j = 1, 2.

Therefore,

‖∂1v1;L2(Q
R
1 )‖2 + ‖∂2v1;L2(Q

R
2 )‖2 +

4

R
‖v1;L2(Π

1/2)‖2 ≥ 1

2R2
‖v1;L2(Π

R)‖2.

For R > 2, combining this inequality with Lemma 3.1, we get

‖∇v1;L2(Π
R)‖2 ≥ Λ†‖v1;L2(Π

R)‖2 + c

2R2
‖v1;L2(Π

R)‖2.

Consequently, the min-max principle ensures that, for k ≥ 2,

ΛR
k,N > Λ† +

c

2R2
.

In the case where v2 �= 0, the argument is similar. Thus, it suffices to assume that
v �= 0. Observe that v is also an eigenfunction (corresponding to the same eigenva-
lue ΛR

k,N ) of the Laplacian LR
∠ with the mixed boundary conditions on the quarter

ΠR
∠ =

{
x ∈ ΠR : xj > 0, j = 1, 2

}
of the waveguide (its projection is shown by hatching and by black color in Figure 2, b).
The operator LR

∠ is generated by the sesquilinear form

�R∠[u1, u2] = (∇u1,∇u2)ΠR
∠

defined in the space

HR
∠ =

{
u ∈ H1(ΠR

∠) : u(x) = 0, x ∈ ∂ΠR
∠ ∩ ∂ΠR

}
.

The first eigenfunction of the operator LR
N is even in both variables x1 and x2 (see

Remark 2). Consequently, its restriction to ΠR
∠ is an eigenfunction (being positive, it is

the first eigenfunction) for LR
∠. As a result, for k ≥ 2 the max-min principle yields the

relation

(22) ΛR
k,N =

‖∇wR
k,N ;L2(Π

R
∠)‖2

‖wR
k,N ;L2(ΠR

∠)‖2
≥ max

E
inf

u∈E\{0}

‖∇u;L2(Π
R
∠)‖2

‖u;L2(ΠR
∠)‖2

,

where the maximum is calculated over all subspaces E ⊂ HR
∠ of codimension 1.

To estimate the Rayleigh ratio on the left-hand side of (22), we consider a function V
that minimizes the ratio

‖∇V ;L2(Π
R
∠)‖2

‖V ;L2(ΠR
∠)‖2
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on the specific subspace

E⊥ =

{
w ∈ HR

∠ :

∫
Π

1/2
∠

w(x) cos(πx3) dx = 0

}
, codimE⊥ = 1.

Here, Π
1/2
∠ = {x ∈ ΠR

∠ : xj ≤ 1/2, j = 1, 2} (the projection of Π
1/2
∠ is shown by black

color in Figure 2, b). Since the subspace E⊥ is weakly closed, the minimizer V exists
(see, e.g., [17]).

Consider the spectral problem for the Laplace operator on the rectangular paral-
lelepiped Σ = {x : 0 ≤ xj ≤ 1/2, j = 1, 2, |x3| ≤ 1/2} with the Dirichlet conditions on
its bases {x ∈ ∂Σ : |x3| = 1/2}. The first eigenfunction u1(x) = cos(πx3) corresponds
to the eigenvalue π2, and the second eigenfunction u2(x) = cos(2πx3) corresponds to the

eigenvalue 4π2. Note that Π
1/2
∠ ⊂ Σ, and that the function V extended by zero outside

of Π
1/2
∠ is an element of the set

E0
⊥ =

{
w ∈ H1(Σ) : w(x) = 0 for |x3| = 1/2,

∫
Σ

w(x) cos(πx3) dx = 0

}
.

Consequently, by the Poincaré inequality,

‖∇V ;L2(Π
1/2
∠ )‖2 ≥ 4π2‖V ;L2(Π

1/2
∠ )‖2,

we have

(23) ‖∇V ;L2(Π
1/2
∠ )‖2 ≥

4π2 + Λ∞
†

2
‖V ;L2(Π

1/2
∠ )‖2 + 4π2 − Λ†

8π2
‖∇V ;L2(Π

1/2
∠ )‖2.

Denoting Q∠
j = {x ∈ ΠR

∠ : xj > 1/2}, j = 1, 2, we deduce the estimate

(24) ‖∂3−jV ;L2(Q
∠
j )‖2 + ‖∂3V ;L2(Q

∠
j )‖2 ≥ Λ†‖V ;L2(Q

∠
j )‖2.

Summing (23) and (24), j = 1, 2, we get

‖∇V ;L2(Π
R
∠)‖2 ≥ Λ†‖V ;L2(Π

R
∠)‖2 +

4π2 − Λ†
2

‖V ;L2(Π
1/2
∠ )‖2

+
4π2 − Λ†

8π2
‖∇V ;L2(Π

1/2
∠ )‖2 +

∑
j=1,2

‖∂jV ;L2(Q
∠
j )‖2.

Lemma 3.2 applied to V results in the inequality

‖∇V ;L2(Π
R
∠)‖2 ≥

(
Λ† +

4π2 − Λ†
8π2R2

)
‖V ;L2(Π

R
∠)‖2.

Now to complete the proof it remains to recall (22). �

§4. Estimates for asymptotic remainders

Theorem 1 will help us to find the asymptotic behavior of the first eigenvalue ΛR
1,�

and the first eigenfunction wR
1,�. The next two statements will be checked in the case of

the circular cylinders (3), but they mainly remain true also for the cylinders (12) with
arbitrary cross-sections. The needed modifications in the formulations and proofs are
almost obvious and we do not present them for brevity.

Theorem 2. There exists a constant CΛ
1 > 0 such that, for R > 1/2, we have

(25) |ΛR
1,� − Λ∞

1 | ≤ CΛ
1 e

−βR.

Theorem 3. There exists a constant Cw
1 > 0 such that, for R > 1/2, we have

‖w∞
1 − wR

1,�;H
1(ΠR)‖ ≤ Cw

1 e−βR/2.
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For the proof of Theorem 2, we explore how close are the functions wR
1,� in the

L2(Π
R)-norm to the function w∞

1 restricted to the truncated waveguide. Since w∞
1

belongs neither to HR
D nor to HR

η , we multiply it by a smooth cut-off function χR such
that

χR(x) = 1 for |xj | ≤ R− 1, χR(x) = 0 for |xj | > R, j = 1, 2,

0 ≤ χR ≤ 1, |∇χR| ≤ cχ.
(26)

Consider the orthogonal sum

(27) χRw∞
1 = aRw

R
1,� + bRv,

where ‖v;L2(Π
R)‖ = 1 and (wR

1,�, v)ΠR = 0.

Lemma 4.1. There exists R∗ such that, for R > R∗, the coefficient aR is uniformly
separated away from zero.

Proof. The integral identity implies

(∇wR
1,�,∇v)ΠR = 0,

whence

(28) ‖∇(χRw∞
1 );L2(Π

R)‖2 = |aR|2ΛR
1,� + |bR|2‖∇v;L2(Π

R)‖2.
By the max-min principle we have ‖∇v;L2(Π

R)‖2 ≥ ΛR
2,�, and Theorem 1 shows that

the inequality ΛR
2,� > Λ† is fulfilled for R > R∗. Therefore,

(29) ‖∇(χRw∞
1 );L2(Π

R)‖2 ≥ |aR|2ΛR
1,� + |bR|2Λ†.

The exponential decay of the eigenfunction w∞
1 (see (5)) implies that

‖χRw∞
1 ;L2(Π

R)‖2 = 1−O(e−2βR)

as R → ∞. Consequently,

(30) |aR|2 + |bR|2 = 1−O(e−2βR).

Moreover, we have the asymptotic formula

(31) ‖∇w∞
1 ;L2(Π

R)‖2 = Λ∞
1 +O(e−2βR).

Relations (29)–(31) and the inequality Λ† > Λ∞
1 guarantee that the quantity |aR| is

separated away from zero. �
Proof of Theorem 2. It suffices to check inequality (25) for sufficiently large R. In order
to estimate the difference between Λ∞

1 and ΛR
1,�, we substitute the product χRw∞

1 along

with the first eigenfunction of the operator LR
� in the form (8) with Λ = ΛR

1,�, obtaining

(∇wR
1,�,∇(χRw∞

1 ))ΠR = ΛR
1,�(w

R
1,�, χ

Rw∞
1 )ΠR .

Integration by parts on the left-hand side results in the identity(
∇wR

1,�,∇(χRw∞
1 )

)
ΠR = Λ∞

1 (wR
1,�, χ

Rw∞
1 )ΠR −

(
wR

1,�, [Δ, χR]w∞
1

)
ΠR ,

where [Δ, χR] is the commutator of the operator Δ with the cut-off function (26). Con-
sequently,

(32) Λ∞
1 − ΛR

1,� =
(wR

1,�, [Δ, χR]w∞
1 )ΠR

(wR
1,�, χ

Rw∞
1 )ΠR

.

Since supp[Δ, χR] ⊂ {x : |xj | ∈ [R,R+1]} and the function w∞
1 decays exponentially at

infinity, the Cauchy inequality shows that the numerator on the right-hand side in (32)
is O(e−βR). At the same time, by Lemma 4.1, the denominator is separated away from
zero, which completes the verification of estimate (25). �
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Lemma 4.2. For R > 1/2, the coefficients in (28) satisfy the inequalities

|aR| =
∣∣(wR

1,�, χ
Rw∞

1 )ΠR

∣∣ > 1− Ce−βR and |bR| < Ce−βR/2,

where C is a positive constant.

Proof. Combining estimate (29) with formulas (30), (31), we see that

|aR|2(ΛR
1,� − Λ†) ≤ Λ∞

1 − Λ† − ce−2βR.

Since the inequality ΛR
1,� > Λ∞

1 − CΛ
1 e

−βR is ensured by Theorem 2, we easily get the
claim. �

Remark 4. Similar arguments provide an inequality for the coefficients of the orthogonal
decomposition of the function w∞

1 restricted to the truncated waveguide, namely

|(wR
1,�, w

∞
1 )ΠR | > 1− Ce−βR.

Proof of Theorem 3. The “good” behavior (5) of the function w∞
1 at infinity shows that

(33) ‖w∞
1 − χRw∞

1 ;H1(ΠR)‖ < C1e
−βR.

The orthogonal decomposition (27) of χRw∞
1 implies the identity

χRw∞
1 − wR

1,� = bRv + (aR − 1)wR
1,�.

Therefore, using the estimates of the quantities |aR| and |bR| obtained in Lemma 4.2, we
conclude that

(34) ‖χRw∞
1 − wR

1,�;L2(Π
R)‖ < C2e

−βR/2.

Invoking (5) once again and calculating directly we show that

‖χRw∞
1 − wR

1,�;L2(Π
R)‖2 = 2− 2Re

(
χRw∞

1 , wR
1,�

)
ΠR +O(e−2βR),(35)

‖∇(χRw∞
1 − wR

1,�);L2(Π
R)‖2 = Λ∞

1 + ΛR
1,� − 2Re

(
∇(χRw∞

1 ),∇wR
1,�

)
ΠR +O(e−2βR).

Since the product χRw∞
1 belongs to HR

� and wR
1,� is an eigenfunction of LR

� , we have(
∇(χRw∞

1 ),∇wR
1,�

)
ΠR = ΛR

1,�

(
χRw∞

1 , wR
1,�

)
ΠR .

Relations (34) and (35) ensure the inequality

Re(χRw∞
1 , wR

1,�) > 1− C3e
−βR.

Therefore,

‖∇(χRw∞
1 − wR

1,�);L2(Π
R)‖2 < C4e

−βR.

Combining this with (33) and (34), we complete the proof. �

Remark 5. We eliminate an inaccuracy in the verification of Theorem 3 in [12]. In fact,
in [12, Proposition 3], the exponential closeness of the eigenvalue ΛR

2,N to the threshold
Λ† was only proved under the condition that at the threshold values of the spectral
parameter there exists a bounded solution. Inequality (10) in Theorem 1 in the present
paper shows that such closeness is impossible for large R, so that, indeed, problem (1)
with λ = Λ† does not admit any bounded solutions.
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§5. Remarks on monotonicity

The eigenvalues of the Dirichlet problem on the truncated waveguide decrease mono-
tonically as R grows:

ΛR1

k,D > ΛR2

k,D for R1 < R2 whenever k ∈ N.

This follows from the max-min principle and the embedding HR1

D ⊂ HR2

D .
The question about the behavior of eigenvalues of the Neumann problem is much more

involved. We give a partial answer in the case of an arbitrary section ω of the cylinders
(12) forming an infinite cross-shaped waveguide (2) (the restriction (13) is not needed).
Let Rω denote a length for which{

x ∈ Π∞ : ±xj > Rω

}
=

{
x ∈ Qj : ±xj > Rω

}
, j = 1, 2.

Proposition 1. Suppose that ΛR0

k,N < Λ† for some R0 > Rω, k ∈ N. Then there exists

ρ0k > 0 such that ΛR0

k,N < ΛR
k,N < Λ† for R ∈ (R0, R0 + ρ0k).

Proof. Let us regard the operator LR+ρ
N as a perturbation of LR

N for small ρ > 0. As-
suming that Λ is a simple eigenvalue, we normalize the corresponding eigenfunction in
the space L2(Π

R) (for brevity, we omit the indices R, N and k). We assume the simplest
asymptotic Ansätze

ΛR+ρ = Λ+ ρΛ′ + . . . ,(36)

wR+ρ = w + ρw′ + . . . ,(37)

where the correction terms Λ′ and w′ are to be determined, and the small remainders
are hidden in dots. The functions w and w′ are given initially on ΠR but are extended
to Π∞ ⊃ ΠR+ρ with preservation of smoothness. Plugging (36) and (37) in the equation
for wR+ρ on ΠR and collecting the coefficients of ρ, we get the equation

(38) Δw′(x) + Λw′(x) = −Λ′w(x), x ∈ ΠR.

Imposing the Dirichlet conditions

(39) w′(x) = 0, x ∈ ∂ΠR \ ΓR,

outside of the union ΓR of the ends of the truncated cross-shaped waveguide is quite
clear. The Neumann boundary condition ∂nw

R+ρ(x) = 0, x ∈ ΓR+ρ, will be carried over
to the surface ΓR with the help of the Taylor formula with respect to the variable n equal
to the oriented distance to ΓR, with n < 0 inside ΠR. We have

∂nw
R+ρ

∣∣
n=ρ

= ∂nw
∣∣
n=ρ

+ ρ∂nw
′∣∣
n=ρ

+ · · · = ∂nw
∣∣
n=0

+ ρ∂2
nw

∣∣
n=0

+ ρ∂nw
′∣∣
n=0

+ . . .

Thus,

(40) ∂nw
′(x) = −∂2

nw(x) = Δ⊥w(x) + Λw(x), x ∈ ΓR.

Here, we have used the Helmholtz equation for w, and Δ⊥ = ∇⊥ · ∇⊥ stands for the
two-dimensional Laplace operator in the tangent variables on the ends (∇⊥ is the similar
gradient). The Fredholm alternative shows that the role of the compatibility condition
for problem (38)–(40) can be played by the identity

(41) Λ′ = −(Δ⊥w + Λw,w)ΓR = ‖∇⊥w;L2(Γ
R)‖2 − Λ‖w;L2(Γ

R)‖2.
The correction term (41) is positive, because, by the Friedrichs inequality on ω, we have

Λ′ ≥ (Λ† − Λ)‖w;L2(Γ
R)‖2 > 0.

Recall that w cannot vanish identically on ΓR in view of the unique continuation theorem
(see, e.g., [15, Chapter 4]).
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In the case where the eigenvalue Λ = ΛR
k,N has multiplicity κ, the calculations do not

change, but the role of the principal term in (37) will be played by a linear combination of
eigenfunctions corresponding to Λ and normalized in L2(Π

R), with a coefficient column
c = (c1, c2, . . . , cκ)


, and the correction terms Λ′
1, . . . ,Λ

′
κ
satisfy the following system of

linear algebraic equations:

Mc = Λ′c.

Its matrix M of size κ × κ acquires the entries

Mpq = (∇⊥wp,∇⊥wq)ΓR − Λ(wp, wq)ΓR , p, q = 1, . . . ,κ,

and is symmetric and positive definite for the same reason as before.
Thus, the correction term in the formal asymptotics (36) is positive in any case.

The asymptotic remainder can easily be estimated by the classical method (see [18,
Chapter 7, §6.5], because it is not difficult to build an “almost identical” diffeomorphism
of the domain ΠR+ρ onto ΠR in such a way that this diffeomorphism is identical near
the middle part of the cross and coincides with a uniform shift near its ends. �

§6. The eigenvalues generated by stabilizing and decaying solutions

at the threshold

Suppose that, for the threshold value Λ† of the parameter λ, problem (1) in the
waveguide Π∞ given by formulas (2), (12), and (13), has a bounded or stabilizing solution,
i.e., an almost standing wave, or a solution decaying at infinity, i.e., respectively, a
trapped wave. Recall that the possibility for such solutions to arise at the threshold
when the shape of cross-section varies is in agreement with the results in [19, 20]. In
what follows, under a simplifying assumption, we shall construct the asymptotics

(42) ΛR
� = Λ† + �(R) + . . .

for the near-threshold eigenvalues of the operators LR
D and LR

N in the truncated waveg-
uide ΠR; the behavior of the correction term as R → +∞ will also be determined. We
do not take care of justifying the formal asymptotics (42), because it only requires repe-
tition, with minor modifications, of the arguments used in the proof of Theorem 2 or in
other papers, e.g., in [21].

Assuming that there are no other (linearly independent) solutions of problem (1) with
λ = Λ†, we write the expansion

(43) w∞(x) =
∑
j=1,2

∑
±

χ(±xj)Kj±Φ1(x3−j , x3) + w̃∞(x),

where Φ1 is the first eigenfunction of the Dirichlet problem on the set ω normalized
in L2(ω), χ is a smooth cut-off function equal to 1 on [1,+∞) and to 0 on (−∞, 1/2], and
w̃∞ is a remainder decaying exponentially. Observe that uniqueness and the geometric
symmetry of the waveguide show that two situations are possible:

(44) Kj± = K or Kj± = (−1)jK.

Of course, K �= 0 for a stabilizing solution, and we shall need additional information
about the eigenfunction w∞ ∈ H. The second case in (44) can be studied much as the
first; in what follows it is assumed that Kj± = K, i.e., we deal with the solution (50)
even with respect to the axes of the Cartesian system (x1, x2) and the bisectors of its
quadrants.

First, we treat the Dirichlet problem in ΠR. Consider a solution of the auxiliary
problem

(45) −Δw′(x)− Λ†w
′(x) = w∞(x), x ∈ Π∞, w′(x) = 0, x ∈ ∂Π∞,
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which, surely, is not unique but admits the representation

(46) w′(x) =
∑
j=1,2

∑
±

χj(±xj)
(
−K

x2
j

2
+K1

j±xj +K0
j±

)
Φ1(x3−j , x3) + w̃′(x).

By symmetry, it may be assumed that K1
j± = ±K1, K0

j± = K0 = 0. We shall not need
these coefficients in the sequel.

On the ends of the truncated waveguide, the sum of two terms of the asymptotic
Ansatz for the eigenfunction

(47) wR
D(x) = w∞(x) + �(R)w′(x) + . . .

turns into

KΦ1 + �(R)
(
− 1

2
R2K ±RK1

)
Φ1,

Therefore, keeping the Dirichlet condition in the main, we put

(48) �(R) = 2R−2.

Thus, the ansatz (42) takes the form

(49) ΛR,st
D = Λ† + 2R−2 + o(R−2).

The stabilizing solution (43) leaves an exponentially small discrepancy in the Neumann
conditions at the ends. Accordingly, we refine its expansion:

(50) w∞(x) =
∑
j=1,2

∑
±

χ(±xj)
(
KΦ1(x3−j , x3) + e∓β1xjΦ2(x3−j , x3)

)
+ ŵ∞(x).

Here β1 =
√
M2 −M1, ŵ

∞ is a rapidly decaying remainder, and Φ2 is the second (non-
normalized) eigenfunction of the Dirichlet problem on the cross-section. The function
Φ2 depends on the solution w∞; without any normalization, it is a linear combination of
orthonormalized eigenfunctions corresponding to the second eigenvalue M2 > M1 = Λ†.
In what follows we assume that Φ2 �= 0. We return to problem (45), this time seeking a
solution of it such that
(51)

w′(x) =
∑
j=1,2

∑
±

χ(±xj)
(
Ke±β1xjΦ2(x3−j , x3)+

(
−K

x2
j

2
±K1xj

)
Φ1(x3−j , x3)

)
+w̃′(x),

where K1 and K are unknown coefficients. Substituting w′ and w∞ in the Green formula
on ΠR, we see that∫

ΠR

|w∞(x)|2 dx = −
∑
j=1,2

∑
±

±
∫
ω

(
w∞(x)∂jw

′(x)− w′(x)∂jw
∞(x)

)∣∣∣
xj=±R

dx3−j dx3.

On the right-hand side, we replace w′ and w∞ with their representations (51) and (50)
and then pass to the limit as R → +∞. As a result, we get

(52) A∞ := lim
R→+∞

(∫
ΠR

|w∞(x)| dx− 4RK2|ω|
)

= −8β1‖Φ2;L2(ω)‖2K.

Therefore, on the ends of ΠR, the normal derivative of the sum of the terms written out
in (47) will vanish in the main whenever

−β1Ke−β1RΦ2 + �(R)β1Keβ1RΦ2 = 0,

i.e.,

(53) �(R) = e−2β1R
KA∞

8β1
‖Φ2;L2(ω)‖−2.
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Now, suppose that the solution (43) is a trapped wave, i.e., in (50) we have K = 0.
Despite the fact that Λ† is an eigenvalue, problem (45) admits the solution (51) with
exponential growth at infinity. Formula (52) for the coefficient K in the corresponding
expansion remains valid, but now

A∞ = ‖w∞;L2(Π
∞)‖2,

because K = 0. As a result, the eigenvalue (42) of the operator LR
N takes the form

ΛR
N = Λ† − �(R) + o(e−2β1R),(54)

�(R) = − 1

8β1
e−2β1R

‖w∞;L2(Π
∞)‖2

‖Φ2;L2(ω)‖2
.(55)

Similar calculations show that the eigenvalue of LR
D looks like this:

(56) ΛR
D = Λ† + �(R) + o(e−2β1R).

For clear reasons, the eigenvalues (49) and (56) of the Dirichlet problem are located
above the threshold, namely, ΛR

D > Λ†, under the restrictions imposed. The eigenvalue
(54) “goes down” the threshold, and its monotone growth is predicted in Proposition 1.
We cannot conclude the same about the eigenvalue ΛR

N in the case of perturbation of a sta-
bilizing solution, because the limit in the middle part in (52) exists due to the expansion
(50), but the sign of A∞ remains unknown. Even the assumption that w∞(x) ≥ K > 0
everywhere in Π∞ does not guarantee the inequality A∞ > 0, because the factor 4R|ω|
in the subtrahend under the limit sign is larger than the volume of ΠR. However, we
have A∞ < 0 in the hypothetical case where |w∞(x)| ≤ K.
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