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RATIONALITY IN MAP AND HYPERMAP ENUMERATION

BY GENUS

P. ZOGRAF AND M. KAZARIAN

Abstract. Generating functions for a fixed genus map and hypermap enumeration
become rational after a simple explicit change of variables. Their numerators are
polynomials with integral coefficients that obey a differential recursion, and the de-
nominators are products of powers of explicit linear functions.

§1. Introduction

By a map or a ribbon graph we understand a finite connected graph with prescribed
cyclic orders of half-edges at each vertex. It also can be realized as the 1-skeleton of a
polygonal partition of a closed orientable surface. The genus g of a map (ribbon graph)
satisfies the Euler formula

2− 2g = #v −#e+#f ,

where #v,#e,#f are the numbers of vertices, edges and faces of the map respectively.
By a hypermap we understand a bicolored map, i.e., a map whose faces are properly
colored in two colors (say, white and black) so that no adjacent faces have the same
color. The dual graph to a hypermap is a bipartite ribbon graph, or Grothendieck’s
“design d’enfant”1.

We are interested in the weighted count of maps and hypermaps, where the weights are
reciprocal to the orders of the corresponding automorphism groups. This is equivalent to
counting rooted maps and hypermaps (i.e., those with a marked half-edge). The passage
from the rooted count to the unrooted one is known, cf. [9, 10].

Denote by c̃g,n (respectively, cg,n) the number of rooted maps (respectively, hyper-
maps) of genus g with n edges (darts), and consider the genus g generating functions

C̃g(s) =

∞∑
n=2g

c̃g,ns
n g ≥ 0,(1)

Cg(s) =
∞∑

n=2g+1

cg,ns
n g ≥ 0.(2)

The classical problem that goes back to Tutte [11] (or even earlier) is to compute the
numbers cg,n and c̃g,n. Effective algorithms for computing these numbers first appeared
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in [13] (for maps) and in [14] (for hypermaps)2. Recursions for the numbers cg,n and

c̃g,n, and differential equations for the generating functions Cg(s) and C̃g(s) were first
obtained in [7] (cf. also [2] for an alternative approach to map enumeration).

In this note we show that the generating functions Cg(s) and C̃g(s) become rational
functions after simple explicit changes of the variable s. Their numerators are then poly-
nomials with integer coefficients that obey a differential recursion, and the denominators
are products of powers of explicit linear functions.

§2. Main results

We start with the case of hypermaps (Grothendieck’s dessins d’enfants).

Theorem 1. Under the substitution s = t(1− 2t) we have

C0(t(1− 2t)) =
t(1− 3t)

(1− 2t)2
,

C1(t(1− 2t)) =
t3

(1− t)(1− 4t)2
,

Cg(t(1− 2t)) =
Pg(t)

(1− t)4g−3(1− 4t)5g−3
, g ≥ 2,

(3)

where Pg(t) =
∑9g−7

i=2g+1 pg,i t
i is a polynomial with integral coefficients and pg,2g+1 =

(2g)!
g+1 . The polynomials Pg(t) can be computed recursively by formula (7).

Remark 1. The polynomials Pg(t) for g = 2, 3 are:

P2(t) = 8t5 − 92t6 + 464t7 − 1316t8 + 2204t9 − 2048t10 + 816t11,

P3(t) = 180t7 − 3648t8 + 35424t9 − 218944t10 + 958160t11 − 3102528t12

+ 7503664t13 − 13310768t14 + 16365216t15 − 11823680t16 + 117916t17

+ 6614784t18 − 6008320t19 + 1823744t20.

In principle, they can be computed for much larger values of g.

Remark 2. A similar result was independently obtained in [3] by a different (more com-
plicated) method.

Proof. To prove the theorem, we recall a specialization of the Kadomtsev–Petviashvili
(KP) equation for the hypermap count derived in [7]:3

(4) (sCg)
′ = 3

(
2s2C ′

g+sCg

)
+3s3C ′

g+s3
(
s(sCg−1)

′)′′+s3
g∑

i=0

(
4Ci+6sC ′

i

)
C ′

g−i+2sδg,0,

where the prime ′ stands for the derivative d
ds . This equation is just the differential form

of the recursion (11) in [7] for t = u = v = 1:

2An effective enumeration of 1-vertex maps was obtained in [4], and of 1-vertex hypermaps in [5]
and, independently, in [1]. Enumeration of 1-vertex maps (or genus g gluings of a 2n-gon) was a crucial
point in computing the Euler characteristic of the moduli space of algebraic curves in [4].

3The validity of the equations of KP hierarchy and other integrable equations of mathematical physics
for generating functions is a common feature of a wide range of problems of enumerative combinatorics.
In [6] a survey of a collection of such problems was given, including, among others, the enumeration of
maps and hypermaps.
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(n+ 1)cg,n = 3(2n− 1) cg,n−1 + (n− 2) cg,n−2 + (n− 1)2(n− 2) cg−1,n−2

+

g∑
i=0

n−3∑
j=1

(4 + 6j)(n− 2− j) ci,j cg−i,n−2−j .

For g ≥ 1 we can further rewrite (4) as the differential recursion(
s− 6s2 − 3s3 − 4s3C0 − 12s4C ′

0

)
C ′

g +
(
1− 3s− 4s3C ′

0

)
Cg

= s5C ′′′
g−1 + 5s4C ′′

g−1 + 4s3C ′
g−1 + s3

g−1∑
i=1

(4Ci + 6sC ′
i)C

′
g−i.

(5)

For g = 0 we get an ordinary differential equation that can be solved explicitly:

C0(s) =
−1 + 12s− 24s2 + (1− 8s)3/2

32s2
.

It is easily seen that the substitution s = t(1− 2t) considerably simplifies C0 and makes
it a rational function, namely

C0(t(1− 2t)) =
t(1− 3t)

(1− 2t)2

(cf. [12]). Substituting s = t(1− 2t) in (5), we get

t(1− t)2(1− 2t) Ċg + (1− t)(1− 2t+ 4t2)Cg

= t3(1− 2t)3
(
DtCg−1 +

1

(1− 4t)2

g−1∑
i=1

(
4(1− 4t)Ci + 6t(1− 2t)Ċi

)
Ċg−i

)
,

(6)

where Ċg = d
dtCg(t(1− 2t)) and

Dt =
t2(1− 2t)2

(1− 4t)3
· d3

dt3
+

t(1− 2t)(5− 28t+ 56t2)

(1− 4t)4
· d2

dt2

+
4(1− 11t+ 58t2 − 144t3 + 144t4)

(1− 4t)5
· d

dt
.

Assuming that C0, . . . , Cg−1 are known, we can think of (6) as an ODE for Cg. The
integrating factor for this equation is 1−t

(1−2t)3 , so that we get from (6)

d

dt

(
t(1−t)3

(1−2t)2
Cg

)
= t3(1− t)

(
DtCg−1 +

1

(1−4t)2

g−1∑
i=1

(
4(1− 4t)Ci +6t(1− 2t)Ċi

)
Ċg−i

)
,

or, equivalently,

Cg(t(1− 2t)

=
(1−2t)2

t(1−t)3

∫
t3(1−t)

(
DtCg−1+

1

(1−4t)2

g−1∑
i=1

(
4(1−4t)Ci + 6t(1−2t)Ċi

)
Ċg−i

)
dt.

(7)

Since by definition Cg(0) = 0 for all g ≥ 0, equation (7) determines Cg uniquely in terms
of C0, . . . , Cg−1. In particular, this equation immediately yields

C1(t(1− 2t)) =
t3

(1− t)(1− 4t)2
,

C2(t(1− 2t)) =
8t5 − 92t6 + 464t7 − 1316t8 + 2204t9 − 2048t10 + 816t11

(1− t)5(1− 4t)7
.
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Let us show that Cg(t(1−2t)) has the form (3) for any g ≥ 3. We will use the elementary
formula

d

dt

(
tα

(1− t)β(1− 4t)γ

)
=

αtα−1 + (−5α+ β + 4γ)tα + 4(α− β − γ)tα+1

(1− t)β+1(1− 4t)γ+1
.(8)

Then we have

DtCg−1 =
(2g − 1)(2g)2pg−1,2g−1t

2g−2 + · · · − 256pg−1,9g−16t
9g−9

(1− t)4g−4(1− 4t)5g−2
(9)

and

(10)
1

(1−4t)2

g−1∑
i=1

(
4(1−4t)Ci + 6t(1−2t)Ċi

)
Ċg−i =

rgt
2g+1+. . .+ 256pg−1,9g−16t

9g−9

(1− t)4g−4(1− 4t)5g−2
,

where rg is some constant. Notice that the top degree term in the numerator on the

right-hand side of (10) comes entirely from the product C1Ċg−1. Multiplying both sides
of (9) and (10) by t3(1 − t) and taking their sum, we see that the integrand in (7) has
the form

Qg(t)

(1− t)4g−5(1− 4t)5g−2
,(11)

where Qg(t) =
∑9g−7

i=2g+1 qg,it
i is a polynomial with qg,2g+1 = (2g − 1)(2g)2pg−1,2g−1.

Therefore, we can rewrite (7) as

Cg(t(1− 2t)) =
(1− 2t)2

t(1− t)3

∫
Qg(t)

(1− t)4g−5(1− 4t)5g−2
dt.(12)

To perform integration in (12), we decompose the integrand in the sum

Qg(t)

(1− t)4g−5(1− 4t)5g−2
= a+

4g−5∑
i=2

ai
(1− t)i

+

5g−2∑
j=2

bj
(1− 4t)j

.(13)

Note that no terms of the form a1

1−t or b1
1−4t can appear on the right hand side of (13)

because the Taylor series expansion of the left-hand side of (12) has integral coefficients4.
Integrating, we obtain∫

Qg(t)

(1−t)4g−5(1−4t)5g−2
dt = at+ b+

4g−6∑
i=1

ai+1

i
· 1

(1−t)i
+

5g−3∑
j=1

bj+1

4j
· 1

(1−4t)j
,(14)

where the condition Cg(0) = 0 implies

b = −
4g−6∑
i=1

ai
i
−

5g−3∑
j=2

bj+1

4j
.

Multiplying the right-hand side of (14) by (1 − t)4g−6(1− 4t)5g−3, we get a polynomial

of the form Rg(t) =
∑9g−8

i=2g+2 rg,it
i. To complete the proof, we put Pg(t) =

(1−2t)2

t Rg(t)

and notice that pg,2g+1 = (2g−1)(2g)2

2g+2 pg−1,2g−1. Moreover, we see that t = 1/2 is a root

of Pg(t) of multiplicity 2 provided g ≥ 2.5 �

Now we continue with map enumeration.

4We owe this observation to F. Petrov.
5Numerically, we also have pg,9g−7 �= 0, Pg(1) �= 0, Pg(1/4) �= 0. In principle, this can be verified

along the same lines as above, but computations become too cumbersome to reproduce them here.
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Theorem 2. Under the substitution s = t(1− 3t) we have

C̃0(t(1− 3t)) =
1− 4t

(1− 3t)2
,

C̃1(t(1− 3t)) =
t2

(1− 2t)(1− 6t)2
,

C̃g(t(1− 3t)) =
P̃g(t)

(1− 2t)3g−2(1− 6t)5g−3
, g ≥ 2,

(15)

where P̃g(t) =
∑8g−6

i=2g p̃g,i t
i with p̃g,2g = (4g−1)!!

2g+1 . The polynomials P̃g(t) can be computed

recursively by (20).

Remark 3. The polynomials P̃g(t) for g = 2, 3 are:

P̃2(t) = 21t4 − 336t5 + 2334t6 − 9108t7 + 21177t8 − 27756t9 + 15876t10,

P̃3(t) = 1485t6 − 41184t7 + 539073t8 − 4483458t9 + 26893989t10 − 124232004t11

+ 453861279t12 − 1307353122t13 + 2897271774t14 − 4737605112t15

+ 5355443952t16 − 3723895296t17 + 1197496224t18.

Like in the case of hypermaps, they can be computed for much larger values of g.

Proof. The proof of Theorem 2 is quite similar to that of Theorem 1, so we shall only
outline its main steps. We recall a specialization of the Kadomtsev–Petviashvili (KP)
equation for the map count, derived in [7]:

(sC̃g)
′ = 4

(
2s2C̃ ′

g + sC̃g

)
+ 2s3

(
2s(sC̃g−1)

′ + sC̃
)′′

+ s2
(
2s(sC̃g−1)

′ + sC̃
)′

+ 3s2
g∑

i=0

(
C̃i + 2sC̃ ′

i

)(
C̃g−i + 2sC̃ ′

g−i

)
+ δg,0,

(16)

where the prime ′ stands for the derivative d
ds . This equation is merely a differential form

of the recursion (16) in [7] for t = u = 1:

(n+ 1)c̃g,n = 4(2n− 1) c̃g,n−1 + (2n− 1)(2n− 3)(n− 1) c̃g−1,n−2

+ 3

g∑
i=0

n−2∑
j=0

(2j + 1)(2(n− 2− j) + 1) c̃i,j c̃g−i,n−2−j .
(17)

For g ≥ 1, we can further rewrite formula (16) as the differential recursion(
s− 8s2 − 12s3C̃0 − 24s4C̃ ′

0

)
C̃ ′

g +
(
1− 4s− 6s2C̃0 − 12s3C̃ ′

0

)
C̃g

= 4s5C̃ ′′′
g−1+24s4C̃ ′′

g−1+27s3C̃ ′
g−1+3s2C̃g−1+3s2

g∑
i=0

(C̃i+2sC̃ ′
i)(C̃g−i+2sC̃ ′

g−i).
(18)

For g = 0 we get an ordinary differential equation that can be solved explicitly:

C̃0(s) =
−1 + 18s+ (1− 12s)3/2

54s2
.

It is easily seen that the substitution s = t(1− 3t) simplifies C̃0 considerably and makes
it a rational function, namely,

C̃0(t(1− 3t)) =
1− 4t

(1− 3t)2
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(cf. [11]). Substituting s = t(1− 3t) in (18), we get

t(1− 2t)(1− 3t)
˙̃
Cg + (1− 4t+ 6t2)C̃g

= t2(1− 3t)2

(
D̃tC̃g−1 + 3

g−1∑
i=1

(
C̃i +

t(1−3t)

1−6t
˙̃
Ci

) (
C̃g−i +

t(1−3t)

1−6t
˙̃
Cg−i

))
,

(19)

where
˙̃
Cg = d

dt C̃g(t(1− 3t)) and

D̃t =
4t3(1− 3t)3

(1− 6t)3
· d3

dt3
+

24t2(1− 3t)2(1− 9t+ 27t2)

(1− 6t)4
· d2

dt2

+
9t(1− 3t)(3− 56t+ 456t2 − 1728t3 + 2592t4)

(1− 6t)5
· d

dt
+ 3.

Assuming that C̃0, . . . , C̃g−1 are known, we can think of (19) as an ODE for C̃g. The

integrating factor for this equation is t(1−2t)
1−3t , so that from (19) we get

C̃g(t(1− 3t)

=
1− 3t

t(1−2t)

∫
t2

(
D̃tC̃g−1+ 3

g−1∑
i=1

(
C̃i+

t(1−3t)

1− 6t
˙̃
Ci

)(
C̃g−i+

t(1−3t)

1− 6t
˙̃
Cg−i

))
dt.

(20)

Since by definition C̃g(0) = 0 for all g ≥ 1, formula (20) determines C̃g uniquely in terms

of C̃0, . . . , C̃g−1. In particular, this formula immediately yields

C̃1(t(1− 3t)) =
t2

(1− 2t)(1− 6t)2
.

We show that C̃g(t(1− 3t)) has the form (15) for any g ≥ 2. Using an analog of (8), we
deduce, after some cancellations, that the integrand in (20) has the form

Q̃g(t)

(1− 2t)3g−2(1− 6t)5g−2
,(21)

where Q̃g(t) =
∑8g−6

i=2g q̃g,it
i is a polynomial with q̃g,2g = (2g−1)(4g−1)(4g−3) pg−1,2g−2.

It can be further decomposed into the sum

Q̃g(t)

(1− 2t)3g−2(1− 6t)5g−2
=

3g−2∑
i=2

ãi
(1− 2t)i

+

5g−2∑
j=2

b̃j
(1− 6t)j

.(22)

Integrating it, we obtain∫
Q̃g(t)

(1− 2t)3g−2(1− 6t)5g−2
dt = b̃+

3g−3∑
i=1

ãi+1

2i
· 1

(1− 2t)i
+

5g−3∑
j=2

b̃j+1

6j
· 1

(1− 6t)j
,(23)

where the condition C̃g(0) = 0 implies

b̃ = −
3g−3∑
i=1

ãi+1

2i
−

5g−3∑
j=1

b̃j+1

6j
.

Multiplying the right-hand side of (23) by (1− 2t)3g−3(1− 6t)5g−3, we get a polynomial

of the form R̃g(t) =
∑8g−6

i=2g+1 r̃g,it
i. To complete the proof, we put P̃g(t) = 1−3t

t R̃g(t)

and notice that p̃g,2g = (2g−1)(4g−1)(4g−3)
2g+1 p̃g−1,2g−2. Moreover, we see that t = 1/3 is a

root of P̃g(t).
6 �

6Numerically, we also have p̃g,8g−6 �= 0, ˜Pg(1/2) �= 0, ˜Pg(1/6) �= 0.
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