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ORIENTED AREA IS A PERFECT MORSE FUNCTION

G. PANINA

Abstract. An appropriate generalization of the oriented area function is a perfect
Morse function on the space of three-dimensional configurations of an equilateral
polygonal linkage with odd number of edges. Therefore, the cyclic equilateral poly-
gons (which appear as Morse points) can be viewed as independent generators of the
homology groups of the (decorated) configuration space.

§1. Introduction

A Morse function on a smooth manifold is said to be perfect if the number of critical
points equals the sum of Betti numbers. Not every manifold possesses a perfect Morse
function. The homological spheres (that are not spheres) do not possess it; the manifolds
with torsions in homologies do not possess it, etc. On the other hand, the celebrated
Millnor–Smale theorem on cancellation of critical points with neighbor indices (or equiv-
alently, cancellation of handles) provides a series of existence-type theorems [1, 4], which
are the key tool in Smale’s proof of the generalized Poincaré conjecture [7].

In this paper we focus on one particular example of a perfect Morse function and
discuss some related problems. Namely, we restrict ourselves to the space of configuration
of the equilateral polygonal linkage with odd number n = 2k+1 of edges. As the ambient
space, it makes sense to take either R2 or R3, which gives us the spaces M2(n) and M3(n).
In larger dimension the configuration space is not a manifold. The number n is chosen
to be odd for the same reason: for even n, the configuration space of the equilateral
polygonal linkage has singular points.

We are interested in finding a “natural” perfect Morse function, that is, a function that
has a transparent physical or geometrical meaning. Our first candidate for a “natural”
Morse function on M2(n) is the oriented area function A. Indeed, it is a Morse function
with an easy description of its critical points as cyclic polygons (that is, polygons with
a superscribed circle), and with a simple formula for the Morse index of a critical point,
see [3]. However, for M2(n) A is not perfect. In particular, for the equilateral pentagonal
linkage, A has one additional local maximum (except for the global maximum) and one
additional local minimum, see Example 1. For the equilateral heptagonal linkage the
number of Morse points greatly exceeds the sum of Betti numbers of the configuration
space.

To build up a perfect Morse function, we take the space M3(n) and decorate it. The

decorated space M̃3(n) is well adjusted for an appropriate generalization S of the area
function A. Its critical points (loosely speaking) are again cyclic polygons. Surpris-
ingly, the function S is a perfect Morse function. As a direct corollary, we interpret
the cyclic equilateral polygons as independent generators of the homology groups of the

configuration space M̃3(n).
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§2. Preliminaries and notation

For an odd n = 2k + 1, an equilateral polygonal n-linkage should be interpreted as a
collection of rigid bars of lengths 1 joined consecutively by revolving joints in a chain.

A configuration of the polygonal n-linkage in the Euclidean space R
d, d = 2, 3, is

a sequence of points R = (p1, . . . , pn+1), pi ∈ R
d, such that |pi, pi+1| = 1 for all i and

|pn, p1| = 1 modulo the action of orientation preserving isometries of the space R
d. We

also call P a polygon. A configuration carries a natural orientation, which we indicate in
figures by an arrow.

The space Md(n) of all configurations up to an orientation-preserving isometry of the
ambient space is the moduli space, or the configuration space of the polygonal linkage L.

For d = 2, 3 the space Md(n) is a smooth manifold.
Below in this section we explain what is known about planar configurations and the

signed area function as the Morse function on the configuration space.

Definition 1. The signed area of a polygon P ∈ M2(n) with the vertices pi = (xi, yi) is
defined by

2A(P ) = (x1y2 − x2y1) + · · ·+ (xny1 − x1yn).

Definition 2. A polygon P is cyclic if all its vertices pi lie on a circle.

A polygon P is a critical point of the signed area function A if and only if P is cyclic.
The Morse indices of cyclic polygons were calculated in [3, 9].

Example 1 (see [6]). The equilateral pentagonal linkage has 14 cyclic configurations
depicted in Figure 1.

(1) The convex regular pentagon and its mirror image are the global maximum and
minimum of the signed area A. Their Morse indices are 2 and 0, respectively.

(2) The starlike configurations are a local maximum and a local minimum of A.
(3) There are ten configurations that have a fold of three consecutive edges. Their

Morse indices are equal to 1.

(1)

(2)

(3)

Figure 1. Cyclic configurations of the equilateral pentagonal linkage
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§3. The decorated configuration space M̃3(n) and the area function S

Definition 3. The decorated configuration space is defined as the space of pairs

M̃3(n) =
{
(P, ξ) |P is a polygon in R

3 with the sidelengths 1; ξ ∈ S2
}
,

factorized by the diagonal action of the orientation preserving isometries of R3.
Here S2 ∈ R

3 is the unit sphere centered at the origin O.

Lemma 1.

(1) The space M̃3(n) is an orientable fibration over M3(n) whose fiber is S2.
(2) The Euler class of this fibration equals zero.

Proof. (1) It is known that the space of all polygons with fixed sidelengths (before fac-
torization by isometries) is orientable. Therefore, the space of the pairs (a polygon, a
vector) is also orientable as the total space of the trivial fibration. Since we factorize by
the action of orientation preserving isometries, the factor space is also orientable.

(2) s(P ) :=
#     –p1p2

|p1p2| determines a nonzero section. �

The Gysin sequence [8] implies the following.

Corollary 1.

(1) We have the short exact sequence

0 → Hm(M(n)) → Hm(M̃(n)) → Hm−2(M(n)) → 0.

(2) The homology groups Hm(M̃(n)) are free Abelian. For the Betti numbers we have

βm(M̃(n)) = βm(M(n)) + βm−2(M(n)).

Definition 4. Let (P, ξ) ∈ M̃3(n), and let pi be the vertices of P . The area of the pair
(P, ξ) is defined as the scalar product

S(P, ξ) =
1

2
(p1 × p2 + p2 × p3 + · · ·+ pn × p1, ξ).

An alternative equivalent definition is as follows:

S(P, ξ) = A(prξ⊥(P )),

where prξ⊥ is the plane orthogonal to ξ and cooriented by ξ.

Proposition 1. For an equilateral polygon with odd number of edges, the critical points
(P, ξ) of the function S are pairs (P, ξ) such that P is a planar cyclic polygon, and ξ is
orthogonal to the affine hull of P . If (P, ξ) is a critical point, then (P,−ξ) is also critical.

Proof. The paper [5] contains a characterization of all critical points for a generic (not
necessarily equilateral) polygonal linkage. In our particular case, the critical points (P, ξ)
of the function S fall into two classes.

(1) Planar cyclic configurations. These are pairs (P, ξ) such that P is a planar
cyclic polygon, and ξ is orthogonal to the affine hull of P .

(2) Nonplanar configurations. They are characterized by the following condi-
tions:
(a) the vectors ξ and 2

#–
S = p1 × p2 + p2 × p3 + · · · + pn × p1 are parallel (but

they can have opposite directions);

(b) the orthogonal projection of P onto the plane
#        –

S(P )⊥ is a cyclic polygon;

(c) for every i, the vectors
#–
Ti,

#–
S , and

#–

di are coplanar.

Here
#–

di is the ith short diagonal, and
#–

Ti is the vector area of the triangle
pi−1pipi+1.
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Let us show that the second class (nonplanar configurations) is empty. Indeed, given
a nonplanar critical configuration, introduce a Cartesian system with the z-axes parallel
to ξ. The three conditions (a), (b), and (c) imply that the absolute value of the slope of
an edge with respect to the plane (x, y) = ξ⊥ does not depend on the edge. This implies
a contradiction with the closing condition:

∑n
i=o(z(pi)− z(pi−1)) = 0, where the indices

are modulo n. �

Theorem 1. (1) For an equilateral linkage with odd number of edges, the function

S is a perfect Morse function on the decorated configuration space M̃3(L).
(2) Each critical point of the function S is a pair (P, ξ), where P is a planar cyclic

configuration and ξ is a unit vector orthogonal to P . Each planar cyclic config-
uration P gives two critical points of the function S (with two different choices
of the normal vector ξ).

(3) The Morse index of a critical point (P, ξ) is

m(P, ξ) = 2e− 2ω − 2,

where ω is the winding number of P around the center of the circumscribed circle,
and e is the number of edges that go counterclockwise.1

Proof. (i) The second statement has already been proved. We show that the number
of critical points equals the sum of Betti numbers. These are already known due to
A. Klyachko [2]:

β2p(M3(n)) =
∑

0≤i≤p

(
2k

i

)
, p < k.

By Corollary 1, we have

β2p(M̃3(n)) =
∑

0≤i≤p

(
n

i

)
, p < k.

Each equilateral cyclic n-gon with an orthogonal vector ξ is determined by its winding
number ω and by the set of edges that go clockwise. Assume that the winding number
is positive (the negative values are treated by symmetry). If the number of edges that
go clockwise is e, then the winding number ranges from 1 to (k − e).

For p = 0, 1, . . . , k, denote by Np
n the number of cyclic equilateral polygons for which

e− ω − 1 = p. Then β̃2p
n = Np

n.
(iii) Straightforward analysis of the Hesian matrix is very complicated (probably im-

possible), so we use a combinatorial approach. We prove the formula for Morse index by
induction on n. The base is given by the equilateral pentagon. By symmetry, we assume
that we have a critical point (P, ξ) such that S(P, ξ) > 0, or equivalently, with winding
number ω > 0.

The proof is based on two observations.

(1) There is a natural embedding of a neighborhood of P in the space M2(n) to M̃3(n).
It maps a configuration P to (P, ξ) with the same P and with ξ orthogonal to the affine
hull of P . The direction of ξ is chosen so that S is positive. We choose a basis of the

tangent space T(P,ξ)M̃3(n) that starts with the pushforward of a basis of TPM2(n) and
ends with the coordinates of ξ. The Hessian matrix related to this basis is a block matrix:

HESS(P, ξ) =

⎛
⎝H1 0 0

0 H2 0
0 0 −E

⎞
⎠ ,

1The vector ξ sets an orientation on the plane of the polygon, so it makes sense to talk of “edges
going clockwise” and “edges going counterclockwise”.
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where H1 is the (n− 3)× (n− 3) Hessian matrix of the planar polygon P related to the
area function A and the space M2(n), and E is the the unit matrix of size 2× 2.

(2) For an (n+2)-gon and a number 1 ≤ i ≤ n, consider the embedding ϕi : M̃3(n) →
M̃3(n + 2) that keeps ξ and replaces the edge number i by a fold of three edges (see
Figure 1, (3) for an equilateral triangle with an edge replaced by a three-fold). Each

critical point (P, ξ) ∈ M̃3(n) induces a critical point ϕi(P, ξ) ∈ M̃3(n + 2). Since this
embedding has codimension two, and all Morse indices can only be even, we have either
m(ϕi(P, ξ)) = m(P, ξ), m(ϕi(P, ξ)) = 2 +m(P, ξ), or m(ϕi(P, ξ)) = 4 +m(P, ξ). More
precisely, replacing an edge by a three-fold adds two extra columns to H1 and two extra
columns to H2. From [3] we know that the Morse index of P related to M2(n) and the
oriented area A (that is, the number of negative eigenvalues of H1) equals e− 2ω− 1. It
increases by one after replacement of an edge by a three-fold. This only leaves the case
m(ϕi(P, ξ)) = 2 +m(P, ξ).

These arguments allow us to make an induction step n → n+2, thus proving 3 for all
cyclic configurations with triple edges.

It remains to prove the formula for configurations without triple edges, that is, with all
the edges going counterclockwise. We keep assuming that S(P, ξ) > 0, so that there are
exactly k such polygons: with ω = 1, 2, 3, . . . , k. Their Morse indices should be 2n − 4,
2n− 6, 2n− 8, etc. The only question is which configuration has one or other index. We
know that H1 contributes n − 3, n − 5, n − 7, etc. to each of the Morse indices. The
block H2 contributes at most n − 3, and −E contributes exactly two. The statement
follows. �

As an illustration, below we list all cyclic equilateral pentagons and heptagons. The
first column depicts a combinatorial type, the third tells the number of configurations of
this type, and the last column tells the Morse index.

(a) Critical equilateral pentagons (b) Critical equilateral heptagons

Figure 2
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Concluding remarks

The decorated configuration space and the function S can be defined for a polygonal
linkage that is not necessarily equilateral. However, generically, the function S is not a
perfect Morse function.

In the paper we omit the discussion of the nondegeneracy of critical points, because
it appears to be somewhat technical. However, the following arguments work: one may
replace the equilateral linkage (1, 1, . . . , 1) by its perturbation (1+ ε1, 1+ ε2, . . . , 1+ εn).
The latter has nondegenerate critical configurations that are close to equilateral ones
described above.
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