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HEAT TRACES AND SPECTRAL ZETA FUNCTIONS

FOR p-ADIC LAPLACIANS

L. F. CHACÓN-CORTÉS AND W. A. ZÚÑIGA-GALINDO

Abstract. The study of the heat traces and spectral zeta functions for certain p-adic
Laplacians is initiated. It is shown that the heat traces are given by p-adic integrals
of Laplace type, and that the spectral zeta functions are p-adic integrals of Igusa
type. Good estimates are found for the behavior of the heat traces when the time
tends to infinity, and for the asymptotics of the function counting the eigenvalues
less than or equal to a given quantity.

§1. Introduction

The p-adic heat equation is defined as

(1.1)
∂u(x, t)

∂t
+Dβu(x, t) = 0, x ∈ Qp, t ≥ 0,

where (
Dβϕ

)
(x) = F−1

ξ→x(|ξ|βpFx→ξϕ), β > 0,

is the Vladimirov operator (a p-adic Laplacian), and F denotes the p-adic Fourier trans-
form. This equation is the p-adic counterpart of the classical fractional heat equation,
which describes a random motion (the fractional Brownian motion) of a particle; a “sim-
ilar” statement is valid for the p-adic heat equation. More precisely, the fundamental
solution of (1.1) is the transition density of a bounded right-continuous Markov process
without second kind discontinuities. The family of non-Archimedean heat-type equations
is very large, and it has a deep relationship with mathematical physics. For instance, in
[4, 5], Avetisov et al. introduced a new class of models for complex systems based on
p-adic analysis. From a mathematical point of view, in these models the time-evolution
of a complex system is described by a p-adic master equation (a parabolic-type pseu-
dodifferential equation) that controls the time-evolution of a transition function of a
Markov process on an ultrametric space. The simplest type of a master equation is the
one-dimensional p-adic heat equation. This equation was introduced in the book [35] by
Vladimirov, Volovich, and Zelenov. It should be mentioned here that the p-adic heat
equation also appeared in certain works connected with the Riemann hypothesis [23].
In recent years, the non-Archimedean heat-type equations and their associated Markov
processes have been studied intensively, see, e.g., [19, 35, 7, 9, 10, 15, 30, 34, 38, 39]
and the references therein. On the other hand, the study of pseudo-differential operators
on complex-valued functions defined on the field of p-adic numbers or its subsets was
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started around 1990 by several authors (Haran, Vladimirov, Volovich, Kochubei, Khren-
nikov, Kozyrev, and others). By this time, there are well-developed theories of elliptic
and parabolic equations on p-adics, some results on hyperbolic equations and construc-
tions appearing as p-adic counterparts of quantum mechanics and quantum field theory,
see, e.g., [2, 15, 17, 19, 21, 20, 35].

The links between the Archimedean heat equations and number theory and geometry
are well known and deep. Here we mention the relationship with the Riemann zeta
function, which drives naturally to trace-type formulas, see, e.g., [3] and the references
therein, and the relationship with the Atiyah–Singer index theorem, see, e.g., [16] and the
references therein. The study of non-Archimedean counterparts of the matters mentioned
above is quite relevant, especially if we take into account that the Connes and Deninger
programs to attack the Riemann hypothesis drive naturally to these matters, see, e.g.,
[12, 13, 24] and the references therein. For instance, several types of p-adic trace formulas
have been studied, see, e.g., [1, 6, 37] and the references therein.

Nowadays there is no theory of pseudodifferential operators over p-adic manifolds
comparable to the classical theory, see, e.g., [31] and the references therein. The n-di-
mensional unit ball is the simplest p-adic compact manifold possible. From a topological
point of view, this ball is a fractal, more precisely, it is topologically equivalent to a
Cantor-like subset of the real line, see, e.g., [2, 35]. Currently, there is a lot of interest
to spectral zeta functions attached to fractals see, e.g., [22, 32].

In this paper we initiate the study of heat traces and spectral zeta functions attached
to certain p-adic Laplacians, denoted by Aβ , which are generalizations of the p-adic
Laplacians introduced by the authors in [9], see also [10]. By using an approach inspired
by the work of Minakshisundaram and Pleijel, see [25, 26, 27], we find a formula for
the trace of the semigroup e−tAβ acting on the space of square integrable functions
supported on the unit ball with average zero, see Theorem 6.7. The trace of e−tAβ is
a p-adic oscillatory integral of Laplace type; we do not know the exact asymptotics of
this integral as t tends to infinity, however, we obtain a good estimate for its behavior at
infinity, see Theorem 6.7 (ii). Several unexpected mathematical situations occur in the
p-adic setting. For instance, the spectral zeta functions are p-adic Igusa-type integrals, see
Theorem 7.5. The p-adic spectral zeta functions studied here may have infinitely many
poles on the boundary of its domain of holomorphy, then, to the best of our knowledge,
the standard Ikehara Tauberian theorems cannot be applied to obtain the asymptotic
behavior for the function counting the eigenvalues of Aβ less than or equal to T ≥ 0.
However, we are still able to find good estimates for this function, see Theorem 7.5,
Remark 7.6, and Conjecture 7.7. The proofs require several results on certain “boundary
value problems” attached to p-adic heat equations associated with operators Aβ, see
Proposition 5.3, Theorem 6.5, and Proposition 6.6. Finally, we mention that our results
and techniques are completely different from those presented in [1, 6, 37].

§2. Preliminaries

In this section we fix the notation and collect some basic results on p-adic analysis
that we shall use through the paper. For a detailed exposition on p-adic analysis the
reader may consult [2, 33, 35].

2.1. The field of p-adic numbers. Throughout, p will denote a prime number. The
field of p-adic numbers Qp is defined as the completion of the field of rational numbers
Q with respect to the p-adic norm | · |p, which is defined as

|x|p =

{
0 if x = 0,

p−γ if x = pγ a
b ,
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where a and b are integers coprime to p. The integer γ = ordp(x) := ord(x), with
ord(0) := +∞, is called the p-adic order of x. We extend the p-adic norm to Qn

p by
taking

‖x‖p := max
1≤i≤n

|xi|p for x = (x1, . . . , xn) ∈ Qn
p .

We define ord(x) = min1≤i≤n{ord(xi)}; then ‖x‖p = p− ord(x). The metric space
(Qn

p , ‖ · ‖p) is a complete ultrametric space. As a topological space, Qp is homeomorphic
to a Cantor-like subset of the real line, see, e.g., [2, 35].

Any p-adic number x �= 0 has a unique expansion of the form

x = pord(x)
∞∑
j=0

xjp
j ,

where xj ∈ {0, 1, 2, . . . , p − 1} and x0 �= 0. By using this expansion, we define the
fractional part {x}p of x ∈ Qp as the rational number

{x}p =

{
0 if x = 0 or ord(x) ≥ 0,

pord(x)
∑− ord(x)−1

j=0 xjp
j if ord(x) < 0.

Any x ∈ Qn
p \ {0} can be represented uniquely as x = pord(x)v(x), where ‖v(x)‖p = 1.

2.2. Additive characters. Set χp(y) = exp(2πi{y}p) for y ∈ Qp. The map χp( · ) is
an additive character on Qp, i.e., a continuous map from (Qp,+) into S (the unit circle
viewed as a multiplicative group) satisfying χp(x0+x1) = χp(x0)χp(x1), x0, x1 ∈ Qp. The
additive characters of Qp form an Abelian group isomorphic to (Qp,+), with isomorphism
given by ξ → χp(ξx), see, e.g., [2, Subsection 2.3].

2.3. Topology of Qn
p . For r ∈ Z, we denote by Bn

r (a) = {x ∈ Qn
p ; ‖x − a‖p ≤ pr} the

ball of radius pr with center at a = (a1, . . . , an) ∈ Qn
p , and take Bn

r (0) := Bn
r . Note

that Bn
r (a) = Br(a1) × · · · × Br(an), where Br(ai) := {x ∈ Qp; |xi − ai|p ≤ pr} is

the one-dimensional ball of radius pr with center at ai ∈ Qp. The ball Bn
0 equals the

product of n copies of B0 = Zp, the ring of p-adic integers. We also denote by Sn
r (a) =

{x ∈ Qn
p ; ‖x−a‖p = pr} the sphere of radius pr with center at a = (a1, . . . , an) ∈ Qn

p , and

take Sn
r (0) := Sn

r . Observe that S1
0 = Z×

p (the group of units of Zp), but (Z×
p )

n � Sn
0 .

The balls and spheres are both open and closed subsets in Qn
p . Moreover, either two

balls in Qn
p are disjoint, or one is contained in the other.

As a topological space (Qn
p , ‖ · ‖p) is totally disconnected, i.e., the only connected

subsets of Qn
p are the empty set and the points. A subset of Qn

p is compact if and only if
it is closed and bounded in Qn

p , see, e.g., [35, Subsection 1.3], or [2, Subsection 1.8]. The
balls and spheres are compact subsets. Thus, (Qn

p , ‖ · ‖p) is a locally compact topological
space.

We use Ω(p−r‖x − a‖p) to denote the characteristic function of the ball Bn
r (a). For

more general sets, we shall use the notation 1A for the characteristic function of a set A.

§3. The Bruhat–Schwartz space and the Fourier transform

A complex-valued function ϕ defined on Qn
p is said to be locally constant if for any

x ∈ Qn
p there exist an integer l(x) ∈ Z such that

(3.1) ϕ(x+ x′) = ϕ(x) for x′ ∈ Bn
l(x).

A function ϕ : Qn
p → C is called a Bruhat–Schwartz function (or a test function) if

it is locally constant with compact support. Any test function can be represented as a
linear combination, with complex coefficients, of characteristic functions of balls. The
C-vector space of Bruhat–Schwartz functions is denoted by D(Qn

p ). For ϕ ∈ D(Qn
p ), the
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largest number l = l(ϕ) satisfying (3.1) is called the exponent of local constancy (or the
parameter of constancy) of ϕ.

If U is an open subset of Qn
p , we write D(U) for the space of test functions with

supports contained in U ; then D(U) is dense in

Lρ(U) =

{
ϕ : U → C; ‖ϕ‖ρ =

{∫
U

|ϕ(x)|ρ dnx
} 1

ρ

< ∞
}
,

where dnx is the Haar measure on Qn
p normalized by the condition vol(Bn

0 ) = 1, for
1 ≤ ρ < ∞, see, e.g., [2, Subsection 4.3].

3.1. The Fourier transform of test functions. Given ξ = (ξ1, . . . , ξn) and y =
(x1, . . . , xn) ∈ Qn

p , we set ξ · x :=
∑n

j=1 ξjxj . The Fourier transform of ϕ ∈ D(Qn
p ) is

defined as

(Fϕ)(ξ) =

∫
Qn

p

χp(ξ · x)ϕ(x) dnx for ξ ∈ Qn
p ,

where dnx is the normalized Haar measure on Qn
p . The Fourier transform is a linear

isomorphism from D(Qn
p ) onto itself satisfying (F(Fϕ))(ξ) = ϕ(−ξ), see, e.g., [2, Sub-

section 4.8]. We shall also use the notation Fx→ξϕ and ϕ̂ for the Fourier transform
of ϕ.

§4. p-adic Laplacians

Let R+ :=
{
x ∈ R; x ≥ 0

}
; we fix a function

A : Qn
p → R+

satisfying the following properties:
(i) A(ξ) is a radial function, i.e., A(ξ) = g(‖ξ‖p) for some g : R+ → R+, for simplicity we
use the notation A(ξ) = A(‖ξ‖p);
(ii) there exist constants C0, C1 > 0 and β > 0 such that

(4.1) C0‖ξ‖βp ≤ A(ξ) ≤ C1‖ξ‖βp for x ∈ Qn
p .

Since β in (4.1) is unique, we use the notation Aβ(‖ξ‖p) = A(‖ξ‖p).
We define a pseudodifferential operator Aβ by

(4.2) (Aβϕ)(x) = F−1
ξ→x[Aβ(ξ)Fx→ξϕ] for ϕ ∈ D(Qn

p ),

calling Aβ(ξ) the symbol of Aβ . The operator Aβ extends to an unbounded and densely
defined operator in L2(Qn

p ) with the domain

(4.3) Dom(Aβ) =
{
ϕ ∈ L2;Aβ(ξ)Fϕ ∈ L2

}
.

Moreover:
(i) (Aβ ,Dom(Aβ)) is a selfadjoint and positive operator;
(ii) −Aβ is the infinitesimal generator of a contraction C0-semigroup, cf. [9, Proposi-
tion 3.3].

With the operator Aβ we associate the following “heat equation”:{
∂u(x,t)

∂t +Aβu(x, t) = 0, x ∈ Qn
p , t ∈ [0,∞),

u(x, 0) = u0(x), u0(x) ∈ Dom(Aβ).

This initial-value problem has a unique solution given by

u(x, t) =

∫
Qn

p

Z(x− y, t)u0(y) d
ny,
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where

Z(x, t;Aβ) := Z(x, t) =

∫
Qn

p

χp(−ξ · x)e−tAβ(ξ) dnξ, t > 0, x ∈ Qn
p ,

cf. [9, Theorem 6.5]. The function Z(x, t) is called the heat kernel associated with Aβ .

4.1. Operators W α. The class of operators Aβ includes the class of operators Wα

studied by the authors in [9], see also [10]. In addition, most of the results on the
Wα operators are valid for the Aβ operators. We review briefly the definition of these
operators. Fix a function

wα : Q
n
p → R+

with the following properties:
(i) wα(y) is a radial, i.e., wα(y) = wα(‖y‖p);
(ii) wα(‖y‖p) is a continuous and monotone increasing function of ‖y‖p;
(iii) wα(y) = 0 if and only if y = 0;
(iv) there exist constants C0, C1 > 0 and α > n such that

C0‖y‖αp ≤ wα(‖y‖p) ≤ C1‖y‖αp , x ∈ Qn
p .

Now we define the operator

(W αϕ)(x) = κ

∫
Qn

p

ϕ(x− y)− ϕ(x)

wα(‖y‖p)
dny, ϕ ∈ D(Qn

p ),

where κ is a positive constant. The operator W α is pseudodifferential, more precisely, if

Awα
(ξ) :=

∫
Qn

p

1− χp(y · ξ)
wα(‖y‖p)

dny,

then

(Wαϕ)(x) = −κF−1
ξ→x[Awα

(ξ)Fx→ξϕ], ϕ ∈ D(Qn
p ).

The function Awα
(ξ) is radial (so we write Awα

(ξ) = Awα
(‖ξ‖p)), continuous, nonnega-

tive, and satisfies Awα
(0) = 0, and it obeys the inequalities

C ′
0‖ξ‖α−n

p ≤ Awα
(‖ξ‖p) ≤ C ′

1‖ξ‖α−n
p , x ∈ Qn

p ,

cf. [9, Lemmas 3.1, 3.2, 3.3]. The operator W α extends to an unbounded and densely
defined operator in L2(Qn

p ).

4.2. Examples.

Example 4.1. The Taibleson operator is defined as

(Dβ
Tφ)(x) = F−1

ξ→x(‖ξ‖βpFx→ξφ), with β > 0 and φ ∈ D(Qn
p ).

cf. [30] and [2, Subsection 9.2.2].

Example 4.2. Take Aβ(ξ) = ‖ξ‖βp{B − Ae−‖ξ‖p} with B > A > 0. Then Aβ(ξ)
satisfies all the requirements announced at the beginning of this section. In general, if
f : Qn

p → R+ is a radial function satisfying

0 < inf
ξ∈Qn

p

f(‖ξ‖p) < sup
ξ∈Qn

p

f(‖ξ‖p) < ∞,

then Aβ(‖ξ‖p)f(‖ξ‖p) satisfies all the requirements announced at the beginning of this
section.
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§5. Lizorkin spaces, eigenvalues, and eigenfunctions for the Aβ operators

We set L0(Qn
p ) := {ϕ ∈ D(Qn

p ); ϕ̂(0) = 0}. The C-vector space L0 is called the p-adic

Lizorkin space of second class. We recall that L0 is dense in L2, see [2, Theorem 7.4.3],
and that ϕ ∈ L0(Qn

p ) if and only if

(5.1)

∫
Qn

p

ϕ(x) dnx = 0.

Consider the operator (Aβϕ)(x) = F−1
ξ→x[Aβ(ξ)Fx→ξϕ] on L0(Qn

p ); then Aβ is densely

defined on L2, and Aβ : L0(Qn
p ) → L0(Qn

p ) is a well-defined linear operator.
We set L0(Zn

p ) := {ϕ ∈ L0(Qn
p ); suppϕ ⊆ Zn

p} and define

L2
0(Z

n
p , d

nx) := L2
0(Z

n
p ) =

{
f ∈ L2(Zn

p , d
nx);

∫
Zn
p

f(x) dnx = 0

}
.

Notice that, since L2
0(Z

n
p ) is the orthogonal complement in L2(Zn

p ) of the space generated

by the characteristic function of Zn
p , we see that L2

0(Z
n
p ) is a Hilbert space.

Then L0(Zn
p ) is dense in L2

0(Z
n
p ). Indeed, set

δk(x) := pnkΩ(pk‖x‖p) for k ∈ N.

Then
∫
Qn

p
δk(x)d

nx = 1 for any k, and taking f ∈ L2
0(Z

n
p ), we get fk = f ∗ δk ∈ L0(Zn

p ),

and fk
‖·‖L2−−−→ f .

Set

ωγbk(x) := p−
nγ
2 χp(p

−1k · (pγx− b))Ω(‖pγx− b‖p),
where γ ∈ Z, b ∈ (Qp/Zp)

n, k = (k1, . . . , kn) with ki ∈ {0, . . . p− 1} for i = 1, . . . , n, and
k �= (0, . . . , 0).

Lemma 5.1. With the above notation,

(Aβωγbk)(x) = λγbkωγbk(x),

where

λγbk = Aβ(p
1−γ).

Moreover,
∫
Qn

p
ωγbk(x) d

nx = 0 and {ωγbk(x)}γbk forms a complete orthogonal basis of

L2(Qn
p , d

nx).

Proof. This follows from Theorems 9.4.5 and 8.9.3 in [2], by using the fact that Aβ

satisfies Aβ(‖pγ(−p−1k + η)‖p) = Aβ(‖pγ−1k‖p) = Aβ(p
1−γ) for all η ∈ Zn

p . �

Remark 5.2. (i) Notice that Aβ has eigenvalues of infinite multiplicity. Now, if we
consider only eigenfunctions satisfying supp ωγbk(x) ⊂ Zn

p , then necessarily γ ≤ 0 and
b ∈ pγZn

p/Z
n
p . For γ fixed, there are only finitely many eigenfunctions ωγbk satisfying

Aβωγbk = λγbkωγbk, i.e., the multiplicities of the λγbk are finite. Therefore, we can
enumerate these eigenfunctions and eigenvalues in the form ωm, λm with m ∈ N\{0} so
that λm ≤ λm′ for m ≤ m′.
(ii) Since any ωm(x) is orthogonal to Ω(‖x‖p), we see that {ωm(x)}m∈N\{0} is not a

complete orthonormal basis of L2(Zn
p , d

nx). We now recall that L0(Zn
p ) is dense in

L2
0(Z

n
p ), and since the algebraic span of {ωm(x)}m∈N\{0} contains L0(Zn

p ), it follows that

{ωm(x)}m∈N\{0} is a complete orthonormal basis of L2
0(Z

n
p ).
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Proposition 5.3. Consider (Aβ ,L0(Zn
p )) and the eigenvalue problem

(5.2) Aβu = λu, λ > 0, u ∈ L0(Z
n
p ).

Then the function u(x) = ωm(x) is solves problem (5.2) corresponding to λ = λm, for
m ∈ N \ {0}. Moreover, the spectrum has the form

0 < λ1 ≤ λ2 ≤ · · · ≤ λm ≤ . . . with λm ↑ +∞,

where all the eigenvalues have finite multiplicity, and {ωm(x)} with m ∈ N \ {0} is a
complete orthonormal basis of L2

0(Z
n
p , d

nx).

Proof. The result follows from Lemma 5.1, Remark 5.2, and inequalities (4.1). �

Definition 5.4. We define the spectral zeta function associated with the eigenvalue
problem (5.2) as

ζ(s;Aβ ,L0(Z
n
p )) := ζ(s;Aβ) =

∞∑
m=1

1

λs
m

, s ∈ C.

Later, it will be shown that ζ(s;Aβ) converges if Re(s) is sufficiently large, and it
does not depend on the basis {ωm(x)} used in its computation. By abuse of language
(or following the classical literature, see [36]), we shall say that ζ(s;Aβ) is the spectral
zeta function of the operator Aβ.

5.1. Example. We compute ζ(s;Dβ
T ). First, we note that

Dβ
Tωγbk = p−(γ−1)βωγbk.

Recall that if supp ωγbk ⊂ Zn
p , then γ ≤ 0 and b ∈ pγZn

p/Z
n
p . Now we take −γ + 1 = m

with m ∈ N \ {0}. Then b ∈ p−m+1Zn
p/Z

n
p , λm = pmβ, and the multiplicity of λm is

equal to (pn − 1)pn(m−1) = pnm(1− p−n) for m ∈ N \ {0}. Hence,

ζ(s;Dβ
T ) =

∞∑
m=1

pnm(1− p−n)

pmβs
=

∫
Qn

p\Zn
p

dnξ

‖ξ‖βsp
= (1− p−n)

pn−βs

1− pn−βs

whenever Re(s) > n
β . Then ζ(s;Dβ

T ) admits meromorphic continuation to the entire

complex plane as a rational function of p−s with poles in the set n
β + 2πiZ

β ln p .

§6. Heat traces and p-adic heat equations on the unit ball

From now on, (Aβ,Dom(Aβ)) is given by

(6.1) (Aβϕ)(x) = F−1
ξ→x(Aβ(ξ)Fx→ξϕ) for ϕ ∈ Dom(Aβ) = L0(Z

n
p ).

6.1. p-adic heat equations on the unit ball. We introduce the following function:

K(x, t) =

∫
Qn

p \Zn
p

χp(−x · ξ)e−tAβ(ξ) dnξ, t > 0, x ∈ Qn
p .

We note that, by (4.1), e−tAβ(ξ) ≤ e−tC0‖ξ‖β
p ∈ L1 for t > 0, which implies that K(x, t)

is well defined for t > 0 and x ∈ Qn
p .

Lemma 6.1. With the above notation, the following formula holds true:

K(x, t) =

{
Ω(‖x‖p)

{
(1− p−n)

∑ord(x)
j=1 e−tAβ(p

j)pnj − pord(x)ne−tAβ(p
ord(x)+1)

}
if x �= 0,

(1− p−n)
∑∞

j=1 e
−tAβ(p

j)pnj if x = 0,

for any t > 0.
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Proof. Take x = pord(x)x0 with ‖x0‖p = 1, then

K(x, t) =
∞∑
j=1

e−tAβ(p
j)

∫
‖ξ‖p=pj

χp(−x · ξ) dnξ

=

∞∑
j=1

e−tAβ(p
j)pnj

∫
‖y‖p=1

χp(−p−j+ord(x)x0 · y) dny

=

∞∑
j=1

e−tAβ(p
j)pnj

⎧⎪⎨⎪⎩
1− p−n if j ≤ ord(x),

−p−n if j = ord(x) + 1,

0 if j ≥ ord(x) + 2.

Then K(x, t) = 0 for ‖x‖p > 1 and t > 0. Finally, we note that the announced formula
is valid if x = 0. �

We identify L2
0(Z

n
p ) with an isometric subspace of L2(Qn

p ) by extending the functions

of L2
0(Z

n
p ) by zero outside of Zn

p . We define {T (t)}t≥0 as the family of operators

L2
0(Z

n
p ) → L2

0(Z
n
p ),

f → T (t)f,

with

(T (t)f)(x) =

{
f(x) if t = 0,

(K( · , t) ∗ f)(x) if t > 0.

Lemma 6.2. With the above notation, the following assertions are true:
(i) the operator T (t), t ≥ 0, is a well-defined bounded linear operator;
(ii) for t ≥ 0,

(T (t)f)(x) = F−1
ξ→x[1Qn

p \Zn
p
(ξ)e−tAβ(ξ)f̂(ξ)],

where f̂(ξ) denotes the Fourier transform in L2(Qn
p ) of f ∈ L2

0(Z
n
p );

(iii) for t > 0, T (t) is a compact, selfadjoint, and nonnegative operator.

Proof. (i) We recall that K( · , t) ∈ L1(Qn
p ) for t > 0. Therefore, if f ∈ L2

0(Z
n
p ) ⊂ L2(Qn

p ),
then, by the Young inequality,

u(x, t) := (K( · , t) ∗ f)(x) ∈ L2(Qn
p ) for t > 0.

Now, by Lemma 6.1, supp u(x, t) ⊂ Zn
p for t > 0, i.e., u(x, t) ∈ L2(Zn

p ) for t > 0. Again
by the Young inequality, for t > 0 we have

‖u(x, t)‖L2
0(Z

n
p )

= ‖u(x, t)‖L2(Qn
p )

≤ ‖K(x, t)‖L1(Qn
p )
‖f(x)‖L2(Qn

p )
= C(t)‖f(x)‖L2

0(Z
n
p )
.

Finally, we show that ∫
Zn
p

u(x, t) dnx = 0 for t > 0.

Indeed, for t > 0, Fubini’s theorem yields∫
Zn
p

u(x, t) dnx =

∫
Zn
p

{∫
Zn
p

K(y, t)f(x− y) dny

}
dnx

=

∫
Zn
p

K(y, t)

{∫
Zn
p

f(x− y) dnx

}
dny (taking z1 = x− y, z2 = y)

=

∫
Zn
p

K(z2, t)

{∫
Zn
p

f(z1) d
nz1

}
dnz2 = 0.
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(ii) Since f(x), u(x, t) ∈ L1(Zn
p ) ∩ L2(Zn

p ) for t > 0, because L2(Zn
p ) ⊂ L1(Zn

p ), we
have

Fx→ξ(u(x, t)) = 1Qn
p \Zn

p
(ξ)e−tAβ(ξ)f̂(ξ),

and this last function belongs to L1(Qn
p ). Indeed, by the Cauchy–Schwarz inequality,∥∥1Qn

p \Zn
p
(ξ)e−tAβ(ξ)f̂(ξ)

∥∥
L1(Qn

p )
≤

∥∥1Qn
p \Zn

p
(ξ)e−tAβ(ξ)

∥∥
L2(Qn

p )
‖f̂(ξ)‖L2(Qn

p )

≤ ‖e−tAβ(ξ)‖L2(Qn
p )
‖f(ξ)‖L2(Qn

p )

= ‖e−tAβ(ξ)‖L2(Qn
p )
‖f(ξ)‖L2

0(Z
n
p )

< ∞

because
∫
Qn

p
e−2tAβ(ξ)dnξ ≤

∫
Qn

p
e−2C0t‖ξ‖β

pdnξ < ∞, cf. (4.1). Finally,

(T (0)f)(x) =

∫
Qn

p \Zn
p

χp(−ξ · x)f̂(ξ) dnξ

=

∫
Qn

p

χp(−ξ · x)f̂(ξ) dnξ −
∫
Zn
p

χp(−ξ · x)f̂(ξ) dnξ

= f(x)−F−1
x→ξ(Ω(‖ξ‖p)f̂(ξ)) = f(x)− Ω(‖x‖p) ∗ f(x)

= f(x)− Ω(‖x‖p)
∫
Zn
p

f(x) dnx = f(x).

(iii) Since T (t), t > 0, is bounded and 〈T (t)f, g〉 = 〈f, T (t)g〉 for f, g ∈ L2(Zn
p ),

where 〈 · , · 〉 denotes the inner product of L2(Qn
p ), the operator T (t) is selfadjoint for

t > 0. To prove compactness we show a sequence of bounded operators Tl(t) with finite

range such that Tl(t)
‖ · ‖−→ T (t) for t > 0. For l ∈ N, we set Gl := (Zp/p

lZp)
n. We fix

representatives, denoted by i, of Gl in Zn
p . In particular ‖i‖p makes sense for i ∈ Gl. Set

L(l) to be the C-vector space spanned by
{
Ω(pl‖x − i‖p)

}
i∈Gl

. Observe that ϕ ∈ L(l)

if and only if suppϕ ⊂ Bn
0 and ϕ

∣∣
i+(plZp)n

= ϕ(i). On the other hand, by Lemma 6.1,

K(x, t) = Ω(‖x‖p)h(‖x‖p, t), where h(0, t) is defined and h(‖x‖p, t) is bounded on the
unit ball for t > 0. For l ∈ N and t > 0, we set

Kl(x, t) :=
∑
i∈Gl

h(‖i‖p, t)Ω(pl‖x− i‖p)

and Tl(t)f := Kl( · , t) ∗ f for f ∈ L2
0(Z

n
p ). Then Tl(t) : L

2
0(Z

n
p ) → L(l) ⊂ L2

0(Z
n
p ) is a

bounded operator with finite range. Indeed, Ω(pl‖x − i‖p) ∗ f has support in Bn
0 and

Ω(pl‖x − i‖p) ∗ f is a constant function on the ball i + (plZp)
n. Finally, for t > 0

we have ‖Tl(t) − T (t)‖ ≤ ‖Kl( · , t) − K( · , t)‖L1(Zn
p )

→ 0 as l → ∞, by the dominated

convergence theorem and the fact that Kl(x, t) → K(x, t) as l → ∞, and suppKl( · , t),
suppK( · , t) ⊂ Bn

0 . �

Lemma 6.3. The one-parameter family {T (t)}t≥0 of bounded linear operators from
L2
0(Z

n
p ) into itself is a contraction semigroup.

Proof. The lemma is implied by the following claims.

Claim 1. ‖T (t)‖L2
0(Z

n
p )

≤ 1 for t ≥ 0. Moreover, ‖T (t)‖L2
0(Z

n
p )

< 1 for t > 0.
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For t > 0, by Lemma 6.2 and (4.1) we have

‖T (t)f‖2L2
0(Z

n
p )

= ‖T (t)f‖2L2(Qn
p )

= ‖ ̂T (t)f(ξ)‖2L2(Qn
p )

≤
∫
Qn

p \Zn
p

e−2tAβ(ξ)|f̂(ξ)|2 dnξ

≤
∫
Qn

p \Zn
p

e−2C0t‖ξ‖β
p |f̂(ξ)|2 dnξ ≤ sup

ξ∈Qn
p \Zn

p

e−2C0t‖ξ‖β
p

∫
Qn

p \Zn
p

|f̂(ξ)|2 dnξ

<

∫
Qn

p \Zn
p

|f̂(ξ)|2 dnξ ≤ ‖f‖2L2(Qn
p )

= ‖f‖2L2
0(Z

n
p )
,

where we have used the inequality sup
ξ∈Qn

p \Zn
p

e−2C0t‖ξ‖β
p < 1.

Claim 2. T (0) = I.

Claim 3. T (t+ s) = T (t)T (s) for t, s ≥ 0.

This follows from Lemma 6.2(ii).

Claim 4. For f ∈ L2
0(Z

n
p ), the function t → T (t)f belongs to C

(
[0,∞), L2

0(Z
n
p )
)
.

Notice that, since L2
0(Z

n
p ) is dense in L2

0(Z
n
p ) for the ‖ · ‖L2-norm, it suffices to check

Claim 4 for f ∈ L2
0(Z

n
p ). Indeed, we have

lim
t→t0

‖T (t)f − T (t0)f‖2L2
0(Z

n
p )

= lim
t→t0

‖T (t)f − T (t0)f‖2L2(Qn
p )

= lim
t→t0

‖T̂ (t)f − T̂ (t0)f‖2L2(Qn
p )

= lim
t→t0

∫
Qn

p \Zn
p

|f̂(ξ)|2|e−tAβ(ξ) − e−t0Aβ(ξ)|2dnξ.

Now, since 1Qn
p \Zn

p
(ξ)|f̂(ξ)|2|e−tAβ(ξ) − e−t0Aβ(ξ)|2 ≤ 4|f̂(ξ)|2, which is an integrable

function, we can apply the dominated convergence theorem to show that

lim
t→t0

‖T (t)f − T (t0)f‖2L2
0(Z

n
p )

= 0. �

Lemma 6.4. The infinitesimal generator of the semigroup {T (t)}t≥0 restricted to L0(Zn
p )

agrees with (−Aβ,L0(Zn
p )).

Proof. We show that

lim
t→0+

∥∥∥∥T (t)f − f

t
+Aβf

∥∥∥∥
L2

0(Z
n
p )

= 0 for f ∈ L0(Z
n
p ).

Indeed, by Lemma 6.2(ii),∥∥∥∥T (t)f − f

t
+Aβf

∥∥∥∥
L2

0(Z
n
p )

=

∥∥∥∥T (t)f − f

t
+Aβf

∥∥∥∥
L2(Qn

p )

=

∥∥∥∥ T̂ (t)f − f̂

t
+ Âβf

∥∥∥∥
L2(Qn

p )

=

∥∥∥∥{1Qn
p \Zn

p
(ξ)e−tAβ(ξ) − 1

t
+Aβ(ξ)

}
f̂(ξ)

∥∥∥∥
L2(Qn

p )

.

Now we note that{
1Qn

p \Zn
p
(ξ)e−tAβ(ξ) − 1

}
f̂(ξ) = f̂(ξ){e−tAβ(ξ) − 1} − 1Zn

p
(ξ)e−tAβ(ξ)f̂(ξ),
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and since supp f ⊂ Zn
p , we have f̂(ξ + ξ0) = f̂(ξ) for any ξ0 ∈ Zn

p ; this fact implies that

1Zn
p
(ξ)e−tAβ(ξ)f̂(ξ) = e−tAβ(ξ)f̂(0) = 0 because f ∈ L0(Zn

p ). Hence,∥∥∥∥{1Qn
p \Zn

p
(ξ)e−tAβ(ξ)− 1

t
+Aβ(ξ)

}
f̂(ξ)

∥∥∥∥
L2(Qn

p )

=

∥∥∥∥{e−tAβ(ξ)− 1}f̂(ξ)
t

+Aβ(ξ)f̂(ξ)

∥∥∥∥
L2(Qn

p )

=
∥∥Aβ(ξ)f̂(ξ){1− e−τAβ(ξ)}

∥∥
L2(Qn

p )
(for some τ ∈ (0, t)).

Therefore, using the dominated convergence theorem, we get

lim
t→0+

∥∥∥∥T (t)f − f

t
+Aβf

∥∥∥∥
L2

0(Z
n
p )

= lim
t→0+

∥∥Aβ(ξ)f̂(ξ){1− e−τAβ(ξ)}
∥∥
L2(Qn

p )
= 0

because Aβ(ξ)f̂(ξ) ∈ D(Qn
p ). �

Theorem 6.5. The initial value problem

(6.2)

⎧⎪⎨⎪⎩
u(x, t) ∈ C([0,∞),Dom

(
Aβ)

)
∩ C1

(
[0,∞), L2

0(Z
n
p )
)
,

∂u(x,t)
∂t +Aβu(x, t) = 0, x ∈ Qn

p , t ∈ [0,∞),

u(x, 0) = ϕ(x) ∈ Dom(Aβ),

where (Aβ ,Dom(Aβ)) is given by (6.1), has a unique solution given by u(x, t) = T (t)ϕ(x).

Proof. By Lemmas 6.3–6.4 and the Hille–Yosida–Phillips theorem, see, e.g., [8, The-
orem 3.4.4], the operator (−Aβ,Dom(Aβ)) is m-dissipative with dense domain in
L2
0(Z

n
p ). Therefore, the announced theorem follows from [8, Theorem 3.1.1 and Proposi-

tion 3.4.5]. �

6.2. Heat Traces.

Proposition 6.6. Let {ωm}m∈N\{0} be the complete orthonormal basis of L2
0(Z

n
p ) as

above. Then

K(x− y, t) =

∞∑
m=1

e−λmtωm(x)ωm(y)

where the convergence is uniform on Zn
p × Zn

p × [ε,∞), for every ε > 0.

Proof. By applying the Hilbert–Schmidt theorem to T (1), see, e.g., [28, Theorem VI.16],
which is selfadjoint and compact, cf. Lemma 6.2 (iii), in L2

0(Z
n
p ) there exists a complete

orthonormal basis {φm}, m ∈ N\{0}, consisting of eigenfunctions of T (1). Let {μm},
m ∈ N\{0}, be the sequence of the corresponding eigenvalues. Moreover, μm → 0 as

m → ∞. Since the {T (t)}t≥0 form a semigroup, we have T ( l
k )φm = μ

l/k
m φm for every

positive rational number l
k . Using the continuity of {T (t)}t≥0, we get

T (t)φm = μt
mφm for t ∈ R+.

We note that μm > 0 for every m, indeed,

φm = lim
t→0+

T (t)φm = φm lim
t→0+

μt
m

implies that limt→0+ μt
m = 1 because φm �= 0. Hence, μm = e−λm with λm > 0, because

‖T (t)‖L2
0(Z

n
p )

< 1 for t > 0, cf. Lemma 6.3 (i), implies that μm < 1 and limm→∞ λm = ∞,

because limm→∞ μm = 0.
By using Mercer’s theorem, see, e.g., [14, 29] and the references therein, we have

(6.3) K(x− y, t) =
∞∑

m=1

e−λmtφm(x)φm(y).
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Now, since T (t)φm(x) = e−λmtφm(x) is a solution of problem (6.2) with the initial data
φm, cf. Theorem 6.5, and

−λme−λmtφm(x) =
∂

∂t
(e−λmtφm(x)) = −Aβ(e

−λmtφm(x)) = −e−λmtAβφm(x),

it follows that φm(x) is an eigenfunction of Aβ with supp φm ⊂ Zn
p . Now, since Aβωm =

λmωm, see Proposition 5.3, we see that u = e−λmtωm solves the following boundary value
problem: {

∂u(x,t)
∂t = −Aβu(x, t), u(x, t) ∈ L2

0(Z
n
p ), t ≥ 0,

u(x, 0) = ωm(x), ωm(x) ∈ L0(Zn
p ).

Then, by Theorem 6.5, the above problem has a unique solution, which implies

u(x, t) = T (t)ωm(x) = e−λmtωm,

so that we can replace {φm} by {ωm} in (6.3). �

In the next result, we will use the classical notation e−tAβ for the operator T (t) to
emphasize the dependence on the operator Aβ.

Theorem 6.7. For t > 0, the operator e−tAβ is of trace class and
(i)

(6.4) Tr(e−tAβ ) =

∞∑
m=1

e−λmt =

∫
Qn

p \Zn
p

e−tAβ(ξ) dnξ.

(ii) there exist positive constants C, C ′ such that

Ct−
n
β ≤ Tr(e−tAβ ) ≤ C ′t−

n
β

for t > 0.

Proof. By Proposition 6.6 and the definition of K(x, t), for t > 0 we have

(6.5) K(0, t) =

∫
Qn

p \Zn
p

e−tAβ(ξ) dnξ =
∞∑

m=1

e−λmt|ωm(x)|2.

The dominated convergence theorem and the fact that
∑

m e−λmt converges for t > 0
allow us to integrate the two sides of (6.5) with respect to the variable x over Zn

p , obtaining

(6.6)

∫
Qn

p \Zn
p

e−tAβ(ξ) dnξ =

∞∑
m=1

e−λmt for t > 0.

We recall that

(6.7) e−C1t‖ξ‖β
p ≤ e−tAβ(ξ) ≤ e−C0t‖ξ‖β

p ,

see (4.1), and that e−Ct‖ξ‖β
p ∈ L1 for t > 0 and any positive constant C; then the series

on the right-hand side of (6.6) converges. Now,

Tr(e−tAβ ) =

∞∑
m=1

〈e−tAβωm, ωm〉 =
∞∑

m=1

e−λmt‖ωm‖2L2 =

∞∑
m=1

e−λmt < ∞ for t > 0,

i.e., e−tAβ is of trace class and the formula announced in (i) is valid. The estimate for
Tr(e−tAβ ) follows from (6.7), because∫

Qn
p

e−Ct‖ξ‖β
p dnξ ≤ Dt−

n
β for t > 0. �
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§7. Analytic continuation of spectral zeta functions

Remark 7.1.
(i) For a > 0 we set as := es ln a. Then as becomes a holomorphic function on Re(s) > 0.
(ii) We recall the following fact, see, e.g., [18, Lemma 5.3.1]. Let (X, dμ) denote a measure
space, U a nonempty open subset of C, and f : X × U → C a measurable function.
Assume that: (1) if C is a compact subset of U , there exists an integrable function φC ≥ 0
on X satisfying |f(ξ, s)| ≤ φC(ξ) for all (ξ, s) ∈ X × C; (2) f(ξ, · ) is holomorphic on U
for every x in X. Then

∫
X
f(ξ, s)dμ is a holomorphic function on U .

Proposition 7.2. The spectral zeta function for Aβ is a holomorphic function on
Re(s) > n

β and

(7.1) ζ(s;Aβ) =

∫
Qn

p \Zn
p

dnξ

As
β(ξ)

for Re(s) >
n

β
.

In particular ζ(s;Aβ) does not depend on the basis of L2
0(Z

n
p ) used in Definition 5.4.

Proof. By Proposition 5.3 and Remark 5.2, the eigenvalues have the form Aβ(p
1−γ)

with γ ≤ 0, and the corresponding multiplicity is the cardinality of pγZn
p/Z

n
p times the

cardinality of the set of k’s, i.e., p−γn(pn − 1). Therefore,

ζ(s;Aβ) =
∑
γ≤0

p−γn(pn − 1)

As
β(p

1−γ)
=

∞∑
m=1

pmn(1− p−n)

As
β(p

m)

=

∞∑
m=1

∫
‖ξ‖p=pm

dnξ

As
β(‖ξ‖p)

=

∫
Qn

p \Zn
p

dnξ

As
β(ξ)

,

and by (4.1) we have

|ζ(s;Aβ)| ≤
(1− p−n)

CRe(s)

∞∑
m=1

pm(n−βRe(s)) < ∞ for Re(s) >
n

β
.

To establish holomorphy on Re(s) > n
β , we use Remark 7.1 (ii). Take

X = Qn
p \ Zn

p , dμ = dnξ, U =
{
s ∈ C; Re(s) >

n

β

}
, f(ξ, s) = A−s

β (‖ξ‖p).

Now we verify the two conditions established in Remark 7.1(ii). Let C be a compact
subset of U . By (4.1), we have∣∣∣∣ 1

As
β(‖ξ‖p)

∣∣∣∣ ≤ 1

CRe(s)‖ξ‖βRe(s)
p

,

where C is a positive constant. Since Re(s) belongs to a compact subset of{
s ∈ R; Re(s) >

n

β

}
,

we may assume without loss of generality that Re(s) ∈ [γ0, γ1] with γ0 > n
β , whence

1

CRe(s)‖ξ‖βRe(s)
p

≤ B(C) 1

‖ξ‖βγ0
p

∈ L1,

where B(C) is a positive constant. Condition (2) in Remark 7.1 (ii) follows from Re-
mark 7.1 (i) by observing that (Aβ(‖ξ‖p))−s = exp(−s lnAβ(‖ξ‖p)) with Aβ(‖ξ‖p) > 0
for ‖ξ‖p > 1. �
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Remark 7.3. Note that formula (7.1) can be obtained by taking the Mellin transform
in (6.4). Indeed,∫ ∞

0

{∫
Qn

p \Zn
p

e−tAβ(‖ξ‖p)ts−1dnξ

}
dt =

∫ ∞

0

{ ∞∑
m=1

e−λmtts−1

}
dt = Γ(s)ζ(s;Aβ)

for Re(s) > 1, where Γ(s) denotes the Archimedean Gamma function. Now, changing
variables by the rule y = Aβ(‖ξ‖p)t with ξ fixed, we have

ζ(s;Aβ) =

∫
Qn

p \Zn
p

dnξ

As
β(‖ξ‖p)

for Re(s) > max
{
1,

n

β

}
.

Lemma 7.4. ζ(s;Aβ) has a simple pole at s = n
β .

Proof. Set σ ∈ R+; since

ζ(σ;Aβ) ≤
1

C0

∫
Qn

p \Zn
p

dnξ

‖ξ‖βσ
p

=
(1− p−n)p−βσ+n

C0(1− p−βσ+n)
for σ >

n

β
,

we have

(7.2) lim
σ→n

β

(1− p−βσ+n)ζ(σ;Aβ) > 0.

The assertion follows from (7.2), by using the fact that 1− p−βσ+n has a simple zero at
n
β . Indeed,

1− p−βσ+n = 1− exp{(−βσ + n) ln p} = {β ln p}
(
σ − n

β

)
+O

((
σ − n

β

)2)
,

where O is an analytic function satisfying O(0) = 0. �

Theorem 7.5. The spectral zeta function ζ(s;Aβ) possesses the following properties:
(i) ζ(s;Aβ) is a holomorphic function on Re(s) > n

β , and on this domain it is given by

formula (7.1);
(ii) ζ(s;Aβ) has a simple pole at s = n

β , however, this pole is not necessarily unique;

(iii) set N(T ) :=
∑

λm≤T 1 for T ≥ 0, then N(T ) = O
(
T

n
β
)
.

Proof.
(i) See Proposition 7.2.
(ii) The first part was established in Lemma 7.4. Take Aβ to be the Taibleson opera-

tor Dβ
T ; then ζ(s;Dβ

T ) has a meromorphic continuation to the entire complex plane as a

rational function of p−s with poles in the set n
β + 2πiZ

β ln p , see Example 5.1.

(iii) The result follows from the formulas

λm = Aβ(p
m) and mult(λm) = pnm(1− p−n), m ∈ N\{0}. �

Remark 7.6. The fact that ζ(s;Aβ) may have several poles on the line Re(s) = n
β prevent

us from using the classical Ikehara Tauberian theorem to obtain the asymptotic behavior
of N(T ), see, e.g., [11, Appendix A] and [31, Chapter 2, §14]. Anyway, we expect that
the following is true.

Conjecture 7.7. N(T ) ∼ CT
n
β for some suitable positive constant C.
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544 L. F. CHACÓN-CORTÉS AND W. A. ZÚÑIGA-GALINDO

[26] , Eigenfunctions on Riemannian manifolds, J. Indian Math. Soc. (N.S.) 17 (1953), 159–165.
MR0061750

[27] S. Minakshisundaram and E. Pleijel, Some properties of the eigenfunctions of the Laplace-operator
on Riemannian manifolds, Canad. J. Math. 1 (1949), 242–256. MR0031145

[28] M. Reed and B. Simon, Methods of modern mathematical physics. I. Functional analysis, Acad.
Press, New York–London, 1972. MR0493419

[29] F. Riesz and B. Sz.-Nagy, Functional analysis, Dover Books Adv. Math., Dover Publ., Inc., New
York, 1990. MR1068530
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