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MÖBIUS STRUCTURES AND TIMED CAUSAL

SPACES ON THE CIRCLE

S. BUYALO

Abstract. A conjectural duality is discussed between hyperbolic spaces on one hand
and spacetimes on the other, living on the opposite sides of the common absolute.
This duality goes via Möbius structures on the absolute, and it is easily recognized in
the classical case of symmetric rank one spaces. In the general case, no trace of such
duality is known. As a first step in this direction, it is shown how numerous Möbius
structures on the circle, including those that stem from hyperbolic spaces, give rise
to 2-dimensional spacetimes, which are axiomatic versions of de Sitter 2-space, and
vice versa. The paper has two Appendices, one of which is written by V. Schroeder.
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§1. Introduction

It is classical that the quadratic form

g(v) = x2 + y2 − z2

on R
3, v = (x, y, z) ∈ R

3, has the following property: on any connected component of
the set g(v) = −1 it induces a Riemannian metric of the hyperbolic plane H2, while on
the set g(v) = 1 it induces a Lorentz metric of the de Sitter 2-space dS2. The (set of
lines in the) cone g(v) = 0 serves as the common absolute S1 of both H2 and dS2. A
similar picture occurs in any dimension and even for all rank one symmetric spaces of
noncompact type.

In other words, we observe a life on the other side of the absolute S1 of H2 that is
the de Sitter space dS2. For mathematical aspects of the duality between hyperbolic
spaces Hn+1 and de Sitter spacetimes dSn+1, see, e.g., [Ge,Yu]. The interplay between
the geometry of hyperbolic surfaces and the Lorentz (2+1)-spaces was exploited in the
famous paper [Mes], see also [A-S]. Duality for quadratic forms of arbitrary signature
was discussed in [Ro]. For physical aspects of de Sitter spaces see, e.g., [SSV] and the
references therein.

In §2, we describe this duality in intrinsic terms. The basic feature is the canonical
Möbius structure M0 on the absolute S1, which governs the two sides H2 and dS2 of
it. In particular, the isometry groups of H2 and dS2 coincide with the group of Möbius
automorphisms of M0. We show how to recover the hyperbolic plane H2 and the de
Sitter 2-space dS2 purely out of M0.

Moreover, we explain a mechanism of the passage from H2 to dS2 and back. In brief,
H2 is the homogeneous space of the M0-automorphism group PSL2(R) over a compact
elliptic subgroup isomorphic to S1, while dS2 is the homogeneous space of PSL2(R) over
a (closed) hyperbolic subgroup isomorphic to R.

This rises a bold question: Is there any life (a spacetime) on the other side of the
absolute, i.e., the boundary at infinity, of any Gromov hyperbolic space with the same
symmetry group? The main result of the paper is the answer “yes” for a large class of
hyperbolic spaces with the absolute S1, see Theorem 1.1.

A Möbius structure on a set X is a class of semimetrics having one and the same cross-
ratio on any given ordered 4-tuple of distinct points in X, see §4. Every hyperbolic space
Y induces on its boundary at infinity X = ∂∞Y a Möbius structure which encodes most
essential properties of Y and in a number of cases allows us to recover Y completely, e.g.,
in the case where Y is a rank one symmetric space of noncompact type, see [BS2,BS3].
In Subsection 4.2, we explain this for the class of boundary continuous hyperbolic spaces.
In Appendix 1 (§8), we show that every proper Gromov hyperbolic CAT(0) space is
boundary continuous.

We axiomatically describe a class M of monotone Möbius structures on the circle S1,
see §5. The class M includes every Möbius structure M induced on S1 by a hyperbolic
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CAT(0) surface Y without singular points, see Theorem 5.3. In particular, the isometry
group of Y is included in the group of Möbius automorphisms of M . Furthermore, the
canonical Möbius structure M0 is the most symmetric representative from M.

On the other hand, the set aY of unordered pairs of distinct points on the circle
X = S1 has a natural causal structure, which is independent of anything else, see §2.
The points of aY are called events. There is a large class T of 2-dimensional spacetimes
compatible with that causal structure, and we characterize it axiomatically in §3. Any
spacetime T ∈ T is a triple T = (aY,H, t), where H is a class of timelike curves in aY
called timelike lines, which are actually timelike geodesics, and t is the time between
events in the causal relation. The spacetime T ∈ T is called the timed causal space. We
prove the following.

Theorem 1.1. There are natural mutually inverse maps T̂ : M → T and M̂ : T → M
such that the groups of automorphisms of any M ∈M and of the respective T = T̂ (M) ∈ T
are canonically isomorphic.

From constructions of §2 it follows that the canonical Möbius structure M0 on S1

determines the de Sitter space dS2, that is, T̂ (M0) = dS2 and M̂(dS2) = M0. In other
words, Theorem 1.1 says that a monotone Möbius structure on S1 on one hand, and the
respective timed causal space with the absolute S1 on the other, are different sides of
one and the same phenomenon also in the general case.

The fundamental feature of spacetimes is the time inequality. In §7, we discuss a hier-
archy of time conditions, in particular, we introduce the weak time inequality, and show
that every timed causal space T ∈ T satisfies the weak time inequality, see Theorem 7.3.

In Subsection 7.5, we introduce the Increment Axiom (I), which implies the time
inequality, and show that the subset I ⊂ M of Möbius structures satisfying (I) contains
the canonical structure M0, M0 ∈ I (Proposition 7.10), with a neighborhood of M0 in
the fine topology (Proposition 7.14).

In Subsection 7.7, we introduce the Convexity Axiom (C) for monotone Möbius struc-
tures M ∈ M, which implies the convexity of a functional Fab playing an important role
in the hierarchy of time conditions, and show that the subset C ⊂ M of convex Möbius
structures contains M0 (Proposition 7.15).

The spacetimes of class T are related to the de Sitter 2-space dS2, at least in a
sense, as the hyperbolic CAT(0) surfaces without singular points with the absolute S1

are related to the hyperbolic plane H2. Should one extend the results of this paper to
more general hyperbolic spaces even with 1-dimensional boundary at infinity, this could
potentially produce new interesting classes of spacetimes, e.g., those having a branching
time (timelike lines).

§2. On the other side of the absolute

This section serves as a motivation, it contains no new results, and its constructions
are widely known. Here, we show how the two sides H2 and dS2 of the common absolute
S1 can be recovered by the canonical Möbius structure M0 on S1. It is common to define
H2 and dS2 in the quotient of R3 out of the antipodal map x �→ −x. This does not
affect H2, while dS2 becomes a nontrivial line bundle over S1, that is, the open Möbius
band.

2.1. Recovering the hyperbolic plane H2. The canonical Möbius structure M0 on
the circle S1 is determined by the condition that any its representative with infinitely

remote point is a standard metric (up to a positive factor) on R̂ = R∪ {∞} extended in
the sense that the distance between any x ∈ R and ∞ is infinite.
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To recover H2 from M0, we consider the space Y of all Möbius involutions s : S1 → S1

with respect to M0 without fixed points. The space Y serves as the underlying space
for H2, and what remains to do is to introduce a respective metric on Y .

A line in Y is determined by a pair x, x′ ∈ S1 of distinct points and consists of all
involutions s ∈ Y that permute x, x′, sx = x′. Given two distinct points s, s′ ∈ Y , the
compositions s′s, ss′ : S1 → S1 have one and the same fixed point set consisting of two
distinct points x, x′ ∈ S1. Thus, there is a uniquely determined line in Y through s, s′.

We say that an ordered 4-tuple q = (x, x′, y, z) ∈ (S1)4 of pairwise distinct points is
harmonic if

(1) |xy| · |x′z| = |xz| · |x′y|
for some and hence any metric on S1 of class M0. For the canonical Möbius structure
M0, the harmonicity of (x, x′, y, z) is equivalent to the fact that the geodesic lines xx′,
yz ⊂ H2 are mutually orthogonal.

A sphere S between x, x′ ∈ S1 is a pair (y, z) ⊂ S1 such that the 4-tuple (x, x′, y, z)
is harmonic. We take spheres S, S′ ⊂ S1 between x, x′ such that S is invariant under s,
s(S) = S, and S′ is invariant under s′, s′(S′) = S′. The spheres S, S′ with these
properties exist and are determined uniquely. Now, we take y ∈ S, y′ ∈ S′ and put

(2) |ss′| = | ln〈x, y, y′, x′〉|,

where 〈x, y, y′, x′〉 = |xy′|·|yx′|
|xy|·|y′x′| is the cross-ratio of the 4-tuple (x, y, y′, x′). This cross-

ratio is well defined and independent of the choice of y ∈ S, y′ ∈ S′. It is easy to show
that |ss′| is the distance in the geometry of H2, see Subsection 2.3.

Remark 2.1. This construction is easily extended to any rank one symmetric space of
noncompact type, see [BS2].

2.2. Recovering the de Sitter space dS2. Let aY be the space of unordered pairs
(x, y) ∼ (y, x) of distinct points on S1 with the topology induced from S1, that is,
aY = S1 × S1 \ Δ/∼, where Δ =

{
(x, x) : x ∈ S1

}
is the diagonal. Then aY is a

nontrivial R-bundle over RP1 ≈ S1, i.e., aY is the open Möbius band. In this case, S1 is
the boundary of aY at infinity, ∂∞ aY = S1. The points of aY are called events.

We say that two events e, e′ ∈ aY are in the causal relation if and only if e, e′ do
not separate each other as pairs of points in S1. This defines the canonical causality
structure on aY.

A light line in aY is determined by any x ∈ S1 and consists of all events a = (x, x′) ∈
aY, x′ ∈ S1 \ x. For this light line px, x is a unique point at infinity. Two distinct light
lines px, py have a unique common event (x, y) ∈ aY, and any two events on a light line
are in the causal relation.

The canonical causality structure as well as light lines are inherent in aY, and they
do not depend on anything else.

Remark 2.2. In the higher-dimensional case, a causality structure can be defined simi-
larly, but then it depends on the Möbius structure because events are codimension one
spheres in Sn.

A timelike line in aY is determined by any event e ∈ aY and consists of all a ∈ aY
such that the 4-tuple (e, a) is harmonic. For the timelike line he ⊂ aY determined by
e = (x, x′), the points x, x′ ∈ S1 are the ends of he at infinity. From the definitions, it
follows that a ∈ he if and only if e ∈ ha.

Any two events on a timelike line are in the causal relation. Conversely, for any two
events a, a′ ∈ aY that are in the causal relation and not on a light line there is a unique
timelike line (the common perpendicular) he with a, a′ ∈ he. (This amounts to the
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existence and uniqueness of a common perpendicular to divergent geodesics in H2. For
a (de Sitter) proof, see Corollary 5.9 and Lemma 5.10.) Let a = (y, z), a′ = (y′, z′),
e = (x, x′) in this case. Then the time t = t(a, a′) between the events a, a′ is defined by
formula (2):

t = | ln〈x, y, y′, x′〉|
(note that a, a′ are spheres between x, x′).

It follows that two timelike lines he, he′ intersect each other if and only if the events
e, e′ ∈ aY are in the causal relation and not on a light line. In this case, the intersection
he ∩ he′ is a unique event.

An elliptic line in aY is determined by any Möbius involution without fixed points
s ∈ Y and consists of all events a ∈ aY such that sa = a. No two distinct events on an
elliptic line are in the causal relation.

Remark 2.3. The last definition makes sense only for the canonical Möbius structure M0

because in the general case a Möbius structure may fail to admit any Möbius involution
without fixed points.

2.3. Automorphisms of M0. To introduce a metric structure on aY, we consider the
Lie algebra g of the Lie group G = SL2(R). Given α, β ∈ g, we have the Killing form

(3) 〈α, β〉 = 1

2
Tr(αβ)

as a scalar product. Note that the matrices σ1, σ2, σ3 ∈ g,

σ1 =

[
1 0
0 −1

]
, σ2 =

[
0 1
1 0

]
, σ3 =

[
0 1
−1 0

]
,

are mutually orthogonal and ‖σ1‖2 = 〈σ1, σ1〉 = 1 = ‖σ2‖2, ‖σ3‖2 = −1.

The group G acts on R̂ = R ∪ {∞} by the linear-fractional transformations

x �→ ax+ b

cx+ d
with

[
a b
c d

]
∈ G,

which are Möbius with respect to the canonical Möbius structure M0. The action is not
effective with the kernel Z2 = {± id}, G/Z2 = PSL2(R). The group PSL2(R) with the

left invariant Lorentz metric (3) is the anti de Sitter 3-space AdS3.
We denote by Ki = {exp(tσi) : t ∈ R}, i = 1, 2, 3, a 1-parametric subgroup in G, and

by K̂i its image in PSL2(R). Note that K̂i = Ki for i = 1, 2 and that K̂3 = K3/Z2.
The space Y of Möbius involutions s : S1 → S1 without fixed points can be identified

with the homogeneous space G/K3 = PSL2(R)/K̂3, because the group

K3 =

{
g3(t) = exp(tσ3) =

[
cos t sin t
− sin t cos t

]
: t ∈ R

}
stabilizes s = g3(

π
2 ) =

[
0 1
−1 0

]
, which acts on R̂ as the Möbius involution s(x) = − 1

x
without fixed points. The space G/K3 carries a left-invariant Riemannian metric h3

originated from the subspace L3 ⊂ g spanned by σ1, σ2, and (G/K3, h3) is isometric
to H2. To see that, we compute the respective Riemannian distance between two in-
volutions s1, s2 ∈ Y . By conjugation we may assume that s1 = s, s2 = s′, where
s′ = g1(t) · s · g−1

1 (t) for some t ∈ R,

g1(t) = exp(tσ1) =

[
et 0
0 e−t.

]
Then s′ =

[
0 e2t

−e−2t 0

]
and s′(x) = − e4t

x . The curve t �→ g1(t) is a unit speed ge-

odesic in G. While projected to PSL2(R), the speed is doubled because of linear-
fractional action of PSL2(R), so we have |ss′| = 2t. In the upper half-plane model
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of H2 the involution s fixes i = (0, 1) with Euclidean distance |0i|e = 1 and s′ fixes
ie2t = (0, e2t) with Euclidean distance |0ie2t|e = e2t, whence |ss′| = 2t equals the H2-dis-

tance |(0, 1)(0, e2t)| = ln |0ie2t|e
|0i|e = 2t.

The action of PSL2(R) on R̂ ≈ S1 induces the standard action of PSL2(R) on aY.
Note that a = {−1, 1} ∈ aY is a fixed point for K2 because

exp(tσ2) =

[
cosh t sinh t
sinh t cosh t

]
,

and

exp(tσ2)a =

{
cosh t(−1) + sinh t

sinh t(−1) + cosh t
,
cosh t+ sinh t

sinh t+ cosh t

}
= {−1, 1} = a.

It follows that aY can be identified with the homogeneous space PSL2(R)/K2, or sim-
ilarly with PSL2(R)/K1. The space aY = PSL2(R)/K2 carries a left-invariant Lorentz
metric h2 originated from the subspace L2 ⊂ g spanned by σ1, σ3, and dS2 = (aY, h2).

In the rest of the paper, we explain how a Möbius structure M from a large class of
structures on the circle gives rise to a spacetime, and vice versa, without any assumption
on symmetries of M .

§3. Timed causal spaces on the circle

In this section we list axioms for timed causal spaces on the circle.

3.1. The canonical causality structure. Recall that on the space aY of unordered
pairs of distinct point in X = S1, which is homeomorphic to the open Möbius band, we
have the canonical causal structure. That is, events e, e′ ∈ aY are in the causal relation
if and only if they do not separate each other as pairs of points in X. Otherwise, we also
say that events e, e′ ∈ aY separate each other. Whenever e, e′ ∈ aY are in the causal
relation and not on a light line, we say that the events e, e′ are in the strong causal
relation.

The canonical causal structure and light lines are inherent to aY, see Subsection 2.2.
For a fixed event e ∈ aY, the set Ce of all e′ ∈ aY in the causal relation with e is

called the causal cone. The pair e ⊂ X decomposes X into two closed arcs, which we
denote by e+, e−, with e+ ∩ e− = e. Every a ∈ aY with a ⊂ e± is in the causal relation
with e. We let

C±
e =

{
a ∈ aY : a ⊂ e±

}
.

Therefore, a choice of e+, e− induces the decomposition Ce = C+
e ∪ C−

e of the causal
cone Ce into the future cone C+

e and the past cone C−
e with C+

e ∩C−
e = e, and moreover

introduces a partial order on aY in the following way. Every a ∈ C±
e decomposes X

into two closed arcs, and if a �= e, we canonically define a±e as one of them that does
not contain e, otherwise a±e = e±. Now, by definition, a ≤e a′ if and only if one of the
following holds true:

• a ∈ C−
e , a′ ∈ C+

e ;
• a′ ⊂ a+e if a, a′ ∈ C+

e and a ⊂ (a′)−e if a, a′ ∈ C−
e .

As usual, we say that a <e a
′ if a ≤e a

′ and a �= a′.
Note that there is no global partial order on aY compatible with the canonical causal

structure, and the order defined above only appears if an event e ∈ aY, the future arc
e+, and the past arc e− are chosen.



MÖBIUS STRUCTURES AND TIMED CAUSAL SPACES ON THE CIRCLE 721

3.2. Timelike lines and a causal space. The notion of a timelike line is not inherent
to aY, and we define this notion axiomatically.

Axioms for timelike lines

(h1) every event e ∈ aY uniquely determines a timelike line he ⊂ aY, and every
timelike line in aY is of the form he for some e ∈ aY;

(h2) any event a ∈ he separates e;
(h3) any two events on a timelike line are in the causal relation;
(h4) for any point x ∈ X \ e there is a unique event xe = (x, y) ∈ he;
(h5) if an event a ∈ aY is on a timelike line he, then e ∈ ha;
(h6) for any two distinct events a, a′ ∈ aY there is at most one timelike line he with

a, a′ ∈ he.

The space aY with a fixed collection H of subsets satisfying the axioms of timelike
lines is called a causal space. We use the notation (aY,H) for a causal space. In view of
Axiom (h1), we say that an event e ∈ aY and the timelike line he ⊂ aY are dual to each
other.

From (h4) it follows that for every event e = (z, u) ∈ aY we have a well-defined map
ρe : X → X given by ρe(z) = z, ρe(u) = u, and (x, ρe(x)) = xe for every x ∈ X \ e. The
map ρe is called reflection with respect to e.

Lemma 3.1. For every e = (z, u) ∈ aY, the map ρe : X → X is an involutive homeo-
morphism.

Proof. By definition, ρ2e(z) = z and ρ2e(u) = u. Let y = ρe(x) for x ∈ X \ e. Then
(x, y), (ρe(y), y) ∈ he, whence ρe(y) = x by (h4). Thus ρ−1

e = ρe, and ρe is a bijection.
The event e decomposes X into two closed arcs e+, e− withX = e+ ∪ e−, e+ ∩ e− = e.

An orientation of X determines linear orders on e+, e−. From (h2) and (h3) it follows
that ρe : e

+ → e− reverses the orders. Hence, ρe is continuous and, therefore, a homeo-
morphism. �
Proposition 3.2. Let (aY,H) be a causal space. Then:

(a) for any e ∈ aY the line he is homeomorphic (in the topology induced from aY)
to R, and the boundary of the closure he ⊂ aY∩∂∞ aY is e, ∂he = e;

(b) for any two distinct events a, a′ ∈ aY there is a timelike line h including a, a′ if
and only if a and a′ are in the strong causal relation. In this case, h is unique
with this property;

(c) any two distinct timelike lines he, he′ ∈ H have a common event a if and only if
e, e′ are in the strong causal relation. In this case, a is unique;

(d) a light line px ⊂ aY intersects a timelike line he ⊂ aY if and only if x �∈ e. In
this case, the common event a ∈ px ∩ he is unique.

Proof. (a) Let ρe : X → X denote reflection with respect to e, and let e+ ⊂ X be one of
the two closed arcs in which e decomposes X. Then the map int e+ → he, x �→ (x, ρe(x)),
is an order preserving bijection. Extended to e+, it gives an order preserving bijection
to he = he ∪ e. Thus, he is homeomorphic to int e+ ≈ R, and ∂he = e.

(b) Any distinct a, a′ ∈ aY on a timelike line h are in the causal relation by (h3), and by
(h4) they are not on a light line. Hence, a, a′ are in the strong causal relation. Conversely,
assume that events a, a′ ∈ aY are in the strong causal relation. Let ρ = ρa ◦ ρa′ be the
composition of the respective reflections, and let a+ ⊂ X be the closed arc determined
by a that does not contain a′. Then ρ(a+) ⊂ int a+, and thus there is a fixed point
x ∈ int a+ of ρ, ρ(x) = x. It follows that both reflections ρa, ρa′ preserve the event
e = (x, y), where y = ρa′(x). Hence, e ∈ ha ∩ ha′ , and by (h5) we have a, a′ ∈ he. By
(h6), he is unique with this property.
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(c) By the duality (h5), this is a reformulation of (b).
(d) This immediately follows from (h2) and (h4). �

Remark 3.3. Axiom (h6) was not used in Lemma 3.1, and it was only used in Proposi-
tion 3.2 to prove the uniqueness in (b) and (c). Thus, all the conclusions of Proposition 3.2
except for the uniqueness in (b) and (c) hold true without Axiom (h6). We shall use this
remark in Subsection 5.4.

3.3. Timed causal space. The notion of a time is also defined axiomatically.

The time axioms

(t1) A time t(e, e′) ≥ 0 between two events e, e′ ∈ aY is determined if and only if e,
e′ are in the causal relation;

(t2) t(e, e′) = 0 if and only if e, e′ are events on a light line;
(t3) t(e, e′) = t(e′, e) whenever t(e, e′) is defined;
(t4) timelike lines are t-geodesics:

(a) if e, e′, e′′ ∈ ha are events on a timelike line such that e ≤ e′ ≤ e′′, then
t(e, e′) + t(e′, e′′) = t(e, e′′);

(b) for every e ∈ ha and every s > 0 there are e± ∈ ha∩C±
e with t(e, e±) = s;

(t5) for any events e = (x, y), d = (z, u) in the strong causal relation, we have
t(ze, ue) = t(xd, yd);

(t6) for any e = (x, y) and d = (z, u) ∈ he the 4-tuple (d, e) is harmonic in the sense
that t(ya, ua) = t(yb, zb), where a = (x, z), b = (x, u).

A timed causal space is defined as T = (aY,H, t), where t is a time on the causal
space (aY,H). This is a version of Busemann (locally) timelike spaces, see [Bus], and
also an axiomatic version of the de Sitter space dS2. Since dS2 is recovered from the
canonical Möbius structure M0 on the circle, see Subsection 2.2, the results of §5 (see

Proposition 5.8, Lemma 5.10, and Proposition 5.11) show that dS2 is a timed causal
space.

We denote by T the set of all timed causal spaces (aY,H, t), where the collection H
of timelike lines satisfies Axioms (h1)–(h6), and the time t satisfies Axioms (t1)–(t6).
A T -automorphism, T = (aY,H, t) ∈ T , is a bijection g : aY → aY that preserves the
timelike lines H and the time t, t(g(e), g(e′)) = t(e, e′) whenever t(e, e′) is defined (we do
not require that the causality structure be preserved, because this is automatic).

Remark 3.4. I am not satisfied with the terminology in, e.g., [Bus,PY], where the term
“timelike (metric) space” is used, because the corresponding object is never a metric
space and its basic feature is a causality relation. On the other hand, to talk of “timelike
causal spaces” sounds a little bit tautologically. Thus, I use the term “timed causal
space” instead.

Remark 3.5. The strange looking Axioms (t5), (t6) are automatically satisfied for the
timed causal spaces induced by monotone Möbius structures on the circle, see §5. How-
ever, their value and importance are justified by the fact that (t5) and (t6) are indis-
pensable when we recover a Möbius structure on the circle from a timed causal space,
see §6, especially Lemma 6.4 and Lemma 6.9. In fact, Axiom (t6) follows from the other
axioms, see Appendix 2.



MÖBIUS STRUCTURES AND TIMED CAUSAL SPACES ON THE CIRCLE 723

§4. Möbius structures and hyperbolic spaces

On the boundary at infinity of any boundary continuous Gromov hyperbolic space
there is an induced Möbius structure. In this section, we recall the details of this fact.

4.1. Semimetrics and topology. Let X be a set. A function d : X2 → R̂ = R ∪ {∞}
is called a semimetric if it is symmetric, d(x, y) = d(y, x) for each x, y ∈ X, is positive
outside the diagonal, vanishes on the diagonal and there is at most one infinitely remote
point ω ∈ X for d, i.e., such that d(x, ω) = ∞ for some x ∈ X \ {ω}. Moreover, if ω ∈ X
is such a point, then d(x, ω) = ∞ for all x ∈ X, x �= ω. A metric is a semimetric that
satisfies the triangle inequality.

A 4-tuple q = (x1, x2, x3, x4) ∈ X4 is said to be nondegenerate if all its entries are
pairwise distinct. We denote by regP4 = regP4(X) the set of ordered nondegenerate
4-tuples.

A Möbius structure M on X is a class of Möbius equivalent semimetrics on X, where
two semimetrics are equivalent if and only if they have the same cross-ratios on every
q ∈ regP4. An M -automorphism is a bijection f : X → X that preserves cross-ratios.

Given ω ∈ X, there is a semimetric dω ∈ M with infinitely remote point ω. It can
be obtained from any semimetric d ∈ M for which ω is not infinitely remote by a metric
inversion,

dω(x, y) =
d(x, y)

d(x, ω)d(y, ω)
.

Such a semimetric is unique up to a homothety, see [FS], and we use the notation |xy|ω =
dω(x, y) for the distance between x, y ∈ X in that semimetric. We also use the notation
Xω = X \ {ω}.

Every Möbius structure M on X determines the M -topology whose subbase is given
by all open balls centered at the finite points of all semimetrics in M that have infinitely
remote points.

For the following fact see [Bu1, Corollary 4.3] in a more general context of sub-Möbius
structures. Here we give the proof for the reader’s convenience.

Lemma 4.1. For every ω ∈ X, every semimetric d ∈ M with infinitely remote point

ω ∈ X, and every x ∈ Xω, the function fx : X → R̂, fx(y) = d(x, y), is continuous in
the M -topology.

Proof. The function fx takes values in [0,∞]. Given s, t ∈ [0,∞], we denote by Bs(x) =
{y ∈ X : fx(y) < s} the open d-ball of radius s centered at x, and we let Ct(x) =
{y ∈ X : fx(y) > t} be the complement of the closed d-ball. The inverse image f−1

x (I)
of any open interval I ⊂ [0,∞] is either an open ball Bs(x), or a complement Ct(x), or
an intersection Bs(x) ∩ Ct(x) for some s > t.

Let dx ∈ M be the metric inversion of d. Then dx(y, ω) = 1/d(x, y), whence Ct(x) =
{y ∈ X : dx(y, ω) < 1/t} is the open dx-ball of radius 1/t centered at ω. It follows that
f−1
x (I) is open in the M -topology. �
4.2. Boundary continuous hyperbolic spaces. Let Y be a metric space. Recall
that the Gromov product (x|y)o of x, y ∈ Y with respect to o ∈ Y is defined by the
formula

(x|y)o =
1

2
(|xo|+ |yo| − |xy|),

where |xy| is the distance in Y between x, y. We use the following definition of a
hyperbolic space, adapted to the case of geodesic metric spaces.

Definition 4.2. A geodesic metric space Y is Gromov hyperbolic if for some δ ≥ 0
and any triangle xyz ⊂ Y the following is true: if y′ ∈ xy, z′ ∈ xz are points with
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|xy′| = |xz′| ≤ (y|z)x, then |y′z′| ≤ δ. In this case, we also say that Y is δ-hyperbolic,
and δ is a hyperbolicity constant of Y .

A Gromov hyperbolic space Y is boundary continuous if the Gromov product extends
continuously to the boundary at infinity ∂∞Y = X in the following way: given ξ, η ∈ X,
for any sequences {xi} ∈ ξ, {yi} ∈ η there is a limit (ξ|η)o = limi(xi|yi)o for every
o ∈ Y , see [BS1, 3.4.2] for more details. Note that in this case (ξ|η)o is independent of
the choice of {xi} ∈ ξ, {yi} ∈ η. This allows one to define, for every o ∈ Y , a function
(ξ, η) �→ do(ξ, η) = e−(ξ|η)o , which is a semimetric on X.

Lemma 4.3. Let Y be a boundary continuous hyperbolic space. Then for any o, o′ ∈ Y ,
the semimetrics do, do′ on X = ∂∞Y are Möbius equivalent.

Proof. Given a 4-tuple (x, y, z, u) ⊂ Y , we put

cdo(x, y, z, u) = (x|u)o + (y|z)o − (x|z)o − (y|u)o
for a fixed o ∈ Y . Then cdo(x, y, z, u) = cd(x, y, z, u) is independent of the choice of o
because all entries containing o enter cdo(x, y, z, u) twice with the opposite signs.

Now, given a nondegenerate 4-tuple q = (α, β, δ, γ) ∈ regP4(X), for any {xi} ∈ α,
{yi} ∈ β, {zi} ∈ γ, and {ui} ∈ δ, the limit

cd(α, β, γ, δ) = lim
i
cd(xi, yi, zi, ui)

exists by the boundary continuity of Y , and this limit coincides with (α|δ)o + (β|γ)o −
(α|γo)− (β|δ)o. Thus the cross-ratio

do(α, γ)do(β, δ)

do(α, δ)do(β, γ)
= exp(− cd(α, β, γ, δ))

is independent of o. Hence, the semimetrics do, do′ are Möbius equivalent for any o,
o′ ∈ Y . �

The Möbius structure M on the boundary at infinity X = ∂∞Y of a boundary contin-
uous hyperbolic space Y generated by any semimetric do(ξ, η) = exp(−(ξ|η)o), o ∈ Y , is
said to be induced (from Y ). For any ω ∈ X and o ∈ Y , the metric inversion dω of do with
respect to ω is a semimetric on X of class M with the infinitely remote point ω. Recall
that any two semimetrics in M with a common infinitely remote point are proportional
to each other. Thus, the metric inversions with respect to ω of the semimetrics do, do′
are proportional to each other for any o, o′ ∈ Y .

In Appendix 1, we shall show that every proper Gromov hyperbolic CAT(0) space is
boundary continuous, see Theorem 8.1.

§5. Monotone Möbius structures on the circle

5.1. Axioms for monotone Möbius structures on the circle. We say that a
Möbius structure M on X = S1 is monotone if it satisfies the following axioms:

(T) topology: the M -topology on X is that of S1;
(M) monotonicity: given a 4-tuple q = (x, y, z, u) ∈ X4 such that the pairs (x, y),

(z, u) separate each other, we have

|xy| · |zu| > max
{
|xz| · |yu|, |xu| · |yz|

}
for some and hence any semimetric in M .

Remark 5.1. These axioms have arisen in a discussion with V. Schroeder while working
on [BS4].
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A choice of ω ∈ X uniquely determines the interval xy ⊂ Xω for any distinct x, y ∈ X
different from ω as the arc in X with the endpoints x, y that does not contain ω. As an
useful reformulation of Axiom (M), we have the following statement.

Corollary 5.2. For a nondegenerate 4-tuple q = (x, y, z, u) ∈ regP4, assume that the
interval xz ⊂ Xu is contained in xy, xz ⊂ xy ⊂ Xu. Then |xz|u < |xy|u.

Proof. By assumption, the pairs (x, y), (z, u) separate each other. Hence, by Axiom (M)
we have |xz| |yu| < |xy| |zu| for any semimetric in M . In particular, |xz|u < |xy|u. �

We denote by M the class of monotone Möbius structures on S1.

5.2. Examples of monotone Möbius structures on the circle. By Theorem 8.1,
every proper Gromov hyperbolic CAT(0) space Y is boundary continuous, and, thus,
∂∞Y possesses an induced Möbius structure.

Recall that in any CAT(0) space Y , the angle ∠o(x, x
′) between geodesic segments

ox, ox′ with a common vertex o is well defined and, by definition, it is at most π,
∠o(x, x

′) ≤ π.
A point o in a CAT(0) space Y with ∂∞Y homeomorphic to the circle S1 is said to be

singular if there are two geodesics ξξ′, ηη′ ⊂ Y through o such that the pairs of points
(ξ, ξ′) and (η, η′) in ∂∞Y separate each other and ∠o(ξ, η) + ∠o(ξ

′, η′) ≥ 2π.

Theorem 5.3. Let Y be a Gromov hyperbolic CAT(0) surface with ∂∞Y = S1 and with-
out singular points. Then the induced Möbius structure M on X = ∂∞Y is monotone.

Proof. For the induced Möbius structure, the M -topology on X coincides with the stan-
dard Gromov topology, see [BS1, 2.2.3] or [Bu1, Lemma 5.1]. Thus M satisfies Axiom (T)
by assumption. To check Axiom (M), consider a 4-tuple q = (ξ, ξ′, η, η′) ∈ X4 such that
the pairs (ξ, ξ′) and (η, η′) separate each other. Since Y is Gromov hyperbolic, there
are geodesics ξξ′, ηη′ ⊂ Y with the endpoints at infinity ξ, ξ′ and η, η′, respectively.
The assumption on separation and the fact that Y is a CAT(0) surface imply that these
geodesics intersect at some point o. We have (ξ|ξ′)o = 0 = (η|η′)o. Thus, |ξξ′| = 1 = |ηη′|
for the semimetric |xy| = exp(−(x|y)o) on X. Recall that this semimetric is a semimetric
of M .

The angles at o between the rays ox, x = ξ, η, ξ′, η′ in this cyclic order, form two
opposite pairs. Since o is not singular in Y , at least one of the angles ∠o(x, z) is less than
π for each opposite pair. By Corollary 8.4, (x|z)o > 0, so that |xz| < 1. It follows that

|ξξ′| · |ηη| > max
{
|ξη| · |ξ′η′|, |ξ′η| · |ξη′|

}
,

i.e., M satisfies Axiom (M). �

Examples 5.4. 1. The canonical Möbius structure M0 on the circle is monotone.
2. Let S be a closed surface of negative Euler characteristic with an Euclidean metric

having cone type singularities with complete angles strictly greater than 2π about every
singular point, and let Y be the universal covering of S with the lifted metric. Then Y
is a Gromov hyperbolic CAT(0) surface with ∂∞Y = S1. From Theorem 8.1 it follows
that Y induces a Möbius structure M on ∂∞Y . However, M is not monotone.

3. The absence of singular points on a Gromov hyperbolic CAT(0) surface Y does
not mean that Y has no metric singularities. Remove an open equidistant neighborhood
of a geodesic line in H2 and glue the remaining pieces by an isometry between their
boundaries. Then the resulting Y is a proper Gromov hyperbolic CAT(−1) surface with
∂∞Y = S1 without singular points, and Theorem 5.3 can be applied to Y . At the same
time, Y has metric singularities along the gluing line.
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4. Every (topological) embedding f : S1 → R̂
2 induces on S1 some metric and there-

fore a Möbius structure Mf . For f = id, the Möbius structure Mf coincides with the
canonical one, and thus it is monotone. However, if f(S1) ⊂ R

2 is an ellipse with princi-
pal semiaxes a, b such that 4ab ≤ a2 + b2, then Mf is not monotone. That is, in general,

the Möbius structure induced on a convex curve in R̂
2 is not monotone.

In what follows, we assume that a monotone Möbius structure M on X = S1 is fixed.

5.3. Harmonic pairs. A pair a = (x, y), b = (z, u) ∈ aY of events is said to be
M -harmonic, or to form an M -harmonic 4-tuple, if

(4) |xz| · |yu| = |xu| · |yz|

for some and hence any semimetric of the Möbius structure (this is the same as (1);
however, for a general Möbius structure M on S1, the interpretation of (1) for the
canonical M0 as orthogonality of the corresponding geodesic lines in H2 makes no sense).
Nevertheless, in this case we also say that a, b are mutually orthogonal, a ⊥ b. Note that
any harmonic 4-tuple q = (a, b) is nondegenerate.

Lemma 5.5. If events a = (x, y) and b = (z, u) ∈ aY are mutually orthogonal, a ⊥ b,
then they separate each other and z ∈ xy ⊂ Xu is a unique midpoint.

Proof. We have |xz|u = |zy|u. By Corollary 5.2, z ∈ xy ⊂ Xu is a unique midpoint, and
thus a, b separate each other. �

Lemma 5.6. For every e ∈ aY and every x ∈ X \ e, there is a unique y ∈ X such that
the pair a = (x, y), e ∈ aY of events is harmonic.

Proof. Let e = (z, u). By Axiom (T) and Lemma 4.1, the functions fz, fu : X → R̂ =
R ∪ {∞}, fz(t) = |zt|x, fu(t) = |ut|x are continuous on X = S1, and they take values
between 0 = fz(z) = fu(u) and fz(u) = fu(z) > 0 on the segment zu ⊂ Xx. Thus, there
is a midpoint y ∈ zu ⊂ Xx between z and u, |zy|x = |yu|x. By Corollary 5.2, such a
point y is unique. �

Proposition 5.7. For every monotone Möbius structure M ∈ M there is a uniquely

determined timed causal space T = T̂ (M) ∈ T such that the automorphism group GM

of M injects into the automorphism group GT of T : If g : X → X is an M -Möbius
automorphism, then the induced ĝ : aY → aY is an automorphism of T .

We prove Proposition 5.7 in Subsections 5.4 and 5.5.

5.4. Timelike lines. Any timelike line h in aY is associated with an event e ∈ aY,
h = he, and is defined as the set of events a ∈ aY such that the pair (a, e) is harmonic,
he = {a ∈ aY : a ⊥ e}. We denote by H = HM the collection of timelike lines in aY.

Proposition 5.8. The collection H satisfies Axioms (h1)–(h5).

Proof. Axioms (h1), (h5) are fulfilled by definition, (h2) follows from Lemma 5.5 and
(h4) follows from Lemma 5.6.

To check (h3), assume that e = (z, u) ∈ aY, a = (x, y), a′ = (x′, y′) ∈ he. Then z is
the midpoint of the segments xy, x′y′ ⊂ Xu. Therefore, by Axiom (M), the pairs (x, y),
(x′, y′) do not separate each other, that is, the events a and a′ are in the causal relation.
Hence, (h3) is valid. �



MÖBIUS STRUCTURES AND TIMED CAUSAL SPACES ON THE CIRCLE 727

We say that an event a ∈ aY is a common perpendicular to events e, e′ ∈ aY if e,
e′ ∈ ha.

Corollary 5.9. Given e, e′ ∈ aY in the strong causal relation, there is a common
perpendicular a ∈ aY to e, e′.

Proof. By Proposition 5.8, the collection H = HM of timelike lines in aY determined
by the Möbius structure M satisfies Axioms (h1)–(h5). Thus, the assertion follows from
Proposition 3.2(b), see Remark 3.3. �

We postpone the proof of (h6) to Subsection 5.5, see Lemma 5.10.

5.5. Time between events. The time between events a, a′ ∈ aY is defined if and only
they are in causal relation. We do this essentially as in Subsection 2.2, using formula (2).
First of all, by definition, the time between events on a light line is zero, t(a, a′) = 0 for
a, a′ ∈ px, x ∈ X.

Next, assume that a, a′ ∈ aY are in strong causal relation. Then by Corollary 5.9
there is a common perpendicular e ∈ aY to a, a′, that is, a, a′ ∈ he. Let e = (x, y),
a = (z, u), a′ = (z′, u′). Then, by definition,

(5) te(a, a
′) =

∣∣∣∣ln |xz′| · |yz|
|xz| · |yz′|

∣∣∣∣
for some and hence any semimetric on X from M . The harmonicity of (a, e) and (a′, e)
implies that

(6) te(a, a
′) =

∣∣∣∣ln |xu′| · |yu|
|xu| · |yu′|

∣∣∣∣ =
∣∣∣∣ln |xu′| · |yz|

|xz| · |yu′|

∣∣∣∣ =
∣∣∣∣ln |xz′| · |yu|

|xu| · |yz′|

∣∣∣∣ ,
and we often use these different representations of te(a, a

′).

Lemma 5.10. Given distinct a, a′ ∈ aY in causal relation, there is at most one common
perpendicular b ∈ aY to a, a′. In particular, the time t(a, a′) = te(a, a

′) is well defined,
and Axiom (h6) is fulfilled for the collection H of timelike lines.

Proof. The idea is taken from [BS4]. If the events a, a′ are on a light line, then they
cannot lie on a timelike line, say he, because by Axiom (h1) they both must separate e,
which would contradict (h4). Thus, we assume that a, a′ are not on a light line.

Assume there are common perpendiculars b = (z, u), b′ = (z′, u′) ∈ aY to a, a′, that is
b ⊥ a, a′ and b′ ⊥ a, a′, or which is the same, b, b′ ∈ ha ∩ ha′ . By the already established
Axiom (h3), see Proposition 5.8, b and b′ do not separate each other. Let a = (x, y),
a′ = (x′, y′). Without loss of generality, we assume that on Xx we have the following
order of points: zz′yy′u′ux′.

By Axiom (h5), a, a′ ∈ hb ∩ hb′ . The times t = tb(a, a
′), t′ = tb′(a, a

′) were already
defined by (5). Computing them in a semimetric of the Möbius structure with infinitely
remote point x, we obtain

et =
|zx′|
|x′u| , et

′
=

|z′x′|
|x′u′| .

Using the order of points zz′yy′u′ux′ on Xx, we see, in particular, that the interval z′x′

is included in the interval zx′. By Corollary 5.2, |zx′| ≥ |z′x′|. Similarly, x′u ⊂ x′u′,
whence |x′u| ≤ |x′u′|. Thus, t ≥ t′, and if b′ �= b, then the inequality is strong. Applying
this argument with the infinitely remote point y, we obtain t ≤ t′. Therefore, t = t′

and b = b′. �



728 S. BUYALO

Proposition 5.11. The time between events in aY defined above satisfies Axioms (t1)–
(t6).

Proof. Axiom (t1) is satisfied by the definition of the time t.
Axiom (t2): If events a, a′ are on a light line, then t(a, a′) = 0 by definition. Con-

versely, assume that t(a, a′) = 0 for events a, a′ ∈ aY in causal relation that are not on a
light line, in particular, a �= a′. Then by Lemmas 5.9 and 5.10, there is a unique e ∈ aY
with a, a′ ∈ he. Let e = (x, y), a = (z, u), a′ = (z′, u′). Since a �= a′, we have z′ �= z, u.
On the other hand, from (5) it follows that |xz′| · |yz| = |xz| · |yz′| for any semimetric
on X from M . In particular, |xz′|y = |xz|y, and by monotonicity (M), x is the midpoint
between z, z′ in Xy. Hence, ρe(z) = z′ = u, a contradiction.

Axiom (t3) follows from the definition of the time t and (5).
Axiom (t4a): Let e, e′, e′′ ∈ ha with e ≤ e′ ≤ e′′. If e′ coincides with e or e′′, then the

required identity is trivial. Thus, we assume that e < e′ < e′′. Without loss of generality,
we may assume that for a = (x, y), e = (z, u), e′ = (z′, u′), e′′ = (z′′, u′′), the points z,
z′, z′′ lie on one and the same arc determined by a in the order xzz′z′′y. Then

exp(t(e, e′)) =
|xz′| · |yz|
|xz| · |yz′| , exp(t(e′, e′′)) =

|xz′′| · |yz′|
|xz′| · |yz′′| ,

and we obtain

exp(t(e, e′) + t(e′, e′′)) =
|xz′′| · |yz|
|xz| · |yz′′| = exp(t(e, e′′)).

Axiom (t4b): given an event e = (z, u) on a timelike line ha ⊂ aY with a = (x, y),
and s > 0, we take a semimetric of class M with the infinitely remote point y. Then
|xz|y = |xu|y := t > 0, and there is no loss of generality in assuming that t = 1. Note that
the function fx : Xy → R, fx(x

′) = |xx′|y, is continuous, see Lemma 4.1, and monotone,
see Corollary 5.2. It varies from 0 = fx(x) to ∞ = fx(y). Thus, there is z− ∈ xz and
z+ ∈ zy with fx(z±) = e±s. For the events e± = (z±, u±) ∈ ha, where u± = ρa(z±), we
have

t(e, e±) =

∣∣∣∣ln |xz±|y
|xz|y

∣∣∣∣ = | ln |xz±|y| = s.

Choosing a decomposition X = e+ ∪ e− determined by e so that y ∈ e+, we have
e± ∈ ha ∩ C±

e and t(e, e±) = s.
Axiom (t5): Let e = (x, y), d = (z, u) be events in strong causal relation. Then by

(5), (6) we have

t(ze, ue) =

∣∣∣∣ln |xu| · |yz|
|xz| · |yu|

∣∣∣∣ = t(xd, yd).

Axiom (t6): given e = (x, y) ∈ aY, d = (z, u) ∈ he, we put a = (x, z), b = (x, u). Then
by (5), (6) we have

t(ya, ua) =

∣∣∣∣ln |xy| · |zu|
|xu| · |zy|

∣∣∣∣ , t(yb, zb) =

∣∣∣∣ln |xy| · |zu|
|xz| · |yu|

∣∣∣∣ .
On the other hand, the pair (a, e) is harmonic, so that |xu| · |zy| = |xz| · |yu|. Hence,
t(ya, ua) = t(yb, zb). �

Proof of Proposition 5.7. Given a monotone Möbius structure M ∈ M, above we have
defined a class H = HM of timelike lines in aY that satisfies Axioms (h1)–(h6), and
a time t on (aY,H) that satisfies Axioms (t1)–(t6). Therefore, a timed causal space

T = (aY,H, t), T = T̂ (M), is defined.
Let g : X → X be an M -Möbius automorphism. Then the induced map ĝ : aY → aY

preserves the causality structure, the class of timelike lines H, and the time t, because
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the last two are defined via cross-ratios. Thus, ĝ is an automorphism of T . If ĝ = idT ,
then, in particular, it preserves every light line. Hence, g = id, and the group GM of
M -automorphisms injects into the group GT of T -automorphisms. �

§6. Timed causal spaces and Möbius structures

In this section we adopt the following more advanced point of view on Möbius struc-
tures, see [Bu1].

6.1. Möbius and sub-Möbius structures. Let X be a set, regP4 = regP4(X), see
Subsection 4.1. For any semimetric d on X we have three cross-ratios

q �→ cr1(q) =
|x1x3| |x2x4|
|x1x4| |x2x3|

; cr2(q) =
|x1x4| |x2x3|
|x1x2| |x3x4|

; cr3(q) =
|x1x2| |x3x4|
|x2x4| |x1x3|

for q = (x1, x2, x3, x4) ∈ regP4, the product of which equals 1, where |xixj | = d(xi, xj).
With d we associate a map Md : regP4 → L4 defined by

(7) Md(q) =
(
ln cr1(q), ln cr2(q), ln cr3(q)

)
,

where L4 ⊂ R
3 is the 2-plane given by the equation a+ b+ c = 0.

Two semimetrics d, d′ on X are Möbius equivalent if and only Md = Md′ . Thus, a
Möbius structure on X is completely determined by a map M = Md for any semimetric d
of the Möbius structure, and we often identify a Möbius structure with the corresponding
map M . A bijection f : X → X is an M -automorphism if and only if M ◦ f(q) = M(q)
for every ordered 4-tuple q ∈ regP4 and the induced f : regP4 → regP4.

Let Sn be the symmetry group of n elements. The group S4 acts on regP4 by permu-
tation of the entries of any q ∈ regP4. The group S3 acts on L4 by signed permutations
of coordinates, where a permutation σ : L4 → L4 has the sign “−1” if and only if σ is
odd.

The cross-ratio homomorphism φ : S4 → S3 can be described as follows: a permuta-
tion of ordered vertices (1, 2, 3, 4) of a tetrahedron gives rise to a permutation of pairs
of opposite edges ((12)(34), (13)(24), (14)(23)). Thus, the kernel K of φ consists of four
elements 1234, 2143, 4321, 3412, and is isomorphic to the dihedral group D4 of automor-
phisms of a square. We denote by sgn : S4 → {±1} the homomorphism that associates
the sign “−1” with every odd permutation.

It is easy to check that any Möbius structure M : regP4 → L4 is equivariant with
respect to the signed cross-ratio homomorphism,

(8) M(π(q)) = sgn(π)φ(π)M(q)

for every q ∈ regP4, π ∈ S4, where φ : S4 → S3 is the cross-ratio homomorphism.
A sub-Möbius structure on X is a map M : P4 → L4 with the basic property (8) (we

drop the details related to degenerate 4-tuples, which can be found in [Bu1]). Now, we
describe a criterion for a sub-Möbius structure to be Möbius. Given an ordered collection
q = (x1, . . . , xk) ∈ Xk, we use the notation

qi = (x1, . . . , xi−1, xi+1, . . . , xk),

i = 1, . . . , k.
For a sub-Möbius structureM onX we define its codifferential δM : regP5 → L5 = L5

4

by

(δM(q))i = M(qi), i = 1, . . . , 5.

Furthermore, we denote M(qi) = (a(qi), b(qi), c(qi)), i = 1, . . . , 5, q ∈ regP5. The
following theorem was proved in [Bu1, Theorem 3.4].
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Theorem 6.1. A sub-Möbius structure M on X is a Möbius structure if and only if for
every nondegenerate 5-tuple q ∈ X5 the following conditions (A) and (B) are satisfied:

(A) b(q1) + b(q4) = b(q3)− a(q1);
(B) b(q2) = −a(q4) + b(q1).

Remark 6.2. Conditions (A) and (B) are in fact equivalent to each other. This follows
from the S5-symmetry of the codifferential δM and was explained in detail in [Bu2].

6.2. Timed causal space and a sub-Möbius structure. We begin with the following
remark.

Remark 6.3. For the monotone Möbius structures on the circle, Axiom (M) is equivalent
to the fact that a(q) < 0 and b(q) > 0, where M(q) = (a(q), b(q), c(q)) ∈ L4 whenever
q = (x, y, z, u) ∈ regP4 is such that the pairs (x, u) and (y, z) separate each other. This
follows from (7).

With every timed causal space T = (aY,H, t) we associate a sub-Möbius structure M
on X = S1 as follows.

We fix an orientation of S1. Then for any 4-tuple q ∈ regP4 we have a well-defined
cyclic order co(q). Let A ⊂ P4 be the set {πq : π ∈ S4}, A = A(q), for a given q ∈ P4.
Note that the cyclic order co(πq) = co(q) is independent of π ∈ S4, and we denote it by
co(A).

Let co(A) = 1234. With any pair i, i+ 1 of consecutive points in co(A), we associate
the timelike line hi,i+1 dual to the event (i, i+ 1). Two other points of co(A) determine
the events a = (i + 2)(i,i+1), a

′ = (i + 3)(i,i+1) ∈ hi,i+1, and with (i, i + 1) we associate
the time ti(i+1) > 0 between a and a′. In that way, every pair (i, i + 1) of consecutive
points in co(A) is labeled by a positive time ti(i+1).

Adjacent pairs are labeled in general by distinct numbers ti(i+1), t(i+1)(i+2); however,
by Axiom (t5), the opposite pairs are labeled by one and the same number, that is,
ti(i+1) = t(i+2)(i+3), where indices are taken modulo 4.

Assume that a 4-tuple q = (x, y, z, u) ∈ regP4 is obtained from co(A) by fixing the
initial point and by the transposition of two last entries of co(A), that is, x is the chosen
initial point and co(A) = xyuz. Then we put

(9) M(q) = (−txy, tyu, txy − tyu) ∈ L4.

We denote by B ⊂ A the subset consisting of all 4-tuples obtained from co(A) by
fixing an initial entry and transposing two last entries of co(A). The set B consists
of 4 elements, |B| = 4, and it is the orbit of a cyclic subgroup Γπ ⊂ S4 generated by
the permutation π = 2413 ∈ S4, that is, Γπ = {id, π, π2, π3} and B = {σq : σ ∈ Γπ}
for any q ∈ B. For example, if co(A) = xyuz, then q = (x, y, z, u), πq = (y, u, x, z),
π2q = (u, z, y, x), π3q = (z, x, u, y) ∈ B.

Lemma 6.4. For any q, q′ = σq ∈ B with σ ∈ Γπ, we have

M(q′) = sgn(σ)φ(σ)M(q).

Proof. It suffices to prove this for the generator σ = 2413 of Γπ. Assume without loss
of generality that q = (x, y, z, u) and, hence, co(A) = xyuz. We also write co(A) =
1234. Then q′ = σq = (y, u, x, z). By definition, M(q) = (−t12, t23, t12 − t23), M(q′) =
(−t23, t34, t23 − t34). On the other hand, sgn(σ) = −1 because σ is odd, and φ(σ) = 213.
Therefore,

sgn(σ)φ(σ)M(q) = −(t23,−t12, t12 − t23) = (−t23, t12, t23 − t34) = M(q′),

because t12 = t34 by Axiom (t5). �
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Furthermore, for every p ∈ A there is σ ∈ S4 and q ∈ B such that p = σq. We put

(10) M(p) = sgn(σ)φ(σ)M(q).

Proposition 6.5. Formula (10) defines unambiguously a map M : regP4 → L4, which
is a sub-Möbius structure on X.

Proof. We show that for another representation p = σ′q′ with σ′ ∈ S4, q′ ∈ B, for-
mula (10) gives the same value M(p). We have σ′q′ = σq, so that q′ = ρq with σ′ρ = σ.
Since q, q′ ∈ B and the group S4 acts on A effectively, we have ρ ∈ Γπ. Then

M(q′) = sgn(ρ)φ(ρ)M(q)

by Lemma 6.4, and we obtain

sgn(σ′)φ(σ′)M(q′) = sgn(σ′ρ)φ(σ′ρ)M(q) = M(p).

Thus identity (10) defines unambiguously a map M : regP4 → L4, which now satisfies
(10) for any p = σq with q ∈ regP4, σ ∈ S4. Hence, M is a sub-Möbius structure
on X. �

Note that to define the sub-Möbius structure M we do not use Axiom (t6).

6.3. The sub-Möbius structure M is a Möbius one. Given a nondegenerate 5-tup-
le q ∈ regP5, we label its cyclic order by co(q) = 12345. Assuming that the order of
q = xyzuv is cyclic, we have co(qi) = co(q)i for i = 1, . . . , 5. For every i ∈ co(q),
we consider three variables ti(i+1)(i+2), t

i
(i+2)(i+3), t

i
(i+3)(i+4), associated with the 4-tuple

co(qi) = co(q)i as in Subsection 6.2, where indices are taken modulo 5. These 15 variables
satisfy 10 equations

ti(i+1)(i+2) = ti(i+3)(i+4),(11)

ti(i+2)(i+3) = ti+1
(i+2)(i+3) + ti+4

(i+2))i+3),(12)

which follow from Axioms (t5) and (t4a), respectively. We compute δM(q) = v for
q ∈ regP5 with co(q) = 12345 as follows. The time-labeling of co(qi) = co(q)i is given
by ti(i+1)(i+2), t

i
(i+2)(i+3), t

i
(i+3)(i+4), t

i
(i+4)(i+6). Thus, in accordance with our definition

of the sub-Möbius structure M , we have(
− ti(i+1)(i+2), t

i
(i+2)(i+3), t

i
(i+1)(i+2) − ti(i+2)(i+3)

)
= M(πσi−1qi),

where π = 1243, σ = 4123. Therefore,

M(σi−1qi) = sgn(π)φ(π)M(πσi−1qi) =
(
ti(i+1)(i+2), t

i
(i+2)(i+3) − ti(i+1)(i+2),−ti(i+2)(i+3)

)
,

and we obtain

δM(q) =

⎛
⎜⎜⎜⎜⎝
a1 b1 c1
a2 b2 c2
a3 b3 c3
a4 b4 c4
a5 b5 c5

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
t123 t134 − t123 −t134
t245 t234 − t245 −t234
t312 t315 − t312 −t315
t412 t423 − t412 −t423
t512 t523 − t512 −t523

⎞
⎟⎟⎟⎟⎠ .

Theorem 6.6. The sub-Möbius structure M associated with any timed causal space
(aY,H, t) is Möbius.

Proof. We show that M satisfies equations (A) and (B) of Theorem 6.1. It suffices to
check that for every unordered 5-tuple x, y, z, u, v ⊂ X of pairwise distinct points, equa-
tions (A) and (B) are satisfied for some ordering q ∈ regP5 of the 5-tuple, because in
this case δM(q) lies in an irreducible invariant subspace R of the corresponding repre-
sentation of S5, describing the Möbius structures, see [Bu2]. Hence, δM(q) ∈ R for any
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ordering of the 5-tuple. Or, applying the procedure above, we may check (A) and (B)
directly. Thus, we assume that q = (x, y, z, u, v) ∈ regP5 has the cyclic order xyzuv.

Equation (A) can be rewritten as

0 = b1 + b4 − b3 + a1 = −c1 − b3 + b4 =: A(v)

because a1 + b1 + c1 = 0, and using (11), (12) we get

A(v) = −c1 − b3 + b4 = t134 + t312 − t315 + t423 − t412

= t134 − t315 + t423 − t512

= t534 + t234 − t315 + t423 − t512

= t234 − t315 + t423

= t234 + t423 − t215 − t415

= t234 − t215 = 0.

Similarly, equation (B) can be rewritten as 0 = b1 − b2 − a4 =: B(v), and using (11),
(12) we see that

B(v) = b1 − b2 − a4 = t134 − t123 − t234 + t245 − t412

= t534 − t123 + t245 − t412

= t534 − t123 + t145 + t345 − t412

= t534 + t345 − t412

= t534 + t345 − t312 − t512 = 0.

Therefore, M is a Möbius structure by Theorem 6.1. �

Proposition 6.7. The Möbius structure M = M̂(T ) associated with a timed causal

space T ∈ T is monotone, M ∈ M, and the timed causal space T̂ (M) associated with M

coincides with T , T̂ (M) = T .

The proof proceeds in three steps, Lemmas 6.8 – 6.10.

Lemma 6.8. The Möbius structure M = M̂(T ) satisfies Axiom (M), and the time of
the timed causal space T = (aY,H, t) is computed in the usual way via M -cross-ratios.

Proof. We check Axiom (M) and simultaneously compute the time t(e, e′) between events
e, e′ ∈ aY, assuming without loss of generality that e = (y, y′), e′ = (u, u′) ∈ ha for
a = (x, z) such that the 4-tuple q = (x, y, z, u) ∈ regP4 is obtained from co(q) = xyuz
by fixing the initial point x and by transposing the last two entries of co(q). Note
that the pairs (x, u) and (y, z) separate each other. Then, by definition, M(q) =
(a(q), b(q), c(q)) = (−txy, tyu, txy − tyu) with the negative first entry a(q) = −txy and
the positive second entry b(q) = tyu. By Theorem 6.6, we have M(q) = Md(q) for any
semimetric d ∈ M . Thus,

cr1(q) = ea(q) =
d(x, z)d(y, u)

d(x, u)d(y, z)
< 1, cr2(q) = eb(q) =

d(x, u)d(y, z)

d(x, y)d(z, u)
> 1.

This shows that M satisfies Axiom (M), see Remark 6.3, and that t(e, e′) = txz = tyu =
ln cr2(q). �

Lemma 6.9. Let h = he be a timelike line in a timed causal space T . An event d belongs
to he if and only if the 4-tuple (d, e) is M -harmonic, that is, harmonic with respect to

the Möbius structure M = M̂(T ).
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Proof. Let e = (x, y) and d = (z, u).
If d ∈ he, then by Axiom (h2), d separates e, and by Axiom (t6), we have t(ya, ua) =

t(yb, ub), where a = (x, z), b = (x, u). Thus, we may assume without loss of generality
that co(q) = xzyu for a nondegenerate 4-tuple q = (e, d). Note that t(ya, ua) = txz
and t(yb, zb) = txu. Therefore, txz = txu. The 4-tuple q̃ = (u, x, y, z) is obtained from
co(q) = uxzy by fixing the first entry u and permuting the last two entries z, y. Therefore,
by definition, M(q̃) = (−txu, txz, 0). Since M(q̃) = Md(q̃) for any semimetric d ∈ M , we
obtain

1 = cr3(q̃) =
d(x, u) · d(y, z)
d(y, u) · d(x, z) .

Hence (d, e) is M -harmonic.
Conversely, if (d, e) is M -harmonic, then, by Lemma 5.5, d and e separate each other.

By Axiom (h3), there is a unique u′ ∈ X \ e such that d′ = (z, u′) ∈ he. By the first
part of the proof, the 4-tuple (d′, e) is M -harmonic. Taking a semimetric d ∈ M with
the infinitely remote point z, we observe that

(13) d(x, u) = d(u, y) and d(x, u′) = d(u′, y),

because the 4-tuples (d, e), (d′, e) are M -harmonic. Suppose u �= u′. Then the 4-tuple
(x, y, u, u′) is nondegenerate, and u, u′ are on the arc determined by e that does not con-
tain z. Without loss of generality, we assume that (x, u) separates (y, u′). By Lemma 6.8,
M satisfies Axiom (M). Thus,

d(x, u) · (y, u′) > d(x, u′) · d(y, u)

in contradiction with (13). Hence u = u′ and d = d′ ∈ he. �

Lemma 6.10. The set A of open arcs in X coincides with the set B of open balls with

respect to the semimetrics d ∈ M = M̂(T ) with infinitely remote point that are centered
at finite points of d, A = B.

Proof. Let α ∈ A be an open arc in X and let x, y ∈ X be the endpoints of α. We
put e = (x, y) ∈ aY and take z ∈ α. Then for u = ρe(z) the event d = (z, u) lies on
the timelike line he. By Lemma 6.9, the 4-tuple (d, e) is M -harmonic. Thus, z is the
midpoint between x, y with respect to any semimetric d ∈ M with infinitely remote
point u. By Axiom (M), v ∈ α if and only if d(z, v) < r := d(x, z) = d(y, z). Therefore,
α coincides with the open ball Br(z) with respect to d of radius r centered at z. This
means that A ⊂ B.

Let β = Br(o) ∈ B be the open ball with respect to a semimetric δ ∈ M with the
infinitely remote point ω, of radius r > 0 and centered at o ∈ Xω. We show that β ∈ A.

Let d = (o, ω) ∈ aY. By (h4), for any y ∈ Xω, y �= o, there is a unique event
e = yd = (y, y′) ∈ hd. We fix such y, denote by e+ ⊂ X the closed arc determined by e
that contains ω, and consider the corresponding linear order <=<e on hd with the future
arc e+.

First, we show that for r = δ(y, o) the open ball Br(o) coincides with the open arc
int e− ∈ A determined by e that contains o. We denote by d+ ⊂ X the closed arc
determined by d that contains y, and by d− the opposite closed arc. Then int e− =
(d+ ∩ int e−) ∪ (d− ∩ int e−).

We have u ∈ d+ ∩ int e− if and only if the pairs (y, o), (u, ω) separate each other. By
Axiom (M), this is equivalent to δ(u, o) < δ(y, o) = r. On the other hand, u ∈ d−∩ int e−

if and only if u′ = ρd(u) ∈ d+∩ int e−. By the above, this is equivalent to δ(u′, o) < r. By
Lemma 6.9, the 4-tuple (d, ud) is harmonic, where ud = (u, u′). Thus, δ(u, o) = δ(u′, o) <
r. Therefore, int e− = Br(o) for r = δ(y, o).
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It remains to show that for any r > 0 there is y ∈ Xω with δ(y, o) = r. We fix some
y ∈ Xω, y �= o, and use the notation introduced above. By (t4b), for any s > 0 there is
e± = (u±, u

′
±) ∈ hd ∩ C±

e with t(e, e±) = s. By Lemma 6.9, the 4-tuples (d, e), (d, e±)
are M -harmonic. Hence, δ(o, y) = δ(o, y′), δ(o, u±) = δ(o, u′

±). As above, Axiom (M)
implies

δ(u−, o) < δ(y, o) < δ(u+, o).

By Lemma 6.8, the time t(e, e±) is computed via M -cross-ratios,

t(e, e±) =

∣∣∣∣ln δ(ω, y)δ(u±, o)

δ(ω, u±)δ(y, o)

∣∣∣∣ =
∣∣∣∣ln δ(u±, o)

δ(y, o)

∣∣∣∣ ,
whence s = ± ln δ(u±,o)

δ(y,o) . This shows that for any λ > 0 there is u ∈ Xω, u �= o, with

δ(u, o) = λδ(y, o). Hence, for any r > 0 there is y ∈ Xω with δ(y, o) = r. �

Proof of Proposition 6.7. By Lemma 6.8, the Möbius structure M = M̂(T ) satisfies Ax-
iom (M) for any timed causal space T = (aY,H, t) ∈ T . Lemma 6.10 shows that M
satisfies Axiom (T). Thus, M is monotone, M ∈ M.

Let T ′ = (aY,H′, t′) = T̂ (M) ∈ T be the timed causal space determined by M . By
Lemma 6.9 we have H′ = H, and by Lemma 6.8, t′ = t. Thus, T ′ = T . �

Proof of Theorem 1.1. Given M ∈ M, we show that M ′ = M , where M ′ = M̂ ◦ T̂ (M),
that is, M ′(q) = M(q) for every q ∈ regP4. Using (8), we may assume without loss of
generality that the cyclic order of q = (x, y, z, u) is co(q) = xyuz, so that q is obtained
from co(q) by choosing the first entry x and permuting the last two entries. In particular,
(x, u) and (y, z) separate each other. Then, by the definition (9), we have

M ′(q) = (−txy, tyu, txy − tyu),

where txy = t(za, ua), tyu = t(xb, zb) for a = (x, y), b = (y, u) ∈ aY, see Axiom (h4), for

T = T̂ (M) = (aY,H, t) ∈ T . By the definition (5) of the time t, we have t(za, ua) =∣∣ ln |xz|·|yu|
|xu|·|yz|

∣∣ = − ln cr1(q), t(xb, zb) =
∣∣ ln |xu|·|yz|

|xy|·|uz|
∣∣ = ln cr2(q) (to choose the signs, we

have used the fact that (x, u), (y, z) separate each other and the monotonicity of M).

Therefore, M ′(q) = M(q). Together with Proposition 6.7, this shows that T̂ : M → T
and M̂ : T → M are mutually inverse maps.

Let ĝ : aY → aY be an automorphism of some T = (aY,H, t) ∈ T . Since t(e, e′) = 0
if and only if the events e, e′ ∈ aY lie on a light line, and ĝ preserves the time t, we see
that ĝ maps every light line to a light line. Thus, ĝ determines a map g : X → X with
ĝ(px) = pg(x), see Subsection 2.2. For any event e = (x, y) ∈ aY we have e = px ∩ py.
Therefore, ĝ(e) = ĝ(px) ∩ ĝ(py) = pg(x) ∩ pg(y) = (g(x), g(y)). Hence, ĝ is induced by g.

Since T = T̂ (M) for some M ∈ M, the timelike lines and the time of T are determined
by cross-ratios of M , see Proposition 5.7. Therefore, g is an M -automorphism. If g =
idX , then ĝ = idaY. Thus, the group GT of T -automorphisms injects into the group GM

of M -automorphisms. Together with Proposition 5.7, this shows that the groups GM

and GT are canonically isomorphic. �

§7. Time inequalities

The time inequality for the de Sitter 2-space dS2 says that

t(a, b) + t(b, c) ≤ t(a, c)

for any events a < b < c, with equality in the case where t(a, c) > 0 if and only if a, b, c are
events on a timelike line. First, in Subsection 7.1 we show that this inequality follows from
the properties of Lambert quadrilaterals. Then in Subsection 7.2, we discuss a hierarchy
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of time conditions, which includes the time inequality, and show that every timed causal
space T ∈ T satisfies the weak time inequality, see Theorem 7.3. In Subsection 7.5 we
describe the monotone Möbius structures that satisfy the variational principle, (VP),
the strongest time condition on the list, and in Subsection 7.7 we also describe the
convex Möbius structures. We show that these two classes include the canonical Möbius
structure, and that the first of them contains a neighborhood of the canonical structure
in a fine topology.

7.1. The time inequality for dS2 via H2. The time inequality for de Sitter 2-space
dS2 follows from the properties of Lambert quadrilaterals in H2. This goes of course
via the canonical Möbius structure M0 on the common absolute S1. More precisely, we
use the fact that the harmonicity of a 4-tuple ((x, y), (z, u)) ⊂ S1 with respect to M0 is
equivalent to the orthogonality of the geodesics xy, zu ⊂ H2.

Recall that a Lambert quadrilateral αβγo in the hyperbolic plane H2 has three right
angles at α, β, and γ. The fourth angle at o is acute, and |αβ| < |oγ|, |βγ| < |αo|. Now,
we explain how these properties imply the time inequality for dS2.

a

b

c

d

p

q

oα

α′

β

β′

γ

γ′

Figure 1. The time inequality in dS2.

Let a, b, c be events in aY such that a < b < c for the order <:=<b. We consider
a generic case when no pair of events (a, b), (b, c) lies on a light line, and the events
are not on a common timelike line. Then there are events d, p, q ∈ aY with a, b ∈ hp,

a, c ∈ hd, b, c ∈ hq. We pass to the H2-picture, and draw the respective timelike lines as

geodesics in H2 with the same ends on the absolute S1. Since the time in dS2 and the
distance in H2 are computed via cross-ratios with respect to M0, we have t(a, c) = |αγ|,
t(a, b) = |α′β|, t(b, c) = |β′γ′|, see Figure 1.

But |αγ| = |αo| + |oγ|, and the quadrilaterals αα′βo and γγ′β′o have right angles
at α, α′, β and, respectively, at γ, γ′, β′, i.e., they are Lambert quadrilaterals. Thus,
|αo| > |α′β|, |oγ| > |β′γ′|, and we obtain

t(a, c) > t(a, b) + t(b, c).

7.2. Hierarchy of time conditions. We assume that a timed causal space T =
{aY,H, t} ∈ T is fixed together with the respective monotone Möbius structure M =

M̂(T ) ∈ M.
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We say that an event b ∈ aY is strictly between events a and c ∈ aY if a and c lie on
different open arcs in X determined by b. Note that in this case, a, b, c are pairwise in
strong causal relation, in particular, a < b < c for appropriately chosen <:=<b.

Let a = (o, o′), b = (ω, ω′) ∈ aY be events in strong causal relation such that the
pairs (o, ω′) and (o′, ω) separate each other. Then (o, ω), (o′, ω′) are also in strong causal
relation. Let d = (x, x′) ∈ aY be an event strictly between (o, ω) and (o′, ω′). We denote

t+d (a, b) = t(od, ωd), t−d (a, b) = t(o′d, ω
′
d).

In general, t+d (a, b) �= t−d (a, b). However, if a, b ∈ hd, then t+d (a, b) = t−d (a, b) = t(a, b) by
the definition of t(a, b), see (5), (6), and Lemma 5.10.

We consider the function

Fab(d) =
1

2
(t+d (a, b) + t−d (a, b))

on the set Dab of events d ∈ aY that are strictly between (o, ω) and (o′, ω′), and introduce
the following list of time conditions for T and therefore simultaneously for M .

(VP) Variational principle: the infimum of Fab is attained at a unique d0 ∈ Dab for
which a, b ∈ hd0

.
(LQI) Lambert quadrilateral inequality:

Fab(d) > Fab(d0)

for every d ∈ Dab \ d0 such that a ∈ hd.
(TI) Time inequality:

t(a, b) + t(b, c) ≤ t(a, c)

for any a < b < c with equality in the case where t(a, c) > 0 if and only if a, b, c
are events on a timelike line.

(WTI) Weak time inequality:

t(a, b) + t(b, c) < t(a, c)

for any a < b < c such that b lies on a light line either with a or with c, and a, c
are not on a light line.

We have the following implications

(VP) ⇒ (LQI) ⇒ (TI) ⇒ (WTI).

The first and the last implications are obvious, and the second implication is explained
in Proposition 7.6. For the canonical Möbius structure M0, the geometric meaning of
the function Fab : Dab → R is especially clear.

Proposition 7.1. Let a = (o, o′), b = (ω, ω′) ∈ aY be events in the strong causal relation
such that the pairs (o, ω′) and (o′, ω) separate each other, d = (x, x′) ∈ Dab. Then for
the canonical Möbius structure M0, the value Fab(d) is the distance in H2 between the
points p = oo′ ∩ xx′ and q = ωω′ ∩ xx′ at which the geodesic xx′ ⊂ H2 intersects the
geodesics oo′ and ωω′.

Proof. Since the time between events in a timed causal space and the distance in H2 are
computed via the respective cross-ratios, we see that t+d (a, b) = t(od, ωd) is the distance

in H2 between the projections ô, ω̂ of o, ω to the geodesic xx′ ⊂ H2, and similarly,
t−d (a, b) = t(o′d, ω

′
d) is the distance between the projections ô′, ω̂′ of o′, ω′ to the same

geodesic xx′. By the angle parallelism formula, ôp = pô′ and ω̂q = qω̂′. Therefore,
Fab(d) =

1
2 (|ôω̂|+ |ô′ω̂′|) = |pq|. �

Corollary 7.2. The canonical Möbius structure satisfies (VP).
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Proof. This immediately follows from the properties of the distance in H2 between points
on geodesics. �

7.3. The weak time inequality. Here, we prove the following claim.

Theorem 7.3. Any timed causal space T = {aY,H, t} ∈ T satisfies (WTI).

Lemma 7.4. Assume that distinct events a, b lie on a common timelike line, a, b ∈ hc,
where a = (x, y), b = (z, u), c = (v, w) ∈ aY, and suppose that v lies on the open arc γ
between x, y that does not contain b. Then for every s ∈ γ, s �= v, and for d = (s, t) ∈ ha,
d′ = (s, t′) ∈ hb, the following is true: t′ lies on the open arc σ between w, t that does
not contain s.

Proof. Moving s along γ, observe that for s = v we have t = t′, while for s approaching x
or y the point t is not on the arc between z, u that contains w. Therefore, t′ lies on σ for
these extremal cases. By the continuity of reflections ρa, ρb : X → X and Lemma 5.10,
we have t′ ∈ σ for every s ∈ γ. �

Lemma 7.5. Let a = (o, o′) and b = (ω, ω′) ∈ aY be events in the strong causal relation
such that the pairs (o, ω′) and (o′, ω) separate each other. Then the function F+

ab(d) =
t(od, ωd) is monotone on the set Dab of events d ∈ aY that are strictly between e = (o, ω)
and e′ = (o′, ω′), F+

ab(d) < F+
ab(d

′) for any d, d′ ∈ Dab with d < d′ < e.

Proof. Let d = (x, y). By Axiom (t5) we have t(od, ωd) = t(xe, ye). Therefore, F
+
ab(d) =

t(xe, ye). For d′ = (x′, y′) between d and e, the segment xeye ⊂ he is contained in the
segment x′

ey
′
e ⊂ he and does not coincide with it (though, we do not exclude that these

segments may have a common end). Thus, t(xe, ye) < t(x′
e, y

′
e). �

Proof of Theorem 7.3. Let a, b, c ∈ aY be events in the causal relation, a < b < c, and
assume without loss of generality that b, c are on a light line. Then t(b, c) = 0, and the
required inequality reduces to t(a, b) < t(a, c). Furthermore, there is no loss of generality
in assuming that a = (o, o′), b = (ω, ω′) and the pairs (o, ω′), (o′, ω) separate each other.
Since b, c are on a light line, we may assume that c = (ω, ω′′). Then the assumption
a < b < c implies that ω′′ is on the (open) arc α between ω, ω′ that does not contain a.

There is d = (x, y) ∈ aY with a, b ∈ hd. We assume that x is on the arc β between
o, o′ that does not contain b. Then y ∈ α. Similarly, there is d′ = (x′, y′) ∈ aY with
a, c ∈ hd′ . We also assume that x′ is on the arc β. Then y′ is on the arc α′ ⊂ α between
ω, ω′′. Note that d, d′ ∈ Dab and that d �= d′ because b �= c, whence x′ �= x because d,
d′ ∈ ha.

We claim that x′ lies on the arc β between x and o. Indeed, otherwise, since d, d′ ∈ ha,
substituting o for v, o′ for w, ω for s, ω′ for t, and ω′′ for t′ and using Lemma 7.4, we
would see that ω′′ �∈ α in contradiction with the previously established fact that ω′′ ∈ α.

It follows that d < d′ < e = (o, ω). By Lemma 7.5, F+
ab(d) < F+

ab(d
′). On the other

hand, F+
ab(d) = t(od, ωd) = t(a, b) and F+

ab(d
′) = t(od′ , ωd′) = t(a, c). �

7.4. The implication (LQI)=⇒(TI). Here, we show that the Lambert quadrilateral
inequality implies the time inequality.

Proposition 7.6. (LQI) ⇒ (TI).

Assume that b ∈ aY is strictly between a, c ∈ aY. Then by Corollary 5.9, there are
common perpendiculars p to a, b and q to b, c.

Lemma 7.7. Suppose that a, c ∈ hd and b ∈ aY \hd is strictly between a and c. Then d
is strictly between the common perpendiculars p to a, b and q to b, c.
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Proof. By assumption, b is not on the timelike line hd ⊂ aY. Hence, the common
perpendicular p = (p′, p′′) ∈ aY to a, b is not equal to d, p �= d, and the common
perpendicular q = (q′, q′′) ∈ aY to b, c is not equal to d, q �= d.

Since p, d ∈ ha, the events p, d are not on a light line, and some closed arc in X
determined by d does not include p. We denote that arc by d+ ⊂ X. Hence, p <d d for
the respective partial order <d.

We also denote by b+ ⊂ X the closed arc determined by b that includes c. Without
loss of generality, we assume that p′′, w, q′ ∈ b+, where d = (v, w). Then by Lemma 7.4
applied to a, b ∈ hp and γ = b+, we see that v lies on the arc σ determined by (p′, t) that
does not contain w, where r = (t, w) is orthogonal to b. Therefore, d <d r and t ∈ d+.

We denote by r+d the closed arc in X determined by r that does not include d, see
Subsection 3.1. Since d is also orthogonal to c, applying Lemma 7.4 to b, c ∈ hq, we see
that t lies on the arc σ′ determined by (v, q′′) that does not contain q′ ∈ d+. Since r,
q ∈ hb, this means that q ⊂ r+d , whence r <d q.

Therefore, p <d d <d r <d q. Since by construction, p, r, q ∈ hb and p, d are not on a
light line, we conclude that d is strictly between p and q. �

Corollary 7.8. Suppose a, c ∈ hd are as in Lemma 7.7. If p, q ∈ aY with p ⊥ a, q ⊥ c
are such that d is strictly between p and q, then the common perpendicular to p, q is
strictly between a and c.

Proof. Since d is strictly between p and q, the events p, q are in strong causal relation.
Therefore, their common perpendicular b ∈ aY exists and is uniquely determined by
Corollary 5.9 and Lemma 5.10. Since a is the common perpendicular to d, p and c is the
common perpendicular to d, q, Lemma 7.7 implies that b is strictly between a and c. �

Proof of Proposition 7.6. Assume that a < b < c for events in aY. If t(a, c) = 0, then by
Axiom (t2), a, c are on a light line, a, c ∈ px for some x ∈ X. Then b ∈ px, and we have
t(a, b) = t(b, c) = t(a, c) = 0.

Therefore, we may assume that t(a, c) > 0, and, hence, a, c ∈ hd for some timelike
line hd ⊂ aY. Using Theorem 7.3, we may also assume that b does not lie on a light line
either with a or with b. If b is also on hd, then by Axiom (t4a), t(a, b) + t(b, c) = t(a, c).
To complete the proof, we show that the assumption b �∈ hd implies the strict inequality
in the time inequality. In this case, b is strictly between a, c by our assumption, and
there are p, q ∈ aY with a, b ∈ hp, b, c ∈ hq. By Lemma 7.7, d is strictly between p and q.

Since a ∈ hp and p, d ∈ Dab, (LQI) applied to a, b gives Fab(d) > Fab(p). Since
c ∈ hq and q, d ∈ Dbc, (LQI) applied to b, c gives Fbc(d) > Fbc(q). On the other hand,
Fab(p) = t(a, b), Fbc(q) = t(b, c), and it remains to show that Fab(d) + Fbc(d) = t(a, c).

We fix the decomposition X = d+ ∪ d−, d+ ∩ d− = d, induced by d, and write
a = (a+, a−), b = (b+, b−), c = (c+, c−), where a±, b±, c± ∈ d±. By (t4a), we have
t(a±d , b

±
d )+ t(b±d , c

±
d ) = t(a±d , c

±
d ). Therefore, Fab(d)+Fbc(d) =

1
2 (t(a

+
d , c

+
d )+t(a−d , c

−
d )) =

t(a, c) because a, c ∈ hd. �

Corollary 7.9. The variational principle implies the time inequality, (VP)=⇒(TI),
cf. [PY].

7.5. Monotone Möbius structures with (VP). Some important properties of Möbi-
us structures M that do not follow from the monotonicity Axiom (M) can be expressed
as an inequality cr(q) > cr(q′) between cross-ratios of 4-tuples q, q′ with two common
entries, |q∩ q′| = 2, under the assumption that a symmetry between q, q′ is broken down
in a certain way.

We use the notation regPn for the set of ordered nondegenerate n-tuples of points
in X = S1, n ∈ N. For q ∈ regPn and a proper subset I ⊂ {1, . . . , n}, we denote by
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qI ∈ regPk, k = n−|I|, the k-tuple obtained from q (with the induced order) by crossing
out all entries that correspond to the elements of I.

We introduce the following axiom for a Möbius structure M ∈ M, which implies the
variational principle (VP).

(I) Increment: for any q ∈ regP7 with cyclic order co(q) = 1234567 such that q247
and q157 are harmonic, we have

cr1(q345) > cr1(q123).

This means the following. Assume we are given two events e = (o, ω), e′ = (o′, ω′) ∈ aY
in strong causal relation such that (o, ω′) and (o′, ω) separate each other. Let oo′ ⊂ X
be the arc between o, o′ that does not contain ω, ω′, and let (u, v) ∈ aY, u ∈ oo′,
be the common perpendicular to a = (o, o′), b = (ω, ω′), i.e., (u, v) ∈ ha ∩ hb. Given
x ∈ oo′ such that (o, u) and (o′, x) separate each other, we put g+(u, x) = exp te(ue, xe),
g−(u, x) = exp(−te′(ue′ , xe′)), Δ(u, x) = g+(u, x)g−(u, x). Then Axiom (I) says that
Δ(u, x) > 1.

Indeed, consider q = (o, ω, v, ω′, o′, u, x) ∈ regP7 written in the cyclic order co(q) =
1234567. The assumption that the 4-tuples q247 and q157 are harmonic means that
the 4-tuples (u, o, v, o′) and (u, ω, v, ω′) are harmonic with the common axis (u, v), i.e.,
(u, v) ∈ ha ∩ hb. Since q345 = (o, ω, u, x) and q123 = (ω′, o′, u, x), we have g+(u, x) =
cr1(q345), g−(u, x) = 1/ cr1(q123). Thus, the condition cr1(q345) > cr1(q123) means that
Δ(u, x) > 1.

Proposition 7.10. The canonical Möbius structure M0 on X satisfies Axiom (I).

Proof. Let q = (o, ω, v, ω′, o′, u, x) ∈ regP7 be as above. In the metric on X from M0

with infinitely remote point u, we have |vo| = |vo′|, |vω| = |vω′|. Since M0 is canonical,
|vo| = |vω| + |oω|, so that |oω| = |o′ω′|. Furthermore, cr1(q345) = cr1(o, ω, u, x) =
|xω|/|ox| and cr1(q123) = cr1(ω

′, o′, u, x) = |xo′|/|xω′|.
Note that xo ⊂ xω′ ⊂ Xu. Therefore, |xo| < |xω′|. Using |xω| = |xo| + |oω| and

|xo′| = |xω′|+ |o′ω′| = |xω′|+ |oω|, we obtain |xω|/|ox| > |xo′|/|xω′|. Hence, cr1(q345) >
cr1(q123), and M0 satisfies (I). �

Proposition 7.11. The increment Axiom (I) implies the Variational Principle (VP).

Proof. Let a = (o, o′), b = (ω, ω′) ∈ aY be events in strong causal relation such that the
pairs (o, ω′) and (o′, ω) separate each other. Then the events e = (o, ω), e′ = (o′, ω′) are
also in strong causal relation.

Let d0 = (u, v) ∈ Dab be a unique event with a, b ∈ hd0
. We show that Fab(d) >

Fab(d0) for any d = (x, x′) ∈ Dab, d �= d0. Let oo′ ⊂ X be the arc between o, o′ that
does not include b. Without loss of generality we may assume that u, x ∈ oo′ and x �= u.
It suffices to show that Fab(d) > Fab(d

′) for d′ = (u, x′).
Let σ ⊂ he be the segment between ue, x

′
e ∈ he, and let σ′ ⊂ he′ be the segment

between ue′ , x
′
e′ ∈ he′ . Since x �= u, one of the events xe ∈ he, xe′ ∈ he′ lies in the

respective segment σ, σ′, while the other does not. We assume without loss of generality
that xe′ ∈ σ′. Then xe �∈ σ, and moreover ue separates the events xe and x′

e on the
timelike line he. Therefore, t(xe, x

′
e) > t(ue, x

′
e), while t(xe′ , x

′
e′) < t(ue′ , x

′
e′). By

Axiom (I), t(xe, ue) > t(xe′ , ue′), and, consequently t(xe, x
′
e) − t(ue, x

′
e) > t(ue′ , x

′
e′) −

t(xe′ , x
′
e′).

Recall that

Fab(d) =
1

2
(t+d (a, b) + t−d (a, b)),



740 S. BUYALO

where t+d (a, b) = t(od, ωd), t
−
d (a, b) = t(o′d, ω

′
d). By (t5) we have t(od, ωd) = t(xe, x

′
e),

t(o′d, ω
′
d) = t(xe′ , x

′
e′). Hence,

Fab(d)− Fab(d
′) =

1

2
(t(xe, x

′
e)− t(ue, x

′
e) + t(xe′ , x

′
e′)− t(ue′ , x

′
e′)) > 0,

which completes the proof. �

Using Corollary 7.9, we immediately obtain the following statement.

Corollary 7.12. The Increment Axiom (I) implies the time inequality (TI).

7.6. The fine topology and axiom (I). We denote by I the class of monotone Möbius
structures on the circle that satisfy Axiom (I). This paper does not provide any tools to
answer natural questions like to characterize the hyperbolic spaces Y with ∂∞Y = S1

for which the respective Möbius structure is in the class I. Here we only show that
a neighborhood of the canonical Möbius structure M0 on X = S1 in an appropriate
topology lies in I.

Recall that a Möbius structure M on a set X determines the M -topology on X
(see Subsection 4.1) and hence the induced topology on the set regPn(X) ⊂ Xn. A
Möbius structure can be viewed as a map defined on regP4 with values in a vector
space (see Subsection 6.1). Thus, it not clear how to define a topology on the set of
Möbius structures on X, because the topology of X may change together when a Möbius
structure changes.

However, for monotone Möbius structures on X = S1 such a problem does not exist
in view of Axiom (T): on X all Möbius structures M ∈ M induce one and the same
topology of the circle. We define a fine topology on M as follows.

Let reg+ P7 ⊂ X7 be the subset of regP7 that consists of all q ∈ regP7 with the cyclic
order. That is, for q ∈ reg+ P7 we have co(q) = q. On reg+ P7 we take the topology
induced from the standard topology of the 7-torus X7. With a Möbius structure M ∈ M
we associate a section of the trivial bundle reg+ P7 × R

4 → reg+ P7 given by

M(q) =
(
q, cr2(q247), cr2(q157), cr1(q345), cr1(q123)

)
for q = 1234567 ∈ reg+ P7. Taking the product topology on reg+ P7 ×R

4, we define the
fine topology on M with base given by the sets

UV =
{
M ∈ M : M(reg+ P7) ⊂ V

}
,

where V runs over the open subsets of reg+ P7 × R
4.

We show that the canonical Möbius structure M0 on X possesses a neighborhood UV

in the fine topology that lies in I, that is, every Möbius structure M ∈ UV satisfies
Axiom (I). For this, consider a function ε : reg+ P7 → R given by

ε(q) =
|oω|20
4|xω′|20

for q = (o, ω, v, ω′, o′, u, x) ∈ reg+ P7, where | · · |0 is a standard metric on Xu = R

from the canonical Möbius structure M0 with infinitely remote point u. Such a metric
is determined up to a homothety, but clearly ε does not depend on that.

Lemma 7.13. The function ε : reg+ P7 → R is continuous.

Proof. Obviously, it suffices to check that ε varies continuously in the variable u ∈ q. We
switch to the notation du(x, y) = |xy|0 for a metric from M0 with infinitely remote point
u. Applying a metric inversion to u′ ∈ X, u′ �= u, we have

du′(x, y) =
du(x, y)

du(u′, x)du(u′, y)
.
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The point u′ ∈ X is infinitely remote for du′ . Thus, for q′ = (o, ω, v, ω′, o′, u′, x) and
q = (o, ω, v, ω′, o′, u, x), we obtain

ε(q′) =
d2u′(o, ω)

4d2u′(x, ω′)
= ε(q)

d2u(u
′, ω′)d2u(u

′, x)

d2u(u
′, o)d2u(u

′, ω)
.

The factor after ε(q) on the right-hand side tends to 1 as u′ → u. Therefore, ε(q′) → ε(q)
as u′ → u, that is, as q′ → q. �

The set

V =
{
(q, r) ∈ reg+ P7 × R

4 : |r − pr2 ◦M0(q)| < ε(q)
}
,

where pr2 : reg+ P7 × R
4 → R

4 is the projection to the second factor, is the ε-neighbor-
hood of M0(reg

+ P7) with variable ε = ε(q) in reg+ P7 ×R
4. Lemma 7.13 shows that V

is open in reg+ P7 × R
4. Thus, the set

UV =
{
M ∈ M : M(reg+ P7) ⊂ V

}
of Möbius structures is open in the fine topology. The following is a pertubed version of
Proposition 7.10.

Proposition 7.14. Every Möbius structure M ∈ UV satisfies the Increment Axiom (I),
i.e., UV ⊂ I.

Proof. Given M ∈ UV , for any q ∈ reg+ P7, q = 1234567, such that the 4-tuples q247, q157
are M -harmonic, i.e., cr2(q247) = 1 = cr2(q157), we must show that cr1(q345) > cr1(q123)
for M -cross-ratios.

We assume that q = (o, ω, v, ω′, o′, u, x), and for (semi)metrics du ∈ M , d0u ∈ M0

with infinitely remote point u we use the notations du(a, b) = |ab|, d0u(a, b) = |ab|0. The
assumption M ∈ UV implies that | cr02(q247) − 1| < ε, | cr02(q157) − 1| < ε for M0-cross-
ratios, where ε = ε(q). Since q247 = (o, v, o′, u), q157 = (ω, v, ω′, u), we have 1 =

cr2(q247) =
|vo′|·|ou|
|ov|·|o′u| =

|vo′|
|ov| , 1 = cr2(q157) =

|vω′|·|ωu|
|ωv|·|ω′u| =

|vω′|
|ωv| . Hence,

(14)

∣∣∣∣ |vo′|0|ov|0
− 1

∣∣∣∣ < ε,

∣∣∣∣ |vω′|0
|ωv|0

− 1

∣∣∣∣ < ε.

Since |oω|0 = |ov|0 − |ωv|0, |ω′o′|0 = |vo′|0 − |vω′|0 because M0 is canonical, we have

|oω|0 − |ω′o′|0 = |ov|0 − |vo′|0 + |vω′|0 − |ωv|0
and using (14), we obtain

(15) −ε(|ov|0 + |ωv|0) ≤ |oω|0 − |ω′o′|0 ≤ ε(|ov|0 + |ωv|0).

Similarly, since |xω|0 = |xo|0 + |oω|0 and |xo′|0 = |xω′|0 + |ω′o′|0, we have

cr01(q345)− cr01(q123) =
|xω|0
|xo|0

− |xo′|0
|xω′|0

=
|oω|0
|xo|0

− |ω′o′|0
|xω′|0

.

Using (15) and the identity |xω′|0 − |xo|0 = |oω′|0, we obtain

(16) cr01(q345)− cr01(q123) ≥
|oω|0 · |oω′|0
|xo|0 · |xω′|0

− ε
|ov|0 + |ωv|0

|xω′|0
.

By the assumption M ∈ UV , we have | cr1(p) − cr01(p)| < ε for p = q345 and p = q123.
Hence, cr1(q345)− cr1(q123) ≥ cr01(q345)− cr01(q123)− 2ε. Therefore, using (16), we obtain

(17) cr1(q345)− cr1(q123) ≥
|oω|0 · |oω′|0
|xo|0 · |xω′|0

− ε

(
2 +

|ov|0 + |ωv|0
|xω′|0

)
.
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We have oω ⊂ oω′, xo ⊂ xω′, ωv ⊂ ov ⊂ xω′ in Xu. Thus, |oω|0 < |oω′|0, |xo|0 < |xω′|0,
and |ωv|0 < |ov|0 < |xω′|0, whence

|oω|0 · |oω′|0
|xo|0 · |xω′|0

>
|oω|20
|xω′|20

,
|ov|0 + |ωv|0

|xω′|0
<

2|ov|0
|xω′|0

< 2.

It follows that cr1(q345)− cr1(q123) >
|oω|20
|xω′|20

− 4ε = 0. �

7.7. Convex Möbius structures. We introduce the following axiom for a Möbius
structure M ∈ M, which implies the convexity of the function Fab.

(C) Convexity: for any q ∈ regP6 with cyclic order co(q) = 123456 such that
cr3(q46) = cr3(q26), we have

cr1(q12) > cr1(q14).

A Möbius structure M ∈ M is convex if it satisfies Axiom (C).
Axiom (C) can be rewritten in the following way. Assume we have q=(o′, x, y, z, o, ω)∈

regP6 written in the cyclic order, co(q) = 123456. Then q46 = (o′, x, y, o), q26 =
(o′, y, z, o), and the assumption cr3(q46) = cr3(q26) is equivalent to δx,y,z(o) = δx,y,z(o

′),
where

δx,y,z(o) =
|yo|2

|xo| · |zo| .

Next, we have q12 = (y, z, o, ω), q14 = (x, y, o, ω). Thus, the condition cr1(q12) > cr1(q14)
is equivalent to δx,y,z(o) > δx,y,z(ω).

Proposition 7.15. The canonical Möbius structure M0 on X is convex.

Proof. In the metric from M0 with infinitely remote point o′, we have δx,y,z(o
′) = 1.

Thus, δx,y,z(o) = 1, whence |yo|2 = |xo| · |zo|. Let σ = |oω|. Since M0 is canonical, we
have |yω| = |yo|+ σ, |xω| = |xo|+ σ, and |zω| = |zo|+ σ. Therefore,

δx,y,z(ω) =
(|yo|+ σ)2

(|xo|+ σ)(|zo|+ σ)
=

1 + ασ + βσ2

1 + γσ + β′σ2
,

where α = 2/|yo|, β = 1/|yo|2, γ = |xo|+|zo|
|xo|·|zo| , β

′ = 1/(|xo| · |zo|). Since |yo|2 = |xo| · |zo|,
we have β = β′, and, thus, the inequality δx,y,z(ω) < 1 is equivalent to

√
|xo|/|zo| +√

|zo|/|xo| > 2, which is always true because x �= z. �

Let a = (o, o′) and b = (ω, ω′) ∈ aY be events in the strong causal relation such that
the pairs (o, ω′) and (o′, ω) separate each other. Using the parametrization x ↔ xa of
the arc oo′ between o, o′ that does not contain b by the timelike line ha, x ∈ oo′, xa ∈ ha,
and the parametrization x′ ↔ x′

b of the arc ωω′ between ω, ω′ that does not contain
a by the timelike line hb, we view the function Fab : Dab → R, see Subsection 7.2, as a
function defined on ha × hb, Fab : ha × hb → R.

Proposition 7.16. The Convexity Axiom (C) implies that the function Fab : ha×hb → R

is strictly convex for any events a, b ∈ aY in strong causal relation.

Remark 7.17. 1. The convexity of the function Fab is a precise analog of the convexity
of the distance function in CAT(−1) spaces, cf. Proposition 7.1.

2. The convexity property depends on a parametrization up to an affine equivalence.
Here, the parametrization of Dab by ha × hb is chosen, because ha × hb is an affine space
isomorphic to R× R.

Proof of Proposition 7.16. As usual, we assume that a = (o, o′) and b = (ω, ω′) ∈ aY
are events in strong causal relation such that the pairs (o, ω′) and (o′, ω) separate each
other, and e = (o, ω), e′ = (o′, ω′). We show that the increment of the function Fab
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strictly monotone increases along any line in ha × hb = R
2. For this, it suffices to show

that for any xa, ya, za ∈ ha with xa < ya < za such that t(xa, ya) = t(ya, za), we have
ΔFa,b(za, ya) > ΔFa,b(ya, xa), where the increment

ΔFa,b(ya, xa) =
1

2
(t(ye, x

′
e) + t(ye′ , x

′
e′)− t(xe, x

′
e)− t(xe′ , x

′
e′)),

calculated for some x′
b ∈ hb, is in fact independent of x′

b (recall that here we use
parametrizations x ↔ xa and x′ ↔ x′

b). Indeed, without loss of generality we may
assume that q = (o′, x, y, z, o, ω) ∈ regP6 is written in the cyclic order. Then t(ye, x

′
e)−

t(xe, x
′
e) = t(ye, xe) and t(ye′ , x

′
e′)− t(xe′ , x

′
e′) = −t(ye′ , xe′), so that

ΔFa,b(ya, xa) =
1

2
(t(ye, xe)− t(ye′ , xe′)).

The condition t(xa, ya) = t(ya, za) is equivalent to |yo′|·|xo|
|yo|·|xo′| =

|zo′|·|yo|
|zo|·|yo′| for any semimet-

ric from M , or, which is the same, to δx,y,z(o) = δx,y,z(o
′). Axiom (C) implies that

δx,y,z(o) > δx,y,z(ω). Since

t(ze, ye) =
|yo| · |zω|
|zo| · |yω| and t(ye, xe) =

|xo| · |yω|
|yo| · |xω| ,

this is equivalent to t(ze, ye) > t(ye, xe).
Applying the same argument to q′ = (o, z, y, x, o′, ω′) ∈ regP6, we see that Axiom (C)

implies δx,y,z(o
′) > δx,y,z(ω

′), which is equivalent to t(ze′ , ye′) < t(ye′ , xe′). Therefore,
ΔFa,b(za, ya) > ΔFa,b(ya, xa), and the strict convexity of the function Fab follows. �
Remark 7.18. By Proposition 7.16, Axiom C implies that the function Fab : Dab → R

attains its infimum at a unique point d′0 ∈ Dab for any a, b ∈ aY in the strong causal
relation, because Fab(d) → ∞ as d approaches the boundary ∂Dab of Dab. However, in
general there is no reason to think that d′0 = ha ∩ hb. It seems that Axioms (I) and (C)
are independent of each other.

§8. Appendix 1

We show that Gromov hyperbolic spaces from a large class are boundary continuous,
see Subsection 4.2.

Theorem 8.1. Every proper Gromov hyperbolic CAT(0) space Y is boundary continuous.

For CAT(−1) spaces this was established in [BS1, Proposition 3.4.2]. Here, we ex-
tend this result to CAT(0) spaces. The distinction between CAT(−1) and CAT(0) cases
relevant to our arguments is that dist(γ, γ′) = inf {d(s, s′) : s ∈ γ, s′ ∈ γ′} = 0 for as-
ymptotic geodesic rays γ, γ′ in the former case, while that distance is only finite in the
latter. This distinction is compensated for by the following lemma.

We use the notation ot(1) for a quantity with ot(1) → 0 as t → ∞.

Lemma 8.2. Let xyz ⊂ R
2 be a triangle with |yz| ≤ d for some fixed d > 0 and

|xy|, |xz| ≥ t. Assume that ∠z(x, y), ∠y(x, z) ≥ π/2− ot(1). Then
∣∣|xy| − |xz|

∣∣ = ot(1).

Proof. The required estimate follows from the convexity of the distance function on R
2

and the first variation formula. We leave the details to the reader. �
Recall that in a geodesic metric space, the Gromov product is monotone in the fol-

lowing sense, see, e.g., [BS1, Lemma 2.1.1].

Lemma 8.3. Let Y be a geodesic metric space, xyz ⊂ Y a geodesic triangle. Then for
any y′ ∈ xy, u ∈ yz we have

(y′|z)x ≤ (y|z)x ≤ min{(y|u)x, (u|z)x}.
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Proof. The left-hand side inequality is equivalent to |y′x| − |y′z| ≤ |yx| − |yz|, which
follows from the triangle inequality |yz| ≤ |yy′| + |y′z| because |yx| − |y′x| = |yy′|. A
similar argument using |yz| = |yu|+ |uz| proves the right-hand side inequality. �

All necessary information about CAT(0) spaces like the definition of the angles, the
triangle inequality for angles, the comparison of angles, the first variation formula, etc.
used in the proof below can be found in [BH].

Proof of Theorem 8.1. Given o ∈ Y , ξ, ξ′ ∈ ∂∞Y , we need to show that for any sequences
{xi} ∈ ξ, {x′

i} ∈ ξ′ the limit limi(xi|x′
i)o exists. We may assume that ξ �= ξ′ because

otherwise there is nothing to prove.
We use the notation ξ = ξ(t) for the unit speed parametrization of the geodesic ray

oξ with ξ(0) = o. By the monotonicity of the Gromov product, see Lemma 8.3, the limit

a = lim
t→∞

(ξ(t)|ξ′(t))o

exists. We have a < ∞ because Y is hyperbolic and ξ �= ξ′, which implies that the
geodesic segment ξ(t)ξ′(t) stays at a bounded distance from o uniformly in t. Since Y is
proper, the segments ξ(t)ξ′(t) subconverge in the compact-open topology as t → ∞ to a
geodesic γ ⊂ Y with the endpoints ξ, ξ′ at infinity.

(1) We fix p ∈ γ and show that |xip| + |px′
i| = |xix

′
i| + oi(1). The geodesic segments

pxi, px
′
i converge to subrays pξ, pξ′ ⊂ γ (respectively) in the compact-open topology as

i → ∞. It follows that ∠p(xi, x
′
i) ≥ π − oi(1).

Let qi ∈ xix
′
i be the point closest to p. By the hyperbolicity of Y we have |pqi| =

dist(p, xix
′
i) ≤ d for some d > 0 and all i. For the triangles Δi = pqixi, Δ

′
i = pqix

′
i we

have ∠qi(p, xi), ∠qi(p, x
′
i) ≥ π/2, and ∠p(xi, qi) + ∠p(qi, x

′
i) ≥ ∠p(xi, x

′
i) ≥ π − oi(1).

Using the comparison of angles for CAT(0) spaces, we see that the comparison triangles

Δ̃i = p̃q̃ix̃i, Δ̃
′
i = p̃q̃ix̃

′
i ⊂ R

2 have angles at least π/2 at q̃i, and ∠p̃(x̃i, q̃i) ≥ ∠p(xi, qi),
∠p̃(q̃i, x̃

′
i) ≥ ∠p(qi, x

′
i). Thus, ∠p̃(x̃i, q̃i), ∠p̃(q̃i, x̃

′
i) < π/2, and we see that

π − oi(1) ≤ ∠p̃(x̃i, q̃i) + ∠p̃(q̃i, x̃
′
i) < π.

Hence, ∠p̃(x̃i, q̃i), ∠p̃(q̃i, x̃
′
i) ≥ π/2 − oi(1). Since |p̃q̃i| ≤ d, we can apply Lemma 8.2

and conclude that |x̃ip̃| = |x̃iq̃i| + oi(1), |p̃x̃′
i| = |q̃ix̃′

i| + oi(1). Therefore |xip| + |px′
i| =

|xix
′
i|+ oi(1).

(2) By the hyperbolicity of Y , there are points u ∈ oξ, u′ ∈ oξ′, vt ∈ ξ(t)ξ′(t) with
mutual distances bounded above independently of t. Thus,

∠ξ(t)(o, ξ
′(t)) = ∠ξ(t)(o, vt) = ot(1), ∠ξ′(t)(o, ξ(t)) = ∠ξ′(t)(o, vt) = ot(1),

that is, the segment ovt is observed from ξ(t) and ξ′(t) under arbitrarily small angles as
t → ∞.

(3) Let η(t), η′(t) ∈ γ be points closest to ξ(t) and ξ′(t), respectively. Since the
geodesic γ is convex as a set in Y , we have |η(t)η′(t)| ≤ |ξ(t)ξ′(t)|. Our next goal is to
show that |ξ(t)ξ′(t)| ≤ |η(t)η′(t)|+ ot(1).

Since the geodesic rays oξ, pξ are asymptotic, the distance dist(ξ(t), γ) is uniformly
bounded above. Using the convexity of the distance function on Y , we conclude that
g(t) = dist(ξ(t), γ) and similarly g′(t) = dist(ξ′(t), γ) are monotone decreasing as t →
∞. Then for t′ > t we have g(t′) ≤ g(t) ≤ |ξ(t)η(t′)| and similarly g′(t′) ≤ g′(t) ≤
|ξ′(t)η′(t′)|. The first variation formula for CAT(0) spaces, see [BH, Corollary 3.6],
implies that ∠ξ(t)(η(t), o), ∠ξ′(t)(η

′(t), o) ≥ π/2 for all t > 0. Combining this with
the estimates in (2) for the angles ∠ξ(t)(o, ξ

′(t)), ∠ξ′(t)(o, ξ(t)) = ot(1), we conclude
that ∠ξ(t)(η(t), ξ

′(t)), ∠ξ′(t)(η
′(t), ξ(t)) ≥ π/2 − ot(1). Therefore, all the angles of the

quadrilateral η(t)ξ(t)ξ′(t)η′(t) are at least π/2−ot(1). We also note that g(t) = |ξ(t)η(t)|
and g′(t) = |ξ(t)η(t)| ≤ c for all t ≥ 0 and some c > 0 independent of t.
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Let x(t)y(t)u(t), y(t)z(t)u(t) be comparison triangles in R
2 with vertices x(t), z(t)

separated by the common side y(t)u(t) for the triangles η(t)ξ(t)η′(t), ξ(t)ξ′(t)η′(t) in Y ,
respectively. Using the comparison of angles in CAT(0) spaces and the triangle inequality
for angles, we see that all the angles of the quadrilateral x(t)y(t)z(t)u(t) ⊂ R

2 are at least
π/2 − ot(1). Since |x(t)y(t)|, |z(t)u(t)| ≤ c, we have ∠y(t)(z(t), u(t)), ∠u(t)(x(t), y(t)) =
ot(1). Thus, ∠y(t)(x(t), u(t)), ∠u(t)(z(t), y(t)) ≥ π/2 − ot(1). By Lemma 8.2, |y(t)z(t)|,
|x(t)u(t)| = |y(t)u(t)|+ ot(1), whence |ξ(t)ξ′(t)| ≤ |η(t)η′(t)|+ ot(1).

(4) Now, we show that α(t), α′(t) ≥ π/2− ot(1), where α(t) = ∠ξ(t)(η(t), ξ), α
′(t) =

∠ξ′(t)(η
′(t), ξ′). For brevity, we only prove this estimate for the angles α(t).

By the first variation formula, we have |ξ(t+s)η(t)| = |ξ(t)η(t)|−s cosα(t)+o(s) for all
sufficiently small s ≥ 0. On the other hand, the function g = g(t) is convex. Therefore,
at every point it has the right derivative d+g/dt, which is monotone nondecreasing.
It is monotone nonpositive because g(t) decreases. Thus −d+g(t)/dt = ot(1). Since
g(t+ s) ≤ |ξ(t+ s)η(t)| for every s ≥ 0, we obtain the inequality

g(t)− s cosα(t) + o(s) = |ξ(t+ s)η(t)| ≥ g(t+ s) ≥ g(t) + s · d+g(t)/dt
for all sufficiently small s > 0, whence cosα(t) ≤ −d+g(t)/dt = ot(1), and, therefore,
α(t) ≥ π/2− ot(1).

(5) We show that |ξ(t)xi| = |η(t)xi| + ot,i(1) for every sufficiently large fixed t,
and similarly |ξ′(t)x′

i| = |η′(t)x′
i| + ot,i(1). The geodesic segments ξ(t)xi, η(t)xi con-

verge in the compact-open topology to subrays ξ(t)ξ, η(t)ξ, respectively, as i → ∞.
Thus, ∠ξ(t)(η(t), xi) ≥ α(t) − oi(1) and ∠η(t)(ξ(t), xi) ≥ β(t) − oi(1), where β(t) =
∠η(t)(ξ(t), ξ) ≥ π/2. Using (4) and the comparison of angles, we see that the angles at

x, y of the comparison triangle xyz ⊂ R
2 for ξ(t)η(t)xi are at least π/2 − ot,i(1). By

Lemma 8.2, |ξ(t)xi| = |η(t)xi|+ ot,i(1).
(6) Since the geodesic segments oxi converge to the ray oξ, we have |oxi| = |oξ(t)|+

|ξ(t)xi| − ot,i(1) for every fixed t > 0 and all sufficiently large i. Similarly, |pxi| =
|pη(t)|+|η(t)xi|−ot,i(1). By (5), |oxi|−|pxi| = |oξ(t)|−|pη(t)|+ot,i(1). Using (1), (3) and
the identity |η(t)p|+|pη′(t)| = |η(t)η′(t)|, we finally obtain (xi|x′

i)o = (ξ(t)|ξ′(t))o+ot,i(1).
Hence, limi(xi|x′

i)o = a. �

Corollary 8.4. In a proper Gromov hyperbolic CAT(0) space Y , we have (ξ|ξ′)o = 0 if
and only if ∠o(ξ, ξ

′) = π for o ∈ Y , ξ, ξ′ ∈ ∂∞Y .

Proof. If ∠o(ξ, ξ
′) = π, then |xo|+|ox′| = |xx′|, and (x|x′)o = 0 for every x ∈ oξ, x′ ∈ oξ′.

By Theorem 8.1, (ξ|ξ′)o = 0.
Conversely, assume that ∠o(ξ, ξ

′) < π. Then for x ∈ oξ, x′ ∈ oξ′ sufficiently close to o,
we have |xo|+ |ox′| > |xx′|, and, thus, (x|x′)o > 0. By the monotonicity of the Gromov
product and Theorem 8.1, (ξ|ξ′)o ≥ (x|x′)o > 0. �

§9. Appendix 2

Viktor Schroeder
Here, it will be shown that Axiom (t6) follows from the other axioms of timed causal

spaces. That is, we assume Axioms (h1)–(h6) and (t1)–(t5) but not (t6) and show that
(t6) follows. Given an event e = (α, β) we have a reflection ρ = ρe : S

1 → S1 fixing α,
β. The Möbius structure M was obtained in Theorem 6.6 without using (t6). This gives
another timelike line structure HM and hence, for e, another reflection τ = τe : S

1 → S1.
Choose x, y in the same component of S1\{α, β} in the order αxyβ. We use the notation
[ , , , ] for the cross-ratio cr3,

[x, y, z, u] :=
|xy| |zu|
|xz| |yu| .
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Then

(18) [α, x, τ (x), β] = [α, y, τ (y), β] = 1.

This cross-ratio satisfies the cocycle property

[α, x, y, β][α, y, z, β] = [α, x, z, β]

for any x, y, z. Axiom (t6) was not used in the proof of Lemma 6.8. By that lemma,
the time of the timed causal space is computed in the usual way via M -cross-ratios.
Therefore,

ln[α, x, y, β] = −t((x, ρ(x)), (y, ρ(y))) = ln[α, ρ(x), ρ(y), β],

and by the cocycle property and (18) we have [α, x, y, β] = [α, τ (x), τ (y), β]. Thus,

[α, ρ(x), τ (x), β][α, τ (x), ρ(y), β] = [α, ρ(x), ρ(y), β]

equals

[α, τ (x), ρ(y), β][α, ρ(y), τ (y), β] = [α, τ (x), τ (y), β].

Therefore, [α, ρ(x), τ (x), β] is constant for x in a connected component of S1 \ {α, β}. In
order to prove the result, we need to show that [α, ρ(x), τ (x), β] = 1. Then ρ(x) = τ (x)
by monotonicity, and we arrive at (t6).

Now [α, ρ(x), τ (x), β] = [α, ρ(x), x, β] because [α, τ (x), x, β] = 1 and, hence, also

(19) [α, x, ρ(x), β] is constant in x.

1

2

3

45

6

7

8

910

Figure 2. The pentagon P .

Now, we construct a pentagon P = x1x2, x2x3, . . . , x9x10 of consecutively “orthogo-
nal” timelike lines, i.e., ρxi,xi+1

(xi+2) = xi+3 for i = 1, . . . , 9, where the indices are taken
modulo 10 (the existence of P easily follows from Proposition 3.2(b)). Then (19) implies
(we write [i, j, k, l] = [xi, xj , xk, xl])

[1, 3, 4, 2] = [6, 3, 4, 5]

= [6, 8, 7, 5]

= [9, 8, 7, 10]

= [9, 1, 2, 10]

= [4, 1, 2, 3] = [1, 4, 3, 2] = 1/[1, 3, 4, 2],

whence [1, 3, 4, 2] = 1.
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