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PROBLEM OF IDEALS IN THE ALGEBRA H∞

FOR SOME SPACES OF SEQUENCES

I. K. ZLOTNIKOV

Abstract. Metric aspects of the problem of ideals are studied. Let h be a function
in the class H∞(D) and f a vector-valued function in the class H∞(D;E), i.e., f
takes values in some lattice of sequences E. Suppose that |h(z)| ≤ ‖f(z)‖αE ≤ 1 for
some parameter α. The task is to find a function g in H∞(D;E′), where E′ is the
order dual of E, such that

∑
fjgj = h. Also it is necessary to control the value of

‖g‖H∞(E′). The classical case with E = l2 was investigated by V. A. Tolokonnikov

in 1981. Recently, the author managed to obtain a similar result for the space E = l1.
In this paper it is shown that the problem of ideals can be solved for any q-concave
Banach lattice E with finite q; in particular, E = lp with p ∈ [1,∞) fits.

§1. Introduction and the main result

The problem of ideals has an intimate relationship with the corona theorem. The
classical corona problem was formulated by Kakutani and came from the study of the
space of maximal ideals of the algebra H∞. L. Carleson proved the following statement
and solved the corona problem in 1968.

Theorem (Carleson). Assume that δ > 0. Let f1, . . . , fn be functions of class H∞(D)
that satisfy the following condition:

n∑
j=1

|fj(z)| ≥ δ and ‖fj‖H∞ ≤ 1 for 1 ≤ j ≤ n.

Then there exist functions g1, . . . , gn in H∞(D) such that

n∑
j=1

fj(z)gj(z) = 1, z ∈ D,

and ‖gj‖H∞ ≤ C(δ, n).

We note the dependence on n in the last inequality. In 1979 T. Wolff proposed another
approach to the solution of the corona problem. It was based on the idea of L. Hörmander
to involve the ∂ equation.

Wolff’s proof turned out to admit an extension to infinite-dimensional spaces. The
following definition makes the statements shorter. All associated notions will be defined
in the next section.

Definition 1.1. Let X be a Banach lattice of functions on the set N of positive integers.
We denote by X ′ the order dual of X. We say that the corona problem is solvable for
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the lattice X if the following statement is true. Let δ be a positive parameter, and let f
be a vector-valued function in H∞(D;X) satisfying the condition

δ ≤ ‖f(z)‖X ≤ 1, z ∈ D;

then one can find a vector-valued function g in H∞(D;X ′) such that:

1 =

∞∑
i=1

f(z, i)g(z, i) = 〈f(z), g(z)〉, z ∈ D,

and moreover, the value ‖g‖H∞(D;X′) is bounded by a constant CX,δ depending only on
the parameter δ and the lattice X.

In this connection, we mention the papers of Tolokonnikov [7] and Uchiyama [6]. In
both papers the corona theorem was established for X = l2, but Uchiama also treated
the case of X = l∞. Kislyakov and Rutsky (see [10]) showed that the corona problem
has a solution for X = lp, with 2 ≤ p < ∞. Using interpolation, Kislyakov proved
the corona theorem in the paper [1] for all lp spaces (and even for q-concave lattices
with an additional condition of BMO-regularity). Finally, in [2] Rutsky showed by using
the Kakutani fixed-point theorem that the corona problem has a solution for all order-
continuous lattices of sequences. His proof was based on Uchiyama’s theorem for the
lattice l∞. By imitating the pattern of Definition 1.1, the problem of ideals can be
formulated in the following way.

Definition 1.2. Let X be a Banach lattice of sequences on the set N and X ′ its order
dual. We say the problem of ideals for the lattice X has a solution with exponent α
and estimate CX,α if the following statement is true. Let a function h in H∞(D) and a
vector-valued function f in H∞(D;X) satisfy the conditions

|h(z)| ≤ ‖f(z)‖αX ≤ 1

for all z in D and some fixed parameter α. Then there exists a function g in H∞(D;X ′)
such that

h(z) =

∞∑
i=1

f(z, i)g(z, i) = 〈f(z), g(z)〉, z ∈ D,

and moreover, the value ‖g‖H∞(D;X′) is bounded by the constant CX,α depending only
on the parameter α and the lattice X.

In Tolokonnikov’s paper mentioned above it was also shown that the problem of ideals
has a solution for the space l2 with the exponent 4 and constant 57. This exponent was
improved by many authors, see [8]. For us it suffices to know that for any positive ε the
problem of ideals has a solution for the space l2 with the exponent 2 + ε and a constant
C depending only on ε. We denote this constant by Cl2,2+ε. In the paper [3] by using
the fixed point theorem and the result for the space l2 it was shown that the problem
of ideals has a solution with the exponent 2 + ε for arbitrary positive ε and the same
constant Cl2,2+ε.

We formulate the main results.

Theorem A. Let E and F be finite-dimensional Banach lattices (viewed as lattices of
functions on some finite subset of N). Assume that the problem of ideals for E has a
solution with exponent αE and estimate CE. Let X denote the product of E and F . If
X is a Banach lattice, then the problem of ideals has a solution for X with the exponent
αE and the estimate CE2

αE (1 + δ) for an arbitrary positive δ.

Let X be a Banach lattice of sequences and N a positive integer. We denote by XN

the finite-dimensional lattice obtained by restriction of X to the set {1 . . . N}.
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Theorem B. Let X be an infinite-dimensional Banach lattice of sequences such that
for any N ∈ N and an arbitrarily small ε the problem of ideals has a solution for all
finite-dimensional lattices XN with exponent α and estimate CX(1 + ε) independently
of N . Assume also that X is q-concave with constant Mq,X . Then the problem of ideals
has a solution for X with exponent α and estimate CXMα

q,X .

Theorem C. Let X be a q-concave lattice with Fatou property on the set N. Then the
problem of ideals has a solution for X.

The proof of these theorems is based on the method suggested by Rutsky in [2]. Unlike
the corona problem, in Theorem B we are still unable to lift the q-concavity condition
for E. The main reason is that the problem of ideals for the space E = l∞ has not been
solved yet. See §2 for more details.

§2. The main definitions and the reduction of Theorem C
to Theorems A and B

We remind the reader several basic definitions and results from the lattice theory.
They are formulated not in the full generality but only in the form sufficient for us. We
refer the reader to [4] and [5] for more details.

Definition 2.1. Let (S, μ) be a space with measure and X a linear space of measurable
functions supplied with a quasinorm ‖ · ‖. We say that X is a lattice of measured
functions if it has the following property. Assume that g is a measurable function and
in the space X there exists a function f with |g| ≤ |f | a.e. Then g belongs to X and
‖g‖X ≤ ‖f‖X . The lattice X is called a Banach lattice if it is complete and its quasinorm
is in fact a norm (more generally, if such a situation occurs after renorming the space).

For us, it suffices to consider the space S = N with the counting measure μ. In this case
we shall talk of Banach lattices of sequences, and, for brevity, simply of Banach lattices.
We need the notions of the product of lattices and a power of a lattice of measurable
functions.

Definition 2.2. Let X and Y be the Banach lattices of measurable functions. The
product of X and Y is the lattice XY = {h = fg, f ∈ X, g ∈ Y } with the usual order
and equipped with the quasinorm ‖h‖XY = inf ‖f‖X‖g‖Y , where the greatest lower
bound is taken over all representations h = fg.

Definition 2.3. Let X be a lattice of measurable functions and α a positive parameter.
We denote by Xα the lattice {f : |f |1/α ∈ X} with the usual order and equipped with
the quasinorm

‖f‖Xα = ‖|f |1/α‖αX .

Generally speaking, the lattices XY and Y may fail to be Banach lattices. We recall
the following important definition.

Definition 2.4. Let X be a Banach lattice of measurable functions, and let p ∈ [1,∞).
X is said to be p-convex if Xp is a Banach lattice.

Definition 2.5. Let X be a Banach lattice of sequences. The order dual X ′ consists of
all sequences y = {yn} such that for all sequences x ∈ X we have

∑
n |xnyn| < ∞.

In what follows, we shall tacitly assume all lattices of measurable functions to satisfy
X ′′ = X. In the case of Banach lattices this condition is equivalent to the Fatou property.
Now we give the exact definition.
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Definition 2.6. Let X be a quasi-Banach lattice of sequences. It has the Fatou property
if for any sequence {xn} such that the norms ‖xn‖ are uniformly bounded by some
constant C the following is true: if the elements xn converge componentwise to an
element x, then x ∈ X and ‖x‖ ≤ C.

We remark that the product and a power of Banach lattices inherit the Fatou property.

Definition 2.7. Suppose that the parameters q and p are conjugate. The lattice X is
said to be q-concave if the lattice X ′ is p-convex.

We recall a direct definition of q-concave lattices. For more details, see [5]. X is a
q-concave lattice if and only if there exists a universal constant Mq,X such that for any
finite sequence of elements xi in X we have

( N∑
i=1

‖xi‖qX
)1/q

≤ Mq,X

∥∥∥∥
( N∑

i=1

|xi|q
)1/q∥∥∥∥

X

.

Here the constant Mq,X does not depend on the number of elements in the sequence, but
only on the lattice X and the parameter q.

Definition 2.8. Let X be a Banach lattice. It has an order continuous norm if for
any sequence {xn} of elements of X such that xn ≥ 0, xn → 0 componentwise, and
supn xn ∈ X we have ‖xn‖X → 0.

The space l∞ is an important example of a lattice that does not have an order con-
tinuous norm. On the other hand, in finite-dimensional lattices the order continuity of
the norm and the Fatou property are fulfilled automatically.

Two following lemmas are well known. See references in [1, 2] (where the proof of
Lemma 2.10 can also be found).

Lemma 2.9. Let X and Y be Banach lattices, and let p, q ∈ (1,∞) be mutually conjugate.
Then the (X1/pY 1/q)′ = (X ′)1/p(Y ′)1/q.

Lemma 2.10. Let X, Y , and XY be Banach lattices. Then X ′ = (XY )′Y .

Below in this section we show that Theorem C is a consequence of Theorems A and B.
We need the following well-known assertion. For completeness, we give a proof, because
it is important in the structure of our exposition.

Lemma 2.11. Let X be a q-concave Banach lattice with the Fatou property. Then X
can be represented as a product of some Banach lattice with the lattice lq.

Proof. From the q-concavity of the lattice X it follows that the order dual lattice X ′ is
p-convex with 1

p + 1
q = 1. Then there exists a Banach lattice Z such that X ′ = Z1/p.

It is clear that multiplication by the lattice l∞ in an arbitrary power does not change
the lattice. Thus, we have X ′ = Z1/p(l∞)1/q. Applying Lemma 2.9 and taking into the
account that (l∞)′ = l1, we see that X ′′ = (Z ′)1/p(l1)1/q = (Z ′)1/plq. It remains to recall
that the lattice X has a Fatou property, and hence X ′′ = X. �

The following extrapolation lemma enables us to extend the well-known result on the
problem of ideals for the space l2 to the space lp. Apparently, the resulting exponent α
is far from sharp, but a similar drawback of extrapolation occurred already in [10].

Lemma 2.12. Assume that p ∈ [2,∞). The problem of ideals has a solution for all
spaces lp and for all ε > 0 with the exponent (1+ε)p and a constant depending only on ε.
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Proof. The assumption of the lemma means that the functions h and f satisfy the fol-
lowing relation:

|h(z)| ≤
( ∞∑

i=1

|f(z, i)|p
)1+ε

≤ 1.

Consider the inner-outer factorization of the function f(z). There exists an inner function
θ and an outer function F such that f(z, i) = θ(z, i)F (z, i), moreover, |θ(z, i)| ≤ 1 for
i ∈ N. We note that on T we have

‖F (ξ)‖lp = ‖f(ξ)‖lp ≤ 1, ξ ∈ T,

whence, applying the maximum principle, we see that ‖F (z)‖lp ≤ 1 in the entire disk D.
Now we put ϕ(z, i) = θ(z, i)F (z, i)p/2. Since |θ(z, i)| ≤ 1 for all z in the disk D, we

obtain

|h(z)| ≤
( ∞∑

i=1

|θ(z, i)|2|F (z, i)|p
)1+ε

= ‖ϕ(z)‖2ε+2
l2 ≤ ‖F (z)‖p(1+ε)

lp ≤ 1.

Applying the theorem on the problem of ideals for the space l2 (see §1 and the paper [8]),
we find a function g(z) in H∞(D; l2) such that

h(z) = 〈ϕ(z), g(z)〉

=
∞∑
i=1

θ(z, i)F (z, i)g(z, i)F (z, i)p/2−1 = 〈f(z), g(z)F (z)p/2−1〉

and the quantity ‖g‖H∞(l2) is bounded by the constant Cl2,ε.
Thus, the function

g1(z, i) = g(z, i)F (z, i)p/2−1

solves the problem of ideals for the space lp. It remains to apply the Hölder inequality
with the exponents 2(p− 1)/p and 2(p− 1)/(p− 2) to get the estimate

‖g1‖H∞(lp′ ) ≤ ‖g‖H∞(l2)‖F‖p/2−1
H∞(lp) ≤ Cl2,ε.

Thereby, we have finished the proof for the space lp with p > 2. �

We note that the problem of ideals for the space lp with p ∈ [1, 2) can be solved by
using Theorems A and B. It suffices to observe that there exists q ∈ [2; +∞) such that
lp = l2lq. We denote by XN the lattice of functions in X supported on the set {1 . . . N}.
Clearly, from the solution of the problem of ideals for l2 we deduce that the problem can
be solved for the space l2N with the constant that does not depend on the dimension.
Hence, the problem of ideals has a solution for the space lpN = l2N lqN . It remains to apply
the q-concavity of the lattices and Theorem B.

In particular, we have reproved the main result of [3].
For proving Theorem C, it remains to apply the results obtained and Theorems A

and B. Indeed, every q-concave lattice (with the Fatou property) can be represented
as X = lqF , and without loss of generality we may assume that q ≥ 2. Consider
the sequence XN = lqNFN (where the notation XN was introduced in the preceding
paragraph). The problem of ideals has a solution for the spaces lqN with a constant that
does not depend on the dimension. Using theorem A, we deduce that the problem has a
solution in the lattice XN with the corresponding exponent and estimate. We finish the
proof by applying Theorem B.

To conclude this section we make a remark about the case of p = ∞. In the investiga-
tion of the corona theorem it is still an open question whether it is possible to reduce the
corona problem for the case of p = ∞ to the well-known theorem for p = 2. However,
for the space l∞ there exists an individual proof of A. Uchiyama (see [6]) based on the
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original idea of Carleson. It is not clear, however, whether the problem of ideals has a
solution in case of the exponent p = ∞.

§3. Proof of Theorem B

In this section we shall prove Theorem B assuming that the claim of Theorem A is
true.

We recall that the bounded ∗-weak topology on the space H∞ coincides with the
topology induced by the uniform convergence on the compact subsets of D. For the first
time, this quite simple statement was noted, apparently, in [9].

We may assume that for each j ∈ suppX there exists a point z ∈ D such that
f(z, j) �= 0. Otherwise, we can simply take the identical zero as g( · , j).

Now we fix parameters δ > 0 and 0 < ν < 1. We define the set

K = {z ∈ νD : |h(z)| ≥ δ},
which is obviously compact. We recall that in the case of the finite-dimensional lattice
XN (with the support on a finite subset of N) the problem of ideals is assumed to have
a solution with exponent α and estimate CX(1 + ε), where the constant CX does not
depend on the dimension N , and the positive number ε can be chosen arbitrarily small.
Set ε = δ.

Denote by fN (z) the function f(z)χD×{1...N}(z). We note that fN takes its values in
a finite-dimensional lattice.

For every point z ∈ K one can find a number N(z) such that

(1− δ/2)|h(z)| ≤ ‖fN(z)(z)‖αX ≤ 1.

Indeed, since the norm in the lattice X is order continuous, for a fixed z the sequence
‖fN (z)‖X converges to ‖f(z)‖X as N → ∞. Note that on the set K we have

(1− δ/2)|h(z)| ≤ |h(z)| − δ2/2 ≤ ‖f(z)‖αX − δ2/2 ≤ ‖fN(z)(z)‖αX ≤ 1

whenever N is so large that the following estimates are satisfied simultaneously:

‖f(z)‖αX − ‖fN(z)(z)‖αX ≤ δ2/2,

‖f(z)− fN(z)(z)‖X ≤ δ2/2.

Now for every point z ∈ K we consider a neighborhood U(z) such that for all z1 ∈ U(z)
we have

(1− δ)|h(z1)| < ‖fN(z)(z1)‖αX < 1 + δ1/α.

These neighborhoods form an open covering of the compact set K. Hence, we can choose
a number N such that for all z ∈ K we have

(1− δ)|h(z)| ≤ ‖fN (z)‖αX ≤ 1 + δ1/α.

Let t be a positive parameter to be specified later. Now we define a vector-valued function
ϕ with values in the lattice with support {1 . . . N+1} componentwise: ϕ(z) = (fN (z), t).
We observe the obvious relations

ϕ(z) = fN (z) + teN+1 and |ϕ(z)| = |fN (z)|+ teN+1,

where eN+1 = (0, . . . , 0, 1
N+1

, 0, . . . ).

We recall the property of q-concave lattices that was mentioned in §2. If X is a
q-concave lattice, then there exists a universal constant Mq,X such that for any finite
sequence of elements xi in X we have( N∑

i=1

‖xi‖qX
)1/q

≤ Mq,X

∥∥∥∥
( N∑

i=1

|xi|q
)1/q∥∥∥∥

X

,
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moreover, the constant Mq,X does not depend on the number of elements in the sequence,
but only on the lattice X and the parameter q.

Then in our situation we have the inequality

‖ϕ(z)‖X ≥ M−1
q,X (‖fN (z)‖qX + tq‖eN+1‖qX)

1/q
.

Now we choose the parameter t so that δ1/α = t‖eN+1‖X . For all z ∈ νD we have

‖ϕ(z)‖αX ≥ M−α
q,X max{δ, ‖fN (z)‖αX} ≥ |h(z)|M−α

q,X(1− δ).

On the other hand,

‖ϕ(z)‖αX ≤
(
‖fN (z)‖X + t‖eN+1‖X

)α ≤
(
1 + 2δ1/α

)α
.

We introduce the functions

ϕ1(z) =
ϕ(νz)

1 + 2δ1/α
and h1(z) =

h(νz)(1− δ)

Mα
q,X(1 + 2δ1/α)α

; z ∈ D.

It is clear that the conditions of the problem of ideals are satisfied for h1 and ϕ1:

|h1(z)| ≤ ‖ϕ1(z)‖αX ≤ 1, z ∈ D,

and moreover, ϕ1 takes its values in a finite-dimensional lattice in which the problem of
ideals has a solution by assumption. Hence, there exists a function gδ,ν such that

h1(z) = 〈ϕ1(z), gδ,ν(z)〉, ‖gδ,ν‖H∞(X′) ≤ CX(1 + δ).

Set Kδ =
Mα

q,X(1+2δ1/α)α−1

(1−δ) . Observe that Kδ → Mα
q,X as δ → 0.

We denote by IN the set {1 . . . N} (recall that N depends on δ and ν), and by χIN the
corresponding characteristic function. Next, we rewrite the finite-dimensional solution
of the problem of ideals in a more convenient way:

h(νz) = Kδ〈fN (νz), gδ,ν(z)χIN (z)〉+Kδtgδ,ν(z,N + 1).

Now we start to vary the parameters δ and ν. Let δ → 0 and ν → 1. Applying the
compactness of balls in the *-weak topology, we may assume by passing to a subsequence
that functions gδ,ν converge uniformly on the compact subsets of D to some function g1
such that its norm is bounded by CX . Now we show that the function g = g1M

α
q,X is

a solution of the original problem of ideals. Indeed, for a fixed z ∈ D we estimate the
quantity

|〈f(z), g(z)〉 − h(z)| ≤ |〈f(z)− f(νz), g(z)〉|+ |〈f(νz)− fN (νz), g(z)〉|
+ |〈fN (νz), g(z)−Mα

q,Xgδ,ν(z)〉|+ |〈fN (νz),Mα
q,Xgδ,ν(z)〉 − h(z)|.

Below, it is convenient to apply the inequality |〈x, y〉| ≤ ‖x‖X‖y‖X′ and then evaluate
each of the factors.

We consider the first summand. From the continuity of the function f inside the disk
D and the finiteness of ‖g‖H∞(X′) it follows that the first term tends to 0 as ν → 1.

The second summand also tends to 0 as δ → 0, because the norm of g is finite and

‖f(νz)− fN (νz)‖X ≤ δ2

2
.

Similarly we infer that the third summand also converges to 0, by using the facts that
‖fN (νz)‖X ≤ 1 and Mα

q,Xgδ,ν(z) → g(z) on the compact subsets of D.
Finally, we estimate the last summand:

|〈fN (νz),Mα
q,Xgδ,ν(z)〉 − h(z)|

≤
∣∣Kδ〈fN (νz), gδ,ν(z)〉+Kδtgδ,ν(z,N + 1)− h(νz)

∣∣
+ |h(z)− h(νz)|+

∣∣(Mα
q,X −Kδ)〈fN (νz), gδ,ν(z)〉 −Kδtgδ,ν(z,N + 1)

∣∣.
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In this estimate the first summand is identically zero, the second converges to zero
because h is a continuous function in the disk D, the third also converges to zero be-
cause Kδ → Mα

q,X , the value |〈fN (νz), gδ,ν(z)〉| is bounded by a universal constant and

|tgδ,ν(z,N + 1)| ≤ δ‖g‖X′ → 0. Thus, we have shown that 〈f(z), g(z)〉 = h(z) and the
norm of g satisfies ‖g‖H∞ ≤ CXMα

q,X .

Remark. We note that, in fact, the above proof can also be applied in a more general
situation. Instead of the q-concavity for the Banach lattice of sequences X, one may
require that there exist a continuous strictly increasing function θ, θ(0) = 0, such that
for the function ϕ(z) = (f(z), t), t > 0, z ∈ D, where f takes its values in the finite-
dimensional lattice XN and t occupies the (N + 1)st place, we have

‖ϕ(z)‖X ≥ ‖f(z)‖X + θ(t),

provided N is sufficiently large.

§4. Proof of Theorem A

Before starting the proof of Theorem A, we formulate several important additional
statements. The next fixed-point theorem is the main ingredient of the proof.

Theorem (Ky Fan–Kakutani). Let K be a compact convex subset of a locally convex
linear topological space. Consider a map Φ defined on K and taking values in the set of
nonempty compact convex subsets of K. If the graph

Γ(Φ) =
{
(x, y) ∈ K ×K : y ∈ Φ(x)

}
is closed in K ×K, then Φ has a fixed point, i.e., a point x with x ∈ Φ(x).

We need the following lemma concerning continuous selection of representatives for a
function belonging to the product of two lattices. Its proof is based on Michael’s selection
theorem and can be found in [2, Proposition 5]. Here we only present the statement.

Lemma 4.1. Assume that F0 and F1 are finite-dimensional Banach lattices of measur-
able functions defined on the same finite set with the counting measure. Then for each
ε > 0 there exists a continuous map Δ: F0F1 \ {0} → F1 taking positive values and such
that ‖Δf‖F1

≤ 1, and moreover, ‖f(Δf)−1‖F0
≤ (1 + ε)‖f‖F0F1

.

We note that the condition of finite dimension is essential. As far as the author knows,
a similar claim for the case of infinite-dimensional lattices is still open even when F ′

0 = F1.
We again recall that the bounded *-weak topology on the space H∞ coincides with

the topology induced by the uniform convergence on the compact subsets of D.
Now we prove the main result of this paper, Theorem A.
As it has already been mentioned, we apply the method by Rutsky. Now we recall

the statement we are going to prove. Let E and F be finite-dimensional Banach lattices.
Assume the problem of ideals has a solution for the lattice E. We need to show that if
the finite-dimensional lattice X = EF is a Banach lattice, then the problem of ideals has
a solution for X with exponent αE and constant CE2

αE (1 + δ) for an arbitrarily small
positive δ.

In what follows, by z we denote the variable ranging over the disk D and by ξ the
variable ranging over the circle T.

Consider a measurable representation f(ξ) = fE(ξ)fF (ξ). Without loss of generality,
we assume that the functions fE , fF lie in the spaces L∞(E) and L∞(F ), respectively,
and that their norms are bounded by 1.

From Lemma 2.10 it follows that E′ = (EF )′F . Now we apply Lemma 4.1. We take
F0 := (EF )′ and F1 := F as the lattices in that lemma. Then there exists a continuous
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map Δ: (EF )′F (= E′) → F satisfying the conditions in the claim of the lemma. We
recall that by CE we have denoted the constant corresponding to the solution of the
problem of ideals of the lattice E. Define the ball

B =
{
γ ∈ H∞(E′), ‖γ‖H∞(E′) ≤ CE

}
.

Applying the Banach–Alaoglu theorem, we see that this ball is compact in the ∗-weak
topology. Let rk ∈ (0, 1] and δ > 0. Now we fix k and δ. We denote by σ the element of
the finite-dimensional lattice F such that all its components are strictly separated away
from zero and its norm is equal to δ. We also fix a function γ in the ball B. All further
constructions are performed for this function γ. Now we introduce the function

ϕ(ξ, j) = log
(
|
(
Δγ(rkξ)

)
(j)|+ |fF (ξ, j)|+ σj

)
.

In the last formula by γ(rkξ, j) we mean the convolution of the function γ with the
Poisson kernel corresponding to the radius rk. The operator of harmonic conjugation is
denoted by H. We construct the outer function

Φ(ξ, j) = eϕ(ξ,j)+iH(ϕ(ξ,j))

and define the function Ψ(z) = f(z)
Φ(z) . The functions constructed above have the following

useful properties:
|Φ(ξ, j)| = |fF (ξ, j)|+ |Δγ(rkξ, j)|+ σj ,

and, since ‖fF ‖L∞(F ) ≤ 1 and by Lemma 4.1 we have

‖Δγ(z)‖F ≤ 1,

it follows that ‖Φ‖H∞(F ) ≤ 2 + δ.
Recall that by αE we have denoted the exponent corresponding to the problem of

ideals for the Banach lattice E. We complete the construction by defining a map T that
takes the initial function γ to the set of functions{

u(z) ∈ B | 〈u(z),Ψ(z)〉 = h(z)/(2 + δ)αE
}
.

We want to apply the Ky Fan–Kakutani fixed point theorem to the map T . It is necessary
to check that the requirements of that theorem are satisfied. First, we show that for all
functions γ belonging to the ball B the images Tγ are nonempty sets. It suffices to check
that the function Ψ satisfies the condition of the problem of ideals for the lattice E.
Indeed, for every fixed z we have

|h(z)| ≤ ‖f(z)‖αE

EF ≤ ‖Ψ(z)‖αE

E ‖Φ(z)‖αE

F ≤ (2 + δ)αE‖Ψ(z)‖αE

E .

Also, the formula

|Ψ(ξ, j)| =
∣∣∣∣ f(ξ, j)Φ(ξ, j)

∣∣∣∣ = |fE(ξ, j)| |fF (ξ, j)|
|fF (ξ, j)|+ |Δγ(rkξ, j)|+ σj

≤ |fE(ξ, j)|,

is valid for each index j ∈ N, whence we get the estimate

‖Ψ(ξ)‖E ≤ ‖fE(ξ)‖E ≤ 1.

Applying the maximum principle, we see that

‖Ψ(z)‖E ≤ 1.

Thus, we have checked that the requirements of the problem of ideals for the lattice E are
satisfied, and, hence, the images of T are nonempty sets. It is clear that these images are
also convex. Since compactness in our situation coincides with sequential compactness
and, as it will be shown, the graph of T is closed, the images of T are compact sets.

It remains to verify that the graph of T is closed. We need to check that for every
sequence γn that converges uniformly on the compact subsets of D × suppE to some
function γ and every sequence of functions un lying in the images Tγn and converging
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uniformly on the compact subsets of D × suppE to some function u, we have u ∈ Tγ.
The last formula means that for the function Ψ constructed above in terms of γ (and
belonging to H∞(E)) we have 〈u(z),Ψ(z)〉 = h(z)/(2+ δ)αE . We mark with index n the
functions Φ and Ψ arising during the construction made for γn:

ϕn(ξ, j) = log(|Δγn(rkξ, j)|+ |fF (ξ, j)|+ σj).

Φn(ξ, j) = eϕn(ξ,j)+iH(ϕn(ξ,j))

Ψn(z) =
f(z)

Φn(z)
.

Now we use the fact that rk < 1. Then for a fixed index j and as n → ∞, the functions
ϕn( · , j) converge uniformly on the circle T to the function ϕ that was constructed by γ.
A fortiori, they converge in L2. Applying the continuity of the operator of harmonic con-
jugation H in L2, we see that the functions Φn( · , j) converge uniformly on the compact
subsets of D to the function Φ( · , j) constructed by γ. Since the Φn( · , j) are separated
away from zero by σj and all functions take values in finite-dimensional lattices, we may
pass to the limit in the relation〈

un(z),
f(z)

Φn(z)

〉
= h(z)/(2 + δ)αE .

That is what was to be shown.
Thus, we have checked all requirements of Ky Fan–Kakutani theorem. Hence, there

exists a function γ in B such that γ ∈ Tγ. Recall that all our constructions depend
on the parameter rk. Our final aim in the proof of the main theorem is to pass to
the limit as rk → 1 for the functions-solutions and show that the limit function solves
the original problem. We denote by γk the functions-solutions for the parameter k and
by ϕk,Φk,Ψk the corresponding functions (note that these functions differ from those
appeared during the proof of the closedness of the graph T and denoted by similar
symbols). By construction, for each z ∈ D we have 〈γk(z),Ψk(z)〉 = h(z)/(2 + δ)αE .
Immediately from the definition of the function Ψk, it follows that〈

f(z),
γk(z)

Φk(z)
(2 + δ)αE

〉
= h(z).

Applying Lemma 4.1, we see that the values
∥∥∥ γk(z,j)
Δγk(z,j)

∥∥∥
(EF )′

are uniformly bounded by

the constant (1 + ε)CE . We recall that

|Φk(ξ, j)| = | (Δγk (rkξ)) (j)|+ σj + |fF (ξ, j)|.
Since B is compact in the ∗-weak topology, we may assume that for a fixed j the functions
γk converge uniformly on the compact subsets of D× suppE to some bounded analytic
function u( · , j). Then, taking into account the definition of the functions ϕk and the
continuity of the map Δ, we may also assume that for every fixed index j ∈ suppE ⊂ N

the functions ϕk( · , j) converge weakly in L2 to some function v( · , j). Applying the weak
continuity of the operator of harmonic conjugation, we infer that the functions Φk( · , j)
converge uniformly on the compact subsets of D× suppE and are separated away from
zero. Thus,

γk(rkz)

Φk(z, j)
→ w(z, j), k → ∞, rk → 1,

where the w(z, j) are bounded analytic functions for every index j. From these functions
we compose a vector-function w ∈ H∞(E′). Applying the estimate∥∥∥∥γk(rkξ, j)Φk(ξ, j)

∥∥∥∥ ≤
∥∥∥∥ γk(rkξ, j)

Δγk(rkξ, j)

∥∥∥∥ ≤ (1 + ε)CE ,
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we get ‖w(z)‖(EF )′ ≤ (1 + ε)CE for every z ∈ D. Now we can pass to the limit in the
corresponding identity:

|〈f(z), w(z)(2 + δ)αE 〉 − h(z)|

≤ ‖f(z)‖EF (2 + δ)αE

(∥∥∥∥w(z)− γk(rkz)

Φk(z)

∥∥∥∥
(EF )′

+

∥∥∥∥ γ(z)

Φk(z)
− γk(rkz)

Φk(z)

∥∥∥∥
(EF )′

)
−→ 0.

It remains to pass to the limit as δ → 0 to conclude the proof of the theorem.
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