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ON NEVANLINNA DOMAINS WITH FRACTAL BOUNDARIES

M. YA. MAZALOV

Abstract. A positive answer is given to the question on the existence of a Nevan-
linna contour of Hausdorff dimension exceeding 1, posed by K. Yu. Fedorovskĭı in
2001. In particular, it is shown that this dimension may exceed 3/2.

§1. Introduction

Recall the definition of a Nevanlinna domain (the details on Nevanlinna domains, their
properties, and applications can be found, e.g., in [1, Chapter. 2, §§2.3–2.4]).

Let D = {z ∈ C : |z| < 1} stand for the unit disk, and let T = ∂D be the unit circle
on the complex plane C. For an arbitrary open set E ⊂ C, we denote by H∞(E) the
space of all bounded functions analytic in E.

A bounded simply connected domain Ω in C with boundary Γ = ∂Ω is called a
Nevanlinna domain (see [2, Definition 2.1]) if there exist two functions u, v ∈ H∞(Ω)
such that v �≡ 0 and the identity

(1.1) ζ =
u(ζ)

v(ζ)

is fulfilled on Γ almost everywhere in the sense of harmonic measure. This means that
for a.e. ξ ∈ T we have the following identity for boundary values:

(1.2) h(ξ) =
u(h(ξ))

v(h(ξ))
,

where h is some function analytic and univalent in D that conformally maps D onto Ω.
If the domain Ω is Jordan, then Γ is called a Nevanlinna contour.
The definition of a Nevanlinna domain is consistent: since the harmonic measure is

invariant under conformal mappings, this definition does not depend on the choice of the
function h; the Fatou theorem shows that the angular boundary values of the functions
u(h(ξ)) and v(h(ξ)) exist almost everywhere on T, and, by the Lusin–Privalov uniqueness
theorem, the ratio u/v is determined by those boundary values uniquely. If Γ is rectifiable,
then formula (1.1) can be understood directly, in the sense of angular boundary values
a.e. on Γ.

For constructing Nevanlinna domains, the following criterion is important, which, in
particular, explains the name itself.

Theorem 1 ([2, Proposition 3.1]). A domain Ω is a Nevanlinna one if and only if
there exists a function h as in (1.2) that admits pseudocontinuation of Nevanlinna type
through T, i.e., there exist two function f1, f2 ∈ H∞(C \ D) such that f2 �≡ 0 and the
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angular boundary values of h and h = f1/f2 (respectively, from inside and from outside
of T) are equal a.e. on T.

The theorem implies that a Nevanlinna domain with analytic boundary is a rational
image of the disk; in particular, a circle is a Nevanlinna contour, while an ellipse distinct
from a circle, or an arbitrary polygon, are not.

The Nevanlinna domains were introduced by Fedorovskĭı in [3] in connection with the
problem of uniform approximation of continuous functions by polyanalytic functions on
rectifiable contours, namely, for such contours he proved Theorem 2 stated below. In the
paper [2] the rectifiability restriction was lifted.

We recall that a bounded, simply connected domain Ω in C is called a Caratheodory
domain if ∂Ω = ∂Ω∞, where Ω∞ is the unbounded connected component of the set
C\Ω. As usual, by a polyanalytic function of order n we mean a solution of the equation
∂nf/∂zn = 0 on an open set in C, where ∂/∂z is the Cauchy–Riemann operator. For
n = 2 such functions are said to be bianalytic. A polyanalytic polynomial of order n is
a corresponding polynomial solution; obviously, it can be written in the form

P (z) =

n−1∑
m=0

Pm(z)zm,

where all Pm are polynomials in the complex variable z.

Theorem 2 ([2, Theorem 2.2 (1)]). Let n ≥ 2 be an integer, and let Ω be a Caratheodory
domain with boundary ∂Ω. The set of all polyanalytic polynomials of order n is dense in
the space C(∂Ω) if and only if Ω is not a Nevanlinna domain.

Thus, for n ≥ 2 the situation differs fundamentally from that for n = 1, where the
corresponding criterion is given by the Mergelyan theorem [4], and where the set of
analytic polynomials is not dense in C(∂Ω) for whatever Ω.

Nevanlinna domains arise in a series of other problems. Thus, in [2, Theorem 5.5 (1)]
it was proved that, for any Nevnlinna domain of Carathéodory type, the homogeneous
Dirichlet boundary problem has nontrivial bianalytic solutions (this is not true for “very
many” domains). In [5], the relationship was studied between the Nevanlinna domains
and the model subspaces of the space H2.

In connection with applications of Nevanlinna domains, a natural question arises as
to how wide their class is, in particular, whether the Nevanlinna property of a domain
implies any conditions on the dimension of its boundary. In [6] and [2], the question was
posed whether any Nevanlinna contour must be rectifiable. The first example of a non-
rectifiable Nevanlinna contour was constructed much later, in [7, Example 1]. Earlier, in
[8] and [5], various ways for constructing Nevanlinna domains were studied, and examples
were given of Nevanlinna domains with rectifiable boundaries possessing various types of
irregularity.

It should be noted that the contour presented in [7, Example 1] is analytic outside
of an arbitrarily small arc centered at one point, so that it leaves open the fundamental
question as to whether or not a Nevanlinna contour can be fractal, i.e., can have Hausdorff
dimension exceeding 1. The corresponding question was posed by Fedorovskĭı in 2001,
see [6, Problem 2.10]; in the present paper we answer it in the positive.

We state our main result (Example 1). Recall that, for a bounded set U ⊂ C, its
Hausdorff content of order ν is the quantity

(1.3) Mν(U) = inf
∑
j

(rj)
ν ,

where ν ∈ (0, 2] and the infimum is taken over all coverings of U by at most countable
collections of disks Bj of radii rj (the disks may be closed or open, no matter).
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Recall also that the Hausdorff measure of order ν is defined as

Hν(U) = lim
δ→0

inf
∑
j

(rj)
ν ,

where we require additionally that the radii rj of the covering disks be not greater than δ.
The quantities Mν(U) and Hν(U) vanish simultaneously; if 0 < Hν(U) < ∞, then the
Hausdorff dimension of U is equal to ν, and if Mν(U) > 0, then the Hausdorff dimension
of U is at least ν.

Fixing ε > 0, we consider the set of admissible functions

(1.4) h(z) = z +
∑
j

dj
z − zj

such that the sum over j is at most countable, dj , zj ∈ C, and the following conditions
(1)–(3) are fulfilled:

(1) |zj | > 1, |dj | ≤ |zj | − 1 for all j;
(2) the “refined” Blaschke condition

∑
j(|zj | − 1) < ε is satisfied;

(3) the function h is bounded and continuous in the closed unit disk D.
Clearly, any such function h is analytic in D and admits a Nevanlinna type continuation

through T. Indeed, if B is the Blaschke product constructed by the zeros zj , then, in the

notations of Theorem 1, in C \ D we can take f2(z) = B(z)/z and f1 = hf2.

Example 1. For any ε > 0 and any ν < log2 3, there exists a function h satisfying (1.4)
and (1)–(3) and such that h maps D conformally and univalently onto a simply connected
Jordan domain Ω bounded by a contour Γ = ∂Ω with Mν(Γ) > 0.

The construction of this example is based on the technical Lemma 3 on adding an
“almost circle” to the boundary; this lemma can be used for constructing Nevanlinna
fractals of various forms.

Remark. The dimension log2 3 is by no means critical; in the present paper simplicity
of construction is preferred, rather than the dimension of the contour. The question
about the existence of Nevanlinna contours of arbitrary dimension ν < 2 and, possibly,
Nevanlinna–Peano contours (i.e., having positive aria) requires further study.

Example 1 can be of interest in the theory of boundary-value problems in domains
with fractal boundaries: by [2, Theorem 5.5 (1)], in the domain Ω as in Example 1 there
exists a nonconstant bianalytic function continuous in Ω and equal to zero on Γ.

§2. Auxiliary functions and their properties

We introduce some auxiliary functions. Let ε and δ be positive numbers, and let

(2.1) G(z) = G(z, δ, ε) = z +
ε

δ − z

(in fact, this is the Zhukovskĭı function up to a linear transformation). Clearly, the
zeros of the derivative of G are the points δ ± i

√
ε, and G is univalent in the half-plane

Π− = {x ≤ 0} (where z = x+ iy). Indeed, for z1 �= z2, z1, z2 ∈ Π−, we have

(2.2)
G(z2)−G(z1)

z2 − z1
= 1 +

ε

(δ − z2)(δ − z1)
,

where the product (δ − z2)(δ − z1) takes no real negative values.
The closed disk of radius r centered at z0 will be denoted by B(z0, r), and the cor-

responding circle by T (z0, r); for λ > 0 we put λB(z0, r) = B(z0, λr) and λT (z0, r) =
T (z0, λr).
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Clearly, the function ε
δ−z reshapes the axis Oy to the circle T (ε/2δ, ε/2δ).

In the sequel, we shall need the asymptotics of various expressions as δ → 0 when the
ratio ε/δ is fixed; moreover, it will be assumed that

(2.3) δ ≤ 0.01; δ10/9 ≤ ε ≤ 2δ.

Under the mapping by the function G (see 2.1)), the image of the y-axis is, obviously,
symmetric with respect to the x-axis and is given parametrically by the formulas

x =
εδ

t2 + δ2
, y = t+

εt

t2 + δ2
, −∞ < t < +∞.

For t ≥ 0, the function y(t) has 2 points of local extremum, maximum and minimum,
respectively, approximately equal to t = δ and t =

√
ε, if we neglect the quantities

of order of δ2. The coordinates of these points are approximately (ε/2δ, δ + ε/2δ) and
(δ, 2

√
ε).

For t ≥ 0 we can write

y(x) = δ

√
ε

δ
x−1 − 1 +

√
ε

δ
x− x2.

If we fix ε/δ and let δ go to zero, we see that on the interval (0, ε/δ) the function y(x)
tends in C∞ to the function

√
ε
δx− x2, which gives us an arc of the circle T (ε/2δ, ε/2δ).

In Figure 1 we show the mapping of the y-axis by the function G as in (2.1) in the
Cartesian coordinates for δ = ε = 0.01; note that 2

√
ε = 0.2.

Figure 1. An “almost circle”.

We state some simple sufficient conditions ensuring the preservation of univalence
under variation of the function G.
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Lemma 1. Put
F (z1, z2) = 1 +

ε

(δ − z2)(δ − z1)
.

Under conditions (2.3), let Iδ+ and Iδ− be the intervals {y > 2δ} and {y < −2δ} of the
y-axis. Then:

(i) for y1, y2 ∈ Iδ+ we have ImF (iy1, iy2) > 0, for y1, y2 ∈ Iδ− we have ImF (iy1, iy2) <
0, and for the other y1, y2 ∈ R we have |F (iy1, iy2)| > 1/10;

(ii)

min
z1,z2∈Π−

|F (z1, z2)| >
δ√
ε
.

Proof. Statement (i) follows from considering the arguments of the expressions (δ− iy2)
and (δ − iy1). Namely, for y1, y2 ∈ Iδ+ we have argF (z1, z2) ∈ (π/2, π), for y1, y2 ∈ Iδ−
we have argF (z1, z2) ∈ (−π,−π/2), and in the other cases we have | argF (z1, z2)| ≤
π/2+arctan 2. As to statement (ii), the maximum modulus principle allows us to assume
that z1 = iy1, z2 = iy2. Then it suffices to explore the minimum of the expression∣∣∣∣1 + (δ − iy2)(δ − iy1)

ε

∣∣∣∣
2

=

(
1 +

δ2

ε
− y1y2

ε

)2

+
δ2

ε2
(y1 + y2)

2,

which can be done by direct calculation. �

Corollary to Lemma 1. For A > 0 and G1(z) = Az + ε
δ−z = A

(
z + ε/A

δ−z

)
we have

(z1 �= z2):

min
z1,z2∈Π−

∣∣∣∣G1(z2)−G1(z1)

z2 − z1

∣∣∣∣ = A min
z1,z2∈Π−

∣∣∣∣1 + ε/A

(δ − z2)(δ − z1)

∣∣∣∣ > δA
√
A√
ε

.

Lemma 2. Let g(z) be a function analytic in a neighborhood of the point z0 = 0, with
g′(0) = A > 0 and Re g′′(0) = A1 > 0, and let G2(z) = g(z)+ ε

δ−z , with ε, δ obeying (2.3).

Then there exists β > 0 such that for arbitrary z1 = iy1 and z2 = iy2 (z1 �= z2) in the
interval (−iβ, iβ) of the y-axis we have

(2.4)

∣∣∣∣G2(z2)−G2(z1)

z2 − z1

∣∣∣∣ > δA
√
A√
ε

.

Proof. We have the asymptotics

G2(iy2)−G2(iy1)

i(y2 − y1)
= A+

ε

(δ − iy2)(δ − iy1)
+ i

g′′(0)

2
(y1 + y2) +O(|y1|2 + |y2|2).

We take β > 0 so small that O(|y1|2 + |y2|2) < A1(|y1| + |y2|)/4 and apply Lemma 1.
If y1, y2 ∈ Iδ+, we use statements (i), (ii) and the fact that Im(ig′′(0)(y1 + y2) > 0; if

y1, y2 ∈ Iδ−, then our arguments are similar; in the other cases of the location of y1 and
y2 we employ the inequality |F (iy1, iy2)| > 1/10. The lemma is proved. �
Remark. Lemma 2 shows that the preservation of local univalence is determined by the
terms of the expansion of g of order at most two, and that the conditions g′(0) > 0 and
Re g′′(0) > 0 suffice (in general these conditions are not necessary).

Under shift and rotation, the conditions of Lemma 2 are reshaped in an obvious way,
because the invariant sense of the conditions g′(0) > 0 and Re g′′(0) > 0 is in the fact
that the image under g of the one-sided (relative to Π−) neighborhood of z0 = 0 is locally
convex. Namely, d2g makes an acute angle with the inner normal at the point g(z0), or,
in other words,

(2.5) 0 < arg
d2g

dg
< π.
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In particular, suppose that A > 0, ε > 0, ψ ∈ (−π, π], z0 = iy0, g is a function analytic
in a neighborhood of z0, and g′(z0) = Aeiψ. Then, for sufficiently small β > 0, on the
interval (iy0 − iβ, iy0 + iβ) of the y-axis, the function

G2(z) = g(z) +
eiψε

δ + iy0 − z

satisfies estimate (2.4) (recall that dz = idy) whenever

Re
g′′(z0)

g′(z0)
> 0.

Figure 2 illustrates Lemma 2 with shifts and various arguments of the derivative of g
taken into account; the y-axis is mapped by the function

1

1− z
+

δ/2

δ − z
+

iδ/2

δ + i− z
− iδ/2

δ − i− z
, δ < 0.01.

Figure 2. The scheme of iteration.

It is not hard to check that the result is a Jordan domain with analytic boundary. The
boundary is structured as follows: four “almost circles”, a “base” one and three other
circles of half radius (the “next generation”). We have taken into account that for the
function g(z) = 1

1−z at the points 0, i,−i we have, respectively, ψ = 0, π/2, −π/2.

In the case of rotation, i.e., for the half-plane bounded by the line z = z0+eiαt (t ∈ R;
when t grows, the half-plane remains to the left), condition (2.5) becomes

(2.6) 0 < arg
eiαg′′(z0)

g′(z0)
< π.
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In the construction of Example 1 we shall use functions of the form (1.4) analytic in
the unit disk D. Lemmas 1 and 2 are easily carried over from the half-plane Π− to D.
The function

(2.7) H(z) = z +
ε

δ + 1− z
.

is univalent in the half-plane {x ≤ 1} and satisfies Lemma 1 (up to shift).
On T, we have the following well-known (see, e.g., [9, Chapter 4, §5]) sufficient condi-

tion for local convexity:

(2.8) 1 + Re
z0g

′′(z0)

g′(z0)
> 0.

Obviously, this condition is weaker than (2.6), which takes the form

(2.9) Re
z0g

′′(z0)

g′(z0)
> 0

for z0 = eit0 ; note that in Lemma 3 (iv) we shall be able to obtain (2.9) in the case of
“sufficiently massive” subsets of T.

The next lemma will allow us to construct Nevanlinna domains with fractal boundaries
via certain local variations of the boundary.

Lemma 3 (on adding an “almost circle”). Let g be a function analytic in a neighborhood
of D, and let g′(z0) = Aeiψ, where z0 = eit0 ∈ T and A > 0. Suppose that g maps D

conformally and univalently onto a Jordan domain E bounded by a closed (analytic)
contour L, and that estimate (2.8) is fulfilled on an are of T containing z0.

We introduce local Cartesian coordinates (x, y) centered at g(z0), pointing the x-axis
along the outer normal, i.e., in the direction ei(ψ+t0), and the y-axis in the direction
ei(ψ+t0+π/2). By (2.8), there exists r, 0 < r < 1/2, such that for all sufficiently small
λ > 0 the set B(r, (1 + λ)r) ∩ L is an analytic arc in the half-plane {x ≤ 0} that is the
image of some arc γ(λ) ⊂ T containing z0. Fixing r as indicated and taking δ ≤ 0.01,
consider the function

(2.10) Hδ(z) = g(z) + ωδ(z), ωδ(z) =
ei(ψ+2t0)2rδ

(1 + δ)eit0 − z
.

Then the following is true.
(i) As δ → 0, for all z ∈ D outside of an arbitrary neighborhood of eit0 the function

ωδ(z) tends to zero in C∞.
(ii) a) For any λ > 0, there exists an arc γ′ ⊂ T containing z0 and such that its image

under Hδ lies in the disk B(r, (1 + λ)r) for all sufficiently small δ.
b) For any arc γ′′ ⊂ T containing z0, there exists λ > 0 such that the image of T \ γ′′

under Hδ does not intersect B(r, (1 + λ)r) for all sufficiently small δ.
(iii) Fix a sufficiently small λ > 0 as in the assumptions of the lemma. Then for any

x0 ∈ (0, 2r], as δ → 0, the functions (given parametrically)

Hδ(e
it) = ReHδ(e

it) + i ImHδ(e
it) = x(eit, δ) + iy(eit, δ)

viewed as implicit functions of x and y converge on the set {x ≥ x0} ∩ B(r, (1 + λ)r)
locally in C∞ to the equation of the circle T (r, r).

(iv) Fix an arbitrary c > 0; then for all sufficiently small δ > 0 and |t− t0| < cδ, the

function Hδ(z) = Hδ(e
it) satisfies estimate (2.9): Re

zH′′
δ (z)

H′
δ(z)

> 0.
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(v) For all sufficiently small δ > 0 the function Hδ is univalent on D, and for z1, z2 ∈ D

(z1 �= z2) we have

(2.11)

∣∣∣∣Hδ(z2)−Hδ(z1)

z2 − z1

∣∣∣∣ >
√
δ
A
√
A√
2r

.

(vi) For any λ, 0 < λ < 1, and any two open sets E′, E′′ such that E′ ⊂ E ⊂ E′′, for
all sufficiently small δ > 0 the image of D under Hδ is contained in E′′ ∪B(r, (1 + λ)r)
and contains E′ ∪B(r, (1− λ)r).

Proof. In (2.10) we have g′(z0)/ω
′(z0) = Aδ/(2r) > 0; applying rotation and shift, we

may assume in what follows that z0 = 1, t0 = ψ = g(1) = 0, so that

ωδ(z) =
2rδ

1 + δ − z
.

Statement (i) is obvious, because for z �= 1 and n ∈ Z+ we have

lim
δ→0

(
2rδ

δ + 1− z

)(n)

= 0.

To prove (ii) a), it suffices to observe that the function ωδ reshapes T to the circle Tδ

that passes through the points (2r, 0) and (2r/(1+2δ−1), 0) and has center on the x-axis,
and that g is continuous at z0 = 1; statement (i) reduces (ii) b) to a similar claim for the
function g, which obviously follows from the assumptions of the lemma.

We prove (iii). Scaling allows us to write

Hδ(e
iδτ ) = g(eiδτ ) +

2r

1 + (1− eiδτ )δ−1
, t = δτ, τ ∈ (−π/δ, π/δ].

Fix an arbitrary c > 0; then for all τ with |τ | ≤ c we have

lim
δ→0

2r

1 + (1− eiδτ )δ−1
=

2r

1− iτ
.

This means that, as δ → 0, the equations of the circles Tδ converge in the half-plane
x > 0 to the equation of T (r, r). Since the centers and radii of Tδ converge in C∞, so do
their equations; observe that the functions g(eiδτ ) converge in C∞ to zero.

Since for any sequence {τn} with |τn| → ∞ we have

lim
n→∞

lim
δ→0

2r

1 + (1− eiδτn)δ−1
= 0,

to complete the proof of (iii) it suffices to observe that B(r, (1+λ)r)∩L is an arc in the
half-plane {x ≤ 0}.

We prove statement (iv). Applying rotation, we assume that t0 = 0. Observe that

Re
zω′′

δ (z)

ω′
δ(z)

= Re
2eit

1 + δ − eit
= Re

2

(1 + δ)e−it − 1
> δ−1 Re

2

1− ic
+O(1),

whence (iv) follows via the limit passage.
For the proof of (v), obviously, it suffices to establish estimate (2.11) on T.
We apply Lemma 2. The function z = 1+w

1−w maps the half-plane Π− onto D. Since

A(z − 1) = 2Aw
1−w , whence

A(z − 1) +A′(z − 1)2 = 2Aw + 2A

(
1 +

A′

A

)
w2 +O(w3),

condition (2.8) shows that, for A > 0, Lemma 2 and the identity ε = 2rδ) yield the
following: there exists β > 0 such that on the arc (e−iβ, eiβ) of the circle T we have
estimate (2.11) for all sufficiently small δ.
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By (ii) a), b), there exists λ > 0 and an arc γ′ = (e−iβ′
, eiβ

′
) such that for all

sufficiently small δ the image of T \ (e−iβ, eiβ) under Hδ does not intersect the disk
B(r, (1 + λ)r), and the image of γ′ lies in the disk B(r, (1 + λ/2)r).

Finally, if at least one of the points z1, z2, does not belong to the arc (e−iβ, eiβ), while
the other one belongs to γ′, then statement (v) follows from the location of the disks
mentioned above, and if both points do not belong to γ′, then (v) follows from (i); we
use the fact that the right-hand side of (2.11) tends to zero together with δ.

Now we prove (vi). By (v), for all sufficiently small δ the image of D under Hδ is a
simply connected Jordan domain. The fact that this image lies in E′′ ∪ B(r, (1 + λ)r)
follows from (i) and (ii), and the fact that it includes E′ ∪B(r, (1− λ)r) is an additional
consequence of (iii). The lemma is proved. �

§3. Fractal of circles. Construction of Example 1

Figure 3. Fractal of circles.

In the sequel, C, C1, C2, . . . will denote positive absolute constants, possibly different
in different relations. Let V and W be some positive quantities. We say that V is not
greater in order than W if there exists an absolute constant C > 1 such that V C > W ,
and if, moreover, V C−1 < W < V C, then V and W are said to be comparable.

The role of the model will be played by a fractal of circles the first five generations of
which are depicted in Figure 3. The corresponding fractal is known (e.g., in problems on
informatics), but we could not get to know its authorship.

We describe the general iteration scheme. Let k ∈ (1/3, 1/2], and let ψ take one of
the four values 0, π/2, π, −π/2. Let T = (z0, r) be a circle of generation n ≥ 1, and let
T ′ = T (z0 − eiψr(1 + k−1), k−1r) be a circle of generation n − 1 touching T . Then the
circle T gives rise to three circles of the (next) generation n+ 1:

(3.1) Tj = T (z0 + ei(ψ−π+π
2 j)r(1 + k), rk), j = 1, 2, 3.

Figure 3 corresponds to the case of k = 1/2, where we have a circle of generation 0,
T (0, 1), and four circles of generation 1, namely, T (3/2eiψ, 1/2) with ψ = 0, π/2, π,−π/2.
With each circle of generation n ≥ 1, a unique multiindex (j1, j2, . . . , jn) is associated,
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where j1 takes one of the values 1, 2, 3, 4, while jm with the other m is equal to 1, 2, or 3.
A circle of generation n gives rise to chains of circles of next generations with various
jn+1, jn+2, . . . . The fractal in question is the closure of the set of points belonging to the
circles of all generations.

The case of k = 1/2 is limiting in the sense that for k > 1/2 the disks B(z, r)
corresponding to all possible circles of various generations may have common inner points.

For k = 1/2 there are no such common inner points; different chains of circles (and the
corresponding disks) may have at most common limit points. For example, the chains
of circles generated by T ((3/2)i, 1/2) and T (3/2, 1/2) are separated from each other by
the line y = x; this line contains some limit points of the above chains, e.g., the point
3/2+ i3/2. By induction, it is easy to show that the distance between the centers of two

different circles of generation n (and, consequently, of radius 2−n) is at least 2−n3
√
2.

For k < 1/2, the disks B(z, r) that correspond to the circles T (z, r) of different gen-
erations have no common inner points, and their different chains have no common limit
points. We shall need the following property, which is easily verified by induction.

Property A. If k < 1/2 and T1 and T2 are different circles of generation n obtained
from one circle of generation n − 1, then the distances between arbitrary circles that
belong to the chains born by T1 and born by T2 are not less than kn(1/2− k).

This property may be veiwed as a “good analog” of the Jordan property, because it
is not hard to obtain a Jordan curve by modifying our fractal locally in arbitrarily small
neighborhoods of the points where circles of neighboring generations touch each other.

The next lemma is standard (see, e.g., [10, Theorem 8.6]).

Lemma 4. Let k ∈ (1/3, 1/2], let Θ be the closure of the points belonging to the circles
of all generations n ∈ Z+, and let the following conditions be satisfied.

(1) Starting with some n, each circle T = T (z0, r) of generation n gives rise to precisely
three circles of generation n+ 1, which are at a distance of at most Cr from T .

(2) The radius of every circle of generation n is comparable to kn.
(3) For the circles T (z, r) of an arbitrary generation n, the multiplicity of the inter-

sections of the corresponding disks B(z, r) does not exceed an absolute constant C1 (in
the case of coincidence, each circle is counted as many times as it occurs in the chains
generated by different circles of previous generations).

Then the Hausdorff dimension of Θ is equal to μ = − logk 3.

Proof. Let Θ(n) denote the closure of the set of all points belonging to the circles of
generations at least n; Θ = Θ(0) is the compact set under consideration. Since for any
n, the union of all circles of generation less than n has finite length, in (1.3) it suffices
to deal with coverings by disks corresponding to Θ(n).

By (1) and (2) for a circle T = T (z0, r), the disk B(z0, C2r) covers all chains of circles
of the next generations born by T . Consequently, there exists C3 > 0 such that the
collection of all disks Bj = B(zj , C3k

n) corresponding to the circles of generation n
covers Θ(n). This covering will be denoted by Π(n); we call Π(n) a regular covering. By
(1) and (3), for a regular covering we have

(C4)
−1

(
3kν

)n
<

∑
j

(r(Bj))
ν < C4

(
3kν

)n

with C4 > 1; therefore, if 3kν < 1, i.e., ν > − logk 3, then in the notation of (1.3) we get
Mν(Θ) = 0.

Now, let ν = − logk 3. For the regular coverings Π(n) for all n we have

(C4)
−1 <

∑
j

(r(Bj))
ν < C4.
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Consider an arbitrary covering Π of the compact set Θ(0) by an at most countable
family of open disks B′

j ; to complete the proof, it remains to show that the quantity∑
j(r(B

′
j))

ν for Π cannot be less in order than such sums for the regular coverings Π(n)

for all sufficiently large n. Since Θ(0) is a compact set, the Borel lemma allows us to
extract a finite subcovering from Π. If n is sufficiently large, then the radii of all disks
of that subcovering are greater than kn; instead of Π, it suffices to consider (eliminating
some of the disks) a collection Π′ of disks B′

j belonging to the above subcovering and
such that they cover Θ(n) and each B′

j intersects Θ(n); we also assume that r(B′
j) < 1.

Clearly, for any B′
j there is a circle T (z′, r′) of generation m ≤ n such that B′

j ⊂
B(z′, C5r

′), and r(B′
j) and r′ are comparable. Thus, for Π′ we have a covering {B′′

j }
of the compact set Θ(n) formed by disks B(z′, C5r

′) corresponding to circles T (z′, r′) of
generations at most n and such that the quantity

∑
j(r(B

′′
j ))

ν is not greater in order

than that quantity for Π′.
By (1)–(3) and the relation 3kν = 1, if we replace a disk B(z′, C5r

′) by all disks of
class Π(n) that intersect B(z′, C5r

′), then the sum (C3k
n)ν over all new disks will not

become greater in order compared to (C5r
′)ν (indeed, by (1), (2) this is true for the

disks corresponding to the circles of generation n born by a circle T (z′, r′) of generation
m ≤ n, and by (3) the number of such circles of generation m is bounded from above by
an absolute constant).

Thus, for an arbitrary covering Π and all sufficiently large n, there is a part of Π(n)
that covers Θ(n) and is such that the corresponding sum (C3k

n)ν is not greater in order
than the sum

∑
j(r(B

′
j))

ν for Π. It remains to observe that, by (3), the number of disks
in the part of Π mentioned above is comparable to the total number of disks in Π, and
that by (2) their sizes are comparable to one another. The lemma is proved. �

Corollary to Lemma 4. The fractal born by the procedure (3.1) with k ∈ (1/3, 1/2]
and coinciding with the closure of the set of points of the circles of all generations has
Hausdorff dimension μ = − logk 3.

Now we start the construction of Example 1. We fix an arbitrary k ∈ (1/3, 1/2).
The choice of a sufficiently small λ > 0 and a sufficiently rapidly decaying sequence
{δn}, δn ↘ 0, where n denotes the step number, will be specified later. At least, it
will be assumed that k + 2λ < 1/2, δ1 < 0.01, and δn+1 < (δn)

4. The problem is in
approximation of the circles occurring in the iteration scheme (3.1) by “almost circles”
of Lemma 3. The number λ controls the proximity in question, and the smallness of
δn+1 compared to δn makes it possible to achieve this, by statements (iii) and (vi) of
Lemma 3. The passage to the next generation of “almost circles” is performed via the
iteration pattern shown in Figure 2 (up to scaling): an “almost circle” of generation n
gives rise to three “almost circles” of the next generation. At every step n ∈ N we shall
construct functions ω(n) corresponding to the functions ωδ as in (2.10).

Step 1. In accordance with (2.10), consider functions of the form

ω(1)(z) =
2kδ1

δ1 + 1− z
+

2kδ1
−(δ1 + 1)− z

+
−2kδ1

i(δ1 + 1)− z
+

−2kδ1
−i(δ1 + 1)− z

;

h(1)(z) = z + ω(1)(z).

By Lemma 3, the following is true for all sufficiently small δ1 > 0.

1) The function h(1) maps D univalently onto a closed Jordan domain Ω
(1)

with ana-
lytic boundary. On T, for z �= w we have∣∣∣∣h

(1)(z)− h(1)(w)

z − w

∣∣∣∣ >
√
δ1.
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2) The domain Ω(1) includes four disks: B
(
0, (1−λ/2)

)
and B

(
(1 + k)eiψ, k(1− λ/2)

)
,

where ψ = 0, π/2, π,−π/2, and the domain Ω
(1)

is contained in the four disks concentric
to the previous ones, namely, in the disks B

(
0, (1+λ/2)

)
and B

(
(1 + k)eiψ, k(1 + λ/2)

)
.

3) For z
(1)
2,1 = 1, the outer normal to Ω(1) at the point h(1)(z

(1)
2,1) is directed along

the x-axis, and on T there are two points z
(1)
1,1 = e−iδ1+O((δ1)

2) and z
(1)
3,1 = eiδ1+O((δ1)

2)

at the images of which under h(1) the outer normal to Ω(1) goes, respectively, in the
direction opposite to that of the y-axis, and along the y-axis. (Indeed, the claim about

the existence of such points z
(1)
1,1 and z

(1)
3,1 is true for the function 2kδ1

δ1+1−z , and then we

can use statement (iv) of Lemma 3 and the fact that the derivatives of the remaining
terms in h(1) are O(1) as δ1 → 0).

Similar facts (up to rotation by an angle of size π/2, π, −π/2) are valid near the
images of the points i,−1,−i, and on T we can find the corresponding triples of points

z
(1)
j,s , where j = 1, 2, 3, s = 2, 3, 4, with the desired directions of the normal to Ω(1).

The domain Ω(1) is depicted in Figure 4 (k = 0.49, δ1 < 0.01).

Figure 4. The first two generations of “almost circles”.

At the next steps we act similarly. At step 2 we use the 12 points z
(1)
j,s = eit

(1)
j,s and

consider the functions

(3.2) ω(2)(z) =

4∑
s=1

3∑
j=1

e
i
(
ψ

(1)
j,s+2t

(1)
j,s

)
2k2δ2

(1 + δ2)e
it

(1)
j,s − z

, h(2)(z) = h(1)(z) + ω(2)(z),

where in the notation of Lemma 3 we have g = h(1), t0 = t
(1)
j,s , ψ = ψ

(1)
j,s . Recall that

δn+1 < (δn)
4 for all n; also, δ2 is chosen sufficiently small compared to δ1, whence we see

that, by Lemma 3, the following properties, similar to 1)–3) for Ω(1), hold true.
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1) The function h(2) maps D univalently onto a closed Jordan domain Ω
(2)

with ana-
lytic boundary; on T we have ∣∣∣∣h

(2)(z)− h(2)(w)

z − w

∣∣∣∣ >
√
δ2,

and for z and w lying outside of the disks of radius (δ2)
1/3 centered at z

(1)
j,s we have

∣∣∣∣h
(2)(z)− h(2)(w)

z − w

∣∣∣∣ > 3

4

√
δ1

(indeed, outside of the above disks the function ω(2) defined in (3.2) satisfies ω(2)(z) =
O((δ2)

2/3) and (ω(2))′(z) = O((δ2)
1/3)).

2) The domain Ω(2) includes 17 disks: the “slightly reduced” disks B(0, (1−3λ/4)) and

B((1+ k)eiψ, k(1− 3λ/4)), ψ = 0, π/2, π, −π/2, and 12 disks of the form (1−λ/2)B
(2)
j,s ,

where each B
(2)
j,s is the disk of radius k2 with center on the outer normal to Ω(1) at

the point h(1)(z
(1)
j,s ) that touches the boundary of Ω(1) at that point; moreover, Ω

(2)
is

contained in the union of 17 disks concentric to those mentioned above: B(0, (1+3λ/4)),

B((1 + k)eiψ with k(1 + 3λ/4)), and (1 + λ/2)B
(2)
j,s .

3) On the circle T, we fix 36 points z
(2)
j,s (where s = 1, . . . , 12, j = 1, 2, 3) such that

z
(2)
2,s coincides with some z

(1)
j′,s′ , the points z

(2)
1,s and z

(2)
3,s are located on opposite sides of

z
(2)
1,s at a distance of δ2 + O((δ2)

2), and the normal to Ω(2) at every point h(2)(z
(2)
j,s ) is

collinear to one of the coordinate axes.
Arguing similarly, at each step n > 2 we construct the functions

ω(n)(z) =

4·3n−1∑
s=1

3∑
j=1

e
i
(
ψ

(n−1)
j,s +2t

(n−1)
j,s

)
2knδn

(1 + δn)e
it

(n−1)
j,s − z

,

h(n)(z) = h(n−1)(z) + ω(n)(z);

(3.3)

then the function h required in (1.4) looks like this:

(3.4) h(z) = z +
∞∑

n=1

ω(n)(z).

Arguing much as at steps 1 and 2 considered above in detail, at the expense of a
sufficient smallness of δn+1 compared to δn, at every step n ≥ 2 we can use Lemma 3
and property A to ensure the following conditions A1)–A5).

A1) We have δn < (δn−1)
4, and each point z

(n−1)
j′,s′ = e

it
(n−1)

j′,s′ of generation n − 1 on

T gives rise to precisely three points of generation n: z
(n)
2,s = z

(n−1)
j′,s′ and two points z

(n)
1,s

and z
(n)
3,s located on T on opposite sides of z

(n)
1,s at a distance of δn +O((δn)

2).

A2) The function h(n) maps D univalently onto a closed Jordan domain Ω
(n)

with

analytic boundary, and at each of the points h(n)(z
(n)
j,s ) the normal to Ω(n) is parallel to

one of the coordinate axes.
A3) Each point z

(n)
j,s gives rise to a unique circle T

(n)
j,s of radius kn, and when we pass

from generation n to generation n+ 1, any circle T (z0, r) = T
(n)
j,s gives birth to precisely

three circles Tj of generation n + 1 in accordance with the following iteration scheme,
which is a “slight variation” of (3.1):

Tj = T (z0 + ei(ψ−π+π
2 j)r(1 + k) +O(δn+1/δn), rk), j = 1, 2, 3,
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where ψ is the angle between the normal to Ω
(n)

at the point h(n)(z
(n)
j,s ) and the x-axis.

A4) For each circle T
(n)
j,s , let B

(n)
j,s be the disk with the same center and radius. Then,

for all m ≤ n, j, and s, the disks (1 − λ)B
(m)
j,s are mutually disjoint and are contained

in Ω(n). The closed domain Ω
(n)

is included in the union of the disks (1 + λ)B
(m)
j,s

for all m ≤ n, j, and s, and the disks B(0, (1 + λ)) and B((1 + k)eiψ, k(1 + λ)) with
ψ = 0, π/2, π,−π/2; the multiplicity of the intersections of the above disks containing

Ω
(n)

is at most 2.
A5) On T, for all m = 2, . . . , n, whenever points z and w (z �= w) lie outside of the

union of the disks of radius (δm)1/3 with centers z
(m−1)
j,s , we have the estimate

(3.5)

∣∣∣∣h
(n)(z)− h(n)(w)

z − w

∣∣∣∣ > 1

2

√
δm−1,

and each disk of radius (δm+1)
1/3 centered at z

(m)
j,s is included in some disk of radius

(δm)1/3 centered at z
(m−1)
j′,s′ .

Compared to steps 1 and 2, explanation is required for the univalence of h(n) in A2),
the bounded multiplicity of the disk’s intersection in A4), and the estimates in A5). All
this is a consequence of property A for k < 1/2, combined with a sufficient smallness of
the variations (3.1) in A3) and also the condition δ1 < 1/2− k.

We shall show that for any ε > 0 and any ν < log2 3 there exists a function h of the
form (3.4) satisfying all the conditions of Example 1.

The function h is admissible: condition (1) is obvious, condition (2) is satisfied by A1)
with sufficiently small δ1 depending on ε, and condition (3) is implied by the convergence
of the series

∑∞
n=1 k

n and a sufficient sparseness of the poles of h by A1). We also note
that, since δn+1 < (δn)

4, for any ν > 0 the closure of the set of poles of h has Hausdorff
content of order ν equal to zero.

The univalence of the function h follows from (3.5) and Property A. Indeed, let
z, w ∈ T, z �= w. If there exists an index m such that none of the points z and w

lies in the union of disks of radius (δm)1/3 centered at z
(m−1)
j,s , then the limit passage

shows that h satisfies (3.5). Otherwise, at least one of the points z and w lies in a nested
sequence of such disks for all m, and then Property A and a sufficient smallness of the
variations (3.1) in A3) show that the points h(z) and h(w) belong to the disjoint disks

(1 + λ)B
(m1)
j1,s1

and (1 + λ)B
(m2)
j2,s2

.

Thus, the function h, analytic on D and continuous on D, is such that h(z) �= h(w)
whenever z �= w, z, w ∈ T; consequently, h maps D conformally and univalently onto a
closed and simply connected domain Ω bounded by a contour Γ = ∂Ω.

It remains to observe that, by Lemma 4 and conditions A3) and A4), the closure of

each of the sets
⋃

j,s,n(1 − λ)T
(n)
j,s and

⋃
j,s,n(1 + λ)T

(n)
j,s has dimension μ = − logk 3.

Obviously, the sets of the limit points as n → ∞ of the above closures coincide, lie on Γ,
and have the same dimension.

Since k can be as close to 1/2 as we wish, the construction of Example 1 is complete.
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