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MATHEMATICAL PROBLEMS OF THE THEORY OF PHASE

TRANSITIONS IN CONTINUUM MECHANICS

V. G. OSMOLOVSKĬI

Abstract. The paper is a survey of the author’s results related to variational prob-
lems for phase transitions in continuum mechanics. The main emphasis is on the
study of the relationship between the solutions and the parameters of the problem,
which allows one to trace the process of phase transitions when these parameters
vary.

§1. Introduction

The stationary problem of phase transitions in continuum mechanics can be classified
as a nonstandard problem of calculus of variatious. To motivate the mathematical setting
(given in the next sections), in the introduction we describe the physical setting of the
problem.

In quadratic approximation, the free energy density of a single-phase nonhomogeneous
anisotropic medium that fills a domain Ω ⊂ R

m, m = 1, 2, 3, is written in the form

F (∇u, t′, x) = aijkl(eij(∇u)− ζij)(ekl(∇u)− ζkl)

− t′κklaijkl(eij(∇u)− ζij) + F0(t
′),

(1.1)

where u = u(x), x ∈ Ω, is the field of displacements,

(∇u)ij = ui
xj
, eij(∇u) = 1/2(ui

xj
+ uj

xi
)

is the strain tensor, ζij = ζij(x) is the residual strain tensor, t′ = t′(x) is the temperature
deviation from a fixed value, F0(t

′) is a second order polynomial in t′. The functions
aijkl, κij , which are the coefficients of the polynomial F0, depend on x ∈ Ω. They
are determined by the elastic and thermodynamic characteristics of a medium and obey
traditional restrictions; summation from 1 to m is taken over the repeating indices.

Let g and f be the fields of volume and surface forces that act on the elastic medium.
Then, for the density (1.1), the strain energy functional is defined by the formula

I[u, t′] =

∫
Ω

F (∇u, t′, x) dx−
∫
Ω

g · u dx−
∫
∂Ω

f · u dS.(1.2)

For fixed temperature distribution, the equilibrium displacement field pu is a solution of
the variational problem

I[pu, t′] = inf
u∈H

I[u, t′], pu ∈ H,(1.3)

where H is the set of admissible fields of displacements determined by the boundary value
of the function u on a part of the boundary (possibly empty or coinciding with ∂Ω) of
the domain Ω.
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For multiphase elastic media, in the process of deformation phase transitions occur,
associated with a change in the crystal structure. For two-phase media, it is assumed
that only two possibilities are realized, distinguished by the symbols + and −, with
collection of values a±ijkl, κ

±
ij , ζ

±
ijkl, F

±
0 in the representation (1.1) of the energy density

F±(∇u, t′, x).
Denote by χ(x) the characteristic function of the subset of Ω corresponding to the

phase with index +. Given the field of displacement u, the phase distribution χ, and the
temperature t′, for the strain energy of a two-phase elastic medium we have

I0[u, χ, t
′] =

∫
Ω

{χF+(∇u, t′, x) + (1− χ)F−(∇u, t′, x)} dx

−
∫
Ω

g · u dx−
∫
∂Ω

f · u dS,

F±(∇u, t′, x) = a±ijkl(eij(∇u)− ζ±ij )(ekl(∇u)− ζ±kl)

− t′κ±
kla

±
ijkl(eij(∇u)− ζ±ij ) + F±

0 (t′).

(1.4)

By the equilibrium field of displacements pu and equilibrium phase distribution pχ we
understand the pair pu, pχ that, for given t′, minimizes the energy functional

(1.5) I0[pu, pχ, t′] = inf
u∈H,
χ∈Z

′

I0[u, χ, t
′], pu ∈ H, pχ ∈ Z

′,

where Z′ is the set of all characteristic functions. We emphasize that an unknown quantity
in the variational problem (1.5) is not only the equilibrium field of displacements pu, but
also the phase distribution pχ. If in (1.4) we fix the function χ by setting χ = rχ, then
problem (1.3) with I0[u, rχ, t′] describes the equilibrium state of a composite material
with the phase distribution fixed by the function rχ.

The functional (1.4) consists of the strain energy of each phase and does not involve the
surface energy of the boundary of their separation. The latter is traditionally assumed
to be proportional to the area of the phase interface. We denote this area by S[χ] and
the coefficient of proportionality (surface tension coefficient) by σ. Then the energy
functional, taking the surface energy of the phase interface into account, has the form

(1.6) I[u, χ, t′, σ] = I0[u, χ, t
′] + σS[χ].

By the state of equilibrium of the two-phase elastic medium with energy functional (1.6)
for fixed t′ and σ we understand the solution pu, pχ of the following variational problem:

(1.7) I[pu, pχ, t′, σ] = inf
u∈H,
χ∈Z

I[u, χ, t′, σ], pu ∈ H, pχ ∈ Z,

where Z is the set of all characteristic functions with finite phase interface area.
We investigate the properties of solutions of problems (1.5), (1.7) under the following

additional restrictions: the two-phase elastic medium is homogeneous (the numbers a±ijkl,

κ±
ij , ζ

±
ij , the polynomial coefficients F±

0 , and the temperature deviation t′ do not depend

on x), the volume-expansion coefficients κ±
ij are 0, the fields of force g and f are absent,

and a fixing condition is satisfied on the boundary of the domain (for fields of displacement
belonging to the set H the boundary condition u|∂Ω = 0 is fulfilled).

Put t = F+
0 (t′) − F−

0 (t′). Then, up to a term that does not affect the solutions of
(1.5) and (1.7), the functionals I0[u, χ, t

′] and I[u, χ, t′, σ] can be replaced with

I0[u, χ, t] =

∫
Ω

{χ(F+(∇u) + t) + (1− χ)F−(∇u)} dx,

I[u, χ, t, σ] = I0[u, χ, t] + σS[χ],

F±(∇u) = a±ijkl(eij(∇u)− ζ±ij )(ekl(∇u)− ζ±kl),

(1.8)
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where a number t (assumed to be arbitrary) and a positive number σ play the role of
parameters. In what follows, for simplicity, we call the number t temperature. The
variation problems (1.5), (1.7) for the functionals (1.8) are replaced by the first and
second problems

I0[pu, pχ, t] = inf
u∈H,
χ∈Z

′

I0[u, χ, t], pu ∈ H, pχ ∈ Z
′,

I[pu, pχ, t, σ] = inf
u∈H,
χ∈Z

I[u, χ, t, σ], pu ∈ H, pχ ∈ Z,

(1.9)

respectively.
Our goal is not only to establish the solvability or absence of solutions of these prob-

lems, but also investigate the dependence of solutions on t and σ in all possible details,
and, thus, to demonstrate the possibility of using mathematical methods to characterize
phase transformations when these parameters vary. The statement of the variational
problem formulated above is traditional in the theory of elasticity, see [9, 13, 48]. The
first step to multiphase media is the composite theory [10]. The suggested statement of
the problem on phase transformations was formulated in [3]. Note that the macroscopic
approach, according to which the energy of a two-phase object consists of the sum of the
energies of both phases and the energy of their phase interface, is applicable to various
problems. However, even in the theory of elasticity the above setting is only one among
many possible settings [63, 64].

From a mathematical point of view, problems (1.9) belong to the class of nonconvex
variational problems with free surface. To comment on these statements, we apply the
minimization procedure to (1.9) in the variable χ ∈ Z

′, reducing it to the variation
problem

Imin
0 [pu, t] = inf

u∈H

Imin
0 [u, t], pu ∈ H,

Imin
0 [u, t] =

∫
Ω

Fmin(∇u, t) dx,

Fmin(∇u, t) = min
{
F+(∇u) + t, F−(∇u)

}
.

(1.10)

Obviously, the function Fmin( . , t) fails to be convex for all t. The absence of convexity of
the functional Imin

0 [ . , t] leads in some cases to the unsolvability of problem (1.10). Note
that the addition of surface energy significantly improves the mathematical properties of
the strain energy functional. In our case the term “free surface” means that the phase
interface defined by the function pχ is not fixed initially and is to be determined in the
process of solving the problem.

Let us briefly describe the content of the paper. In §2, the model one-dimensional case
is considered. In that section, no general theorems are used. All results are obtained
“by hand”. This is done intentionally for the readers who specialize in mechames and
do not want to go deeply into detail of mathematical proofs and are capable to believe
that all (to be true, almost all) results obtained for the one-dimensional case extend to
the multidimensional case. In the one-dimensional case, the states of equilibrium for a
two-phase elastic medium exist in both models, when the surface energy of the phase
interface boundary is taken into account, and when it is not. All states of equilibrium
are found explicitly, which allows us to study their dependence on temperature, the
surface-tension coefficient, and the size of a two-phase rod. Explicit formulas for phase
transition temperatures and the volume of each phase of a two-phase equilibrium state
are constructed, and the limit points of the equilibrium states are found as the surface
tension coefficient approaches zero. The critical rod size is calculated such that two-phase
equilibrium states do not exist for the smaller sizes. The relationship between the critical
rod size and the coefficient of surface tension is found. The notion of a critical point for
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the energy functional and the chemical potential is introduced. A description of the set
of all critical points is given, and the character of the critical points that are not states
of equilibrium is established.

In §3, a multidimensional problem is investigated without taking into account the
surface energy of the phase interface. For this problem, the energy functional is not very
good from the mathematical viewpoint, because for arbitrary coefficients a±ijkl in the

energy density formula (1.8), there are tensors of residual deformation ζ± such that the
first problem in (1.9) is not solvable for some values of the temperature t. The situation
improves significantly in the case of an isotropic two-phase medium. In this case (under
some addition conditions) the first problem in (1.9) is solvable for all temperatures, and
its solutions (possibly not all) have a fractal character and are represented explicitly for
any domain Ω. The existence of explicit formulas allows us to repeat the results of the
one-dimensional case. For anisotropic media, the results are more modest. In particular,
we have managed to prove the existence of phase transitions temperatures independent of
a domain and obtain two-sided estimates for them. These estimates allow us to formulate
a criterion for the coincidence of the lower and upper temperatures of phase transitions.
We give examples of anisotropic energy densities, for which, as in the isotropic case,
explicit formulas for the phase-transition temperatures are obtained. In conclusion of
that section, we derive equilibrium equations for a two-phase elastic medium with zero
coefficient of surface tension in the case of a smooth phase interface. The stability of
some classes of critical points is investigated.

In §4, we study a multidimensional problem for the functional I[u, χ, t, σ]. The com-
ponent σS[χ], σ > 0, essentially improves the mathematical properties of the energy
functional, which leads to the solvability of the second problem in (1.9) for each value of
temperature. Using direct methods of calculus of variations, we study the dependence
of the equilibrium states on the parameters t and σ at a qualitative level. In particular,
we establish the character of the temperature dependence of the phase transitions on the
coefficient σ, study the jump-like process of appearance of a new phase, and estimate the
volume of its embryo. The contribution of the surface tension in the equilibrium equa-
tions is found and the role of single-phase critical points is determined. In that section,
at a qualitative level, we repeat the results of §2 for the one-dimensional problem.

In §5, we study the behavior of equilibrium states of the functional I[u, χ, t, σn] as
σn → 0. It is established that this sequence is minimizing for the functional I0[u, χ, t],
and, consequently, converges in some sense to some minimizer of the relaxed variation
problem. For a series of media, the quasiconvex hull of the density (1.10) is calculated,
and a characterization of all minimizers of the relaxed problem is given. In the general
case, we obtain a two-sided estimate for the quasiconvex hull. On the basis of our study of
the behavior of the phase interface area as σ → 0, we determine which of the minimizers
of the relaxed problem is a limit point for equilibrium states.

A minor part of the above results was justified in [16]. Complete proofs of all state-
ments are contained in the preprint [47].

Alternative methods of the investigation of similar problems (both close and not so
close to those presented in this work) were given in the book [54]. There, one can also find
an extensive bibliography. We shall not touch upon those methods with rare exceptions
(see the bibliographical notes to §2), when the subject of study (but not the results) is
almost analogous.
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§2. The one-dimensional problem on phase transitions

Our goal in this section is, by the example of a one-dimensional variational problem,
to understand what we may expect and what we should achieve in our study of the multi-
dimensional case. We start our investigation with the one-dimensional problem because
its solution admits an explicit characterization.

2.1. The setting of the problem. In the model one-dimensional case, we assume
that the domain Ω is a segment (0, l). The scalar function u(x), x ∈ (0, l), is a field of
displacements, and the strain energy densities of each phase are defined by the formulas

(2.1) F±(M) = a±(M − c±)
2, a±, c±,M ∈ R, a± > 0.

If the surface tension coefficient is equal to zero, we define the strain energy of a two-phase
elastic medium by the formula

I0[u, χ, t] =

∫ l

0

{χ(x)(F+(u′(x)) + t) + (1− χ(x))F−(u′(x))} dx,

u ∈ H, χ ∈ Z
′, t ∈ R,

(2.2)

where H = W̊ 1
2 (Ω), and Z

′ is the set of all measurable characteristic functions.
In the case of the zero surface tension coefficient, by the state of equilibrium of a

two-phase elastic medium we mean the equilibrium field of displacements put and the
equilibrium phase distribution pχt that, for fixed t, solve the following variational problem:

I0[put, pχt, t] = inf
u∈H,
χ∈Z

′

I0[u, χ, t], put ∈ H, pχt ∈ Z
′.

(2.3)

In the case where the surface-tension coefficient is positive, we need to change the set of
all admissible phases by replacing Z

′ with Z:

χ ∈ Z provided that there exists a finite collection of open intervals

lj ⊂ (0, l), j = 1, . . . , N [χ], sli ∩ slk = ∅ for i �= k, such that

χ(x) =

{
1 if x ∈

⋃
j lj ,

0 if x /∈
⋃

j lj ,
x ∈ (0, l).

(2.4)

For each function χ ∈ Z corresponding to the set of intervals lj , j = 1, . . . , N [χ], we
denote by S[χ] the number of endpoints of lj belonging to the interval (0, l). The quantity
S[χ] is viewed as the phase interface area with distribution function χ.

For a positive coefficient σ of the surface tension, the strain energy functional of a
two-phase elastic medium is defined by the relation

(2.5) I[u, χ, t, σ] = I0[u, χ, t] + σS[χ], u ∈ H, χ ∈ Z, t, σ ∈ R, σ > 0.

By the state of equilibrium we mean the equilibrium field of displacements and the
equilibrium phase distribution put,σ that for given t and σ, solve of the following variational
problem:

(2.6) I[put,σ, pχt,σ, t, σ] = inf
u∈H,
χ∈Z

I[u, χ, t, σ], put,σ ∈ H, pχt,σ ∈ Z.

We say that the state of equilibrium for problem (2.3) is single-phase if pχt(x) = 0 or
pχt(x) = 1 almost everywhere on the interval (0, l), and two-phase otherwise. Obviously,
for single-phase states of equilibrium, put ≡ 0.

The state of equilibrium for problem (2.6) is said to be single-phase if pχt,σ(x) = 0 or
pχt,σ(x) = 1 on the interval (0, l), and two-phase otherwise. Obviously, for the single-
phase states of equilibrium we have put,σ ≡ 0.
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2.2. The problem with the zero surface tension coefficient. The following state-
ment is the basis for solution of the variational problem (2.3).

Lemma 2.1. For all u ∈ H, χ ∈ Z
′, and t ∈ R, the functional (2.2) is representable in

the form

I0[u, χ, t] =

∫ l

0

(
a+χ+ a−(1− χ)

)(
u′ − α(Q)(χ−Q)

)2
dx+ lG(Q, t),

Q =
1

l

∫ l

0

χ(x) dx, α(Q) =
[ac]

a−Q+ a+(1−Q)
,

G(Q, t) = tQ+ a+c
2
+Q+ a−c

2
−(1−Q)− [ac]α(Q)Q(1−Q),

(2.7)

where [α] = α+ − α− is the jump of the quantity α that takes two values α+ and α−.

Representation (2.7) leads to a characterization of the set of all solutions of problem
(2.3).

Theorem 2.1. The variational problem (2.3) is solvable. For each t, the set of all its
solutions admits the following characterization:

pχt is an arbitrary element of the set Z′ for which
1

l

∫ l

0

pχt(x) dx = pQ(t),

and put(x) is defined by the formula put(x) = α( pQ(t))

∫ x

0

(
pχt(y)− pQ(t)

)
dy,

(2.8)

where pQ(t) is given by

(2.9) G( pQ(t), t) = min
Q∈[0,1]

G(Q, t), pQ(t) ∈ [0, 1].

To explore problem (2.9), we need the following notation:

(2.10) t+ = t∗ +
[ac]2

a+
, t− = t∗ − [ac]2

a−
, t∗ = −[ac2].

The numbers t± are called the temperatures (t+ is the upper one, t− is the lower one;
obviously, t+ ≥ t−) of phase transitions. The following lemma motivates these names.

Lemma 2.2. Let t+ = t−. Then for t < t∗ the only solution of problem (2.9) is the

number pQ(t) = 1, for t > t∗ the only solution of this problem is the number pQ(t) = 0,

while if t = t∗, then any number in the interval [0, 1] serves as a solution pQ(t).
Let t− < t+. Then for t ≤ t− the only solution of problem (2.9) is the number

pQ(t) = 1, for t ≥ t+ the only solution of this problem is the number pQ(t) = 0, while if

t ∈ (t−, t+), then the solution pQ(t) of problem (2.9) is given by

pQ(t) =

{
h(t), [a] = 0,
a++a−
2[a] + 1

2 − 1
[a]g1/2(t)

, [a] �= 0,

h(t) =
t+ − t

t+ − t−
, g(t) =

1

a2−
h(t) +

1

a2+
(1− h(t)).

(2.11)

The function pQ(t) is the volume fraction of the phase with index + in the state of

equilibrium. It is easily seen that for t− < t+, the function pQ(t) is continuous in the
variable t ∈ R and strictly monotone decreasing on the interval [t−, t+]. On this interval,
the function is concave for [a] > 0, convex for [a] < 0, and linear for [a] = 0.

Theorem 2.1 and Lemma 2.2 allows us to describe the phase transition process for a
two-phase elastic medium with the energy functional (2.2) when the temperature t varies
from very low to very high values.



MATHEMATICAL PROBLEMS OF THE THEORY OF PHASE TRANSITIONS 799

The result of this characterization looks like this.
Let t− < t+. Then:

(1) for t ∈ (−∞, t−], only the single-phase state of equilibrium put ≡ 0, pχt ≡ 1 is
realized;

(2) for each t ∈ (t−, t+), infinitely many different states of equilibrium are realized,
all of them being two-phase with common volume fraction of the phase with
index +, which is a single-valued function of temperature;

(3) for t ∈ [t+,∞), only the single-phase state of equilibrium put ≡ 0, pχt ≡ 0 is
realized.

Let t− = t+ = t∗. Then:
(4) for t ∈ (−∞, t∗), only the single-phase state of equilibrium put ≡ 0, pχt ≡ 1 is

realized;
(5) for t ∈ (t∗,+∞), only the single-phase state of equilibrium put ≡ 0, pχt ≡ 0 is

realized;
(6) for t = t∗, the set of all states of equilibrium is exhausted by the pairs put ≡ 0,

pχt ≡ 1 and put ≡ 0, pχt ≡ 0 as well as by an infinite family of different two-phase
states of equilibrium with an arbitrary volume fraction of the phase with index
+ and the zero field of displacements put.

Therefore, for sufficiently low and sufficiently high values of temperature, a two-phase
elastic medium consists of a substance of only one phase (for low temperature pχt ≡ 1,
and for high temperature pχt ≡ 0).

The question about the stability of these pairs arises in the case of temperatures t for
which they are not states of equilibrium of the two-phase elastic medium under study.
The following theorem answers this question. To formulate the theorem, we need a
definition.

We say that, for some t, the pair ru ∈ H, rχ ∈ Z
′ is a saddle point for the energy

functional (2.2) if for any δ > 0 there exist functions v± ∈ H, ψ± ∈ Z
′ such that

‖v±‖W 1
2
< δ, ‖rχ− ψ±‖L1

< δ,

I0[ru+ v+, ψ+, t] > I0[ru, rχ, t], I0[ru+ v−, ψ−, t] < I0[ru, rχ, t].
(2.12)

When we study the stability of the pair ru, rχ with respect to perturbations of ru weaker
than energy ones (we need a perturbation in the class W 1

∞(0, l)∩H), in the definition of
a saddle point (2.12) we replace the norm W 1

2 with the norm W 1
∞.

Theorem 2.2. (1). If for given t, one of the pairs u ≡ 0, χ ≡ 1 or u ≡ 0, χ ≡ 0 is not a
solution of problem (2.3), then this pair is a saddle point for the energy functional (2.2).

(2). For t− < t+ and t ∈ (t−, t
∗), the pair u ≡ 0, χ ≡ 1 is a local minimum with

respect to W 1
∞(0, l)-small perturbations of the function u and arbitrary perturbations of

the function χ in the space L1(0, l). For t > t∗, this pair is a saddle point for the
functional (2.2) with respect to the perturbations mentioned above.

(3). For t− < t+ and t ∈ (t∗, t+), the pair u ≡ 0, χ ≡ 0 is a local minimum with
respect to W 1

∞(0, l)-small perturbations of the function u and arbitrary perturbations of
the function χ in the space L1(0, l). For t < t∗, this pair is a saddle point for the
functional (2.2) with respect to the perturbations mentioned above.

2.3. The problem with a positive surface tension coefficient. As in the pre-
vious subsection, solution of problem (2.6) is based on the representation (2.7) of the
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functional (2.2). For the functional (2.5), it has the following form:

I[u, χ, t, σ] =

∫ l

0

(
a+χ+ a−(1− χ)

)(
u′ − α(Q)(χ−Q)

)2
dx+ J [χ, t, σ],

J [χ, t, σ] = lG(Q, t) + σS[χ], u ∈ H, χ ∈ Z,

Q =
1

l

∫ l

0

χ(x) dx, t, σ ∈ R, σ > 0.

(2.13)

In this case, an analog of (2.9) is the problem

(2.14) J [pχt,σ, t, σ] = inf
χ∈Z

J [χ, t, σ], pχt,σ ∈ Z.

Lemma 2.3. The problem (2.14) is solvable. If for some t and σ, among all its solutions
there is a solution pχt,σ with the quantity

(2.15) pQ(t, σ) =
1

l

∫ l

0

pχt,σ(x) dx

different from zero and one, then pχt,σ is the characteristic function of any of the segments

(2.16) (0, l pQ(t, σ)), (l(1− pQ(t, σ)), l).

The representation (2.13) and Lemma 2.3 allow us to justify the solvability of the
variational problem (2.6).

Theorem 2.3. The variational problem (2.6) is solvable. For each t and σ, the set of
all its solutions admits the following characterization:

pχt,σ is an arbitrary solution of the problem (2.14),

put,σ(x) = α( pQ(t, σ))

∫ x

0

{pχt,σ(y)− pQ(t, σ)} dy,
(2.17)

where pQ(t, σ) is calculated by the function pχt,σ in accordance with (2.15).

Theorem 2.3 shows that, in order to describe the set of all solutions of problem (2.6),
we need a detailed characterization of all solutions of problem (2.14). This requires a
series of additional considerations.

We introduce the function σ(t), t ∈ R, that acts by the following rule:

σ(t) ≡ 0 if t− = t+,

σ(t) = 0 for t ∈ (−∞, t−] ∪ [t+,∞) if t− < t+.
(2.18)

For t− < t+ and t ∈ [t−, t+], we set (the function g(t) was defined in (2.11))

for [a] = 0:

σ(t) =
l

2

(t− t−)
2

t+ − t−
if t ∈ [t−, t

∗],

σ(t) =
l

2

(t− t+)
2

t+ − t−
if t ∈ [t∗, t+];

for [a] �= 0:

σ(t) =
l

2[a]
([a]− (a+ + a−))(t− t−)− 2l

a+a−[ac]
2

[a]2
(g1/2(t)− g1/2(t−)),

t ∈ [t−, t
∗],

σ(t) =
l

2[a]
([a] + (a+ + a−))(t+ − t) + 2l

a+a−[ac]
2

[a]2
(g1/2(t+)− g1/2(t)),

t ∈ [t∗, t+].

(2.19)
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It can be checked that for t− < t+, the function σ ∈ C(R) ∩ C1(−∞, t∗] ∩ C1[t∗,∞)
is strictly convex and infinitely differentiable on the intervals [t−, t

∗], [t∗, t+], is positive
for t ∈ (t−, t+), and takes its maximum value σ∗ at the point t∗:

(2.20) σ∗ = σ(t∗) =
l[ac]2

(
√
a+ +

√
a−)2

.

Relation (2.20) holds true in both cases, provided that [a] = 0 or [a] �= 0. Note that for
t+ = t−, this also gives the true result σ∗ = 0.

The graph of the nonnegative function σ(t) splits the half-plane of parameters t, σ ∈ R,
σ > 0, in the following regions:

V< = {t, σ : σ ∈ (0, σ(t))},
V −
> = {t, σ : t < t∗, σ > σ(t)},

V +
> = {t, σ : t > t∗, σ > σ(t)},
V ∗
> = {t, σ : t = t∗, σ > σ(t∗)},

V −
= = {t, σ : t ∈ (t−, t

∗), σ = σ(t)},
V +
= = {t, σ : t ∈ (t∗, t+), σ = σ(t)},
V ∗
= = {t, σ : t = t∗, σ = σ(t∗)}.

(2.21)

Obviously, for t− = t+, the sets V<, V
±
= , V ∗

= are empty. It is important to note that by
Lemma 2.2,

(2.22) if t− < t+, then pQ(t) ∈ (0, 1) in the regions V<, V
±
= , V ∗

=.

The following lemma gives a complete characterization of the set of all solutions of
problem (2.14) for each of the regions (2.21).

Lemma 2.4. For all solutions of problem (2.14), the quantity (2.15) admits the following
characterization:

pQ(t, σ) =

⎧⎪⎨
⎪⎩

pQ(t) if t, σ ∈ V<,

1 if t, σ ∈ V −
> ,

0 if t, σ ∈ V +
> ,

pQ(t, σ) =

⎧⎪⎨
⎪⎩
0 and 1 if t, σ ∈ V ∗

>,

1 and pQ(t) if t, σ ∈ V −
= ,

0 and pQ(t) if t, σ ∈ V +
= ,

pQ(t, σ) = {0, 1, pQ(t)} if t, σ ∈ V ∗
=,

(2.23)

where pQ(t) is the solution of problem (2.9).

For the problem with positive surface tension coefficient we also introduce the tem-
peratures of phase transitions t±(σ), σ > 0, keeping the notation (2.10) for t± and t∗

used in the case where the surface tension coefficient is zero. We put

t+(σ) = t−(σ) = t∗ for t+ = t− = t∗, σ > 0,

and for t− < t+, σ ≥ σ∗,
(2.24)

and let t±(σ) be the smallest and the greatest of the two solutions of the equation

(2.25) σ = σ(t) for t− < t+, 0 < σ < σ∗.

We call the numbers t±(σ) the upper and lower temperatures of phase transitions for a
two-phase elastic medium with the positive surface-tension coefficient σ.

In accordance with the definition, only in the case of (2.25) the numbers t±(σ) are
different and are not defined explicitly. Their explicit form is given by the following
lemma. We use the notation (2.11) for the function g(t).
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Lemma 2.5. Suppose t− < t+, σ ∈ [0, σ∗]. Then for [a] = 0 we have

t−(σ) = (t∗ − t−)

√
σ

σ∗ + t−, t+(σ) = (t∗ − t+)

√
σ

σ∗ + t+,

pQ(t−(σ)) = 1− t∗ − t−
t+ − t−

√
σ

σ∗ ,
pQ(t+(σ)) =

t+ − t∗

t+ − t−

√
σ

σ∗ ;

(2.26)

for [a] �= 0 we have

t±(σ) =
t∗ − t±

g(t∗)− g(t±)

(
(g1/2(t∗)− g1/2(t±))

√
σ

σ∗ + g1/2(t±)
)2

+
t±g(t

∗)− t∗g(t±)

g(t∗)− g(t±)
,

pQ(t±(σ)) = pQ(t∗) +
pQ(t∗)− pQ(t±)

g1/2(t∗)− g1/2(t±)
g1/2(t±)

×
(
1− g1/2(t∗)

(g1/2(t∗)− g1/2(t±))
√

σ
σ∗ + g1/2(t±)

)
,

pQ(t+) = 0, pQ(t−) = 1, pQ(t∗) =
1

2

(
1 +

[a]

(
√
a+ +

√
a−)2

)
.

(2.27)

Theorem 2.3 and Lemmas 2.4, 2.5 allows us to describe the phase transition process
for a two-phase elastic medium with the energy functional (2.5) when the temperature t
varies from very low to very high values. In the statements below, we use the pairs pu±

t ,
pχ±
t , where

pχ+
t is the characteristic function of the interval (0, l pQ(t)),

pχ−
t is the characteristic function of the interval (l(1− pQ(t)), l),

and the functions pu±
t is obtained from χ±

t via formula (2.8).
The result of this description looks like this. Let t− < t+ and σ ∈ (0, σ∗). Then:

(1) for t ∈ (−∞, t−(σ)), only the single-phase state of equilibrium put ≡ 0, pχt ≡ 1 is
realized;

(2) for t = t−(σ), the set of all states of equilibrium consists of the single-phase state
put ≡ 0, pχt ≡ 1 and the two two-phase states put = pu±

t−(σ), pχt = pχ±
t−(σ);

(3) for t ∈ (t−(σ), t+(σ)), only the two two-phase states of equilibrium put = pu±
t ,

pχt = pχ±
t are realized;

(4) for t = t+(σ), the set of all states of equilibrium consists of the single-phase state
put ≡ 0, pχt ≡ 0 and the two two-phase states put = pu±

t+(σ), pχt = pχ±
t+(σ);

(5) for t ∈ (t+(σ),∞), only the single-phase state of equilibrium put ≡ 0, pχt ≡ 0 is
realized;

(6) the volume fraction of the phase with index + is the function pQ(t, σ) equal to one
when t < t−(σ), and to zero when t > t+(σ). For t ∈ (t−(σ), t+(σ)), it coincides

with pQ(t). It takes the two values 1, pQ(t−(σ)) for t = t−(σ) and 0, pQ(t+(σ)) for
t = t+(σ).

Let t− < t+, σ = σ∗. Then:
(7) for t ∈ (−∞, t∗), only the single-phase state of equilibrium put ≡ 0, pχt ≡ 1 is

realized;
(8) for t = t∗, the set of all states of equilibrium consists of the two single-phase

states put ≡ 0, pχt ≡ 1 and put ≡ 0, pχt ≡ 0 and the two two-phase states put = pu±
t∗ ,

pχt = pχ±
t∗ ;
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(9) for t ∈ (t∗,∞), only the single-phase state of equilibrium put ≡ 0, pχt ≡ 0 is
realized;

(10) the volume fraction of the phase with index + is the function pQ(t, σ) equal to

one for t < t∗ and to zero for t > t∗ and taking the three values 1, pQ(t∗), 0 for
t = t∗.

Let t− < t+ and σ > σ∗ or t− = t+ and σ > 0. Then:
(11) for t ∈ (−∞, t∗), only the single-phase state of equilibrium put ≡ 0, pχt ≡ 1 is

realized;
(12) for t = t∗, only the two states of equilibrium put ≡ 0, pχt ≡ 1 and put ≡ 0, pχt ≡ 0

are realized;
(13) for t ∈ (t∗,∞), only the single-phase state of equilibrium put ≡ 0, pχt ≡ 0 is

realized.

It turns out that, in contrast to the case where σ = 0 (Theorem 2.2), for σ > 0 each
of the pairs u ≡ 0, χ ≡ 1 and u ≡ 0, χ ≡ 0 is a local minimum of the energy functional
for all t.

Theorem 2.4. For each t, the energy functional (2.5) has local minima at the pairs
u ≡ 0, χ ≡ 1 and u ≡ 0, χ ≡ 0 with respect to any perturbations u of class H and
sufficiently L1(0, l)-small perturbations χ class Z.

We mention a number of distinctions in the process of phase transformations between
the cases of zero and positive surface tension coefficients.

The first distinction is a jump-like beginning of a new phase when t varies in the case
where σ > 0, in contrast to a continuous behavior in the case of σ = 0. In the first

case, the existence of jumps of the function pQ( . , σ) at the points t±(σ) follows from the
characterization (1)–(13). The exact values of the volume fraction of the embryo of a new
phase when the parameter t crosses the temperature of phase transitions for t− < t+ and

σ ∈ (0, σ∗] are given in formulas (2.26), (2.27) for the quantities pQ(t±(σ)). For t− = t+
or t− < t+ and σ > σ∗, during the phase transition (when t = t∗) a jump-like change of
the phase with index + to the phase with index − occurs on the whole interval (0, l). In
the second case, the continuity of formation of a new phase follows from the continuity

of the function pQ(t) for t− < t+ and the fact that its values fill the interval [0, 1] for
t− = t+ = t∗. Note that, for σ > 0, a new phase starts at one of the endpoints of the
interval (0, l), while for σ = 0 it can appear in any part of the interval.

The second distinction is the dependence of the temperatures t±(σ) of phase tran-
sitions on the length l of the segment in the case where t− < t+. The parameter l is
involved in formulas (2.26), (2.27) for t±(σ) via the quantity σ∗ given by (2.20). To take
this relationship into account, we add the variable l to the list of arguments of the phase
transition temperatures, using the notation t±(σ, l). It is not difficult to check that the
functions t±(σ, .) are continuous in the variable l ∈ (0,∞),

t+(σ, l) = t−(σ, l) for 0 < l ≤ l∗ =
(
√
a+ +

√
a−)

2

[ac]2
σ,

t−(σ, l) < t+(σ, l) for l > l∗,

(2.28)

the function t−(σ, . ) is strictly monotone decreasing, the function t+(σ, . ) is strictly
monotone increasing on the interval [l∗,∞), and

(2.29) t−(σ, l) → t−, t+(σ, l) → t+ as l → ∞.

From (2.28) it follows that the critical length l∗ of a rod is characterized by the fact that
for a rod of length l ≤ l∗, the upper and the lower temperatures of phase transitions
coincide. However, they are different for l > l∗.
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Formulas (2.28) allow us to make a hypothetical experiment to determine the param-
eter σ that characterizes a two-phase elastic medium with [ac] �= 0. We need to warm up
a rod of length l filled with this medium from the temperature t− up to the temperature
t+ and determine the temperatures t±(σ, l) of phase transitions. Changing the length l,
we define experimentally the number l∗. This allows us to calculate the surface tension
coefficient σ by formula (2.28).

In conclusion of the section, we consider a problem related to the behavior of the state
of equilibrium put,σ, pχt,σ for the functional I[u, χ, t, σ] as σ → 0. From the characterization
of the phase transitions (1)–(13) it follows that the pair put,σ, pχt,σ does not depend on σ
when t �∈ (t−, t+), and for t ∈ (t−, t+) this pair does not depend on σ when 0 < σ < σ(t).
Moreover, the same characterization shows that this pair represents a state of equilibrium
for the functional I0[u, χ, t] for all σ when t �∈ (t−, t+) and for 0 < σ < σ(t) when
t ∈ (t−, t+). Note that, in the second case, for the states of equilibrium (for each
t ∈ (t−, t+), there are exactly two such states) put,σ, pχt,σ of the functional I0 the phase
interface area is minimal among all states of equilibrium put, pχt of this functional with
pχt ∈ Z. Therefore, “the method of vanishing surface tension”, which employs the passage
to the limit as σ → 0 in the states of equilibrium of the functional I, gives all single-phase
states of equilibrium for the functional I0. Among the two-phase states of equilibrium for
this functional for t ∈ (t−, t+) �= ∅, only those with the minimal area of a phase interface
boundary are preserved. For t = t+ = t− = t∗, this method gives only the single-phase
states of equilibrium.

2.4. Critical points of the energy functional. Let us calculate the first variation of
the energy functional in a two-phase elastic medium. The vanishing of the first variation
gives a necessary condition for extremum. Since the sets Z′ and Z are not linear spaces,
we need to use the inner variation technique.

Consider the diffeomorphisms y = y(x) of class C1[0, l] taking the interval [0, l] onto
itself and such that the inverse maps x = x(y) have the form

(2.30) x(y) = y + h(y), h ∈ C1
0 [0, l], |h′(y)| ≤ 1

2

with any function h as in (2.30).
We fix functions ru ∈ H, rχ ∈ Z

′ and construct their perturbations u, χ by the rule

(2.31) u(x) = ru(y(x)) + v(y(x)), v ∈ H, χ(x) = rχ(y(x)).

Obviously, u ∈ H, χ ∈ Z
′, and if rχ ∈ Z, then the perturbation (2.31) also belongs to Z.

Moreover, S[χ] = S[rχ].

Lemma 2.6. We have

I0[u, χ, t]− I0[ru, rχ, t] =

∫ l

0

{rχF+
M (ru′) + (1− rχ)F−

M (ru′)}v′ dx

+

∫ l

0

{
rχ
(
F+(ru′) + t− ru′F+

M (ru′)
)
+ (1− rχ)

(
F−(ru′)− ru′F−

M (ru′)
)}

h′ dx+R,

ru ∈ H, rχ ∈ Z
′, v ∈ H, h ∈ C1

0 (0, l), |h′(x)| ≤ 1
2 ;

I[u, χ, t, σ]− I[ru, rχ, t, σ] =

∫ l

0

{rχF+
M (ru′) + (1− rχ)F−

M (ru′)}v′ dx

+

∫ l

0

{
rχ
(
F+(ru′) + t− ru′F+

M (ru′)
)
+ (1− rχ)

(
F−(ru′)− ru′F−

M (ru′)
)}

h′dx+R,

ru ∈ H, rχ ∈ Z, v ∈ H, h ∈ C1
0 (0, l), |h′(x)| ≤ 1

2 ,

|R| ≤ C

∫ l

0

(|v′|2 + |h′|2 + |h′
ru′|2) dx.

(2.32)
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Given t (or t, σ), we say that the pair ru ≡ rut ∈ H, rχ ≡ rχt ∈ Z
′ (or the pair ru ≡ rut,σ ∈

H, rχ ≡ rχt,σ ∈ Z) is a critical point of the functional I0 (or I) if∫ l

0

{rχ(F+(ru′) + t− ru′F+
M (ru′)) + (1− rχ)(F−

M (ru′)− ru′F−
M (ru′))}h′ dx

+

∫ l

0

{rχF+
M (ru′) + (1− rχ)F−

M (ru′)}v′ dx = 0 for all v, h ∈ C∞
0 (0, l).

(2.33)

We introduce the functions

(2.34) Θ±(M) = F±
M (M), Φ±(M) = F±(M)−MF±

M (M), M ∈ R.

The quantities Θ±(M) determine electric potentials, while Φ±(M) gives chemical poten-
tials for each energy density F±(M). Then the functions

Θ[u, χ](x) = χ(x)Θ+(u′(x)) + (1− χ(x))Θ−(u′(x)),

Φ[u, χ](x, t) = χ(x)(Φ+(u′(x)) + t) + (1− χ(x))Φ−(u′(x)),

u ∈ H, χ ∈ Z
′, x ∈ (0, l), t ∈ R

(2.35)

determine the distributions of electric and chemical potentials for the field of displace-
ments u and phase distribution χ. Evidently, identity (2.33) is equivalent to the fact that
the electric and chemical potentials are constant on the interval (0, l):

Θ[ru, rχ](x) = CΘ, Φ[ru, rχ](x, t) = CΦ(t), for almost all x ∈ (0, l)

and some constant CΘ and some function CΦ(t).
(2.36)

In accordance with (2.32), the left-hand side of (2.33) gives the linear part of the
increment of the energy functionals I0 and I under the perturbation (2.31). Hence, the
states of equilibrium for these functionals are their critical points.

The following theorem answers the question about the existence of critical points for
energy functionals besides the states of equilibrium, and specifies all critical points.

Theorem 2.5. (a) For each fixed t, the set of all critical points rut, rχt of the functional
I0 consists of its states of equilibrium put, pχt and the single-phase states u ≡ 0, χ ≡ 1
and u ≡ 0, χ ≡ 0.
(b) For any fixed t and σ, the set of all critical points rut,σ, rχt,σ of the functional I
coincides with the set of all critical points rut, rχt of the functional I0 for which rχt ∈ Z.
(c) The critical points rut, rχt of the functional I0 that do not coincide with states of
equilibrium are saddle points of this functional.
(d) The critical points rut,σ, rχt,σ of the functional I that do not coincide with states
of equilibrium are local minima of this functional relative to any perturbations of the
function rut,σ in the space H and sufficiently L1(0, l)-small norm deviations of class Z

from the function rχt,σ.

Suppose that, for some point x0 ∈ (0, l) and sufficiently small δ > 0, the function rχ is
constant for x ∈ (x0 − δ, x0) and for x ∈ (x0, x0 + δ), but is nonconstant on the interval
(x0 − δ, x0 + δ). Then x0 is a boundary point of the phase interface. By (2.36), we have

[FM (ru′)] = 0, [F (ru′)− ru′FM (ru′)] + t = 0,

where [α(ru′)] = α+(M+)− α−(M−).
(2.37)

Here, the M± are the limit values of the function ru′(x) at the point x0 from the direction
of the positive and the zero function rχ, respectively.
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Conditions (2.37) are the classical necessary conditions for the Weierstrass–Erdmann
extremum of the integral functional

Imin
0 [u, t] =

∫ l

0

Fmin(u′, t) dx,

Fmin(M, t) = min{F+(M) + t, F−(M)}, u ∈ H,

(2.38)

on the set of functions with admissible jump of the derivative at an arbitrary point x0

unknown in advance.
Formulas (2.37) admit the following geometric interpretation showing that the two

points (M−, F
−(M−)) and (M+, F

+(M+) + t) are jointed by the common tangent line
to the graphs of the functions F−(M) and F+(M) + t at these points. Depending on
a±, c±, and t, the following situations are possible: the pair M± does not exist, there
exists one such pair, or two such pairs.

2.5. Bibliographical notes. Statements of this section are based on the papers [17–20].
These papers also contain different approaches, which allow one to obtain similar results
for other boundary conditions and nonzero fields of force.

In the book [2], one can find applications of inner variations to one-dimensional varia-
tion problems. The canonical proof of the Weierstrass–Erdmann conditions is given, e.g.,
in [4]. It is based on the common formula for the first variation of an integral functional
and its geometric interpretation. A multidimensional analog of the geometric interpreta-
tion of the Weierstrass–Erdmann conditions was used in [60] for the classification of the
stable critical points of the energy functional of a two-phase medium.

The equilibrium conditions (2.36) for a one-dimensional two-phase medium coincide
with those for the two-component gases: the constancy of the chemical potential and
pressure. For the multidimensional two-phase medium, this coincidence fails.

§3. The multidimensional problem with zero coefficient

of surface tension

An attempt is made to partially extend results of Subsection 2.2 related to the one-
dimensional problem with zero surface tension coefficient to the multidimensional (m ≥ 2)
case. The essential distinction between the multidimensional and the one-dimensional
settings is the possible absence of equilibrium.

3.1. The setting of the problem. To formulate the multidimensional problem on
phase transitions with zero surface tension coefficient, for every phase ± we introduce
the elastic modulus tensors a±ijkl, i, j, k, l = 1, . . . ,m, m ≥ 2, satisfying the symmetry
and positive definiteness conditions:

a±ijkl = a±klij = a±jikl = a±ijlk,

ν−1ξijξij ≥ a±ijklξijξkl ≥ νξijξij for all matrices ξ ∈ R
m×m
s ,

(3.1)

where R
m×m
s is the space of symmetric matrices of size m ×m, ν ∈ (0, 1); in (3.1) and

in what follows, summation from 1 to m is assumed over the repeating indices.
In the space Rm×m of (m×m)-matrices, we define the Hilbert–Schmidt scalar product

(3.2) 〈α, β〉 = trαβ∗, α, β ∈ R
m×m.

For each sign ±, the coefficients a±ijkl generate a linear map

(3.3) A± : Rm×m
s → R

m×m
s , (A±ξ)ij = a±ijklξkl,
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which is symmetric and positive definite with respect to the scalar product (3.2):

〈A±ξ, ζ〉 = 〈ξ, A±ζ〉, ν−1|ξ|2 ≥ 〈A±ξ, ξ〉 ≥ ν|ξ|2, |ξ|2 = 〈ξ, ξ〉,
for all ξ, ζ ∈ R

m×m
s .

(3.4)

Besides the tensors of elastic moduli, we need the residual strain tensors ζ±ij and the

strain tensors eij(M):

(3.5) ζ± ∈ R
m×m
s , e(M) =

M +M∗

2
∈ R

m×m
s , M ∈ R

m×m.

Let functions F±(M) be defined by the formula

(3.6) F±(M) = 〈A±(e(M)− ζ±), e(M)− ζ±〉.
Clearly, the quadratic functions F±(M) are convex:

(3.7) F±
MijMkl

CijCkl = 2〈A±e(C), e(C)〉 ≥ 0 for all C ∈ R
m×m

and satisfy the Legendre–Hadamard condition

(3.8) F±
MijMkl

ξiξkλjλl ≥ ν|λ|2|ξ|2 for all vectors λ, ξ ∈ R
m.

Using (3.6), we define the deformation energy functional of a two-phase elastic medium
in the bounded domain Ω ⊂ R

m, m ≥ 2, by the identity

(3.9) I0[u, χ, t] =

∫
Ω

{χ(F+(∇u) + t) + (1− χ)F−(∇u)} dx, u ∈ H, χ ∈ Z
′, t ∈ R,

where H = W̊ 1
2 (Ω,Rm), Z

′ is the set of all measurable characteristic functions, and
(∇u)ij = ui

xj
.

By an equilibrium state of a two-phase elastic medium with zero surface tension co-
efficient for fixed temperature t we mean an equilibrium displacement field put and an
equilibrium phase distribution pχt minimizing the energy functional for given t:

(3.10) I0[put, pχt, t] = inf
u∈H,
χ∈Z

′

I0[u, χ, t]. put ∈ H, pχt ∈ Z
′.

An equilibrium state put, pχt is said to be single-phase if pχt = 1 or pχt = 0 almost everywhere
on Ω, and two-phase otherwise. Obviously, for a single-phase equilibrium state we have
put = 0.

The main difficulty in studying problem (3.10) is that it may be unsolvable.

Lemma 3.1. Let λ ∈ R
m, |λ| = 1, and let

ζ± = ±λ⊗ λ, (λ⊗ λ)ij = λiλj .

Then problem (3.10) for t = 0 has no solutions.

There are cases when the energy densities (3.6) can be simplified by making residual
strain tensors ζ± equal to each other.

Lemma 3.2. Suppose that there exists a matrix ξ ∈ R
m×m
s such that

(3.11) [A]ξ = [Aζ].

Then the energy functional (3.9) coincides with the energy functional for the densities
(3.6) with the equal residual strain tensors ζ± = ξ.

Thus, problem (3.10) may (or may not) be unsolvable. In the next section, not only
shall we establish the existence of its solutions for an important class of two-phase elastic
media, but also obtain explicit formulas for them.
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3.2. Phase transitions for isotropic media. A two-phase medium is said to be
isotropic if

a±ijkl =
a±
2
(δikδjl + δilδjk) + b±δijδkl, ζ±ij = c±δij ,

a±, b±, c± ∈ R, a± > 0, b± ≥ 0.
(3.12)

In this case,

F±(M) = a± tr(e(M)− c±i)
2 + b± tr2(e(M)− c±i),

i is the unit matrix in the space R
m.

(3.13)

Our goal is to prove the solvability of the problem (3.10) for the energy densities (3.12)
and describe the dependence of equilibrium states put, pχt on the temperature t. Both
results and a sketch of their proofs are similar to those described in Subsection 2.2 for
the one-dimensional case. Unfortunately, the realization of these plans is successful only
under the additional restriction

(3.14) a+ = a− ≡ a.

We start with the evaluation of the energy functional (3.9) for the densities (3.13). The
following lemma is a multidimensional analog of Lemma 2.1.

Lemma 3.3. For u ∈ H and χ ∈ Z
′, the energy functional (3.9) with the densities (3.13)

can be written in the form

(3.15)

I0[u, χ, t] =

∫
Ω

(a+χ+ a−(1− χ))(ui
xj
uj
xi

− ui
xi
uj
xj
) dx

+

∫
Ω

{
a+χ+ a−(1− χ)

4
| curlu|2

+ ((a++ b+)χ+ (a−+ b−)(1− χ))(div u− α(Q)(χ−Q))2
}
dx

+ |Ω|G(Q, t),

(curlu)ij = ui
xj

− uj
xi
, | curlu|2 = (curlu)ij(curlu)ij ,

Q =
1

|Ω|

∫
Ω

χdx, α(Q) =
[c(a+ bm)]

(a− + b−)Q+ (a+ + b+)(1−Q)
,

G(Q, t) = Qt+mc2+(a+ + b+m)Q

+mc2−(a− + b−m)(1−Q)− [c(a+ bm)]α(Q)Q(1−Q).

By the assumptions (3.14), the first integral on the right-hand side of (3.15) is equal
to zero for all u ∈ H. Therefore, as in the one-dimensional case, the representation (3.15)
allows us to split the variational problem (3.10) for the energy densities (3.13), (3.14)
into two problems. One of them is a system of equations for the functions u and χ:

(3.16) div u = α(Q)(χ−Q), curlu = 0, u ∈ H, χ ∈ Z
′, Q =

1

|Ω|

∫
Ω

χdx.

The second is the problem on the extremum of the function G( . , t) for a fixed t:

(3.17) G( pQ(t), t) = min
Q∈[0,1]

G(Q, t), pQ(t) ∈ [0, 1].

The solvability of problem (3.17) is obvious in view of the continuity of the function
G( . , t). Since the solvability of system (3.16) is not yet established, the next lemma still
has a conditional character.
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Lemma 3.4. Suppose that system (3.16) is solvable for any Q ∈ [0, 1]. Then problem
(3.10) with the energy densities (3.13) is also solvable provided that condition (3.14) is
fulfilled and the set of all solutions put, pχt of (3.10) coincides with the set all solutions of
the system

div put = α( pQ(t))(pχt − pQ(t)), curl put = 0, put ∈ H, pχt ∈ Z
′,

1

|Ω|

∫
Ω

pχt dx = pQ(t), G( pQ(t), t) = min
Q∈[0,1]

G(Q, t).
(3.18)

We turn to the study of system (3.16). In the following lemma, we prove that this
system is solvable for an arbitrary constant α and every number Q ∈ [0, 1]. The merit of
the lemma is not only in establishing solvability, but also in constructing explicit formulas
for some class of its solutions.

Lemma 3.5. The system

(3.19) div v = α(χ−Q), curl v = 0, v ∈ H, χ ∈ Z
′, Q =

1

|Ω|

∫
Ω

χdx

for the unknown functions v and χ is solvable in an arbitrary bounded domain Ω ⊂ R
m

for any number α and every Q ∈ [0, 1].

We briefly describe the method of obtaining (possibly not all) solutions (3.19) in an
explicit form. First, we consider this system in the ball Ω = BR of radius R centered at
the origin. We are looking for spherically symmetric solutions

(3.20) χ(x) = χ(|x|), v(x) =
x

|x|w(|x|), Q =
1

|BR|

∫
BR

χ(|x|) dx

with some scalar function w(.). For the representation (3.20), the second equation of
system (3.19) is satisfied automatically. Solving the first equation, we obtain:

(3.21) v(x) = α
x

|x|
|x|
m

1

|B|x||

∫
B|x|

(χ(|z|)−Q) dz.

Using a shift, we carry the solution (3.20), (3.21) over to a ball centered at a point
y ∈ R

m.
To construct a solution in an arbitrary domain Ω, we need the construction called the

Vitali covering of an open set Ω.

Let Ω ⊂ R
m be an open set, and let δ > 0. Then there exists a count-

able family of disjoint closed balls sBRj
(xj) ⊂ Ω, j = 1, . . . , such that

diamBRj
(xj) ≤ δ for all j and |Ω \

⋃
j

sBRj
(xj)| = 0.

Obviously, for each domain Ω one can find infinitely many different Vitali coverings.
We fix a Vitali covering in the domain Ω. In each ball BRj

(xj) of this covering, we

take an arbitrary spherically symmetric solution v(j), χ(j). The solution in the domain
Ω is obtained if we sum all these solutions overs balls of the covering. It is easily seen
that for each such solution v, χ the function v belongs to the space H ∩W 1

∞(Ω,Rm), and

(3.22) ‖v‖C( sΩ) ≤ Cδ, ‖∇v‖L∞(Ω) ≤ C

for some positive constant C = C(m,α) and the fixed parameter δ of the Vitali covering.
The above constructions show that for Q ∈ (0, 1) and α �= 0, a solution of system

(3.19) is certainly not unique. This nonuniqueness is provided by the nonuniqueness of a
solution of the system in the ball BRj

(xj) and the nonuniqueness of the Vitali covering.
For Q = 0, Q = 1, or α = 0, system (3.19) has the form

(3.23) curl v = 0, div v = 0, v ∈ H.
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Therefore, its only solution is the function v = 0.
To investigate problem (3.17), it is convenient to introduce the following notation:

(3.24) t− = t∗ − [c(a+ bm)]2

a− + b−
, t+ = t∗ +

[c(a+ bm)]2

a+ + b+
, t∗ = −[mc2(a+ bm)].

The numbers t± will be called the temperatures of the phase transitions.

Theorem 3.1. Problem (3.10) with the energy densities (3.13) is solvable for each value
of the parameter t under condition (3.14). The set of all solutions is characterized by the
properties (1)–(6) described in Subsection 2.2. In (3.24), the phase transition tempera-
tures t± are fixed.

As in the one-dimensional case, the function pQ(t), t ∈ (t−, t+) can be found explicitly.

Lemma 3.6. Let [c(a+ bm)] �= 0. For t ∈ (t−, t+), put

(3.25) h(t) =
t+ − t

t+ − t−
, g(t) =

1

(a− + b−)2
h(t) +

1

(a+ + b+)2
(1− h(t)).

Then

(3.26) pQ(t) =

{
h(t) if [a+ b] = 0,
(a++b+)+(a−+b−)

2[a+b] + 1
2 − 1

[a+b]g1/2(t)
if [a+ b] �= 0.

Note that the assumption (3.14) is essential for the validity of Theorem 3.1, while
formulas (3.26) are true even of (3.14) fails.

The next theorem, an analog of Theorem 2.2, answers the question about the role of
the pairs u ≡ 0, χ ≡ 1 and u ≡ 0, χ ≡ 0 in the case where they do not minimize the
energy functional of a two-phase elastic medium.

Theorem 3.2. For the functional (3.9) with the energy densities (3.13) satisfying con-
dition (3.14), statements (1)–(3) of Theorem 2.2 hold true.

The equilibrium states put, pχt constructed in this section have a relatively complicated
structure, and the phase distributions with indices “+” (i.e., the supports of pχt) can have
fractal features characterized by self-similarity.

For the convenience of the following presentation, we introduce the following set of
pairs of functions:

(3.27) Y
′
t =

{
u ∈ H, χ ∈ Z

′ : curlu=0, div u = α( pQ(t))(χ− pQ(t)),
1

|Ω|

∫
Ω

χdx = pQ(t)

}
.

This is the set of all solutions of the variational problem (3.10) with the energy density

(3.13) under condition (3.14). If [c(a+ bm)] �= 0, then the function pQ(t) is single-valued

and α( pQ(t)) �= 0. Therefore, in this case, each component of the pair u, χ ∈ Y
′
t is

uniquely determined by the other one. If [c(a+ bm)] = 0 and t �= t∗(= t±), then pQ(t) is

still single-valued, but α( pQ(t)) = 0. Hence, in this case, the set Y
′
t is exhausted by the

pairs u = 0, χ = 1 for t < t∗ and u = 0, χ = 0 for t > t∗. If [c(a+ bm)] = 0 and t = t∗,
the set Y′

t consists of the pairs for which u = 0 and χ is an arbitrary element of the set

Z
′, because pQ(t) is nonhomogeneous and the number α( pQ(t)) is equal to zero.

3.3. Temperature of phase transitions. In view of formula (3.9), it seems to be plau-
sible that for the energy functional of a two-phase medium there exist phase transition
temperatures t±, t− ≤ t+ such that

for t < t−, only the state of equilibrium put ≡ 0, pχt ≡ 1 is realized;

for t > t+, only the state of equilibrium put ≡ 0, pχt ≡ 0 is realized;

for t ∈ (t−, t+), no single-phase equilibrium states exist.

(3.28)
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This conjecture can be justified in the one-dimensional case with t± defined by (2.10), as
well as for multidimensional media under condition (3.14), where the temperatures t± are
defined by (3.24). In both cases the temperatures t± do not depend on the domain filled
by the medium, and for each t ∈ (t−, t+) there exists a (two-phase) state of equilibrium.
Taking Lemma 3.1 into account, for the general form of the energy functional (3.9) we
can hope only to prove the existence of the phase transition temperatures t± that do
not depend on the domain Ω and are determined only by the characteristics of the
two-phase medium in question. Of course, the constructions below are also valid in the
one-dimensional case, but we did not need them, thanks to the explicit solvability of the
one-dimensional problem.

We shall need the following functions:

i+(t, Ω) = inf
u∈H

I0[u, 1, t], i−(t, Ω) = inf
u∈H

I0[u, 0, t],

imin(t, Ω) = min{i(t, Ω), t−(t, Ω)}, i(t, Ω) = inf
u∈H,χ∈Z′

I0[u, χ, t]
(3.29)

where the energy functional I0[u, χ, t] is as defined in (3.9).
By these definitions, we have

i+(t, Ω) = |Ω|(〈A+ζ+, ζ+〉+ t), i−(t, Ω) = |Ω|〈A−ζ−, ζ−〉,

imin(t, Ω) = |Ω|
{
〈A+ζ+, ζ+〉+ t if t ≤ t∗,

〈A−ζ−, ζ−〉 if t ≥ t∗,
t∗ = −[〈Aζ, ζ〉].

(3.30)

Since

(3.31) imin(t, Ω) = inf
u∈H,χ=χ±

I0[u, χ, t], χ+ ≡ 1, χ− ≡ 0,

we have

(3.32) i(t, Ω) ≤ imin(t, Ω).

Clearly, the existence of single-phase states of equilibrium for the functional (3.9) is
determined by the function imin(t, Ω)− i(t, Ω):

for given t, if imin(t, Ω)− i(t, Ω) > 0,

then for such t, the functional (3.9) has no single-phase

equilibrium states;

for given t < t∗, if imin(t, Ω)− i(t, Ω) = 0,

then for such t, the functional (3.9) admits only one single-phase

equilibrium state put ≡ 0, pχt ≡ 1;

for given t > t∗, if imin(t, Ω)− i(t, Ω) = 0,

then for such t, the functional (3.9) admits only one single-phase

equilibrium state put ≡ 0, pχt ≡ 0;

if imin(t
∗, Ω)− i(t∗, Ω) = 0, then for the functional (3.9) with t = t∗

both single-phase equilibrium states are realized:

put ≡ 0, pχt ≡ 1 and put ≡ 0, pχt ≡ 0.

(3.33)

In order to apply (3.33) to prove the existence of phase transition temperatures, we
need the following lemma.

Lemma 3.7. For every fixed domain Ω �= ∅, the function i( . , Ω) is concave and satisfies
the local Lipschitz condition.
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If for some t′− such that t′− ≤ t∗ we have i(t′−, Ω) = imin(t
′
−, Ω), then i(t, Ω) =

imin(t, Ω) for all t < t′−, and for such t, the only state of equilibrium of the functional
(1.9) is the pair put ≡ 0, pχt ≡ 1.

If for some t′+ such that t′+ ≥ t∗ we have i(t′+, Ω) = imin(t
′
+, Ω), then i(t, Ω) =

imin(t, Ω) for all t > t′+, and for such t, the only state of equilibrium of the functional
(1.9) is the pair put ≡ 0, pχt ≡ 0.

This lemma shows that each set {t′±} is closed and the following statements are true:

if the numbers t± exist, then t− ≤ t∗ ≤ t+, where equality

occurs or does not occur in the two inequalities at the same time;

if the numbers t± exist, then for t− = t+ = t∗ we have

i(t, Ω) = tmin(t, Ω) for all t ∈ R,

if the numbers t± exist, then for t− < t+ we have

i(t, Ω) < imin(t, Ω) for t ∈ (t−, t+), and i(t, Ω) = imin(t, Ω) for t �∈ (t−, t+).

(3.34)

As the next step, we discuss the existence of phase transition temperatures in the case
where Ω = B, the unit ball centered at the origin.

Denote

μ+
1 = t∗ − ν tr2[Aζ]

m2
, μ−

1 = t∗ − |[Aζ]|2
ν

,

μ+
2 = t∗ +

ν tr2[Aζ]

m2
, μ−

2 = t∗ +
|[Aζ]|2

ν
.

(3.35)

The inequality

| trS| = |〈S, i〉| ≤ 〈S, S〉1/2〈i, i〉1/2 = |S|
√
m,

S ∈ R
m×m
s , i is the unit matrix in Rm,

(3.36)

implies the following estimates for the numbers (3.35):

(3.37) μ−
1 ≤ μ+

1 ≤ t∗, t∗ ≤ μ+
2 ≤ μ−

2 .

Lemma 3.8. In the case where Ω = B, the phase transition temperatures exist and
satisfy the two-sided estimates

(3.38) t− ∈ [μ−
1 , μ

+
1 ], t+ ∈ [μ+

2 , μ
−
2 ].

The proof is based on the construction of functions g±(t, B) such that

g−(t, B) ≤ i(t, B) ≤ g+(t, B) ≤ imin(t, B),

g+(t, B) = imin(t, B) if and only if t �∈ (μ+
1 , μ

+
2 ),

g−(t, B) = imin(t, B) if and only if t �∈ (μ−
1 , μ

−
2 );

(3.39)

combining this with (3.34), we get the existence of the temperatures t± and the validity
of (3.38).

When constructing the functions g±(t, B), we have to “clamp” the functional (3.9)
between two energy functionals of isotropic two-phase media, the information on the
temperatures of the phase transitions for which is obtained in Subsection 3.2 of this
section. If inequalities (3.4) are applied for the two-sided estimate of the functional
(3.9), additional terms arise besides the energy functionals of isotropic media, because
the tensors of residual deformation ζ± may fail to coincide with the tensors c±i for
isotropic media. The evaluation of these terms is the main difficulty in the proof of the
lemma. We set

(3.40) L(Ω) = {t ∈ R1 : imin(t, Ω)− i(t, Ω) > 0}.



MATHEMATICAL PROBLEMS OF THE THEORY OF PHASE TRANSITIONS 813

By Lemma 3.7 and statements (3.33) and (3.34), the set L(Ω) is an open (in particular,
empty) interval. If L(Ω) �= ∅, then t∗ ∈ L(Ω) and the boundedness of the interval L(Ω)
(from the left or form the right) means the existence of phase transition temperatures (t−
or t+, respectively) coinciding with its endpoints. If L(Ω) = ∅, then the phase transition
temperatures exist and t± = t∗.

The next lemma contains a series of statements about the dependence of the set L(Ω)
on the domain Ω.

Lemma 3.9. We have

L(Ωe) = L(Ω), where

Ωe =
{
x+ e : x ∈ Ω, e is a fixed vector in the space R

m
}
;

L(Ωλ) = L(Ω), where

Ωλ =
{
λx : x ∈ Ω, λ is a fixed number belonging the interval (0,∞)

}
;

L(Ω′) ⊃ L(Ω) for arbitrary bounded domain Ω′ ⊂ Rm, Ω′ ⊃ Ω.

(3.41)

The lemmas obtained above enable us to prove the basic statement of this section
about the existence and estimates of the phase transition temperatures for the functional
(3.9) and their independence of the domain Ω.

Theorem 3.3. For the functional (3.9), the temperatures of phase transitions exist, they
do not depend on the domain Ω, and obey (3.38).

Theorem 3.3 not only guarantees the existence of the phase transition temperatures
t±, but also shows that

(3.42) t− < t∗ < t+ for tr[Aζ] �= 0, t− = t∗ = t+ for [Aζ] = 0.

Note that in the isotropic case (3.12) we have

(3.43) A±ζ± = c±(a± + b±m)i.

It follows that, in the isotropic case,

(3.44) tr2[Aζ] = m2[c(a+ bm)]2, |[Aζ]|2 = m[c(a+ bm)]2.

Therefore, even without the assumption (3.14), the condition [c(a+bm)] = 0 is a criterion
for the coincidence of the temperatures of phase transitions for the energy densities (3.13).

Estimates (3.42) show that for the general form of the energy densities (3.6) the
identity [Aζ] = 0 implies the coincidence of the phase transition temperatures, but their
coincidence only implies that tr[Aζ] = 0. However, for isotropic media (see (3.12)), there
is a criterion (the relation [c(a + bm)] = 0) for the coincidence of the phase transition
temperatures. It turns out that the criterion for t− = t+ can be obtained for the general
form of the densities (3.6), and it coincides with the sufficient condition ([Aζ] = 0) for
the fact that t− = t+.

Lemma 3.10. For the general form of the energy densities (3.6), the criterion for the
coincidence of the temperatures of phase transitions is the relation [Aζ] = 0. In case it
is true, the set of all equilibrium states of the functional I0[u, χ, t

∗] is exhausted by the
pairs for which put∗ = 0 and pχt∗ is an arbitrary element of Z′.

Let us investigate the role of the single-phase states u ≡ 0, χ ≡ 1 and u ≡ 0, χ ≡ 0
for a two-phase medium with the energy functional (3.9). In the one-dimensional case
(Theorem 2.2) and for multidimensional isotropic media (Theorem 3.2) it was established
that for the values of t for which any one of these pairs is not a state of equilibrium, it
is a saddle point of the energy functional. For the general form of the energy densities
(3.6), we succeeded to obtain only a more modest result.
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Theorem 3.4. For the functional (3.9) with arbitrary densities of energy (3.6), state-
ments (2) and (3) of Theorem 2.2 are valid. Moreover, for t > μ+

1 the pair u ≡ 0, χ ≡ 1
and for t < μ+

2 the pair u ≡ 0, χ ≡ 0 are saddle points of this functional.

The definition of the temperatures of phase transitions shows that for t ∈ (t−, μ
+
1 ],

the single-phase state u ≡ 0, χ ≡ 1, and for t ∈ [μ+
2 , t+) the single-phase state u ≡ 0,

χ ≡ 0 do not minimize the energy functional of a two-phase elastic medium. However,
Theorem 3.4 does not guarantee the instability of these states at the indicated values
of t.

Theorem 3.3 allows us to extend the set of two-phase elastic media for which it is
possible to calculate the temperatures of phase transitions explicitly. The method of
finding the temperatures t± consists of comparison of the interval (3.40) of the problem
under study with the interval for a problem with known phase transition temperatures
in a domain convenient for calculations. The coincidence of the intervals of the two
problems guarantees that of the phase transition temperatures.

Consider the following energy densities of two-phase elastic media:

(3.45) F±(M) = a± tr(e(M)− c±P
(k))2, M ∈ R

m×m, a±, c± ∈ R, a± > 0,

where P (k), 1 ≤ k ≤ m, is an orthogonal projector in R
m, m ≥ 2, onto a k-dimensional

subspace.
In the case where k = m, the densities (3.45) are particular cases of the densities (3.13),

for which, provided a+ = a− = a, the phase transitions temperatures t± are given by
formulas (3.24), and Theorem 3.1 also guarantees the existence of the equilibrium states
for t ∈ (t−, t+). In the case where k = 1, it is known (Lemma 3.1) that for t = 0, there
are no equilibrium states.

Theorem 3.5. Let a± be arbitrary for k = 1 and a+ = a− for 1 < k ≤ m. Then the
temperatures of phase transitions for the densities (3.45) are given by the relations

(3.46) t− = t∗ − [ac]2

a−
, t+ = t∗ +

[ac]2

a+
, t∗ = −k[ac2].

3.4. Critical points of the energy functional. We consider diffeomorphisms y =
y(x) of class C1( sΩ,Rm) of the domain Ω onto itself such that the inverse mappings
x = x(y) have the form

(3.47) x(y) = y + h(y), h ∈ C1
0 (Ω,Rm), ‖h‖C1 ≤ 1

2
,

where h is an arbitrary function as in (3.47). We fix functions ru ∈ H and rχ ∈ Z
′ and

construct their perturbations u, χ by a rule similar to (2.31):

(3.48) u(x) = ru(y(x)) + v(y(x)), v ∈ H, χ(x) = rχ(y(x)).

Lemma 3.11. We have

I0[u, χ, t]− I0[ru, rχ, t] =

∫
Ω

{rχF+
Mij

(∇ru) + (1− rχ)F−
Mij

(∇ru)}vixj
dx

+

∫
Ω

{
rχ((F+(∇ru) + t)δkj − rui

xk
F+
Mij

(∇ru))

+ (1− rχ)(F−(∇ru)δkj − rui
xk
F−
Mij

(∇ru))
}
hk
xj

dx+ R,

rχ = rχ(x), ru = ru(x), v = v(x), h = h(x),

|R| ≤ C

∫
Ω

(|∇v|2 + ‖h‖2C1(1 + |∇ru|2)) dx.

(3.49)
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We say that a pair ru ≡ rut ∈ H and rχ ≡ rχt ∈ Z
′ is a critical point of the functional I0

for given t if ∫
Ω

{
rχF+

Mij
(∇ru) + (1− rχ)F−

Mij
(∇ru)

}
vixj

dx

+

∫
Ω

{
rχ((F+(∇ru) + t)δkj − rui

xk
F+
Mij

(∇ru))

+ (1− rχ)(F−(∇ru)δkj − rui
xk
F−
Mij

(∇ru))
}
hk
xj

dx = 0

for all v ∈ H, h ∈ C1
0 (Ω,Rm).

(3.50)

In view of (3.49), the left-hand side of (3.50) is the linear part of the increment of the
functional I0 under the perturbation (3.48). Hence, the equilibrium states put, pχt must
be critical points. However, not every critical point is an equilibrium state. For example,
the pairs ru ≡ 0, rχ ≡ 1 and ru ≡ 0, rχ ≡ 0 are critical points of the energy functional for
any t, while they are the equilibrium states only for t ≤ t− and t ≥ t+, respectevely.

It is natural to call condition (3.50) imposed on the pair ru, rχ a generalized form of
the equilibrium equations for a two-phase elastic medium. To describe the classical form
of these equations, we introduce the following notation:

Θkj [u, χ](x) = χ(x)Θ+
kj(∇u(x)) + (1− χ(x))Θ−

kj(∇u(x)),

Θ±
kj(M) = F±

Mkj
(M),

Φkj [u, χ](x, t) = χ(x)(Φ+
kj(∇u(x)) + tδkj) + (1− χ(x))Φ−

kj(∇u(x)),

Φ±
kj(M) = F±(M)δkj −MikF

±
Mij

(M),

u ∈ H, χ ∈ Z
′, x ∈ Ω, t ∈ R, k, j = 1, . . . ,m.

(3.51)

For the displacement field u and phase distribution χ, Θ is the stress tensor, and Φ is
called the chemical potential tensor.

Theorem 3.6. Let a ball Br(x0) ⊂ Ω and a critical point ru, rχ of the energy functional
I0 be fixed.
(a) If the function rχ is constant in the ball Br(x0), then the function ru ∈ C∞(Br(x0),R

m)
satisfies the system of equations

− d

dxj
F+
Mij

(∇ru(x)) = 0, x ∈ Br(x0), i = 1, . . . ,m, whenever rχ ≡ 1 in the ball Br(x0),

− d

dxj
F−
Mij

(∇ru(x)) = 0, x ∈ Br(x0), i = 1, . . . ,m, when rχ ≡ 0 in the ball Br(x0).

(3.52)

(b) Suppose that the ball Br(x0) is divided into two parts by an (m − 1)-dimensional
surface Γ of class Ck,ε, k ≥ 2, ε ∈ (0, 1). Suppose that, rχ ≡ 1 in B+

r (x0) and rχ ≡ 0 in
B−

r (x0). Then the function ru belongs to the class Ck,ε in each of the domains B±
r (x0)

up to the boundary of their separation Γ , and

− d

dxj
F+
Mij

(∇ru(x)) = 0, x ∈ B+
r (x0),

− d

dxj
F−
Mij

(∇ru(x)) = 0, x ∈ B−
r (x0), i = 1, . . . ,m,

[Θkj [ru, rχ]]|Γnj = 0, k = 1, . . . ,m, [Φkj [ru, rχ]]|Γnjnk = 0,

(3.53)

where [Z]|Γ is the jump of Z when crossing the interface boundary Γ , and n is the unit
normal vector to this boundary.
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Equations (3.52) are the classical equilibrium equations for single-phase media with
energy densities F±. Equations (3.53) and the condition on the stress jump when crossing
the surface Γ correspond to the standard necessary conditions for equilibrium states in
composite media. The a priori uncertainty of the phase interface boundary Γ makes the
problem of phase transitions different from the equilibrium problem in composite media.
This fact leads to the arising of an additional condition in the equations of equilibrium,
namely, to conditions for a jump of the chemical potential.

Note that the assumptions on the smoothness of the phase interface boundary for
equilibrium states (and consequently, for critical points) remain only suppositions. In-
deed, for equilibrium states of isotropic two-phase media, the restriction of the function
pχt to any ball of a Vitali covering can be an arbitrary measurable spherically symmetric
characteristic function. Therefore, for equilibrium states, no smoothness of the phase
interface boundary can be talked of. The situation becomes better when we take the
surface energy into account. In this case, for sufficiently close values of the coefficients
a±ijkl, it is possible to prove a certain smoothness of the phase interface.

Theorem 2.5 describes the set of all critical points for the one-dimensional problem.
In the multidimensional case, a similar result can be obtained for the isotropic problem
(3.12), (3.14).

A critical point ru, rχ of the functional I0[u, χ, t] is said to be regular if there exists
an open set ω ⊂ Ω, ∅ �= ω �= Ω, for which ∂ω ∩ Ω consists of a finite collection of
(m− 1)-dimensional surfaces Γl ∈ C2, l = 1, . . . , k, such that

rχ(x) = 1 for x ∈ ω, rχ(x) = 0 for x ∈ Ω \ ω,
ru ∈ C2(ω,Rm) ∩ C2(Ω \ ω,Rm) ∩ C(Ω,Rm).

(3.54)

Obviously, for a regular critical point, the statements (3.53) are valid.
We say that a critical point ru, rχ of the functional I0[u, χ, t] is potential if

(3.55) curl ru = 0 in Ω.

In the statement of the following theorem, the phase-transition temperatures (3.24) for
isotropic two-phase media are employed.

Theorem 3.7. Let ru, rχ be a regular potential critical point of the energy functional
I0[u, χ, t] with the densities (3.13), (3.14). Then either t− < t+ and t ∈ (t−, t+), or
t− = t+ = t∗ and t = t∗, and at this critical point the functional I0[ . , . , t] takes its
minimum value.

If Ω = BR and a regular critical point is spherically symmetric (in the sense described
by (3.20)), then it is automatically potential. Hence, for the densities (3.13), (3.14), a
spherically symmetric regular critical point in Ω = BR minimizes the energy functional.

3.5. Bibliographical notes. The results of this section are based on the papers [21–23,
25–34, 36, 40, 65]. They also contain a number of statements related to other boundary
conditions, nonzero force fields, and quasistationary problems on the evolution of the
phase interface boundary. A construction close to the Vitali covering was used by spe-
cialists in mechanics in the study of composite media, see [62]. The method of construct-
ing the Vitali covering was described in [51]. In [3], equilibrium equations for two-phase
media were obtained by other means. The method of inner variation makes it possible
to write out relatively short expressions for the second variation of the energy functional
of a two-phase medium, see [12]. The assertions stated above on the smoothness of gen-
eralized solutions of the elliptic (see (3.8)) system of equilibrium equations in the theory
of elasticity were given in [49]. The self-similarity of fractal sets was discussed in [11]. A
problem for more than two-phase media was considered in [14].
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It should be noted that the equilibrium energy i(t, Ω) is expressed in terms of a
quasiconvex hull F(M, t) of the function Fmin(M, t) = min{F+(M) + t, F−(M)} by the
formula i(t, Ω) = |Ω|F(0, t). The last formula specifies the dependence of i(t, Ω) on
Ω. The quasiconvex hulls of the energy densities of a two-phase elastic medium will be
investigated in §5.

A study of stability of the spherical phase interfaces in a ball under the condition
a+ �= a− was given in [7]. In that paper, it was shown that the critical points of the
energy functional of isotropic two-phase media can be nonstable.

An approach closest to ours in the study of isotropic media is contained in [53]. In
that paper, in the case where a− < a+, b± = 0, t ≥ 0, for the energy densities (3.12), an
analog of Lemma 3.2 was used to obtain a relatively explicit criterion for the existence
of equilibrium states. The monograph [54] is very useful, together with the bibliography
therein.

§4. Multidimensional problem with positive surface tension coefficient

The results of Subsection 2.3 for the problem with a positive coefficient of surface
tension are partially caried over to the multidimensional (m ≥ 2) case. Construction of
equilibrium states in explicit form being impossible, the main emphasis is made on their
qualitative analysis.

4.1. Statement of the problem and preliminary constructions. In order to deter-
mine the area of the phase interface boundary, to which the surface energy is proportional,
for each function χ ∈ Z

′ we introduce the quantity

(4.1) S[χ] = sup
h∈C1

0 (Ω,Rm),
|h|≤1

∫
Ω

χ div h dx.

We set

(4.2) Z = {χ ∈ Z
′ : S[χ] < ∞}.

In the case where the support of the function χ is separated from its complement in
the domain Ω by a continuously differentiable (m− 1)-dimensional surface Γ , the Stokes
formula yields

(4.3) S[χ] = sup
h∈C1

0 (Ω,Rm),
|h|≤1

∫
Γ

h · n dS,

where n is the unit normal vector to Γ , looking outward with respect to suppχ. Cal-
culating the supremum on the right-hand side of (4.3), we see that, for smooth phase
interfaces, S[χ] coincides with the area of the interface boundary. For an arbitrary func-
tion χ ∈ Z

′, by the interface boundary area of suppχ and its complement we mean the
quantity (4.1). By definition, this quantity is finite if and only if χ ∈ Z.

Using the definition (4.2), we write the energy functional of a two-phase elastic medium
that takes into account the surface energy of the phase interface boundary in the form

(4.4) I[u, χ, t, σ] = I0[u, χ, t] + σS[χ], u ∈ H, χ ∈ Z, σ > 0,

where the functional I0[u, χ, t] and the space H are as defined in §3.
By an equilibrium state of a two-phase elastic medium with the energy functional

(4.4), we understand a pair put,σ, pχt,σ that minimizes this functional:

(4.5) I[put,σ, pχt,σ, t, σ] = inf
u∈H,χ∈Z

I[u, χ, t, σ], put,σ ∈ H, pχt,σ ∈ Z.
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As above, an equilibrium state is said to be single-phase if pχt,σ = 0 or pχt,σ = 1 almost
everywhere in Ω, and two-phase otherwise.

Now we list some properties of S[χ] needed in what follows. For the validity of (some
among) them, certain restrictions on the smoothness of the boundary of the domain Ω
are required; such restructions are always assumed to be fulfilled in what follows.

Let

(4.6) Ω ⊂ R
m, m ≥ 2, be a bounded domain with Lipschitz boundary.

Then:

(1) if a sequence of functions χn ∈ Z converges almost everywhere to a function χ,
then

(4.7) S[χ] ≤ lim inf
n→∞

S[χn],

provided that the right-hand side of (4.7) is finite, and χ ∈ Z;
(2) any sequence χn ∈ Z with S[χn] ≤ R �= R(n) admits selection of a subsequence

χn′ such that

(4.8) χn′(x) → χ(x) almost everywhere on Ω and χ ∈ Z;

(3) if χ ∈ Z is such that for fixed γ ∈ (0, 1) we have

(4.9)
1

|Ω|

∫
Ω

χdx ≤ γ,

then

(4.10)

(∫
Ω

χdx

)m−1
m

≤ κγS[χ],

where κγ = κγ(Ω) is a positive constant.

Statement (1) means the lower semicontinuity of the function S[χ] with respect to
convergence almost everywhere, Statement (2) is related to the fact that the embedding
of the space BV (Ω) in L1(Ω) is compact, and statement (3) is called the isoperimetric
inequality. Obviously, S[χ] = 0 if and only if χ ≡ 0 or χ ≡ 1.

The following example of a function χ ∈ Z
′ \ Z will be useful.

Lemma 4.1. Let v, χ be an arbitrary solution of system (3.19) with α �= 0 and Q ∈ (0, 1)
constructed in Lemma 3.5 for some Vitali covering of the domain Ω. Then χ ∈ Z

′ \ Z.

To establish the relationship between the sets Z
′ and Z, we introduce the additional

set

(4.11) Z
′′ =

{
χ ∈ L∞(Ω) : 0 ≤ χ(x) ≤ 1 almost everywhere on Ω

}
.

Clearly,

(4.12) Z ⊂ Z
′ ⊂ Z

′′.

We recall the definition of ∗-weak convergence. We say that χn
∗
⇁ χ, χn, χ ∈ L∞(Ω), if

for all f ∈ L1(Ω) we have

(4.13)

∫
Ω

fχn dx →
∫
Ω

fχ dx.

It is known that the set Z′′ is compact with respect to ∗-weak convergence:

from any sequence χn ∈ Z
′′ one can select a subsequence χn′ ∗-weak convergent

to a function χ ∈ Z
′′.
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Let Z∗, Z
′
∗, Z

′′
∗ denote the ∗-weak closure of sets Z, Z′, Z′′, respectively. It follows

that

(4.14) Z
′′
∗ = Z

′′.

Lemma 4.2. (a) We have

(4.15) Z∗ = Z
′
∗ = Z

′′
∗ .

(b) If a sequence χn ∈ Z
′ is ∗-weak convergent to χ ∈ Z

′, then χn → χ in the space
Lp(Ω) for any p ∈ [1,∞).
(c) For any χ ∈ Z

′ there exists a sequence χn ∈ Z such that χn → χ in the space Lp(Ω)
for any p ∈ [1,∞). The sequence χn can be chosen so that, for each n,

(4.16) suppχn =

N(n)⋃
j=1

sωj ,

where the ωj are strictly inner subdomains of the domain Ω with smooth boundaries,
sωj ∩ sωk = ∅ for j �= k.

We return for a while to the functional I0[u, χ, t] with zero coefficient of surface tension.
As before, we assume that the admissible displacement fields are functions of class H,
and as admissible phase distributions we choose one of the three sets Z, Z′, or Z′′. If we
assume that the set Z

′ is a standard admissible set of phase distributions, then the set
Z narrows, and the set Z′′ extends the domain of the functional I0.

For each t, we set

μ(t) = inf
u∈H,χ∈Z

I0[u, χ, t],

μ′(t) = inf
u∈H,χ∈Z′

I0[u, χ, t],

μ′′(t) = inf
u∈H,χ∈Z′′

I0[u, χ, t].

(4.17)

For these quantities and each t, the following inequalities are obvious:

(4.18) −∞ < μ′′(t) ≤ μ′(t) ≤ μ(t) < ∞.

Lemma 4.3. We have

(4.19) μ′′(t) = μ′(t) = μ(t).

The importance of the second identity in (4.19) is that in the definition (3.29) of the
function i(t, Ω), the replacement of the set Z′ by the set Z does not affect the magnitude
of this function.

The replacement of the admissible set of phase distributions Z
′ by the set Z

′′ has a
mechanical interpretation. The function χ ∈ Z

′ describes the situation when at each
point x ∈ Ω a substance can be realized only in one of the phases, while the function
χ ∈ Z

′′ admits the existence of a mixture of phases at the point x with indices + and −
in fractions χ(x) and 1− χ(x), respectively.

In the next lemma, we discuss the relationship between the initial and extended prob-
lems for the functional I0[u, χ, t].

Lemma 4.4. Suppose that, for some t, the variational problem

(4.20) I0[rut, rχt, t] = inf
u∈H,
χ∈Z

′′

I0[u, χ, t], rut ∈ H, rχt ∈ Z
′′

is solvable. Then the following is true.
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(a) For any its solution rut, rχt we have

rχt(x) = 1 for almost all x ∈ Ω such that φ(x, t) < 0,

rχt(x) = 0 for almost all x ∈ Ω such that φ(x, t) > 0,

rχt(x) ∈ [0, 1] for almost all x ∈ Ω such that φ(x, t) = 0,

φ(x, t) =
(
F+(∇rut(x))− F−(∇rut(x))

)
+ t;

(4.21)

(b) for such t, problem (3.10) is also solvable; every its solution put, pχt is a solution of
problem (4.20), and any solution rut, rχt of problem (4.20) gives rise to a solution put, pχt

of problem (3.10) by the following rule:

put(x) = rut(x) everywhere in Ω,

pχt(x) = rχt(x) for x ∈ Ω such that φ(x, t) �= 0,

pχt(x) is an arbitrary characteristic function

on the set of points x ∈ Ω such that φ(x, t) = 0.

(4.22)

Let us find out where the assertions of Lemma 4.4 lead to in the case of isotropic
two-phase media.

Lemma 4.5. Suppose that identities (3.12) and (3.14) are true. Then:
(a) for t− < t+, each solution of problem (4.20) is a solution of problem (3.10);
(b) for t− = t+ = t∗ and t �= t∗, each solution of problem (4.20) is a solution of
problem (3.10);
(c) for t− = t+ = t∗ and t = t∗, the set of all solutions of problem (4.20) is exhausted by
the pairs where rut = 0 and rχt is an arbitrary function in Z

′′, while the set of all solutions
of problem (3.10) has the form put = 0, pχt is an arbitrary element of Z′.

Thus, in the case of isotropic media, in general, transition to a mixture of phases
proposed in Lemma 4.4 does not lead to equilibrium states in which these mixtures are
realized. An exception is only the degenerate case treated in part (c) of the lemma.

4.2. The existence of equilibrium states. Taking the surface energy of the interface
boundary into account significantly improves the mathematical properties of the energy
functional of a two-phase elastic medium. In particular, this leads to the solvability of
the variational problem (4.5) for any temperatures t and any positive surface tension
coefficients σ. The proof of the existence of equilibrium states is based on traditional
methods of calculus of variations, based on the coerciveness and lower semicontinuity of
the functional under study. The existence of these properties for the functional (4.4) is
established in the next lemma.

Lemma 4.6. The energy functional (4.4) is coercive:

I[un, χn, t, σ] → ∞ for fixed t, σ ∈ R, σ > 0,

and any sequences un ∈ H, χn ∈ Z, n = 1, 2, . . . , with

‖un‖W 1
2
+ S[χn] → ∞ as n → ∞,

(4.23)

and lower semicontinuous: for any functions un, u ∈ W 1
2 (Ω,Rm) and χn, χ ∈ Z, n =

1, 2, . . . , such that

(4.24) un ⇁ u in the space W 1
2 (Ω,Rm) and χn → χ almost everywhere on Ω

for all t, σ ∈ R, σ > 0, we have

(4.25) I[u, χ, t, σ] ≤ lim inf
n→∞

I[un, χn, t, σ].

Lemma 4.6 ensures the following statement.
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Theorem 4.1. The variational problem (4.5) for the functional (4.4) is solvable.

We shall try to answer the question as to why the above technique does not yield the
solvability of problem (3.10).

Let un ∈ H, χn ∈ Z
′ be a minimizing sequence of the functional I0[u, χ, t] for some t.

Then inequality (3.4) implies the uniform boundedness of the sequence ‖un‖W 1
2
. Hence,

from this minimizing sequence we can select a subsequence (we keep the same notation)
such that

(4.26) un ⇁ u in the space W 1
2 (Ω,Rm), χn

∗
⇁ χ, u ∈ W 1

2 (Ω,Rm), χ ∈ Z
′′.

Since the limit function χ in (4.26) may fail to belong to the set Z′, we need to replace
problem (3.10) by problem (4.20). By Lemma 4.4, the solvability of problem (4.20)
implies the solvability of (3.10). For problem (4.20), an analog of Theorem 4.1 will be
true if we are able to prove that for any sequences un ∈ W 1

2 (Ω,Rm), χn ∈ Z
′′ satisfying

(4.26), we have

(4.27) I0[u, χ, t] ≤ lim inf
n→∞

I0[un, χn, t].

Theorem 4.2. Inequality (4.27) is fulfilled for some t and all sequences un ∈ W 1
2 (Ω,Rm),

χn ∈ Z
′′ satisfying (4.26) if and only if

(4.28) A+ = A−, ζ+ = ζ−.

This theorem removes a dissonance between the example of the nonexistence of equi-
librium states for σ = 0, as constructed in Lemma 3.1, and the method of the proof of
the existence of equilibrium states for σ > 0 based on Lemma 4.6.

The positivity of the surface tension coefficient not only leads to the existence of
equilibrium states, but also has a certain impact on their properties. In the following
theorem we use the temperatures of phase transitions (3.28) and the constant occurring
in the isoperimetric inequality (4.10).

Theorem 4.3. (a) The two-phase states of equilibrium may exist only under the following
restrictions on the parameters t and σ:

(4.29) t− < t < t+, 0 < σ ≤
3κ1/2(Ω)

ν
|[Aζ]|2

( |Ω|
2

) 1
m

.

(b) For all two-phase states of equilibrium put,σ, pχt,σ, the volume fraction of the phase
with index + satisfies the inequality

γ(σ) ≤ 1

|Ω|

∫
Ω

pχt,σ dx ≤ 1− γ(σ), σ > 0,

(0, 1/2] � γ(σ) =
1

|Ω|
( νσ

3κ1/2(Ω)|[Aζ]|2
)m

.
(4.30)

(c) For every t and any positive σ, the single-phase states u ≡ 0, χ ≡ 0 and u ≡ 0, χ ≡ 1
are local minima of the functional (4.4) with respect to any perturbation in the space H

of functions u and sufficiently L1(Ω)-small perturbations of class Z of functions χ.

Statement (a) of Theorem 4.3 provides localization of the values of t, σ for which two-
phase equilibrium states can exist. The fact of localization itself is quite plausible: the
existence of two-phase equilibrium states is energetically disadvantageous for large values
of |t| and σ. Estimates (4.29) and the coordination of the first of them with the case of
σ = 0 deserve our attention. Note that for t− = t+, the functional (4.4) has no two-phase
equilibrium states for any σ. Assertions (b) and (c) of the theorem indicate from different
viewpoints that for σ > 0, the arising of new phase embryos with an arbitrarily small
volume is energetically unfavorable.
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4.3. Temperatures of phase transitions. In this subsection, we give a partial gener-
alization of the one-dimensional description of the set of all equilibrium states for positive
coefficient of surface tension to the multidimensional case. Let us study the dependence
of the phase transition temperatures on the coefficient of surface tension. First, we spec-
ify the set of values of the parameters t and σ for which two-phase equilibrium states
obtained in Theorem 4.3(a) are possible.

By analogy with (3.29), we introduce the functions

j+(t, σ,Ω) = inf
u∈H

I[u, χ+, t, σ], j−(t, σ,Ω) = inf
u∈H

I[u, χ−, t, σ],

where χ+ ≡ 1, χ− ≡ 0,

jmin(t, σ,Ω) = min{j−(t, σ,Ω), j+(t, σ,Ω)},
j(t, σ,Ω) = inf

u∈H,
χ∈Z

I[u, χ, t, σ], t, σ ∈ R1, σ ≥ 0.

(4.31)

Obviously,

j+(t, σ,Ω) = i+(t, Ω), j−(t, σ,Ω) = i−(t, Ω), jmin(t, σ,Ω) = imin(t, Ω),

the function j( . , . , Ω) is locally bounded from below, and by Lemma 4.3 we have
j(t, 0, Ω) = i(t, Ω). The definitions (4.31) show that

jmin(t, σ,Ω)− j(t, σ,Ω) ≥ 0 for all t, σ ∈ R, σ ≥ 0,

and the strict inequality is a criterion for the
absence of single-phase equilibrium states.

(4.32)

In the following lemmas, we give the description of the set where the left-hand side of
inequality (4.32) is positive.

Lemma 4.7. The function j( . , . , Ω) is concave, continuous for t, σ ∈ R, σ ≥ 0, and
satisfies the local Lipschitz condition for σ > 0. For fixed t, the function j(t, . , Ω)
increases monotonically.

Lemma 4.8. There exists a nonnegative bounded function σ(t, Ω) such that

jmin(t, σ,Ω)− j(t, σ,Ω) > 0 if σ ∈ (0, σ(t, Ω)),

jmin(t, σ,Ω)− j(t, σ,Ω) = 0 if σ ≥ σ(t, Ω).
(4.33)

Moreover,

(4.34) σ(t, Ω) = 0 if t �∈ (t−, t+), σ(t, Ω) > 0 if t ∈ (t−, t+).

Lemma 4.9. The function σ( . , Ω) is convex on each of the semiaxes (−∞, t∗], [t∗,∞).
This function is strictly monotone increasing in the variable t ∈ [t−, t

∗], strictly monotone
decreasing in the variable t ∈ [t∗, t+], and Lipschitz on the real line.

The graph of the function σ( . , Ω) splits the half-plane of parameters t, σ, σ > 0, into
the zones (2.21). Our next goal is to describe the sets of all equilibrium states in each of
these zones. We start with the simplest case where the parameters t, σ belong to one of
the zones V<, V

−
> , V +

> , V ∗
>.

Theorem 4.4. The following statements are true:

put,σ, pχt,σ =

⎧⎪⎨
⎪⎩

pu+, χ+ if t, σ ∈ V −
> ,

pu−, χ− if t, σ ∈ V +
> ,

pu±, χ± if t, σ ∈ V ∗
>,

u± ≡ 0, χ+ ≡ 1, χ− ≡ 0,

and for t, σ ∈ V< only two-phase equilibrium states exist.

(4.35)
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To describe the set of all equilibrium states in the remaining zones V −
= , V +

= , V ∗
=, we

need additional facts related to the properties of solutions of problem (4.5). These prop-
erties are given in Lemmas 4.10–4.13; they are not only used to describe the equilibrium
states in the remaining zones, but are also of independent interest. The first of them
generalizes the property of lower semicontinuity to the case of variable parameters t and
σ.

Lemma 4.10. (a) Suppose that tn, t ∈ R, un, u ∈ H, χn, χ ∈ Z
′, and

tn → t, un ⇁ u in the space W 1
2 (Ω,Rm),

χn(x) → χ(x) almost everywhere on Ω as n → ∞.
(4.36)

Then

(4.37) I0[u, χ, t] ≤ lim inf
n→∞

I0[un, χn, tn].

(b) Suppose that tn, t, σn, σ ∈ R, σn, σ > 0, un, u ∈ H, χn, χ ∈ Z, and

tn → t, σn → σ, un ⇁ u in the space W 1
2 (Ω,Rm),

χn(x) → χ(x) almost everywhere in Ω as n → ∞.
(4.38)

Then under the condition S[χn] ≤ R �= R(n), we have

(4.39) I[u, χ, t, σ] ≤ lim inf
n→∞

I[un, χn, tn, σn].

The next lemma asserts that convergence of energy functionals improves the conver-
gence of their arguments.

Lemma 4.11. (a) Under condition (4.36), suppose that

(4.40) I0[un, χn, tn] → I0[u, χ, t].

Then un → u in the space W 1
2 (Ω,Rm).

(b) Under condition (4.38), suppose that

(4.41) I[un, χn, tn, σn] → I[u, χ, t, σ], S[χn] ≤ R �= R(n).

Then

(4.42) un → u in the space W 1
2 (Ω,Rm), S[χn] → S[χ].

Now we establish the continuous dependence of equilibrium states on the parameters t
and σ. Since for fixed t and σ, even in the one-dimensional case, in general, an equilibrium
state is not unique, the concept of continuous dependence itself needs to be specified.

Lemma 4.12. For any sequences tn, σn such that

(4.43) tn → t, σn → σ, σ, σn > 0,

and any sequence of equilibrium states putn,σn
, pχtn,σn

there exists a sequence tn′ , σn′ and
a state of equilibrium put,σ, pχt,σ such that

putn′ ,σn′ → put,σ in the space W 1
2 (Ω,Rm),

pχtn′ ,σn′ → pχt,σ almost everywhere on Ω, S[pχtn′ ,σn′ ] → S[pχt,σ].
(4.44)

We denote by Bt,σ, t, σ ∈ R, σ > 0, the set of all equilibrium states of the functional
I[u, χ, t, σ]. By Theorem 4.1, Bt,σ �= ∅ for any given t and σ.

Lemma 4.13. Any sequence pun, pχn ∈ Bt,σ has a subsequence pun′ , pχn′ such that

pun′ → pu ∈ H in the space W 1
2 (Ω,Rm),

pχn′ → pχ ∈ Z almost everywhere on Ω, S[pχn′ ] → S[pχ],
(4.45)

and pu, pχ ∈ Bt,σ.
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Lemmas 4.10–4.13 are used partially in the proof of the following theorem.

Theorem 4.5.

Bt,σ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

pu+, χ+ and at least one

two-phase equilibrium state if t, σ ∈ V −
= ,

pu−, χ− and at least one

two-phase equilibrium state if t, σ ∈ V +
= ,

pu±, χ± and at least one

two-phase equilibrium state if t, σ ∈ V ∗
=.

pu± ≡ 0, here χ+ ≡ 1, χ− ≡ 0.

(4.46)

By Lemma 4.9, for t− < t+, the function σ( . , Ω) takes its maximal value σ∗ at a
single point t = t∗. As in the one-dimensional case, we define the temperatures of the
phase transitions t±(σ,Ω) by formulas similar to (2.24), (2.25). Lemma 4.9 shows that
the functions t±( . , Ω) are continuous. In case t− < t+, the function t−( . , Ω) is strictly
monotone increasing on the interval [0, σ∗], the function t+( . , Ω) is strictly monotone
decreasing on the same interval, and

t±(0, Ω) = t±, t±(σ
∗, Ω) = t∗.

Since the functions t±( . , Ω) are inverses to the function σ( . , Ω) on the intervals
(−∞, t∗] and [t∗,∞), respectively, the function t+( . , Ω) is convex, and the function
t−( . , Ω) is concave. Therefore, the functions t±( . , Ω) satisfy the Lipschitz condition on
the half-axis (0,∞). The one-dimensional case demonstrates (see formulas (2.26), (2.27))
that the Lipschitz constant can grow unboundedly as σ → 0.

Theorems 4.4 and 4.5 imply a partial validity of the characterization 1–13 in Sub-
section 2.3 of the phase transition process with the temperature t varying from −∞ to
+∞. Statements 1–5 and 11–13 are valid, in which information on two-phase equilibrium
states should be replaced by the words “and at least one two-phase equilibrium state”.

To reformulate statements 6 and 10 of the characterization 1–13 for the multidimen-
sional case, we need to study the multivalued function

(4.47) pQ[t, σ] =
1

|Ω|

∫
Ω

pχt,σ(x) dx, put,σ, pχt,σ ∈ Bt,σ,

the value of which for every t and σ represents a subset of the interval [0, 1] (which may
also be a singleton).

Lemma 4.14. (a) The set pQ[t, σ] is closed. There exist equilibrium states

(4.48) put,σ,min, pχt,σ,min and put,σ,max, pχt,σ,max,

such that the numbers

(4.49) pQmin(t, σ) =
1

|Ω|

∫
Ω

pχt,σ,min(x) dx, pQmax(t, σ) =
1

|Ω|

∫
Ω

pχt,σ,max(x) dx

are the minimal and maximal elements of the set pQ[t, σ].

(b) The functions pQmin( . , σ), pQmax( . , σ) decrease monotonically. For t2 > t1 we have

(4.50) pQmin(t1, σ) ≥ pQmax(t2, σ).

(c) The limits

lim
t↑t0

pQmin(t, σ) ≡ pQmin(t0 − 0, σ), lim
t↓t0

pQmin(t, σ) ≡ pQmin(t0 + 0, σ),

lim
t↑t0

pQmax(t, σ) ≡ pQmax(t0 − 0, σ), lim
t↓t0

pQmax(t, σ) ≡ pQmax(t0 + 0, σ)
(4.51)
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exist and satisfy

pQmin(t0 − 0, σ) = pQmax(t0, σ), pQmin(t0 + 0, σ) = pQmin(t0, σ),

pQmax(t0 − 0, σ) = pQmax(t0, σ), pQmax(t0 + 0, σ) = pQmin(t0, σ).
(4.52)

This implies that the function pQmin( . , σ) is continuous from the right, and the function
pQmax( . , σ) is continuous from the left.

Theorems 4.4, 4.5 and Lemma 4.14 allow us to formulate a multidimensional analog
of statements 6 and 10 of the characterization 1–13 of phase transitions in the one-
dimensional case, proved in Subsection 2.3.

6′. Let t− < t+, σ ∈ (0, σ∗). Then

pQmin(t, σ) = pQmax(t, σ) =

{
1 if t < t−(σ,Ω),

0 if t > t+(σ,Ω),

0 < pQmin(t, σ) ≤ pQmax(t, σ) < 1 for t ∈ (t−(σ,Ω), t+(σ,Ω)),

pQmax(t−(σ,Ω), σ) = 1, pQmin(t−(σ,Ω), σ) ∈ (0, 1),

pQmax(t+(σ,Ω), σ) ∈ (0, 1), pQmin(t+(σ,Ω), σ) = 0.

10′. Let t− < t+, σ = σ∗. Then

pQmin(t, σ
∗) = pQmax(t, σ

∗) =

{
1 if t < t∗,

0 if t > t∗,

pQmax(t
∗, σ∗) = 1, pQmin(t

∗, σ∗) = 0,

pQ[t∗, σ∗] contains a nonempty subset of the interval (0, 1).

We proceed to the study of the dependence of the phase transition temperatures
t±(σ,Ω) on the second argument. A complete result is obtained only for the families of
domains Ωe and Ωλ defined in (3.41).

In the notation (4.1) of the area of the phase interface boundary, we incorporate
temporarily the argument Ω indicating its dependence on the domain of integration.
Clearly, for rχ ∈ Z ≡ Z(Ω) we have

S[χ,Ωe] = S[rχ,Ω], x ∈ Ωe, rx ∈ Ω, x = rx+ e, χ(x) = rχ(rx), χ ∈ Z(Ωe),

S[χ,Ωλ] = λm−1S[rχ,Ω], x ∈ Ωλ, rx ∈ Ω, x = λrx, χ(x) = rχ(rx), χ ∈ Z(Ωλ).
(4.53)

In the notation (4.4) of the energy functional of a two-phase medium, we also temporar-
ily incorporate the argument Ω indicating its dependence on the domain of integration.
Using (4.53), we obtain

I[u, χ, t, σ,Ωe] = I[ru, rχ, t, σ,Ω], u(x) = ru(rx),

I[u, χ, t, σ,Ωλ] = λmI
[

ru, rχ, t,
σ

λ
,Ω

]
, u(x) = λru(rx).

(4.54)

Then for equilibrium energies (4.31) we get

(4.55) j(t, σ,Ωe) = j(t, σ,Ω), j(t, σ,Ωλ) = λmj
(
t,
σ

λ
,Ω

)
.

Moreover,

jmin(t, σ,Ωe) = jmin(t, σ,Ω) = imin(t, Ω),

jmin(t, σ,Ω
λ) = λmjmin(t,

σ

λ
,Ω) = λmimin(t, Ω).

(4.56)
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Formulas (4.55), (4.56) lead to a physically obvious conclusion that even with a positive
surface tension coefficient the process of phase transitions does not depend on the shift
of the domain Ω by a fixed vector e. These formulas also prove that the process of phase
transitions in the domain Ωλ for a medium with a coefficient of surface tension σ > 0 is
the same as in the domain Ω for a medium with a coefficient of surface tension σ/λ. The
last result is a direct analog of the one-dimensional situation and is caused by different
scales of the volume and surface components of the energy functional when the domain
of integration is stretched.

For t− < t+, as in the one-dimensional case, for a medium with a surface tension
coefficient σ > 0, we introduce the critical value of the stretching parameter λ,

(4.57) λ∗ =
σ

σ∗ ,

characterized by the properties

t−(σ,Ω
λ) < t+(σ,Ω

λ) if λ > λ∗,

t−(σ,Ω
λ) = t+(σ,Ω

λ) if λ ≤ λ∗.
(4.58)

Determining the quantity λ∗ experimentally, we can use formula (4.57) to calculate the
coefficient of surface tension σ characterizing the given two-phase medium.

Unfortunately, in the multidimensional case we have no explicit formula for σ∗ similar
to relation (2.20) in the one-dimensional case. This defect does not allow us to replace
(4.57) by a multidimensional analog of (2.28). We are forced to be only restricted to a
two-sided estimate of the quantity σ∗ in the unit ball.

Lemma 4.15. Let Ω = B be the unit ball in the space R
3 centered at the origin. Then

σ∗
min ≤ σ∗ ≤ σ∗

max,

σ∗
min =

1

54 3
√
2
ν tr2[Aζ], σ∗

max =
2

ν
|[Aζ]|2.

(4.59)

Taking estimates (4.59) and formula (4.57) into account, we obtain an interval for the
surface tension coefficient σ as a function of the parameter λ∗, determined experimentally
for the unit ball:

(4.60) σ ∈ [λ∗σ∗
min, λ

∗σ∗
max].

4.4. Critical points of the energy functional. For functions ru ∈ H and rχ ∈ Z,
consider their perturbations u, χ constructed by formula (3.48).

(1) The function χ belongs to Z, and the linear in h part of the increment S[χ]−S[rχ]
coincides with the quantity

(4.61)

∫
Ω

(
div h(x)− (∇h(x)rν(x), rν(x))

)
drμ(x),

where the Borel measure rμ and the vector-valued function rν are determined by
the function rχ, the support of the measure rμ lies in

Γ = Ω ∩ ∂(supp rχ),

and |rν(x)| = 1 for rμ-almost all points x ∈ Ω.
(2) If the set Γ is a continuously differentiable surface on the support of the function

h, then in (4.61) we have

(4.62) rν(x) = n(x), x ∈ Γ, rμ(x) = dSx,

where n(x) is the unit normal vector to Γ outward with respect to supp rχ.
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We say that a pair ru ≡ rut,σ ∈ H, rχ ≡ rχt,σ ∈ Z is a critical point of the energy
functional I if∫

Ω

{
rχF+

Mij
(∇ru) + (1− rχ)F−

Mij
(∇ru)

}
vixj

dx

+

∫
Ω

{
rχ((F+(∇ru) + t)δkj − rui

xk
F+
Mij

(∇ru))

+ (1− rχ)(F−(∇ru)δkj − rui
xk
F−
Mij

(∇ru))
}
hk
xj

dx

+ σ

∫
Ω

(
div h(x)− (∇h(x)rν(x), rν(x))

)
drμ(x) = 0

for all v ∈ H, h ∈ C1
0 (Ω,Rm).

(4.63)

Since the left-hand side in (4.63) is the linear part of the increment of I under the
perturbation (3.48), the equilibrium states put,σ, pχt,σ must be critical points. Nevertheless,
not every critical point is an equilibrium state. For example, the pairs ru ≡ 0, rχ ≡ 0 and
ru ≡ 0, rχ ≡ 1 are critical points of the energy functional I for all values of t and σ, while
they are equilibrium states only in the cases indicated in (4.35), (4.46).

Theorem 4.6. Let a ball Br(x0) ⊂ Ω and critical point ru, rχ of the energy functional I
be fixed.
(a) If the function rχ is constant in Br(x0), then ru is of class C∞(Br(x0), R

m) and
satisfies equations (3.52).
(b) Let the ball Br(x0) be divided into two parts by an (m − 1)-dimensional surface Γ
of class Ck,ε, k ≥ 2, ε ∈ (0, 1). Suppose that rχ = 1 in B+

r (x0), and rχ = 0 in B−
r (x0).

The function ru is of class Ck,ε in each of the domains B±
r (x0) up to the phase interface

boundary Γ and satisfies equations (3.53). Condition (3.53) on the jump of the stress
tensor Θ is fulfilled on Γ , and the condition on the jump of the tensor of the chemical
potential Φ is replaced by the relation

(4.64) [Φkl[ru, rχ]]|Γnknl + σH = 0,

where H is the mean curvature of the surface Γ in the direction n.

In particular, identity (4.63) for the critical point ru, rχ means that, by (3.8)), the
function ru represents a generalized solution of an elliptic system, which we rewrite in the
form

L
rχru = Lru+ L

rχru = F,

(Lru)i = −(a−ijklru
k
xl
)xj

, (L
rχru)i = −(rχ[aijkl]ru

k
xl
)xj

, Fi = −(rχ[aijklζkl])xj
,

i = 1, . . . ,m.

(4.65)

It is known that

the operator L is an isomorphism

of the spaces W̊ 1
p (Ω,Rm) and W−1

p (Ω,Rm) for any p ∈ [2,∞).
(4.66)

Obviously, the operator L
rχ maps the space W̊ 1

p (Ω,Rm) into W−1
p (Ω,Rm) and for each

p ∈ [2,∞) we have

(4.67) ‖L
rχ‖W̊ 1

p→W−1
p

≤ Cp|[A]|

uniformly with respect to the functions rχ, and F ∈ W−1
p (Ω,Rm) for the same p.

Therefore, there exists a number αp > 0 such that whenever

(4.68) |[A]| < αp,
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the operator L
rχ is an isomorphism between W̊ 1

p (Ω,Rm) and W−1
p (Ω,Rm) for all rχ ∈ Z.

Hence, the function ru, belonging originally to the spaceH, falls into the space W̊ 1
p (Ω, R

m),

p > 2, for sufficiently close matrices A+ and A−.
In particular, if for given p > 2, estimate (4.68) holds true, then the equilibrium

displacement field put,σ has higher smoothness:

put,σ ∈ W̊ 1
p (Ω,Rm).

This allows us to judge whether the interface boundary is smooth.

Theorem 4.7. Suppose that m ≤ 7 and estimate (4.68) is fulfilled for p > 2m. Then for
a two-phase equilibrium state, the phase interface boundary is equivalent to a continuously
differentiable surface.

4.5. Bibliographical notes. The results of this section are based on the papers [24,
37–39, 41–43, 55]. There, also the case of various boundary conditions and the possible
presence of strong fields was treated. From a mathematical point of view, the surface
energy serves as a regularization of the functional with zero coefficient of the surface
tension. Among all possible definitions of the phase interface boundary area [1], we
chose the perimeter of the set, see [6]. It is most convenient for problems of calculus of
variations and, moreover, it does not change when the support of the function χ changes
by a set of measure zero. The properties (4.7)–(4.10) of the area (4.1) were proved in [51].
In that paper, it was also mentioned that in the one-dimensional case, the definition (4.1)
coincides with (2.4). The proof of Lemma 4.1 was given in [15].

As a different regularization, we can propose the term of the form σ‖u‖q
W 2

2
of degree q

with a positive coefficient σ. This regularization occurs in the moment theory of elasticity.
If the number q is chosen properly, then the dependence of equilibrium states on the
parameters t and σ at a qualitative level is similar to the dependence on these parameters
for the regularization studied in this section, see [56]. Variational calculus statements
related to the lower semicontinuity of functionals and improving the convergence of their
arguments as energies converge are traditional, see [52]. Formula (4.61) for the perimeter
variation is contained in [6].

The question about the smoothness of free surfaces is very complicated. The available
techniques of its investigation (see [50]) usually provide answers only in model cases. The
smoothness of the phase boundary was also established in the model case (4.68). It is
based on the result on the smoothness of the generalized minimal surface, see [66], and
the statement (4.66) presented in [61].

We briefly dwell on the terminology. In the mechanics of continuous media, a two-
phase elastic medium for which only one of the phases can occur at each point of the
domain Ω in a state of equilibrium, is called a heterogeneous medium. The passage to
phase mixtures realized in Lemmas 4.4 and 4.5 is an attempt of lifting the heterogeneity
requirement.

§5. Passage to the limit as the surface tension coefficient tends to zero

Our goal in this section is an attempt to construct limit points of equilibrium states as
the surface tension coefficient tends to zero. The following results only partially coincide
with analogous statements in the one-dimensional case. This happens because equilibrium
states with finite area of the phase interface boundary may fail to exist if the coefficient
of surface tension is zero and, moreover, equilibrium states may even be totally absent.

5.1. Equilibrium states and minimizing sequences. At the first step, we establish
the role of the equilibrium states put,σ, pχt,σ of the energy functional I[u, χ, t, σ] with
positive σ and fixed t as σ → 0.
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Lemma 5.1. Any sequence of equilibrium states

(5.1) put,σn
, pχt,σn

, σn > 0, σn → 0,

is minimizing for the functional I0[u, χ, t].

At the second step, we construct an auxiliary functional Imin[u, t] such that the set of
accumulation points of all minimizing sequences contains the set of accumulation points
of the first components of all sequences (5.1). The accumulation points are understood
in the sense of weak convergence in W 1

2 (Ω,Rm).
Inequality (3.1) implies the existence of a number R = R(t) > 0 such that ‖put,σn

‖W 1
2
≤

R for all terms of the sequence (5.1). Therefore, for the sequences (5.1) the set we are
interested in is nonempty.

Using the energy densities (3.6), we introduce the function

(5.2) Fmin(M, t) = min{F+(M) + t, F−(M)}, M ∈ R
m×m, t ∈ R,

and associate with it the functional

(5.3) Imin
0 [u, t] =

∫
Ω

Fmin(∇u, t) dx, u ∈ H,

for which we set the following variational problem:

(5.4) Imin
0 [put, t] = inf

u∈H

Imin
0 [u, t], put ∈ H.

For convenience of presentation, for each function u ∈ H we construct a function χu by
the rule

Z
′ � χu(x) =

⎧⎪⎨
⎪⎩
1 if F+(∇u(x)) + t < F−(∇u(x)),

0 if F+(∇u(x)) + t > F−(∇u(x)),

any number if F+(∇u(x)) + t = F−(∇u(x))

almost everywhere on Ω.

(5.5)

In (5.5), for compatibility of inclusion and the third condition it is required that for
almost all x ∈ Ω satisfying F+(∇u(x)) + t = F−(∇u(x)), the function χu(x) take only
two values: 0 and 1.

Lemma 5.2. (a) Each solution put of problem (5.4) gives rise to a solution put, pχt of
problem (3.10) with the same function put and pχt = χ

put
. For each solution put, pχt of

problem (3.10), the function put solves problem (5.4) and pχt = χ
put
.

(b) For each minimizing sequence un, χn, n = 1, . . . , of the functional I0[u, χ, t], the
sequence un is minimizing for the functional Imin

0 [u, t]. If un is a minimizing sequence
for Imin

0 [u, t], then the sequence un, χun
is minimizing for I0[u, χ, t].

At the third step, we identify the accumulation points of the minimizing sequences of
the functional (5.3) with solutions of the relaxed variational problem. We consider the
following quasiconvex hull of the function (5.2):

F(M, t,Ω) = |Ω|−1 inf
u∈H

∫
Ω

Fmin(M +∇u, t) dx = |Ω|−1 inf
u∈H,
χ∈Z

′

I0[u+ vM , χ, t],

M ∈ R
m×m, t ∈ R, vM (x) = Mx.

(5.6)

It is known that the function (5.6) does not depend on the domain Ω:

F(M, t,Ω) ≡ F(M, t).
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Lemma 5.3. The function F( . , . ) is locally Lipschitz and satisfies the inequalities

C1(|e(M)|2 − |t| − 1) ≤ F(M, t) ≤ C2(|e(M)|2 + |t|+ 1),

Ci �= Ci(M, t,Ω) > 0, i = 1, 2.
(5.7)

With the function (5.6) we associate the functional

(5.8) J[u, t] =

∫
Ω

F(∇u, t) dx, u ∈ H,

and consider the following variational problem:

(5.9) I[qut, t] = inf
u∈H

I[u, t], qut ∈ H.

The following facts are known.

(1) By the properties of the quasiconvex hull (5.6) and Lemma 5.3, the functional
(5.8) is weakly lower semicontinuous and coercive in the space H. Therefore,
problem (5.9) is solvable. Moreover,

inf
u∈H

Imin
0 [u, t] = min

u∈H

I[u, t].

(2) Each solution of problem (5.9) is a weak limit in the space H of some minimizing
sequence of the functional (5.3).

(3) Every weakly convergent sequence in H minimizing the functional (5.3), weakly
converges in H to a solution of problem (5.9). In particular, every solution of
problem (5.4) solves problem (5.9).

Since problem (5.4) can be unsolvable (Lemma 3.1), properties (1)–(3) allow us to
interpret the solution of (5.9) as a generalized solution of (5.4). Problem (5.9) is usually
said to be relaxed relative to problem (5.4).

The following statement is a result of the above three steps.

Theorem 5.1. For any weakly convergent subsequence put,σn′ , pχt,σn′

(5.10) put,σn′ ⇁ qut in the space H, pχt,σn′
∗
⇁ qχt ∈ Z

′′

of a sequence of equilibrium states put,σn
, pχt,σn

, σn > 0, σn → 0, the function qut is a
solution of problem (5.9).

Each such sequence of equilibrium states contains a subsequence weakly convergent in
the sense of (5.10).

At the fourth step, we are going to study the behavior of the interface boundary area
for equilibrium states put,σ, pχt,σ, σ > 0 as σ → 0. The resulting information will give
a negative answer to the question as to whether any solution of problem (5.9) can be
obtained by the method presented in Theorem 5.1. Recall the notation Bt,σ, t, σ ∈ R,
σ > 0, for the set of all equilibrium states of the functional I[u, χ, t, σ]. Let Bt denote
the set (possibly empty) of all equilibrium states of the functional I0[u, χ, t].

Lemma 5.4. (a) For any t, σ ∈ R, σ > 0, there exist pairs

(5.11) pumin
t,σ , pχmin

t,σ ∈ Bt,σ, pumax
t,σ , pχmax

t,σ ∈ Bt,σ

such that

(5.12) S[pχmin
t,σ ] = inf

u,χ∈Bt,σ

S[χ], S[pχmax
t,σ ] = sup

u,χ∈Bt,σ

S[χ].

(b) For given t, suppose that the set Bt is nonempty and contains equilibrium states put,
pχt with pχt ∈ Z. Then there exists a pair

(5.13) pumin
t , pχmin

t ∈ Bt
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such that

(5.14) S[pχmin
t ] = inf

u,χ∈Bt

S[χ].

We note that if condition (b) is fulfilled, then an analog of the second pair in (5.11)
with a finite area of phase interface boundary may fail to exist. This can be easily verified
by using the solution of the homogeneous isotropic problem on phase transitions in a ball.
The lemma does not guarantee the uniqueness of solutions of problems (5.12), (5.14).

We put

(5.15) Smax(t, σ) = S[pχmax
t,σ ], Smin(t, σ) = S[pχmin

t,σ ], t, σ ∈ R, σ > 0.

Using Theorems 4.4 and 4.5, we conclude that

Smax(t, σ) = Smin(t, σ) = 0 for σ > σ(t),

Smax(t, σ) > Smin(t, σ) = 0 for σ = σ(t) > 0,

Smax(t, σ) ≥ Smin(t, σ) > 0 for σ ∈ (0, σ(t)).

(5.16)

The following statement is a basis for our next results.

Lemma 5.5. For any t and any σ2 > σ1 > 0, we have

(5.17) Smax(t, σ2) ≤ Smin(t, σ1).

By (5.17) and the obvious inequality Smin(t, σ) ≤ Smax(t, σ), we have

Smax(t, σ2) ≤ Smax(t, σ1), Smin(t, σ2) ≤ Smin(t, σ1)

for all t, σ1, σ2, where σ2 > σ1 > 0.
(5.18)

The monotonicity (5.18) implies the existence of the limits

Smax(t, σ ± 0) = lim
ε→0

Smax(t, σ ± ε),

Smin(t, σ ± 0) = lim
ε→0

Smin(t, σ ± ε), σ > 0, ε > 0.
(5.19)

Lemma 5.6. For the limits (5.19), the following identities are true:

Smin(t, σ − 0) = Smax(t, σ), Smin(t, σ + 0) = Smin(t, σ),

Smax(t, σ − 0) = Smax(t, σ), Smax(t, σ + 0) = Smin(t, σ)

for all t, σ where σ > 0.

(5.20)

In particular, relations (5.20) mean the continuity of the function Smin(t, . ) from the
right, and the continuity of the function Smax(t, . ) from the left.

The following lemma is devoted to the behavior of the phase interface boundary area
as σ → 0.

Lemma 5.7. We have

(5.21) lim
σ↓0

Smax(t, σ) = lim
σ↓0

Smin(t, σ), lim
σ↓0

σSmax(t, σ) = 0,

where the limits in the first identity can be infinite.

Based on the behavior of the phase interface boundary area as σ → 0, we formulate a
criterion for the existence of a solution put, pχt ∈ Bt with pχt ∈ Z.

Lemma 5.8. (a) The set Bt of all solutions of the variational problem (3.10) contains
a solution put, pχt with pχt ∈ Z if and only if

(5.22) lim
σ↓0

Smin(t, σ) < ∞.
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(b) Under condition (5.22), any sequence of equilibrium states put,σn
, pχt,σn

∈ Bt,σn
,

σn > 0, σn → 0, has a subsequence put,σn′ , pχt,σn′ such that for some pair pumin
t , pχmin

t ∈ Bt

we have

put,σn′ → pumin
t in the space H,

pχt,σn′ → pχmin
t almost everywhere on Ω, S[pχt,σn′ ] ↑ S[pχmin

t ].
(5.23)

The last of the proposed lemmas gives a sufficient condition for the solvability of
problem (3.10).

Lemma 5.9. Suppose that in (5.10) we have qχt ∈ Z
′. Then Bt �= ∅.

From the assertions of the fourth step, the next theorem follows.

Theorem 5.2. Suppose that the set Bt is nonempty and contains a pair put, pχt with
pχt ∈ Z. Then in (5.10), only one of the pairs pumin

t , pχmin
t can play the role of the pair qut,

qχt.

5.2. Quasiconvex hull in the isotropic case. In the case of an isotropic two-phase
medium, we need to describe the set of all solutions of problem (5.9). For this, we
calculate explicitly the quasiconvex hull (5.6) for the energy densities (3.12) under the
condition (3.14).

Theorem 5.3. For the energy densities (3.12), (3.14), the quasiconvex hull (5.6) is
defined by the formula

(5.24) F(∇u, t) = a
| curlu|2

4
+ a(ui

xj
uj
xi

− | div u|2) +Rmin
c (t, z), z =

div u

m
,

where Rmin
c (t, . ) is the convex hull of the function

Rmin(t, . ) = min{R+(t, . ), R−( . )},
R+(t, z) = am(m− 1)z2 +m(z − c+)

2(a+ b+m) + t,

R−(z) = am(m− 1)z2 +m(z − c−)
2(a+ b−m).

(5.25)

When the right-hand side of (5.24) is integrated over the domain Ω, the central term
vanishes. Therefore, the formula for the relaxed functional looks like this:

J[u, t] =

∫
Ω

F(∇u, t) dx, u ∈ H, t ∈ R,

F(∇u, t) = a
| curlu|2

4
+Rmin

c (t, z), z =
div u

m
,

(5.26)

which indicates its convexity in the argument u ∈ H.
The explicit formula for a quasiconvex hull allows us to characterize the set of all

solutions of problem (5.9) and specify what proportion among them solves problem (3.10).
For this, we need the following set:

(5.27) Y
′′
t =

{
u ∈ H, χ ∈ Z

′′ : curlu=0, div u=α( pQ(t))(χ− pQ(t)),
1

|Ω|

∫
Ω

χdx= pQ(t)
}
.

We recall that, by Lemma 5.2, the function put is a solution of problem (5.4) if and only
if it is the first component of a pair put, pχt ∈ Y

′
t (see (3.27)).

If [c(a+ bm)] �= 0, then the function pQ(t) is single-valued, and α( pQ(t))) �= 0. Hence,
in this case, in the pair u, χ ∈ Y

′′
t each of its components is uniquely determined by the

other one. If [c(a + bm)] = 0 and t �= t∗(= t±), then pQ(t) is still single-valued, but

α( pQ(t)) = 0. In this case the set Y
′′
t is exhausted by the pairs u = 0, χ = 1 for t < t∗

and u = 0, χ = 0 for t > t∗. In the case where [c(a + bm)] = 0 and t = t∗, the set Y
′′
t
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consists of the pairs for which u = 0 and χ is an arbitrary element of Z′′, because pQ(t∗)

is a multivalued function and the number α( pQ(t∗)) equals zero.

Theorem 5.4. For the energy density (3.12) satisfying condition (3.14), the function
qut is a solution of problem (5.9) if and only if it is the first component of a pair qut, qχt

belonging to the set Y′′
t .

Examples of pairs u, χ ∈ Y
′′
t for t ∈ (t−, t+) �= ∅ can be constructed in various ways.

We consider two of them.
(1) Given any function p,

(5.28) p ∈ W̊ 2
2 (Ω) such that

Δp(x)

α( pQ(t))
∈ [− pQ(t), 1− pQ(t)] a.e. on Ω

(note that for t ∈ (t−, t+) �= ∅ we have α( pQ(t)) �= 0 and pQ(t) ∈ (0, 1)), we calculate
functions u and χ by the following formulas:

(5.29) u = ∇p, χ =
Δp

α( pQ(t))
+ pQ(t).

Clearly, the pairs (5.28), (5.29) belong to Y
′′
t , and among these pairs there are pairs with

χ ∈ Z
′ and pairs with χ �∈ Z

′.

(2) Fix an open set ω ⊂ Ω. Using its arbitrary Vitali covering and the number pQ(t), in
ω we can construct a solution put, pχt of problem (3.18). We extend the function put by

zero and the function pχt by the constant pQ(t) to the set Ω\ω closed in Ω. Obviously, the
resulting pair qut, qχt lies in Y

′′
t and if |ω| �= |Ω|, then it is not a solution of problem (3.10).

When passing from the original problem (3.10) to the relaxed one (5.9), we get the
existence theorem for equilibrium states (for the densities (3.12), (3.14) equilibrium states
already exist), but we lose information about the distribution of phases, the function pχt.
Theorem 5.4 compensates for this loss. In the case where qχt �∈ Z

′, this function describes
the phase fraction with index + in a two-phase relaxed state of equilibrium.

Another approach to the passage from pure two-phase states to the phase mixture was
suggested in Lemma 4.4. Note that (Lemma 4.5), for the densities (3.12), (3.14) these
two methods coincide only if t = t± = t∗. As has already been noted, in the other cases
for these densities, the method of Lemma 4.4 does not yield a mixture of phases in the
state of equilibrium.

5.3. Quasiconvex hull in the anisotropic case. Now we obtain certain information
about the quasiconvex hull for the general form (3.6) of the energy densities of a two-
phase elastic medium and make conclusions about the equilibrium states of a relaxed
functional.

We start with deriving a two-sided estimate for a quasiconvex hull. To formulate our
next theorem, we need the following notation. We set

t∗(M) = −[< A(e(M)− ζ), e(M)− ζ >], M ∈ Rm×m,

μ−
1 (M) = t∗(M)− |[A(e(M)− ζ)]|2

ν
,

μ−
2 (M) = t∗(M) +

|[A(e(M)− ζ)]|2
ν

,

μ+
1 (M) = t∗(M)− ν tr2[A(e(M)− ζ)]

m2
,

μ+
2 (M) = t∗(M) +

ν tr2[A(e(M)− ζ)]

m2
.

(5.30)
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Obviously, μ±
2 (M) ≥ μ±

1 (M), and equality is possible only if M ∈ R
m×m satisfies which

(5.31) tr[A(e(M)− ζ)] = 0, [A(e(M)− ζ)] = 0

for the signs + and −, respectively.
Let functions P±(t,M), t ∈ R, M ∈ R

m×m, be defined by the formulas

if M satisfies μ+
1 (M) < μ+

2 (M), then

P+(t,M) = 1 for t ≤ μ+
1 (M), P+(t,M) = 0 for t ≥ μ+

2 (M),

P+(t,M) =
μ+
2 (M)− t

μ+
2 (M)− μ+

1 (M)
for t ∈ (μ+

1 (M), μ+
2 (M));

if M satisfies μ+
1 (M) = μ+

2 (M) = t∗(M), then

P+(t,M) = 1 for t < t∗(M), P+(t,M) = 0 for t > t∗(M),

P+(t
∗(M),M) is an arbitrarily number in the interval [0, 1];

(5.32)

for M satisfying μ−
1 (M) < μ−

2 (M),

P−(t,M) = 1 for t ≤ μ−
1 (M), P−(t,M) = 0 for t ≥ μ−

2 (M),

P−(t,M) =
μ−
2 (M)− t

μ−
2 (M)− μ−

1 (M)
for t ∈ (μ−

1 (M), μ−
2 (M));

if M satisfies μ−
1 (M) = μ−

2 (M) = t∗(M), then

P−(t,M) = 1 for t < t∗(M), P−(t,M) = 0 for t > t∗(M),

P−(t
∗(M),M) is an arbitrary number in the interval [0, 1].

(5.33)

The functions P±(t,M) are involved in the definitions of the functions F±(M, t):

F+(M, t) = P+(t,M)(F+(M) + t) + (1− P+(t,M))F−(M)

− μ+
2 (M)− μ+

1 (M)

2
P+(t,M)(1− P+(t,M)),

F−(M, t) = P−(t,M)(F+(M) + t) + (1− P−(t,M))F−(M)

− μ−
2 (M)− μ−

1 (M)

2
P−(t,M)(1− P−(t,M)),

(5.34)

where the energy density of the deformation F±(M) are as in (3.6).
Since

(5.35) F+(M)− F−(M) = −t∗(M),

the fact that the functions P±(t,M) are multivalued does not prevent the functions
F±(M, t) from being single-valued and continuous.

Theorem 5.5. For the function (5.2) constructed by the energy densities (3.6), the
quasiconvex hull (5.6) admits the estimate

(5.36) F−(M, t) ≤ F(M, t) ≤ F+(M, t), M ∈ R
m×m, t ∈ R.

Now we establish some properties of solutions of the relaxed problem (5.9). In the
formulation of the next theorem we use the numbers μ−

1,2 defined by (3.35) and the tem-

peratures of phase transitions t± for the energy functional I0[u, χ, t], for which estimate
(3.38) is proved.

Theorem 5.6. (1) The function qut = 0 is a solution of problem (5.9) for each value of
the temperature t.
(2) For given t ∈ (t−, t+) �= ∅, if the function qut = 0 is the only solution of problem (5.9),
then for such t problem (3.10) is solvable.
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(3) The only solution of problem (5.9) for t �∈ [μ−
1 , μ

−
2 ] is the function qut = 0.

The anisotropy of the energy densities F±(M) can arise as a result of the anisotropy of
the tensors of elastic moduli A±, or the tensors of residual deformation ζ±. We calculate
the quasiconvex hull for the densities

F±(M) = |e(M)− c±λ⊗ λ|2,
M ∈ R

m×m, c± ∈ R, c+ �= c−, λ ∈ R
m, |λ| = 1,

(5.37)

with the anisotropic residual strain tensors ζ± = c±λ⊗ λ.
To formulate the theorem, we introduce the following notation:

H+(z, t) = (z − c+)
2 + t, H−(z) = (z − c−)

2,

Hmin(z, t) = min{H+(z, t), H−(z)},
Hmin

c ( . , t) is the convex hull of the function Hmin( . , t).

(5.38)

Theorem 5.7. For the quasiconvex hull of the energy densities (5.37), we have the
formula

F(M, t) = |e(M)|2 − z2(M) +Hmin
c (z(M), t),

z(M) = (e(M)λ, λ).
(5.39)

As in the proof of formula (5.26), we rewrite expression (5.39) in the form

F(∇u, t) =
| curlu|2

4
+ (div u)2 − z2(∇u)

+Hmin
c (z(∇u), t) + (ui

xj
uj
xi

− (div u)2),

z(∇u) = (e(∇u)λ, λ).

(5.40)

Since the last term on the right-hand side of (5.40) vanishes when we integrate over Ω,
we obtain the following identity for the relaxed functional:

J[u, t] =

∫
Ω

F(∇u, t) dx, u ∈ H, t ∈ R,

F(∇u, t) =
| curlu|2

4
+ (div u)2 − z2(∇u) +Hmin

c (z(∇u), t),

z(∇u) = (e(∇u)λ, λ),

(5.41)

which has a form similar to the expression (5.26) for the relaxed functional of an isotropic
two-phase elastic medium.

The knowledge of an explicit expression for the quasiconvex hull is not necessary for
description of the set of all solutions of problem (5.9). The following theorem gives an
example of such a situation.

Theorem 5.8. For any t ∈ R, the function qut = 0 is a unique solution of problem (5.9)
for the energy densities (3.45) in any domain Ω ⊂ Rm with arbitrary a± when k = 1 and
a+ = a− when 1 < k < m.

Theorems 5.6 and 5.8 show that for the densities as in Theorem 5.8 and t ∈ (t−, t+) �=
∅ (the numbers t± are defined by (3.46)), problem (3.9) has no solutions, because the
two-phase equilibrium states can be realized only with a nonzero displacement field.
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5.4. Examples of limit points as σ → 0 for equilibrium displacement fields.
Our goal here is to describe, on the basis of the above results, the possible behavior
as σ → 0 of the equilibrium displacement fields put,σ for two model problems: isotropic
(with the energy densities (3.12) under condition (3.14)) and anisotropic (with the energy
densities (3.45)). In the statement of the theorems below, we use formulas (3.24) for the
phase transition temperatures t±, the notation (3.27) for the set Y

′
t and (5.13) for the

equilibrium states pumin
t , pχmin

t , where σ = 0 and the phase interface boundary area is
minimal.

Theorem 5.9. Let the energy densities be given by formulas (3.12), (3.14), and let
Ω = BR ⊂ R

m, m ≥ 2, where BR is the ball of radius R centered at the origin. Then
the following is true for t ∈ (t−, t+):
(a) no first component put of a pair put, pχt ∈ Y

′
t constructed by a Vitali covering of the ball

BR, can be a limit point of any sequence put,σn
as σn → 0;

(b) the limit point of any sequence put,σn
as σn → 0 can only be the first component put of

some pair pumin
t , pχmin

t ∈ Y
′
t.

Theorem 5.10. Let the strain energy density be given by formulas (3.45), and let the
restrictions of Theorem 5.8 be satisfied. Then in an arbitrarily domain Ω for any equi-
librium states put,σ, pχt,σ, σ > 0, as σ → 0 we have put,σ ⇁ 0 in the space H.

5.5. Bibliographical notes. The basic results of this section were presented in the
papers [35, 44–46]. The theory of relaxed problems and quasiconvex hulls can be found
in the monographs [57,61] and the paper [58] useful in the sense of ideas. In this section
we did not touch upon the question on the Γ -convergence of the energy functional of a
two-phase elastic medium as σ → 0. The main points of the theory of Γ -convergence were
presented in [8]. Their partial transfer to the theory of phase transitions was realized,
in particular, in [5]. The available numerous results on the calculation of quasi-convex
hulls for various applied problems can be found in [53, 54, 57–59,61].
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[33] , Independence of temperatures of phase transitions of the domain occupied by a two-phase
elastic medium, Probl. Mat. Anal. 66 (2012), 147–151; English transl., J. Math. Sci. (N.Y.) 186
(2012), no. 2, 302–306. MR3098307

[34] , Stability for regular potential critical points of the energy functional of an isotropic
two-phase elastic medium, Probl. Mat. Anal. 78 (2015), 141–148; English transl., J. Math. Sci.
(N.Y.) 207 (2015), no. 2, 270–277. MR3391710

[35] , Temperatures of phase transitions and quasiconvex hull of energy functionals for a two-
phase elastic medium with anisotropic residual strain tensor, Probl. Mat. Anal. 77 (2014), 119–128;
English transl., J. Math. Sci. (N.Y.) 205 (2015), no. 2, 255–266. MR3391346

[36] , Quasistationary problem on the interface evolution in the phase transition theory of con-
tinuum mechanics, Probl. Mat. Anal. 73 (2013), 115–123; English transl., J. Math. Sci. (N.Y.) 196
(2014), no. 3, 377–387. MR3391300

[37] , Dependence of the temperature of phase transitions on the size of the domain, Zap. Nauchn.
Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 310 (2004), 98–113; English transl., J. Math.
Sci. (N.Y.) 132 (2006), no. 3, 304–312. MR2120187 (2005m:74079)

[38] , Dependence of the equilibrium states of a two-phase elastic medium on temperature for
a positive constant of surface tension, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov

(POMI) 318 (2004), 220–232; English transl. J. Math. Sci. (N.Y.) 136 (2006), no. 2, 3778–3785.
MR2120800 (2006a:35290)

[39] , Determination of the surface tension coefficient in mechanics of two-phase elastic media,
Probl. Mat. Anal. 30 (2005), 61–68; English transl., J. Math. Sci. (N.Y.) 128 (2005), no. 5, 3232–
3240. MR2171600 (2006g:74017)

[40] , On the set of solutions to a variational phase transition problem of continuum mechanics,
Probl. Mat. Anal. 35 (2007), 110–119; English transl., J. Math. Sci. (N.Y.) 144 (2007), no. 6,
4645–4654. MR2584387 (2011f:74030)

[41] , Isoperimetric inequality and equilibrium states of a two-phase medium, Probl. Mat. Anal.
36 (2007), 81–88; English transl., J. Math. Sci. (N.Y.) 150 (2008), no. 1, 1875–1884. MR2472532
(2010i:49011)

[42] , Dependence of the volume of an equilibrium phase on the temperature in the phase transi-
tion problem of continuum mechanics, Probl. Mat. Anal. 37 (2008), 73–82; English transl., J. Math.
Sci. (N.Y.) 154 (2008), no. 1, 78–89. MR2493257 (2010e:74070)

[43] , On the nonexistence zone of one-phase equilibrium states of a phase transition problem of
continuum mechanics in the case of nonconstant temperature fields, Probl. Mat. Anal. 50 (2010),
77–86; English transl., J. Math. Sci. (N.Y.) 165 (2010), no. 1, 105–109. MR2838998

[44] , The behavior of the area of the boundary of phase interface in the problem about phase
transitions as the surface tension coefficient tends to zero, Probl. Mat. Anal. 62 (2011), 101–108;
English transl., J. Math. Sci. (N.Y.) 181 (2012), no. 2, 223–231. MR2918054

[45] , Quasiconvex hull of energy densities in a homogeneous isotropic two-phase elastic medium
and solutions of the original and relaxed problems, Probl. Mat. Anal. 70 (2013), 161–170; English
transl., J. Math. Sci. (N.Y.) 191 (2013), no. 2, 280–290. MR3098556

[46] , Description of the set of all solutions to the relaxed problem for a homogeneous isotropic
two-phase elastic medium, Probl. Mat. Anal. 72 (2013), 147–155; English transl., J. Math. Sci.
(N.Y.) 195 (2013), no. 5, 730–740. MR3155336

[47] , Mathematical problems of the theory of phase transitions in a mechanics of con-
tinua, St. Petersburg Math. Soc. Preprint 2014-04; http://www.mathsoc.spb.ru/preprint/2014/
index.html#04 (Russian)

[48] Ph. G. Ciarlet, Mathematical elasticity, Stud. Math. Appl., vol. 20, North-Holland Publ. Co.,
Amsterdam, 1988. MR0936420 (89e:73001)

[49] G. Fichera, Existence theorems in elasticity, Linear Theorems of Elasticity and Thermoelasticity,
Springer-Verlag, Berlin, 1973, pp. 347–389.

[50] A. Friedman, Variational principles and free-boundary problems, 2nd ed., R. E. Krieger Publ. Co.,
Inc., Malabar, FL, 1988. MR1009785 (90k:35271)

[51] L. K. Evans and R. F. Gariepy, Measure theory and fine properties of functions, Textbooks Math.,
CRC Press, Boca Ration, FL, 1992. MR3409135

[52] L. K. Evans, Weak convergence methods for nonlinear partial differential equations, CBMS Reg.
Conf. Ser. Math., vol. 74, Amer. Math. Soc., Providence, RI, 1990. MR1034481 (91a:35009)

[53] G. Allaire and V. Lods, Minimizers for double-well problem with affine boundary conditions, Proc.
Roy. Soc. Edinburg Sect. A 129 (1999), no. 3, 439–466. MR1693645 (2000c:49017)

[54] G. Allaire, Shape optimization by the homigenization methods, Appl. Math. Sci., vol. 146, Springer-
Verlag, Berlin, 2002. MR1859696 (2002h:49001)

https://www.ams.org/mathscinet-getitem?mr=3098307
https://www.ams.org/mathscinet-getitem?mr=3391710
https://www.ams.org/mathscinet-getitem?mr=3391346
https://www.ams.org/mathscinet-getitem?mr=3391300
https://www.ams.org/mathscinet-getitem?mr=2120187
https://www.ams.org/mathscinet-getitem?mr=2120187
https://www.ams.org/mathscinet-getitem?mr=2120800
https://www.ams.org/mathscinet-getitem?mr=2120800
https://www.ams.org/mathscinet-getitem?mr=2171600
https://www.ams.org/mathscinet-getitem?mr=2171600
https://www.ams.org/mathscinet-getitem?mr=2584387
https://www.ams.org/mathscinet-getitem?mr=2584387
https://www.ams.org/mathscinet-getitem?mr=2472532
https://www.ams.org/mathscinet-getitem?mr=2472532
https://www.ams.org/mathscinet-getitem?mr=2493257
https://www.ams.org/mathscinet-getitem?mr=2493257
https://www.ams.org/mathscinet-getitem?mr=2838998
https://www.ams.org/mathscinet-getitem?mr=2918054
https://www.ams.org/mathscinet-getitem?mr=3098556
https://www.ams.org/mathscinet-getitem?mr=3155336
https://www.ams.org/mathscinet-getitem?mr=0936420
https://www.ams.org/mathscinet-getitem?mr=0936420
https://www.ams.org/mathscinet-getitem?mr=1009785
https://www.ams.org/mathscinet-getitem?mr=1009785
https://www.ams.org/mathscinet-getitem?mr=3409135
https://www.ams.org/mathscinet-getitem?mr=1034481
https://www.ams.org/mathscinet-getitem?mr=1034481
https://www.ams.org/mathscinet-getitem?mr=1693645
https://www.ams.org/mathscinet-getitem?mr=1693645
https://www.ams.org/mathscinet-getitem?mr=1859696
https://www.ams.org/mathscinet-getitem?mr=1859696


MATHEMATICAL PROBLEMS OF THE THEORY OF PHASE TRANSITIONS 839

[55] M. Bildhauer, M. Fuchs, and V. Osmolovskii, The effect of a surface energy term on the distribution
of phases in an elastic medium with a two-well elastic potential, Math. Meth. Appl. Sci. 25 (2002),
no. 2, 149–178. MR1879656

[56] , The effect of a penalty term involving higher order derivatives on the distributions of
phases in an elastic medium with a two-well elastic potential, Math. Meth. Appl. Sci. 25 (2002),
no. 4, 289–308. MR1875704 (2002k:49023)

[57] B. Dacorogna, Direct methods in the calculus of variations, Appl. Math. Sci., vol. 78, Springer-
Verlag, Berlin, 1989. MR0990890 (90e:49001)

[58] B. Dacorogna, G. Pisante, and A. M. Ribeiro, On non quasiconvex problems of the calculus of
variations, Discrete Contin. Dyn. Syst. 13 (2005), no. 4, 961–983. MR2166713 (2007c:49002)

[59] G. Dolzmann, Variational methods for crystalline microstructure—analysis and computation, Lec-
ture Notes in Math., vol. 1803, Springer-Verlag, Berlin, 2003. MR1954274 (2003m:74088)

[60] Y. B. Fu and A. B. Freidin, Characterization and stability of two-phase piecewise-homogeneous
deformations, Proc. Roy. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460 (2004), no. 2051, 3065–3094.
MR2098708 (2005g:74097)

[61] E. Giusti, Direct methods in the calculus of variations, World Sci. Publ. Co., River Edge, NJ, 2003.
MR1962933 (2004g:49003)

[62] Z. Hashin, The elastic moduli of heterogeneous materials, Trans. ASME Ser. E., J. Appl. Mech. 29
(1962), 143–159. MR0136123 (24:62161)

[63] S. Müller, Variational models for microstructure and phase transitions, Calculus of variations and
geometric evolution problems, Lecture Notes in Math., vol. 1713, Springer, Berlin, 1999, pp. 85–210.
MR1731640 (2001b:49019)

[64] S. Müller, Microstructure, phase transitions and geometry, European Congress Math. vol. 11,
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