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ON OPERATOR-TYPE HOMOGENIZATION ESTIMATES

FOR ELLIPTIC EQUATIONS WITH LOWER ORDER TERMS

S. E. PASTUKHOVA AND R. N. TIKHOMIROV

Abstract. In the space R
d, a divergent-type second order elliptic equation in a

nonselfadjoint form is studied. The coefficients of the equation oscillate with a period
ε→0. They can be unbounded in lower order terms. In this case, they are subordinate
to some integrability conditions over the unit periodicity cell. An L2-estimate of
order of O(ε) is proved for the difference of solutions of the original and homogenized
problems. The estimate is of operator type. It can be stated as an estimate for the
difference of the corresponding resolvents in the operator (L2(Rd)→L2(Rd))-norm.
Also, an H1-approximation is found for the original solution with error estimate of
order of O(ε). This estimate, also of operator type, implies that an appropriate
approximation of order of O(ε) is found for the original resolvent in the operator
(L2(Rd)→H1(Rd))-norm.

The results are obtained with the help of the so-called shift method, first suggested
by V. V. Zhikov.

§1. Introduction

In homogenization theory, which emerged more than fifty years ago, from the very be-
ginning there have been an increasing interest in error estimates in different norms, such
as the energy norms or Lebesgue norms naturally related to the problem under consider-
ation (see, for example, [1–3]). For second order elliptic equations, these are estimates in
H1- and L2-norms, while for similar parabolic equations, these are also estimates in L∞-
and L1-norms. In the early results, the majorants in the error estimates depended on
data of the problem (e.g., on the right-hand side function in the case of elliptic equations
or on the Cauchy data in the case of parabolic equations) in such a way that the estimates
could not be given an operator meaning. In particular, such results cannot be restated as
estimates in the operator norms for the difference of resolvents or semigroups (according
to another terminology, operator exponentials) of the corresponding operators in elliptic
or parabolic cases, respectively.

Possibly, for the first time, operator-type homogenization estimates arose in Zhikov’s
paper [4] (see also Chapter II in [3]). These were estimates for parabolic equations
in L∞-norms, and they were aimed at applications to probability theory and diffusion
theory. These estimates were proved by the spectral method based on the Bloch repre-
sentation of the fundamental solution of the parabolic equation. Actually, a pointwise
estimate and an integral estimate were proved for the fundamental solution. The latter
can be regarded as a kernel of the operator exponential corresponding to the nonstation-
ary diffusion equation. As an immediate consequence of estimates for the fundamental
solution, an error estimate of homogenization in the L∞-norm was derived with a con-
stant on the right-hand side, allowing one to reformulate the result as an estimate in the

2010 Mathematics Subject Classification. Primary 51B10, 53C50.
Key words and phrases. Homogenization, error estimate, first approximation, integration over an

additional parameter, Steklov‘s smoothing.

c©2018 American Mathematical Society

841

https://www.ams.org/spmj/
https://doi.org/10.1090/spmj/1518


842 S. E. PASTUKHOVA AND R. N. TIKHOMIROV

operator (L∞ → L∞)-norm for the difference of the semigroups corresponding to the
original and homogenized problems. Moreover, in [5] it was shown that the estimates
for the fundamental solution established in [4] naturally imply not only an L∞-estimate
of homogenization but also similar estimates in Ls-norm for any s ≥ 1 with a universal
constant on its right-hand side. More precisely, these estimates are of the form

(1.1) ‖uε( · , t)− u0( · , t)‖Ls(Rd) ≤ c0
ε√
t
‖f‖Ls(Rd), 1 ≤ s ≤ ∞.

Here, uε(x, t) is a solution of the original strongly nonhomogeneous Cauchy problem in
the half-space {(x, t) : x ∈ R

d, t ≥ 0}, i.e.,
∂tu

ε +Aεu
ε = 0 for t > 0, uε(x, 0) = f(x),

where Aε = −div(aε(x)∇) is a diffusion operator with an ε-periodic diffusion matrix
aε(x) = a(x/ε), 0 < ε ≤ 1, and a(y) is a measurable symmetric 1-periodic matrix such
that

ν1 ≤ a ≤ 1/ν1, ν > 0, 1 is the identity matrix;

u0(x, t) is a solution of the homogenized Cauchy problem

∂tu
0 +A0u

0 = 0 for t > 0, u0(x, 0) = f(x),

where A0 = −div(a0∇) is a diffusion operator with a constant matrix a0 > 0 called the
effective diffusion matrix and calculated via a well-known procedure; the constant c0 on
the right-hand side of (1.1) depends only on the dimension d and the ellipticity constant
ν of the matrix a(y).

The solutions of the original and the homogenized problems can be represented with
the help of operator exponentials, namely,

uε(x, t) = e−tAεf(x), u0(x, t) = e−tA0f(x).

Then taking, e.g., s = 2, from (1.1) we obtain an estimate in the operator L2-norm for
the difference of exponentials

(1.2) ‖e−tAε − e−tA0‖L2(Rd)→L2(Rd) ≤ c0
ε√
t
.

Now, representing the resolvent as the Laplace transform of the semigroup, we can deduce
an estimate for the difference of resolvents

(1.3) ‖(Aε + 1)−1 − (A0 + 1)−1‖L2(Rd)→L2(Rd) ≤ cε, c = const(d, ν),

(see [5] for the details).
The interest to operator-type estimates of homogenization arose again after the pa-

per [6] by M. Sh. Birman and T. A. Suslina, which served as a new impetus to the
spectral branch of homogenization theory. Estimates like (1.2), (1.3) were proved in
L2-norms for a broad class of selfadjoint matrix elliptic operators with the help of an
operator-theoretic approach suggested by the authors of [6].

Over the past decade and a half, many interesting results on operator-type homog-
enization estimates were obtained by efforts of numerous mathematicians, and various
approaches were elaborated for this. An overview of these results was given in [5].

From the methodological point of view, here we continue the studies going back to [7,8]
and demonstrate the application of the so-called shift method, first suggested by Zhikov
in [7], for deriving operator-type estimates in the homogenization problems under consid-
eration in the present paper. These are second order nonselfadjoint elliptic equations with
unbounded coefficients in lower order terms. All the coefficients of equations oscillate
rapidly with a period ε → 0. In this context, the unbounded coefficients in lower order
terms satisfy certain integrability conditions over the unit cell of periodicity, with ex-
ponents determined by the space dimension. These integrability exponents are dictated
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by embedding theorems and they are precisely the same as those arising in existence
conditions in the classical theory of elliptic equations with unbounded coefficients (see
[9, Chapter III]).

To some extent, homogenization of equations with unbounded coefficients was touched
upon earlier in the paper [10], where equations with degenerate weights, including those
that may grow to infinity, were studied. The conditions under which the homogenization
estimates were proved in [10] agree with those formulated in the present paper.

Operator-type homogenization estimates for second order selfadjoint elliptic equations
(in particular, vector equations) with unbounded coefficients in lower order terms were
studied in [11,12], where the authors applied an approach based on the ideas of [6]. In the
items overlapping with [11, 12], here we obtain similar results but under slightly weaker
assumptions.

§2. Setting of the problem. The main result

2.1. Elliptic equation with unbounded coefficients in lower order terms. In
the entire space R

d, d ≥ 2, we consider a divergent-type second order elliptic equation

uε ∈ H1(Rd), Aεu
ε + λuε = f, f ∈ L2(Rd),

Aεu
ε = −div(aε∇uε + αεu

ε) + βε · ∇uε + γεu
ε

(2.1)

with a small parameter ε ∈ (0, 1). The coefficients of the equation are ε-periodic and,
thus, oscillate rapidly as ε → 0. For example, the matrix aε = aε(x) of leading coefficients
is obtained as follows: aε(x) = a(xε ), where a(y) is a measurable 1-periodic matrix with
real entries (a is not necessarily symmetric). The periodicity cell is the unit cube Y =[
− 1

2 ,
1
2

)d
. Similarly, via 1-periodic functions α(y), β(y), γ(y) we obtain the coefficients

in the lower order terms of equation (2.1).
Throughout the paper, the function spaces (e.g., L2(Rd), H1(Rd)) are assumed to

consist of real-valued functions. The coefficients of equation (2.1) are also real-valued.
We assume that the matrix a(y) satisfies the following ellipticity and boundedness

conditions:

(2.2) μ|ξ|2 ≤ a(y)ξ · ξ, a(y)ξ · η ≤ μ−1|ξ| |η|, ξ, η ∈ R
d, μ > 0.

As for the 1-periodic vector-valued functions α(y), β(y) and the scalar function γ(y),
they can be unbounded but obey the following integrability condition:

(2.3) the norms ‖α‖L2p(Y )d , ‖β‖L2p(Y )d , ‖γ‖Lp(Y ) are finite,

where

(2.4) p =
d

2
if d > 2, p > 1 if d = 2.

By a solution of equation (2.1) we mean a function uε satisfying the integral identity∫
Rd

(aε∇uε + αεu
ε) · ∇ϕdx+

∫
Rd

βε · ∇uεϕdx+

∫
Rd

γεu
εϕdx+ λ

∫
Rd

uεϕdx

=

∫
Rd

fϕ dx for all ϕ ∈ H1(Rd).

(2.5)

To justify the well-posedness of this setting, we need to study the bilinear form on the
left-hand side of (2.5):

Bε(u, v) =

∫
Rd

(aε∇u+ αεu) · ∇v dx+

∫
Rd

βε · ∇uv dx+

∫
Rd

γεuv dx+ λ

∫
Rd

uv dx,

u, v∈H1(Rd).

(2.6)
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We show that all integrals in (2.6) are finite. For this, the following assertion from [10]
is helpful.

Lemma 2.1. Let ρε(x) = ρ
(
x
ε

)
, where ρ ≥ 0, ρ ∈ Lp

per(Y ), and let the exponent p be the
same as in (2.4). Then

(2.7) (ρεu, u) ≤ c0(‖u‖2 + ε2‖∇u‖2), c0 = const(d, ‖ρ‖Lp(Y )).

In the dimension d = 2 the constant c0 depends also on the exponent p itself.

Here and in what follows, we use the simplified notation for the inner product and the
norm in L2(Rd):

( · , · ) = ( · , · )L2(Rd), ‖ · ‖ = ‖ · ‖L2(Rd).

We often make no difference in notation for spaces of scalar and vector functions.
To make our exposition full, we give the proof of Lemma 2.1 at the end of the paper

(see Subsection 6.3). But now we state the following claim.

Corollary to Lemma 2.1. For the terms in (2.6), we have:

i) (γεu, v) ≤ c1(‖u‖+ ε‖∇u‖)(‖v‖+ ε‖∇v‖), c1 = const(d, ‖γ‖Lp(Y ));

ii) (αεu,∇v) ≤ c2(‖u‖+ ε‖∇u‖)‖∇v‖, c2 = const(d, ‖α‖L2p(Y )d);

iii) (βε · ∇u, v) ≤ c3(‖v‖+ ε‖∇v‖)‖∇u‖, c3 = const(d, ‖β‖L2p(Y )d).

In the dimension d = 2, the constants in these estimates depend also on the exponent p
itself.

Indeed, since (γεu, v) ≤ (ρεu, u)
1
2 (ρεv, v)

1
2 , ρε = |γε|, statement i) follows immediately

from (2.7) and the numerical inequality (a2 + b2)
1
2 ≤ a+ b valid for any a, b ≥ 0.

Assertions ii) and iii) are proved similarly. For example, in the case of ii) we write the
inequality

(αεu,∇v) ≤ ‖αεu‖ ‖∇v‖ = (|αε|2u, u)
1
2 ‖∇v‖

and apply estimate (2.7) to the form (|αε|2u, u) setting ρε = |αε|2.
Assertions i)–iii) combined with condition (2.2) ensure the boundedness property of

the form (2.6) for all ε and λ and the coercivity property for relevant ε and λ. We prove
here only less evident coercivity property, which means that

(2.8) there exists μ0 > 0 with Bε(u, u) ≥ μ0‖u‖2H1(Rd) for all u ∈ H1(Rd)

for sufficiently large λ ≥ λ0 > 0 and sufficiently small ε ≤ ε0. The values λ0, ε0, and
μ0 depend on the dimension d, the ellipticity constant μ, the norms in (2.3), and also
the exponents of these norms in the dimension d = 2, which is seen from what follows.
Indeed, we start with the inequality

Bε(u, u) ≥ μ‖∇u‖2 + λ‖u‖2 − |(γεu, u)| − |(αεu,∇u)| − |(βε · ∇u, u)|,
where, in particular, the ellipticity property (2.2) is taken into account. Then we apply
estimates i)–iii) to each form an the right-hand side. Hence, using the inequality ab ≤
δ
2a

2 + 1
2δ b

2 for any δ > 0, we successively deduce the inequalities

Bε(u, u) ≥ μ‖∇u‖2 + λ‖u‖2 − 2c1(‖u‖2 + ε2‖∇u‖2)
− c2(‖u‖+ ε‖∇u‖)‖∇u‖ − c3(‖u‖+ ε‖∇u‖)‖∇u‖

= (μ− 2c1ε
2 − c2ε− c3ε)‖∇u‖2 + (λ− 2c1)‖u‖2 − (c2 + c3)‖u‖‖∇u‖

≥
(
μ− 2c1ε

2 − c2ε− c3ε−
δ

2

)
‖∇u‖2 +

(
λ− 2c1 −

1

2δ
(c2 + c3)

2
)
‖u‖2

≥ 1

4
μ‖∇u‖2 + ‖u‖2,
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whenever δ = μ, ε is so small that 2c1ε
2 + (c2 + c3)ε < μ

4 , and λ is so large that

λ− 2c1 − 1
2μ (c2 + c3)

2 > 1. It remains to set μ0 = min{ 1
4μ, 1}. The value λ0 > 0 will be

finally selected later while considering the homogenized equation.
Using the Lax–Milgram lemma combined with the boundedness and coercivity prop-

erties of the form (2.6), we infer the existence and uniqueness of a solution of (2.1).
Letting ϕ = uε in (2.5), we obtain the energy identity

Bε(u
ε, uε) = (f, uε),

whence by (2.8) we get the energy estimate

(2.9) ‖uε‖H1(Rd) ≤
1

μ0
‖f‖L2(Rd).

2.2. Homogenized equation. With problem (2.1) we associate the homogenized prob-
lem

u ∈ H1(Rd), A0u+ λu = f,

A0u = −div(a0∇u+ α0u) + β0 · ∇u+ γ0u,
(2.10)

where a0 is a constant positive definite matrix and the coefficients in the lower order
terms are also constant. Formulas for finding a0, α0, β0, γ0 are given below (see (2.16)
and (2.17)).

A solution of (2.10) is understood in the sense of the integral identity

B0(u, ϕ) = (f, ϕ), ϕ ∈ H1(Rd),

where we have a bilinear form similar to (2.6) but with constant coefficients, namely

B0(u, v) =

∫
Rd

(a0∇u+ α0u) · ∇v dx+

∫
Rd

β0 · ∇uv dx+

∫
Rd

γ0uv dx+ λ

∫
Rd

uv dx.

There exists a unique solution of (2.10) for sufficiently large λ, thanks to the Lax–Milgram
lemma. Since the coefficients in the homogenized equation are constant, along with the
energy estimate (2.9) for the solution u, we have the elliptic estimate

(2.11) ‖u‖H2(Rd) ≤ c‖f‖L2(Rd).

In the sequel, problems (2.1) and (2.10) are considered for suitable λ and ε, λ ≥ λ0 and
ε ≤ ε0, where the choice of λ0 and ε0 guarantees than the operators Aε, A are coercive;
consequently, the two problems are well posed. This specification of the parameters will
be often omitted in what follows.

Our aim is to prove the following claim.

Theorem 2.2. For the difference of solutions of problems (2.1) and (2.10), we have the
estimate

(2.12) ‖uε − u‖L2(Rd) ≤ Cε‖f‖L2(Rd),

where λ ≥ λ0 and ε ≤ ε0. The constant C depends on the dimension d, the elliptic-
ity constant μ, the parameter λ, and the norms ‖α‖L2p(Y )d , ‖β‖L2p(Y )d , ‖γ‖Lp(Y ). In
dimension d = 2, the constant C depends on the exponent p itself.

Inequality (2.12) implies an estimate in the operator (L2 → L2)-norm for the difference
between the resolvents of the original and homogenized operators:

(2.13) ‖(Aε + λ)−1 − (A0 + λ)−1‖L2(Rd)→L2(Rd) ≤ Cε.

The resolvent (Aε + λ)−1 can be regarded as an operator acting from L2(Rd) to
H1(Rd) and, in the corresponding operator (L2→H1)-norm, its approximation is the
sum (A0 + λ)−1 + εKε, where the correcting operator εKε is defined in (5.12). This
assertion is formulated more presisely in Theorem 5.1.
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2.3. Cell problems and homogenized equation coefficients. We consider the pe-
riodic problems

(2.14) Nj ∈ H1
per(Y ), divy[a(y)(e

j +∇yNj(y))] = 0, 〈Nj〉 = 0, j = 1, . . . , d,

where e1, . . . , ed is the canonical basis in R
d; and similarly,

(2.15) N0 ∈ H1
per(Y ), divy[a(y)∇N0(y) + α(y)] = 0, 〈N0〉 = 0.

where

〈 · 〉 =
∫
Y

· dy
denotes the mean value over the cell.

Solutions of cell problems are understood in the sense of integral identities on smooth
periodic functions. As an example, for problem (2.14) we have the identity∫

Y

[a(y)(ej +∇yNj(y))] · ∇ϕ(y) dy = 0 for all ϕ ∈ C∞
per(Y ),

which means that a(y)(ej +∇yNj(y)) is a solenoidal vector of class L2
per(Y )d. This will

be used later.
Each of problems (2.14) and (2.15) has a unique solution by the Lax–Milgrame lemma.

In this regard, for equation (2.15) it should be noted that α ∈ L2
per(Y )d due to (2.3) and

(2.4) and, thus, this equation can be written in the form divy[(a(y)∇N0(y)] = −divy α(y),
where the function on the right-hand side belongs to the dual space (H1

per(Y ))∗.
Using the solutions of the cell problems (2.14) and (2.15), we introduce the coeffi-

cients of the homogenized equation (2.10). The homogenized matrix a0 is defined by the
formulas

(2.16) a0ej = 〈a(ej +∇yNj〉, j = 1, . . . , d;

the other coefficients are the following mean values:

(2.17) α0 = 〈a∇yN0 + α〉, β0 = 〈(1+∇yN)Tβ〉, γ0 = 〈β · ∇yN0 + γ〉,
where the vector N = {N1, N2, . . . , Nd} consists of solutions to problem (2.14), 1 is the

unit matrix, the matrix ∇N has the entries {∇N}ij =
∂Nj

∂yi
, and by MT we denote the

transpose of M .
It is well known (see [1–3]) that the homogenized matrix a0 is positive definite.

2.4. Some remarks. Operator-type estimates (2.13) and (5.12) will follow from the
analysis performed in §§3–5. Possibly, our main result is the so-called estimate “inte-
grated over the shift parameter” in Theorem 4.2. Namely, this “integrated” estimate im-
plies desired L2- and H1-estimates of homogenization as simple corollaries. The specifics
of the scalar case are used nowhere in the proof of Theorem 4.2. Here we mean the max-
imum principle and its consequences. Thereby, the results implied by Theorem 4.2 are
also valid for vector equations. The scalar case specifics are taken into account only in §6,
where, under slightly stronger requirements on the coefficients in lower order terms, we
prove the H1-estimate with the approximation that is usual for classical homogenization
theory.

Remark 1. Since the coefficients of the operator A0 are constant, it is possible to simplify
the homogenized equation (2.10) rewriting it with a symmetric matrix in the principal
part and with only one drift vector, namely

A0u = −
∑
i,j

(a0)sij
∂2u

∂xi∂xj
+ (α0 + β0) · ∇u+ (γ0 + λ)u,
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where (a0)s is the symmetric part of a0. But here we do not do this deliberately in order
to preserve the original equation structure and to employ this similarity in the proof.

Remark 2. In [13] and [5], homogenization operator-type estimates were proved for di-
vergent nonselfadjoint elliptic equations of arbitrary even order and with lower order
terms, but with coefficients that are all bounded.

Remark 3. In [11] and [12], homogenization operator-type estimates were studied for self-
adjoint elliptic vector equations with unbounded coefficients under assumptions stronger
than in (2.3), (2.4).

Remark 4. One may consider a diffusion operator with lower order terms coefficients that
are unbounded in another sense. This is the operator with a drift growing to infinity as
ε → 0,

(2.18) Aε = −div(aε∇) + ε−1βε · ∇,

where the ε-periodic coefficients of Aε are bounded for each fixed ε. This requires quite a
different homogenization procedure where the drift affects the effective diffusion matrix,
and the homogenized equation (though with constant coefficients) still preserves a drift
vector unboundedly growing as ε → 0.

In the situation of equation (2.1), we have drift vectors that are pointwise unbounded
but have some bounded integral mean value. Then formula (2.16) shows that the drift
in (2.1) does not affect the effective diffusion matrix a0. On the other hand, the effective
drift vectors α0 and β0 (see (2.17)) depend on the original diffusion matrix a(y) directly
(in case of α0), or indirectly via the solutions Nj of (2.14) (in the case of β0).

For a diffusion equation with the operator (2.18), homogenization operator-type esti-
mates were obtained in [14] by using the spectral method based on the Bloch represen-
tation of nonselfadjoint operators.

Remark 5. What concerns second order elliptic equations with unbounded coefficients
in the principal part, homogenization operator-type estimates were established in the
following case: the original diffusion matrix splits into the sum a(y) = as(y) + b(y)
of symmetric and skew-symmetric parts so that the symmetric matrix as(y) satisfies a
condition of the type (2.2) and the skew-symmetric matrix b(y) has entries in BMO (the
space of functions with bounded mean oscillation). The details can be found in [5].

Added in proof. When this paper had already been submitted and was in peer re-
view, the paper [15] appeared, to which our attention was drawn by the reviewer. This
paper concerns homogenization of a nonselfadjoint elliptic operator in a domain that
is an infinite cylinder whose section is an n-dimensional torus. The coefficients of the
operator are periodic and oscillate rapidly as ε → 0 in the variables of the cylinder’s
“ruling”. Homogenization is only taken over these variables. In the case where n = 0
(i.e., the “0-dimensional torus” is the section of the cylinder), the problem of “partial
homogenization”, treated in [15], includes our problem of homogenization in the entire
space Rd. Thus, the objects under consideration in our paper and in [15] partly intersect.
So, it is natural to expect partial overlapping of conditions on coefficients under which
homogenization results are proved. In [15], the coefficients in lower order terms are as-
sumed to be multipliers between Sobolev spaces. In particular, they may be elements of
Lebesgue spaces with appropriate exponents. In this case, we manage to cope with the
less restrictive conditions (2.3) and (2.4) than those in [15].
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§3. Discrepancy of the first approximation in the equation

We try to construct an approximation to the solution of problem (2.1) in the H1-norm,
shortly called a first approximation. Following the classical homogenization theory (see
[1–3]), in we seek it the form

(3.1) vε(x) = u(x) + εNj(y)
∂u(x)

∂xj
+ εN0(y)u(x), y =

x

ε
,

where the Nj (j = 0, 1, . . . , d) are solutions of cell problems and u is a solution of the
homogenized problem. (Here and in what follows, summation over repeated indices from
1 to d is assumed if it is not stipulated otherwise.) The additional terms of order of O(ε)
to the zero approximation u in formulas of the type (3.1) are usually called a corrector.

Under our assumptions about regularity of the data in the original problem (we mean
the right-hand side function f , the coefficients introduced via the matrix a, and the
functions α, β, and γ), the function vε may fail to belong to H1(Rd). To make our
actions consistent, we assume initially that f ∈ C∞

0 (Rd). Then the solution u of the
homogenized problem is smooth and decays at infinity sufficiently rapidly, so that vε

belongs to H1(Rd).
For the first approximation vε, we calculate its gradient and flow:

∇vε(x) = ∇u(x)+∇yNj(y)
∂u(x)

∂xj
+∇yN0(y)u(x)

+ εNj(y)∇
(
∂u(x)

∂xj

)
+ εN0(y)∇u(x)

= (ej+∇yNj(y))
∂u(x)

∂xj
+∇yN0(y)u(x) + ε∇2u(x)N(y) + εN0(y)∇u(x),

(3.2)

a(y)∇vε(x) + α(y)vε(x)

= a(y)(ej+∇yNj(y))
∂u(x)

∂xj
+ [a(y)∇yN0(y) + α(y)]u(x)εa(y)∇2u(x)N(y)

+ εa(y)N0(y)∇u(x) + εα(y)(N(y) · ∇u(x)) + εα(y)N0(y)u(x), y =
x

ε
.

Compare this flow with the flow a0∇u + α0u of the homogenized equation. For their
difference we have

Rε ≡ a(y)∇vε(x) + α(y)vε(x)− a0∇u(x)− α0u(x)

=
[
a(y)(ej +∇yNj(y))− a0ej

]∂u(x)
∂xj

+ [a(y)∇yN0(y) + α(y)− α0]u(x)

+ εa(y)∇2u(x)N(y) + εa(y)N0(y)∇u(x)

+ εα(y)(N(y) · ∇u(x)) + εα(y)N0(y)u(x)

= gj(y)
∂u(x)

∂xj
+ g0(y)u(x) + εa(y)∇2u(x)N(y) + εa(y)N0(y)∇u(x)

+ εα(y)(N(y) · ∇u(x)) + εα(y)N0(y)u(x), y =
x

ε
,

(3.3)

where the vectors in square brackets are

(3.4) gj(y) = a(y)(ej +∇yNj(y))− a0ej , g0(y) = a(y)∇yN0(y) + α(y)− α0.

These are periodic solenoidal vectors from L2
per(Y )d due to equations (2.14) and (2.15),

and moreover, they have zero mean value (see the definitions of a0 and α0 in (2.16),
(2.17)). It is known that such vectors can be represented in terms of a matrix potential
(see [3, Chapter I, §1]).
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Lemma 3.1. Let t ∈ L2
per(Y )d be a solenoidal vector with zero mean value: divyt(y) = 0,

〈t〉 = 0. Then there exists a skew-symmetric matrix T ∈ H1
per(Y )d×d, T = {Tik},

Tik = −Tki, such that

t(y) = divyT (y),

‖T‖H1
per(Y )d×d ≤ c‖t‖L2

per(Y )d .
(3.5)

Hence, writing the vectors (3.4) in terms of the matrix potential gives

(3.6) gj(y) = divyG
j(y), Gj ∈ H1

per(Y )d×d, j = 0, 1, . . . , d,

and, as a consequence (without summation over the repeated index j),

gj(y)
∂u(x)

∂xj
= εdiv

(
Gj(y)

∂u(x)

∂xj

)
− εGj(y)∇∂u(x)

∂xj
, j = 1, . . . , d,

g0(y)u(x) = εdiv(G0(y)u(x))− εG0(y)∇u(x), y =
x

ε
.

(3.7)

We claim that the first terms on the right-hand sides are solenoidal vectors. Indeed,∫
Rd

div

(
Gj

(x

ε

) ∂u(x)

∂xj

)
· ∇ϕ(x) dx= −

∫
Rd

∂u(x)

∂xj
Gj

(x

ε

)
· ∇2ϕ(x) dx = 0

and ∫
Rd

div
(
G0

(x

ε

)
u(x)

)
· ∇ϕ(x) dx= −

∫
Rd

u(x)G0
(x

ε

)
· ∇2ϕ(x) dx = 0

if ϕ ∈ C∞
0 (Rd), because Gj and G0 are skew-symmetric and ∇2ϕ is symmetric.

Representations (3.7) allow us to obtain an expression with a factor ε for divRε,
namely

divRε
(3.3)
= εdiv

[
a(y)∇2u(x)N(y) + a(y)N0(y)∇u(x) + α(y)(N(y) · ∇u(x))

+ α(y)N0(y)u(x)−G0(y)∇u(x)−Gj(y)∇∂u(x)

∂xj

]
, y =

x

ε
.

(3.8)

Now, for the first approximation vε we take the so-called scalar flow

β(y) · ∇vε(x) + γ(y)vε(x)

= β(y) · (ej+∇yNj(y))
∂u(x)

∂xj
+

[
β(y)·∇yN0(y)+γ(y)

]
u(x) + εβ(y) · (∇2u(x)N(y))

+ εβ(y) · ∇u(x)N0(y) + εγ(y)N(y) · ∇u(x) + εγ(y)N0(y)u(x), y =
x

ε
,

and compare it with the similar scalar flow β0 · ∇u(x) + γ0u(x) for the homogenized
equation. The difference of these flows can be written as

rε ≡ β(y) · ∇vε(x) + γ(y)vε(x)− β0 · ∇u(x)− γ0u(x)

=
[
β(y) · (ej +∇yNj(y))− β0

j

]∂u(x)
∂xj

+ [β(y) · ∇yN0(y) + γ(y)− γ0]u(x)

+ εβ(y) · (∇2u(x)N(y)) + εβ(y) · ∇u(x)N0(y) + εγ(y)N(y) · ∇u(x)

+ εγ(y)N0(y)u(x), y =
x

ε
.

(3.9)

Consider the functions

sj(y) = β(y) · (ej +∇yNj(y))− β0
j , j = 1, . . . , d,

s0(y) = β(y) · ∇yN0(y) + γ(y)− γ0
(3.10)



850 S. E. PASTUKHOVA AND R. N. TIKHOMIROV

standing in the square brackets in (3.9). They have zero mean value by the definition of
the constants β0

j and γ0 (see (2.17)). Moreover, for all j we have

(3.11) sj ∈ L
2p

p+1
per (Y ).

Indeed, since β ∈ L2p
per(Y )d and ∇yNj ∈ L2

per(Y )d, it follows that

∫
Y

|∇yNj(y) · β(y)|
2p

p+1 dy ≤
(∫

Y

|∇yNj(y)|2dy
) p

p+1
(∫

Y

|β(y)|2p dy
) 1

p+1

< ∞

by the Hölder inequality, whence ∇yNj · β ∈ L
2p

p+1
per (Y ). Similarly, β ∈ L

2p
p+1
per (Y )d. Hence,

by the definition (3.10)1 relation (3.11) is true for all sj , j ≥ 1. As for s0, we can

use similar arguments, observing that γ ∈ Lp
per(Y ) and Lp

per(Y ) ⊂ L
2p

p+1
per (Y ). The last

inclusion follows from the fact that p > 2p
p+1 valid for p > 1, which is ensured by (2.4).

The proof of the following assertion is given at the end of §4.

Lemma 3.2. There exist vectors Sj ∈ L2
per(Y )d, j = 0, 1, . . . , d, such that sj(y) =

divyS
j(y), where

(3.12) ‖Sj‖L2
per(Y )d ≤ c‖sj‖

L
2p

p+1
per (Y )

, c = const(d).

Using the formulas from Lemma 3.2, we have

sj(y)
∂u(x)

∂xj
= εdiv

(
Sj(y)

∂u(x)

∂xj

)
− εSj(y) · ∇

(
∂u(x)

∂xj

)
,

s0(y)u(x) = εdiv
(
S0(y)u(x)

)
− εS0(y) · ∇u(x), y =

x

ε
.

Then the difference rε (see (3.9), (3.10)) can be written in the form

rε = εdiv

(
Sj(y)

∂u(x)

∂xj
+ S0(y)u(x)

)
+ εβ(y) · (∇2u(x)N(y)) + εβ(y) · ∇u(x)N0(y) + εγ(y)N(y) · ∇u(x)

+ εγ(y)N0(y)u(x)− εSj(y) · ∇
(
∂u(x)

∂xj

)
− εS0(y) · ∇u(x), y =

x

ε
.

(3.13)

The equations for uε and u, and also the representations for differences of flows yield
the identity

Aε(v
ε − uε) + λ(vε − uε) = Aεv

ε −Aεu
ε + λvε − λuε = Aεv

ε + λvε − f

= Aεv
ε + λvε −A0u− λu = −divRε + rε + λ(vε − u)

= −divRε + rε + ελN(y) · ∇u(x) + ελN0(y)u(x),

(3.14)

where divRε and rε are given in (3.8) and (3.13). In other words, the function wε = vε−uε

solves the equation

(3.15) Aεw
ε + λwε = fε + divFε,

where the functions fε, Fε are expressed in terms of the solutions of auxiliary cell problems
and the homogenized problem in accordance with (3.8), (3.13), and (3.14). Namely,

(3.16) Fε(x) = −Rε(x) + εSj
(x

ε

)∂u(x)

∂xj
+ εS0

(x

ε

)
u(x),
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where

Rε(x)
(3.8)
= ε

[
a(y)∇2u(x)N(y) + a(y)N0(y)∇u(x) + α(y)(N(y) · ∇u(x))

+ α(y)N0(y)u(x)−G0(y)∇u(x)−Gj(y)∇∂u(x)

∂xj

]
, y =

x

ε
,

and

fε(x)
(3.13),(3.14)

= ε
[
β(y) · (∇2u(x)N(y)) + β(y) · ∇u(x)N0(y)

+ γ(y)N(y) · ∇u(x) + γ(y)N0(y)u(x)− Sj(y) · ∇∂u(x)

∂xj

− S0(y) · ∇u(x) + λN(y) · ∇u(x) + λN0(y)u(x)
]∣∣∣

y= x
ε

.

(3.17)

Equation (3.15) is of a more general form than the original equation (2.1). Neverthe-
less, a counterpart of the energy estimate (2.9) is valid for equation (3.15), namely,

(3.18) ‖wε‖H1(Rd) ≤ c0
(
‖fε‖L2(Rd) + ‖Fε‖L2(Rd)

)
.

Taking the structure of the functions fε and Fε into account, from (18) we deduce the
estimate

(3.19) ‖vε − uε‖2H1(Rd) ≤ c0ε
2
∑
i

∫
Rd

∣∣∣bi (x

ε

)∣∣∣2 |Φi(x)|2 dx.

Here Φi(x) stands for the function u(x) or its gradients ∇u(x), ∇2u(x), so that

(3.20) ‖Φi‖L2(Rd) ≤ c‖f‖L2(Rd)

by the elliptic estimate (2.11); the factors bi(y) are built out of

Gj(y), Sj(y), Nj(y),(3.21)

Nj(y)α(y), Nj(y)β(y), γ(y)Nj(y).(3.22)

In the general case, the factors bi(y) are not in L∞(Y ). Therefore, we cannot exclude
them from the right-hand side integrals in (3.19) and then, due to (3.20), arrive at the
estimate

(3.23) ‖uε − vε‖H1(Rd) ≤ Cε‖f‖L2(Rd)

with a constant depending only on the quantities listed in Theorem 2.2. In the sequel,
we explain how to overcome this difficulty by changing slightly the first approximation.

§4. The integrated estimate

4.1. Shift in coefficients. Shifted first approximations. Consider a family of prob-
lems with shift in coefficients, namely

− div [a(y + ω)∇uε(x, ω) + α(y + ω)uε(x, ω)]

+ β(y + ω) · ∇uε(x, ω) + γ(y + ω)uε(x, ω) + λuε(x, ω) = f(x),

y =
x

ε
, ω ∈ Y.

(4.1)

Here, we have the same right-hand side function f(x) as in (2.1). Evidently, equation
(2.1) is presented in this family when ω = 0. The solutions of the auxiliary cell problems
corresponding to (4.1) are Nj(y+ω) and N0(y+ω), i.e., they are obtained by appropriate
shifting from solutions of (2.14), (2.15). Consequently, the homogenized matrix and the
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homogenized equation do not depend on the parameter ω, and in accordance with (3.1)
the corresponding first approximation to the solution of (4.1) will be of the form

(4.2) vε(x, ω) = u(x) + εNj(y + ω)
∂u(x)

∂xj
+ εN0(y + ω)u(x), y =

x

ε
.

We have seen above that the difference wε(x, ω) = vε(x, ω)−uε(x, ω) satisfies the estimate
of the type (3.19), namely,

‖wε( · , ω)‖2H1(Rd) ≤ c0ε
2
∑
i

∫
Rd

∣∣∣bi (x

ε
+ ω

)∣∣∣2 |Φi(x)|2 dx.

After integrating this inequality with respect to ω ∈ Y , we eliminate the functions
|bi(y + ω)|2 from the right-hand side integrals, replacing them by the mean values over
the cell Y :∫

Y

‖wε( · , ω)‖2H1(Rd) dω ≤ c0ε
2
∑
i

∫
Rd

|Φi(x)|2
∫
Y

∣∣∣bi (x

ε
+ ω

)∣∣∣2 dω dx

= c0ε
2
∑
i

〈|bi|2〉
∫
Rd

|Φi(x)|2 dx

≤ c0ε
2‖u‖2H2(Rd)

∑
i

〈|bi|2〉
(2.11)
≤ cε2‖f‖2L2(Rd)

∑
i

〈|bi|2〉.

(4.3)

This is possible provided that
bi ∈ L2

per(Y ).

for all i. Let us find out whether this integrability property is valid for all functions
listed in (3.21), (3.22). There may only be doubts about functions on the list (3.22),
because they are products of Nj ∈ H1

per(Y ) by one of the unbounded multipliers α(y),

β(y), and γ(y). Note that the functions listed in (3.21) belong to L2
per(Y ) by their choice

(see (2.14), (2.15), (3.6) and Lemma 3.2).
First, we verify that Njα,Njβ ∈ L2

per(Y )d. Indeed, by Hölder’s inequality we have∫
Y

|Nj(y)α(y)|2 dy ≤
(∫

Y

|α2(y)|p dy
) 1

p
(∫

Y

|Nj(y)|
2p

p−1 dy

) p−1
p

≤ c

(∫
Y

|Nj(y)|
2p

p−1 dy

) p−1
p

≤ C

∫
Y

|∇Nj(y)|2 dy < ∞,

(4.4)

where we have also used condition (2.3) for α and the Sobolev inequality (see, e.g.,
[9, Chapter II, §2]) for Nj ∈ H1(Y ). Inequalities (4.4) hold true in any dimension d ≥ 2.

In the case where d > 2, we have p = d
2 (see (2.4)), so that 2p

p−1 = 2d
d−2 coincides with the

Sobolev exponent. For d = 2, we have the exponent p > 1, and the Sobolev embedding
theorem yields ‖Nj‖Lq(Y ) ≤ c‖∇Nj‖L2(Y ) for any q > 1, in particular, for q = 2p

p−1 .

The second function on the list (3.22) also belongs to L2
per(Y ) and this is ensured by the

property β ∈ L2p
per(Y )d. What concerns the last function in (3.22), the above arguments

do not work. The reason is that, in accordance with (2.3), the periodic multiplier γ
possesses a weaker integrability property compared to α and β. In the general case,

the embedding theorem shows that Njγ ∈ L
2d

d+2
per (Y ) if d > 2 (because Nj ∈ L

2d
d−2
per (Y ),

γ ∈ L
d
2
per(Y ), and d−2

2d + 2
d = d+2

2d ) and the exponent 2d
d+2 does not attain the value 2.

The same problem arises in dimension d = 2.
The problem of inadequate integrability of the functions σ(y) = Nj(y)γ(y) on the cell

Y is overcome in the following way. In (3.17), these periodic functions are multiplied
by z(x), where z(x) is either u(x) or ∇u(x), so that z ∈ H1(Rd) in any case. We can
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transform this product by using the possibility of additional differentiation of z(x). New
periodic multipliers that emerge via this transformation will be integrable with appro-
priate exponents. This transformation procedure is described in the following lemma,
which will be proved later.

Lemma 4.1. Suppose z ∈ H1(Rd) and σ ∈ Lq
per(Y ), q = 2d

d+2 . Then

σ(y) = 〈σ〉+ divyρ(y), ρ ∈ L2
per(Y )d,

σ
(x

ε

)
z(x) = 〈σ〉z(x) + ε

[
div

(
ρ
(x

ε

)
z(x)

)
− ρ

(x

ε

)
· ∇z(x)

]
.

(4.5)

Moreover,

(4.6) ‖ρ‖L2
per(Y )d ≤ c‖σ‖Lq

per(Y ), c = const(d).

We apply (4.5) to the terms in (3.17) that contain Nj(y)γ(y), namely,

εNj

(x

ε

)
γ
(x

ε

)
z(x) = ε〈Njγ〉z(x)− ε2ρj

(x

ε

)
· ∇z(x) + ε2div

(
ρj

(x

ε

)
z(x)

)
,

ρj ∈ L2
per(Y )d.

(4.7)

Here, the expressions with the operator div occurring infε will go to the second compo-
nent divFε of the right-hand side in (3.15).

Thus, we obtain (3.15) with the transformed right-hand side fε+divFε, the structure
of which dictates estimate (3.18) in the form of (3.19) with a new set of functions bi(y).
Now, the function γNj does not occur on the list (3.22). Instead of this, the list (3.21)
will be supplemented with 〈Njγ〉 and ρj (see (4.7)).

As a result, we obtain estimate (4.3) in which bi ∈ L2
per(Y ) for all i. In short this

estimate can be written as

(4.8)

∫
Y

‖vε( · , ω)− uε( · , ω)‖2H1(Rd) dω ≤ Cε2‖f‖2L2(Rd),

where the constant C depends on the quantities listed in Theorem 2.2.

4.2. Estimate averaged over the shift parameter. Now we investigate the possi-
bility of replacing the function uε(x, ω) by uε(x+ εω) in (4.8). Note that uε(x+ εω) is
a solution of the equation

− div [a(y + ω)∇uε(x+ εω) + α(y + ω)uε(x+ εω)] + β(y + ω) · ∇uε(x+ εω)

+ γ(y + ω)uε(x+ εω) + λuε(x+ εω) = f(x+ εω), y =
x

ε
.

(4.9)

From (4.9) and (4.1) it is seen that uε(x + εω) and uε(x, ω) satisfy one and the same
equation but with the different right-hand side functions f(x+εω) and f(x), respectively.
To compare these right-hand sides, we employ the following inequality (its proof can be
found in [5, 7, 8]):

‖f( · + εω)− f( · )‖H−1(Rd) ≤ ε|ω|c‖f‖L2(Rd), ω ∈ Y, c = const(d),

whenever f ∈ L2(Rd).
So, the difference zεω(x) = uε(x, ω)− uε(x+ εω) satisfies the equation

zεω ∈ H1(Rd), Aεz
ε
ω + λzεω = F ε

ω ∈ H−1(Rd)

with the right-hand side F ε
ω(x) = f(x+ εω)− f(x). We have the energy estimate

‖zεω‖H1(Rd) ≤ C‖F ε
ω‖H−1(Rd).

Hence,∫
Rd

(
|uε(x, ω)− uε(x+ εω)|2 + |∇uε(x, ω)−∇uε(x+ εω)|2

)
dx ≤ Cε2

∫
Rd

|f(x)|2 dx
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for all ω ∈ Y . This allows us to replace uε(x, ω) with uε(x + εω) in (4.8). As a result,
the averaged (over the shifting parameter ω ∈ Y ) estimate is proved.

Theorem 4.2. Assume that uε(x) is a solution of (2.1) and vε(x, ω) is defined in (4.2).
Then under the conditions ε ≤ ε0 and λ ≥ λ0 we have the estimate∫

Y

∫
Rd

(
|uε(x+ εω)− vε(x, ω)|2 + |∇uε(x+ εω)−∇vε(x, ω)|2

)
dω dx

≤ Cε2
∫
Rd

|f(x)|2 dx.
(4.10)

The constant C depends on the dimension d, the ellipticity constant μ, the parameter λ,
and the norms ‖α‖L2p

per(Y )d , ‖β‖L2p
per(Y )d , and ‖γ‖Lp

per(Y ) with the same stipulation in the

case of d = 2 as in Theorem 2.2.

4.3. Proof of auxiliary assertions. Here we prove Lemmas 3.2 and 4.1. We use the
following fact: if s ∈ Lq

per(Y ), q > 1, and 〈s〉 = 0, then there exists a vector S ∈ W 1,q
per(Y )d

such that
divyS(y) = s(y).

To prove this, it suffices to take a solution of the periodic problem

ΔyU = s, U ∈ W 2,q
per(Y )

(which exists by the elliptic theory) and to put S = ∇yU . Thus, from s ∈ L
2p

p+1
per (Y )

it follows that S ∈ W
1, 2p

p+1
per (Y )d, whence S ∈ L2

per(Y )d by the embedding theorem, as
required. Lemma 3.2 is proved.

The above arguments prove also the first representation in (4.5) together with estimate
(4.6). The second representation in (4.5) is an immediate consequence of the first. This
proves Lemma 4.1.

§5. Corollaries to the integrated estimate

We deduce consequences of Theorem 4.2.
1. First, from the integrated estimate (4.10), we deduce the L2-estimate (2.12). In-

deed, discarding the term with gradients in (4.10) and changing the order of integration,
we obtain ∫

Rd

∫
Y

|uε(x+ εω)− vε(x, ω)|2 dω dx ≤ Cε2
∫
Rd

|f(x)|2 dx,

and then applying the Cauchy–Schwarz inequality in the inner integral with respect to
ω, finally we get

(5.1)

∫
Rd

∣∣∣∣
∫
Y

uε(x+ εω)dω − u(x)

∣∣∣∣
2

dx ≤ Cε2
∫
Rd

|f(x)|2 dx,

where we have taken into account that∫
Y

vε(x, ω) dω = u(x) + ε

(∫
Y

Nj

(x

ε
+ ω

)
dω

)
∂u(x)

∂xj

+ ε

(∫
Y

N0(
x

ε
+ ω) dω

)
u(x) = u(x),

(5.2)

because 〈Nj〉 = 0 for all j = 0, 1, . . . , d.
Note that

∫
Y
uε(x + εω) dω is the Steklov averaging (called also Steklov smoothing)

of the original solution uε(x). The following property of the Steklov smoothing

(Sεϕ)(x) =

∫
Y

ϕ(x+ εω) dω
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is well known (see [5, 7, 8]):

(5.3) ‖Sεϕ− ϕ‖L2(Rd) ≤ c0ε‖∇ϕ‖L2(Rd), c0 = const(d).

Using (5.3), we write

(5.4)

∥∥∥∥
∫
Y

uε( · + εω) dω − uε( · )
∥∥∥∥
L2(Rd)

≤ c0ε‖∇uε‖L2(Rd) ≤ cε‖f‖L2(Rd),

where the energy inequality (2.9) is employed at the last step.
From (5.1), (5.4), and the triangle inequality

‖uε − u‖L2(Rd) ≤
∥∥∥∥uε( · )−

∫
Y

uε( · + εω) dω

∥∥∥∥
L2(Rd)

+

∥∥∥∥
∫
Y

uε( · + εω) dω − u( · )
∥∥∥∥
L2(Rd)

we obtain (2.12).
2. Now we do not discard the gradients in (4.10). Changing the order of integration

and applying the Cauchy–Schwarz inequality in the inner integral, we find∫
Rd

∣∣∣∣
∫
Y

(uε(x+ εω)− vε(x, ω)) dω

∣∣∣∣
2

dx+

∫
Rd

∣∣∣∣∇
∫
Y

(uε(x+ εω)− vε(x, ω)) dω

∣∣∣∣
2

dx

≤ Cε2
∫
Rd

|f(x)|2 dx.
(5.5)

Observing that (see (5.2))∫
Y

vε(x, ω) dω = u(x),

∫
Y

∇vε(x, ω) dω = ∇u(x)

and that ∫
Y

uε(x+ εω) dω = (Sεuε)(x)

is the Steklov smoothing of the function uε(x), we see that estimate (5.5) can be rewritten
as

‖Sεuε − u‖2L2(Rd) + ‖∇(Sεuε − u)‖2L2(Rd) ≤ Cε2‖f‖2L2(Rd),

i.e.,

(5.6) ‖Sεuε − u‖H1(Rd) ≤ cε‖f‖L2(Rd)

with a constant on the right-hand side of the same type as in (2.12). An interesting
property of this H1-estimate should be mentioned: it does not involve any corrector.

3. Estimate (4.10) can be transformed somewhat differently in order to carry the
smoothing operator from uε(x) over to the shifted first approximation vε(x, ω) ≡ vεω(x).
The change of variable x → x+ εω yields∫
Rd

( ∫
Y

|uε(x)−vεω(x− εω)|2 dω+

∫
Y

|∇uε(x)−∇vεω(x− εω)|2 dω
)
dx ≤ cε2

∫
Rd

f2(x) dx,

whence, by the Cauchy–Schwarz inequality,∫
Rd

[
uε(x)−

∫
Y

vεω(x− εω) dω
]2

dx+

∫
Rd

[
∇uε(x)−

∫
Y

∇vεω(x− εω) dω
]2

dx

≤ cε2
∫
Rd

f2(x) dx.

(5.7)
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Observe that

vεω(x− εω) = u(x− εω) + εNj

(x

ε

) ∂u

∂xj
(x− εω) + εN0

(x

ε

)
u(x− εω),∫

Y

vεω(x− εω) dω

=

∫
Y

u(x− εω) dω + εNj

(x

ε

) ∫
Y

∂u

∂xj
(x− εω) dω + εN0

(x

ε

) ∫
Y

u(x− εω) dω

= Sεu+ εNj

(x

ε

) ∂

∂xj
Sεu+ εN0

(x

ε

)
Sεu,

where the Steklov smoothing Sεu arises in a natural way. Therefore, (5.7) means that∥∥∥uε( · )− (Sεu)( · )− εNj

( ·
ε

) ∂

∂xj
(Sεu)( · )− εN0

( ·
ε

)
(Sεu)( · )

∥∥∥
H1(Rd)

≤ cε‖f‖L2(Rd).

(5.8)

The expression

(5.9) ṽε(x) = Sεu(x) + εNj

(x

ε

) ∂

∂xj
Sεu(x) + εN0

(x

ε

)
Sεu(x)

is called the smoothed first approximation. We write (5.8) briefly as

‖uε − ṽε‖H1(Rd) ≤ cε‖f‖L2(Rd).

Estimate (5.8) can be simplified. Indeed,

‖Sεu− u‖H1(Rd) ≤ c1ε(‖∇u‖L2(Rd) + ‖∇2u‖L2(Rd)) ≤ cε‖f‖L2(Rd)

by the properties of the smoothing operator, in view of the elliptic estimate for u. In
other words, the function

(5.10) v̂ε(x) = u(x) + εNj

(x

ε

) ∂

∂xj
Sεu(x) + εN0

(x

ε

)
Sεu(x)

can also be taken as an H1-approximation. It is called the first approximation with
smoothed corrector. The following estimate holds true:∥∥∥uε( · )− u( · )− εNj

( ·
ε

) ∂

∂xj
(Sεu)( · )− εN0

( ·
ε

)
(Sεu)( · )

∥∥∥
H1(Rd)

≤ cε‖f‖L2(Rd),

or in short,

(5.11) ‖uε − v̂ε‖H1(Rd) ≤ cε‖f‖L2(Rd).

Now we summarize our results about approximations in the H1-norm.

Theorem 5.1. Let uε(x) be a solution of problem (2.1), and let v̂ε(x) be a first approx-
imation with smoothed corrector (see (5.10)). Then under the conditions ε ≤ ε0 and
λ ≥ λ0, inequality (5.11) holds true with a constant of the same type as in (2.12).

Moreover, the solutions of the original and the homogenized problems are close in the
H1-norm in the sense of estimate (5.6).

Relation (5.11) shows that we have proved an estimate in the operator (L2(Rd) →
H1(Rd))-norm for the resolvent (Aε + λ)−1 of the original operator and of its approxi-
mation. Namely,

‖(Aε + λ)−1 − (A0 + λ)−1 − εKε‖L2(Rd)→H1(Rd) ≤ Cε,

Kεf = N
(x

ε

)
· ∇Sε(A0 + λ)−1f +N0

(x

ε

)
Sε(A0 + λ)−1f.

(5.12)
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§6. Error estimate for the usual first approximation

6.1. The question arises as to whether it is possible to get rid of the smoothing operator
in (5.11) and, thus, proceed to an H1-estimate with the usual first approximation (3.1),
possibly after some strengthening of the original conditions on the data of the problem.
The affirmative answer is given below.

Theorem 6.1. In dimension d ≥ 3, assume the following conditions on the coefficients
in the lower order terms of equation (2.1):

(6.1) α ∈ Ls
per(Y )d for s > d, β ∈ Ld

per(Y )d, γ ∈ L
d
2
per(Y )d.

Then the function vε(x) defined in (3.1) approximates the solution uε(x) of problem (2.1)
with estimate (3.23), where the constant C depends on d, the ellipticity constant μ, the
parameter λ, and the norms ‖α‖Ls(Y )d , ‖β‖Ld(Y )d , ‖γ‖L d

2 (Y )
. In dimension d = 2, under

the same conditions (2.3), (2.4) as before, estimate (3.23) holds true with a constant of
the same type as in Theorem 2.2.

First, we claim that under condition (6.1) the function vε(x) belongs to H1(Rd).
Indeed, the generalized maximum principle (see [16, Chapter II, Appendix B]) can be
applied to the cell problems (2.14) and (2.15), because in both cases we have a scalar
equation of the type

divy[(a(y)∇N(y)] = divyF (y)

with a function F ∈ Ls(Y ), s > d. For example, on the right-hand side of (2.14) we have
the function −divy[(a(y)e

j ] and the desired integrability property is ensured merely by
the boundedness condition (2.2). As for (2.15), the right-hand side function α is of class
Ls
per(Y )d, s > d, by assumptions. Therefore,

(6.2) ‖Nj‖L∞ ≤ c, j = 0, 1, . . . , d,

and, clearly, all the terms in vε(x) and ∇vε(x) (see (3.1) and (3.2)) containing the
multiplier Nj belong to L2(Rd). As an example, by (2.11) and (6.2) we obtain

‖∇2u( · )N( · /ε)‖L2(Rd)d ≤ C, ‖N0( · /ε)∇u( · )‖L2(Rd)d ≤ C,

‖N( · /ε) · ∇u( · )‖L2(Rd) ≤ C.

The terms in ∇vε(x) that involve the multiplier ∇Nj also belong to L2(Rd) thanks to
the following property of this multiplier.

Lemma 6.2. i) Let N0 be a solution of problem (2.15) under the condition α ∈ Ls
per(Y )d,

s > d. Then for sufficiently small ε, ε ≤ ε0, the gradient ∇N0(y)|y=x/ε is a multiplier

from H1(Rd) to L2(Rd)d. Moreover, we have the estimate

(6.3)

∫
Rd

∣∣∣(∇yN0)
(x

ε

)
w(x)

∣∣∣2 dx ≤ C

∫
Rd

(|w(x)|2 + ε2|∇w(x)|2) dx for all w ∈ H1(Rd),

where the constant C depends on the dimension d, the ellipticity constant μ, and the
norm ‖α‖Ls

per(Y )d .

ii) A similar multiplier property is valid for the gradient ∇Nj(y)|y=x/ε of the solution
of (2.14), j = 1, . . . , d. We have

(6.4)

∫
Rd

∣∣∣(∇yNj)
(x

ε

)
w(x)

∣∣∣2 dx ≤ C

∫
Rd

(|w(x)|2 + ε2|∇w(x)|2) dx for all w ∈ H1(Rd),

where the constant C depends on the dimension d and the ellipticity constant μ.
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Proof. Here we consider only the more complicated assertion i). Assertion ii) of this
lemma was proved in [17] and [8] and was used for the first time to study the first
approximation in [8].

We begin the proof with an equivalent formulation of the integral identity for the
cell problem. By the definition of a periodic solenoidal vector b∈L2

per(Y )d such that
divy b = 0, we have the following integral identity on periodic smooth functions:∫

Y

b(y) · ∇ϕ(y) dy = 0 for all ϕ ∈ C∞
per(�).

Therefore, the next integral identity on finitary functions is valid:∫
Rd

b(x/ε) · ∇ψ dx = 0 for all ψ ∈ C∞
0 (Rd),

where, by closure, the test functions may be chosen in H1(Rd).
Now suppose that b(y) = a(y)∇N(y) + α(y), where N = N0 is a solution of (2.15),

and plug the test function

ψ(x) = N(x/ε)|w(x)|2, w∈C∞
0 (Rd),

in the last integral identity. Using systematically the notation bε(x) = b(x/ε) for ε-
periodic functions, we obtain

0 = ε

∫
Rd

bε · ∇ψ dx ⇐⇒ J ≡
∫
Rd

aε(∇N)εw · (∇N)εw dx

= −2ε

∫
Rd

aε(∇N)εw ·Nε∇w dx−
∫
Rd

αεw · (∇N)εw dx

− 2ε

∫
Rd

αεw ·Nε∇w dx.

(6.5)

The quadratic form J in (6.5) is estimated from below with the help of the ellipticity
condition (2.2), namely,

μ‖(∇N)εw‖2L2(Rd) ≤ J.

Now, we are going to estimate from above all the three components of J . For this,
observe that ‖N‖L∞ ≤ c, as it has been explained before. We have

2ε

∫
Rd

aε(∇N)εw ·Nε∇w dx

≤ δ

∫
Rd

aε(∇N)εw · (∇N)εw dx+ Cδε
2

∫
Rd

aεNε∇w ·Nε∇w dx

(6.5),(2.2)

≤ δJ + μ−1Cδ‖N‖2L∞‖ε∇w‖2L2(Rd),∫
Rd

αεw · (∇N)εw dx ≤ δ‖(∇N)εw‖2L2(Rd) + Cδ

∫
Rd

|αε|2|w|2 dx,

2ε

∫
Rd

αεw ·Nε∇w dx ≤ ‖N‖L∞

(
‖ε∇w‖2L2(Rd) +

∫
Rd

|αε|2|w|2 dx
)
,

where δ > 0 can be arbitrarily small. We also recall that, by Lemma 2.1,∫
Rd

|αε|2|w|2 dx ≤ c0
(
‖w‖2L2(Rd) + ε2‖∇w‖2L2(Rd)

)
.

The above inequalities show that estimate (6.3) is true for w ∈ C∞
0 (Rd) and, by closure,

it is valid for any w ∈ H1(Rd). Thus, the proof is complete.
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6.2. We proceed to the proof of the estimate

‖uε − vε‖H1(Rd) ≤ Cε‖f‖L2(Rd).

For this, we are going to replace in the H1-estimate (5.11) the smoothed approximation
by the usual first approximation.

To be it more demonstrative, we write estimate (5.11) in a detailed version, using the
simplified notation zε = Sεu for the Steklov smoothing.

Namely,∫
Rd

∣∣∣uε(x)− u(x)− εN
(x

ε

)
· ∇zε(x)− εN0

(x

ε

)
zε(x)

∣∣∣2 dx
+

∫
Rd

∣∣∣∇uε(x)−∇
(
u(x) + εN

(x

ε

)
· ∇zε(x) + εN0

(x

ε

)
zε(x)

)∣∣∣2 dx
≤ cε2

∫
Rd

f2 dx.

(6.6)

By (6.2) and the simplest property of smoothing

(6.7) ‖Sεu‖L2(Rd) ≤ ‖u‖L2(Rd),

estimate (6.6) survives if zε is replaced with u in the first integral. The smoothed
corrector in the second integral requires a subtler treatment. As for the expression
(without summation over j)

(6.8) ε∇
(
Nj

(x

ε

)∂zε(x)

∂xj

)
= εNj

(x

ε

)
∇∂zε(x)

∂xj
+ (∇yNj)

(x

ε

)∂zε(x)

∂xj
, j = 1, . . . , d,

there is no problem with the first term thanks to the above-mentioned property of
smoothing, the boundedness of N j , and the elliptic estimate for u. In the second term
of (6.8) smoothing can be omitted, because∥∥∥∥∇yNj

(
∂zε

∂xj
− ∂u

∂xj

) ∥∥∥∥
L2

≤ C

(
ε

∥∥∥∥∇
(
∂zε

∂xj
− ∂u

∂xj

) ∥∥∥∥
L2

+

∥∥∥∥∂zε∂xj
− ∂u

∂xj

∥∥∥∥
L2

)

≤ C
(
ε
∥∥∥∇∂zε

∂xj

∥∥∥
L2

+ ε
∥∥∥∇ ∂u

∂xj

∥∥∥
L2

+ c0ε
∥∥∥∇ ∂u

∂xj

∥∥∥
L2

)
≤ C1ε‖∇2u‖L2 ≤ cε‖f‖L2

(6.9)

by (6.4), the smoothing properties (6.7), (5.3), and the elliptic estimate for u.
The gradient of the second summand in the smoothed corrector is studied similarly

because it has the form

∇
(
εN0

(x

ε

)
zε(x)

)
= εN0

(x

ε

)
zε(x) + (∇N0)

(x

ε

)
zε(x).

Here, we use the boundedness of N0, estimate (6.3) and again various properties of the
Steklov smoothing.

Thus, we have verified that the Steklov smoothing can be omitted everywhere in (6.6)
(in other words, we may replace everywhere zε = Sεu by the function u itself), arriving
at the desired H1-estimate with the usual first approximation vε. This completes the
proof of Theorem 6.1. �

6.3. Here we present the proof of Lemma 2.1, which plays a key role in our considerations.
For definiteness, let d > 2. By homothety arguments, it suffices to consider only the case
where ε = 1. This implies that the weight ρ(x) is 1-periodic.

Split Rd into unit cubes. In each unit cube Y we have the estimate

1

2

∫
Y

u2ρ dx ≤
∫
Y

(u− 〈u〉)2ρ dx+

∫
Y

〈u〉2ρ dx, where 〈u〉 =
∫
Y

u dx, 〈u〉2 ≤ 〈u2〉.
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Applying the Hölder and Sobolev inequalities, we get

∫
Y

(u− 〈u〉)2ρ dx ≤
( ∫

Y

ρ
d
2 dx

) 2
d
( ∫

Y

(u− 〈u〉) 2d
d−2 dx

) d−2
d ≤ cS‖ρ‖

L
d
2 (Y )

∫
Y

|∇u|2 dx,

whence ∫
Y

u2ρ dx ≤ 2〈ρ〉
∫
Y

u2 dx+ 2cS‖ρ‖
L

d
2 (Y )

∫
Y

|∇u|2 dx ≤ c0‖u‖2H1(Y ),

c0 = const
(
d, ‖ρ‖

L
d
2 (Y )

)
.

Summing up this estimate over all cubes of the splitting yields inequality (2.7) for ε = 1.
This completes the proof of Lemma 2.1.
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