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A CRITERION FOR TESTING HYPOTHESES
ABOUT THE COVARIANCE FUNCTION

OF A GAUSSIAN STATIONARY PROCESS
UDC 519.21

YU. V. KOZACHENKO AND T. V. FEDORYANYCH

ABSTRACT. New upper and lower bounds for distributions of quadratic forms of
Gaussian random variables as well as those for the limits of quadratic forms are
found in this paper. Based on these estimates, a criterion is proposed to test a
hypothesis about the covariance function p(7) of a Gaussian stochastic process.

1. INTRODUCTION

In this paper, we consider the space SG=(Q2) of square Gaussian random variables
and obtain new upper and lower bounds for distributions of quadratic forms of square
Gaussian random variables and bounds for distributions of limits of quadratic forms.
The upper estimates improve some results of [1, [2].

The inequalities obtained in this paper allow one to construct confidence sets for
estimators of the covariance function of a Gaussian stochastic process.

Using these inequalities we propose a criterion to test a hypothesis about the covari-
ance function p(7) of a Gaussian stochastic process.

2. THE SPACE OF SQUARE (GAUSSIAN RANDOM VARIABLES

Definition. Let = = {£(t),¢ € T'} be a family of jointly Gaussian random variables (for
example, £(t) is a Gaussian stochastic process) such that E£(t) = 0. The set of random
variables ¢ that either can be represented in the form

(1) (=ETAn—E{" AR

or are the mean square limits of random variables represented in the form of (1) is called

the space SG=(Q2) of square Gaussian random variables; here &= (&,... ,§d)T and
7= (n,... ,nd)T are Gaussian random vectors with E€ = 0 and E7 = 0; the random
variables &, m;, 1 = 1,...,d, belong to Z; A is a symmetric matrix.

It is shown in [I] that

(i) SG=(Q) is a Banach space with respect to the norm ||{|| = \/E(?;
(ii) SG=(f) is a subspace of the Orlicz space generated by the function

U(z) = exp{|z|} — 1;
(i) the norm [|C]l;, ) on SG=(€2) is equivalent to the norm /E (2.
The following result holds for random variables of the space SG=(£2).
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Lemma 2.1 ([I]). Let ¢;, i = 1,2,...,n, be random variables of the space SG=(Q).
Then

s
(2) Eexp{ ——————~ » < R(|s
V2 (Var ¢)'/? s
forall|s| <1 and all \; e R, i =1,2,....,n, where { = i \i(; and

R(s) = exp{—s/2}(1— )"/,
3. DISTRIBUTIONS OF QUADRATIC FORMS OF RANDOM VARIABLES
OF THE SPACE SGz(Q)
The following result improves Lemma 3 in [2].

Lemma 3.1. Let (T = ((1,...,¢4) be a random vector such that ¢; € SG=(Q). Let A
be a symmetric positive definite matriz. Then

t2CTAC
(3) Ecosh | {/ =—=——= | < R(V/2t)
E((TAQ)
for all 0 <t <272 where R(t) is defined by (2).
Proof. First we consider the case A = I, where I is the identity matrix and ¢ is such
that the random variables (; are orthogonal, that is, Var(Z?:1 AiGi) = Z?zl AN ECZ. Put
02 =EC?, i=1,2,...,d. It follows from (2) that
s 3t i
P 172
V2(2, No?)

(4) Eexp

< R(|s)

forall \; e R,i=1,2,....d.

Put
s

\/i\/ E?:1 )‘1201‘2

u =

Inequality (4) implies that

d
(5) Eexp{uZAici} <R | V2

i=1

for

d -1/2
lu| < (22@@) .
i=1

Put s; = u\;0;. Then

d d o2
2 _ 42 252 = 2
Z si=u Z A0 5
i=1 i=1
and E?zl s? < 3. It follows from (5) that
LI
(6) EGXP{;&'U—:}SR
1=

for all s; such that 3% | s2 < 1.

=171
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Applying inequality (6) we get

E Hcosh (S’C’> — Eﬁ exp{si(i/oi} + exp{—si(i/o:}

; 2
i=1 i=1

D )

1 iGi0; 5iGi0;
:FZEgexp{Sg—i} 2dz:Ee {Z - }

=1

where ¢; = +1. Therefore

EHCOSh( UC> <R

7

Put f(z) = Incosh+/z, z > 0. The function f(z) is concave since f(0) = Incosh0 = 0
and f”(z) < 0. Thus

d d
> 1= ()
i=1 i=1
for all z; > 0,7=1,2,...,d. This means that

d d
Hcosh\/z_i > cosh Z Zi zi > 0.
i=1 =1

Therefore

it 34 s? < 3. Set

=11

(7)

for 0 <t < 271/2,
Now we turn to the general case. Let B be a symmetric matrix such that BBT =
2= A. Let R = cov(, and let O be the orthogonal matrix that reduces BRB to the
diagonal form, namely

OBRBO” = D = diag (d43)_, .
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Let § = OB(. Then
777 =77 BOTOBT =TT AT
and covf = OB cov(BOT = D. Since 0; € SG=(), inequality (7) holds for 0 instead
of ¢ where 87 = (6y,...,604). Since

d
075=> 07 =CTAC,
i=1

2079 t2CTAC
cosh {| ———= = cosh -,
EOTH ECTAC

The lemma is proved. O

we get

Corollary 3.1. Let the assumptions of Lemma 3.1 hold. If

n=LimC; AL,

E cosh (@) < R(V2t).

Corollary 3.1 follows from the Fatou lemma.

then

Lemma 3.2. Let the assumptions of Lemma 3.1 hold. Then

1/4,.1/4
(8) P{i > x} < 2

En ~ cosh (\/x—/Q—%)

for x > % where either n =C T A, orn=1im, .o(FAC,.

Proof. 1t follows from the Chebyshev inequality and (?i) in the case of n = (L' A,(,,, or
from Corollary 3.1 in the case of n = Li.m.,—00 ¢ L A,(,,, that

P{i - x} - E cosh \/t2n/ En - R(V/2t)
En o cosh Vt2zx " cosh vtz
forz>0and 0 <t <2°Y2 Putt=2"Y2—(22Y2)"" for z > % Then
R(vV2t)  (2z)"*exp{(2v2x)"' — 1}
cosh V*x cosh («/x/Z - %) .

Since exp {(2(2z)1/2)71 — 1} <1 for z > 3§, we get

1/4,.1/4
P{Ein g a?} : cosh?j/%— l).
2
Lemma 3.2 is proved. O
Lemma 3.3. Let £1,&o,...,&n be independent normal random variables such that
E¢& =0 and E& =07,
and let ¢, = +1 and s > 0. Then

8o, ey, 1
‘Eexp {ZQ(Em 1172 < 2
k=1%% (14 s2)

1/4°
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Proof. We have

<ZZL—1 §£Ck " ifick
9 E =Rt~ b =E I I —=E= 5.
(9) exp {z . 1 exp § =

Taking the equality
Eexp {is¢i} = (1 - 22‘50,3)_1/2

into account, we rewrite (9) in the following form:

mo 2 m 2 —1/2
Eexp{iw}— II (1_21'%_0’“) .
r r
k=1

Thus
m m 2 1/2 m 2 1/2
a2 -t
" k=1 " k=1 "
m 2\ ~V4 s —1/4
— TkCk _ 4oy,
H<1+<2T>> H<1+T—2>
k=1 k=1
Put
m 4 4 71/4
1= (1 T _)
k=1 r
Then
1 40,%

89

Consider the function f(x) = In(1 4 z) for > 0. It is clear that f(0) = 0, f(z) is

concave, and thus

H(Xn) s, nzo
k=1 k=1
Furthermore
m m
> fla) < —f(zxk>7
k=1 k=1
whence
1 4 &K,
/< —-n{1+ T—QZJ,C
k=1
and
Lo —1/4
4
I< (1 + Zak>
k=1
in view of (10).
Let
o (S 1)1/
r = (Zk=1 Jk) ; s>0

Then I < (1+ 52)_1/4 for s > 0.
Lemma 3.3 is proved.
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Theorem 3.1. Let A be a symmetric matriz and €T = (&1, &, ..., &) a random vector
whose coordinates &, are normal random variables such that E&, = 0 and EEE = of.
Then
s(ETAE —EETAE 1
Eexp (i (5 ¢ _f_f) < N1/ s> 0.
V2/DET AE (1+s2)
Theorem 3.1 easily follows from Lemma 3.3.

Lemma 3.4. Let (T = ((1,...,¢n) be a random vector whose coordinates ¢, 1<j5<n,

belong to the space SG=(Q). Let A be a symmetric positive definite matriz. Then

u? CTAC
Eex p{ v ECTAC} < g(u)

where

oo 52 ds
gu \/ﬁ/ exp{ }m, 0<u<l.
2

Proof. First let (; be orthogonal square Gaussian random variables such that EQJ2 =03
and 0]2 > 0. Let \; € R'. Then Lemma 3.1 and the Fatou lemma imply

s i NG 1
(11) Eexp i— / < .
5 1/2 1 n1/4
\/_ (Zj L )\? 12) ( + s )

We rewrite the left-hand side of (11) in the following form:

Eex iiz?la(g)
U ()"

n
N0
A et R 2 _ 2
s; =5 s 75 55
. ) j=1

Put

1 o s:C; 1
12 Eexp{i— 275 A <
(12) pRizsy ol

For t; > 0 we have

1 ¢ 1 s
Eexpi— s; 2L exp{ ——% » dsq -+ - dsp,
/n / P ﬂZ]aj H\/zwtj p{ 2t§} !
n 2t2

= Eexp —Z—zjag ,
j=1 “7J

whence

Eexp ¢ — E 22 §/ /H
j=1 20'j " j=1 \V t]
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in view of inequality (12). Setting s;/t; = u; we obtain

n 2t2
Eexp —Z 20
7j=1

(13)

n

1 " 1 duy - - - duy,
</ /<— exp ——ZuQ- .
— n 271_) 2 J 1/4
v =) (1S )

Put

n

2 U 22 2

J=1"7 j=1
Since the function f(u) = 1 1In(1+ u) is concave and f(0) = 0, we have

1 - - 1
1 ln(l + ;aim) > Z Q; (Z In(1 + a:z))

i=1

for a;; > 0 such that >_ , a; = 1. Further

1 " 1
_Zln(l—l—;aimi) < Zai (—Zln(l—l—xi)) .

i=1
Thus
1 - 1
(]_—}—Z 104;[;1) Z];E ]_—|—;C)(1/4)o .
Therefore
1 1 - 1
- < H
1/4 2 1/4 — tf/(4u2)’
(1 +> t? ?) (1 +> 0, %u?zﬂ) j=1 (1 + U?UQ) ‘

since Y " ie1 t] t2/u? = 1. This inequality together with (13) yields

t2 /u?

C2t2 n 1 7
Eexp({ — < E —_—
S5 M| (e

u.m

where &; are Gaussian N(0,1) independent random variables. Applying the inequality
El¢]* < (EIE))?, a < 1, we obtain

n 2t2 1 Zygl tf/“?
Eexp{ — IV < B[ ————
g 207 (1+¢2u2)!/*

SRS O S P
=7 N exp 5 (1+82u2)1/4_gu.

Therefore

where
ds

o= 7= | o {5 e
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Now we consider the general case. Let B be a matrix such that BBT = B? = A,
and let R = cov (. Let O be the orthogonal matrix that reduces the matrix BRB to the
diagonal form, namely

OBRBO" = D = diag(d?)7_,.
Putting # = OB( we get

670 =("BO"OB( = (" AC
and cov@_z OB cov(BOT = D. Since 0; € SG=(Q) and 87 = (4,...,6,), the lemma
holds for # instead of (. Thus

and

The lemma is proved. O

Theorem 3.2. Let the assumptions of Lemmas 3.2 and 3.4 hold. Then

2
(14) P{Ein>x}>1—g(u)exp{%}
for all1>u>0 and z < —21Ing(u)/u®. Moreover
91/4,1/4
(15) P {i > x} < °
En COSh(\/x/Q—%)

for x > % where
() 1 /+°° 52 ds
u) = — eXpy—— p ——————+
g V2T J_ P 2 ) (14 s2u2)l/4
and either n = (L A,C, orn=1im.(TA,C,, (T =(C,...,¢), G € SG=(Q).
Proof. According to Lemma 3.4

u?n
—— Y K .
Eexp{ 2E77} < g(u)

Put § =n/En. Then

pio<a) = [ arie) = "SRG A < oy e {7
< % =g(U)exp{%},
whence

’LLQJ)

P{6>za}>1 —g(u)exp{T

Using the initial notation we have

P{%7 >:c} > 1—g(U)eXp{%}-

Inequality (15) is proved in Lemma 3.2. O

——

8
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4. THE CONSTRUCTION OF A CRITERION TO TEST HYPOTHESES

Let £(t) be a Gaussian stochastic process with E£(¢) = 0 and the correlation function

E&(t +7)E(t) = p(7).
Let

T
) =7 [ eernena  o<r<r,

be an estimator of the covariance function p(7). Put x(7) = p(7) — p(7). It is obvious
that x(7) is a square Gaussian random variable.
Further let

B
n=[ ()= p(r)?ar

It is obvious that inequalities (14)—(15) hold for i where

B
- / (5(r) — p(r))? dr

T2/// 2(t =)+ p(t+7—s)p(t —7 —s)] dtdsdr.

91/4,1/4 2
f(x) = cosh (W_%)’ S(x,u)—l—g(u)exp{T}

for g(u) defined as in Theorem 3.2.
It follows from (14) and (15) that

p{Ein ¢ [x;y]} < 1—s(z,u)+ f(y),

Put

whence ; {Eln . [x;y]} > s(x,u) — f(y)

for 1 >u >0, < —2Ing(u)/u?, and y > %

Let H be the hypothesis that the covariance function of a Gaussian stochastic process
equals p(7) for 0 < 7 < T. We regard p(7) as the estimator of the function p(7).

To test the hypothesis H one can use the following criterion.

Criterion. Given «, 0 < a < 1, one should determine x,, and ¥, such that
1—s(xq,u) + f(Ya) = .
The hypothesis H is accepted if

Jo (b ( ) p(r))*dr
E fo — ’7'))2 dr
Otherwise the hypothesis is rejected.

To <

We now show how to find a and b such that

P{a<i<b}>1—a
En

if « is given. In other words we want to find a and b such that

P{ ¢} <a
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if v is given. The latter inequality follows from
P{Ein Sa} <ay and P{Ein zb} <a(l—7v)

for some 0 < v < 1.
We choose the constant v to minimize the difference b, — a, where a, and b, are

solutions of the equations
u?a
g(u) exp o5 (T

91/4p1/4
=a(l —7).
cosh (\/b/2 — %)
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