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ASYMPTOTIC BEHAVIOR OF MEDIAN ESTIMATORS
OF MULTIPLE CHANGE POINTS

UDC 519.21

G. SHURENKOV

Abstract. We consider the problem of posterior estimation of multiple change
points in the case of only two distributions. We find the asymptotic distribution

of the difference between the median estimator of a single change point and the true
change point and show that the distribution does not change if the unknown param-
eter is estimated by a median of the sample. We generalize the results to the case of
multiple change points.

1. Introduction

There is an extensive literature devoted to the problem of the estimation of change
points (see, for example, [5]). In particular, this problem appears when analyzing geolog-
ical or telemetry data. We consider the posterior problem of the estimation of multiple
change points for the model of only two distributions on the sample. The median estima-
tor considered in [7] for the case of only one change point is also suitable for our problem.
This estimator requires comparatively small amount of information about the distribu-
tions, and it can be used even in the case where the only information available is that
the medians of the distributions are different. In the latter case the unknown parameter
can be estimated by the median of the sample. This estimator is rough; nevertheless it
can be used as first approximation in a more precise procedure of estimation of change
points.

The asymptotic behavior of the difference between the median estimator and the true
change point is found in the paper. The median estimator is an example of the so-called
DP estimators, that is, those constructed by using the dynamic programming algorithms
(see [6]). The limit distributions of estimators of change points are found in [2] in the
case where distributions are known and there is only one change point. These results are
generalized in [3] for DP estimators for the case where a restricted amount of information
is available about the distributions and there are multiple change points.

In Section 3, we find the asymptotic distribution of the median estimator for the case
where the unknown parameter is estimated by the median of the sample (the estimator
is no more a standard DP estimator in this case). In Section 4, we apply the technique
described in [3] to generalize these results to the case of multiple change points.
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2. Setting of the problem

Consider a sequence of independent random variables {ζ1, . . . , ζN} and assume that
the distribution of every random variable ζi, 1 ≤ i ≤ N , is either F1 or F2. Assume
that med F1 �= med F2. By F1 we denote the distribution with the smaller median. Let
P(ζj ∈ A) = Fh0

j
(A), where h0 = {h0

j , j = 1, . . . , N} is a nonrandom sequence such that
h0

j ∈ {1, 2} and h0
j = const if ki = [θiN ] < j ≤ [θi+1N ] for some nonrandom numbers

0 = θ0 < θ1 < · · · < θR < θR+1 = 1 called the change moments; the ki are called the
change points. Sequences h of numbers of distributions are called the trajectories; h0 is
called the true trajectory of the sequence {ζ1, . . . , ζN}.

Let m̂ = med{ζ1, . . . , ζN}. Consider the following functions:

φm(x, 1) = �{x>m}, φm(x, 2) = �{x<m}, πN (g, l) = πN�g �=l, πN > 0,

and introduce the functional

(1) Jm(h) =
N∑

i=1

(πN (hi, hi−1) + φm(ζi, hi)), m ∈ R.

Consider an estimator h̃ of h0 defined by

(2) h̃ = argmin
h

Jm(h).

Estimators of the change points are constructed from the trajectory h̃ as follows:

k1(h̃) = min
{

l : h̃l �= h̃j , 1 ≤ j < l
}

,

ki(h̃) = min
{

l : h̃l �= h̃j , ki−1(h̃) ≤ j < l
}

where ki(h̃) is the change point i of the trajectory h̃. By R(h̃) we denote the number of
change points in the trajectory h̃.

If
med F1 < m < med F2,

then the above estimators are consistent; see [1, 4]. If the medians of the distributions
are unknown, then m can be estimated by the median of the sample m̂ = med ζj . It can
be proved that if m̂ is substituted for m, then the estimators still are consistent. As an
estimator of h we take the statistic

(3) ĥ = argmin
h

Jm̂(h).

The estimators of the change points are k̂j,N = kj(ĥ), and the estimator of the number
of change points is R̂ = R(ĥ). The problem is to find the limit of distributions of the
differences k̂j,N − kj as N → ∞. First we consider this problem for the case where there
is only one change point.

3. The case of only one change point

We solve the problem under the assumption that med ξ1 < med η1 where the distri-
bution of ξ1 is F1, while the distribution of η1 is F2. The sequence ζj can be divided in
this case into two consecutive parts, namely

ζj =

{
ξk−j+1, j ≤ k,

ηj−k, j > k,
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where the distribution of ξj is F1, while the distribution of ηj is F2. Thus we deal with
the sequence {ξk, ξk−1, . . . , ξ1, η1, . . . , ηn−k}. It is easy to check that in this case the
analog of estimator (2) is given by

(4) k̂N = argmax
l=1,...,N

l∑
j=1

r(ζj , m)

where

r(x) = r(x, m) = �x<m − �x>m.

The symbol argmax stands for the least l for which the maximum is attained. The
estimator for the change moment θ is θ̂N = k̂N/N . If m is estimated by the median of
the sample, then we get the estimator for the change point

(5) k̂N = argmax
l=1,...,N

l∑
j=1

r(ζj , m̂).

Let the symbol Cn
m stand for the binomial coefficient

(
m
n

)
. Put

Hu1v2(p) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
p/2<j≤p

(
Cj−1

p−1 − Cj
p−1

)
uj

2v
p−j
2

(
1 − u2

v2

)(
1 −

(
u1
v1

)2j−p
)
, p > 0,(

1 − u2
v2

)(
1 − u1

v1

)
v1, p = 0,∑

|p|/2≤j≤p

(
Cj

|p| − Cj+1
|p|

)
uj

1v
|p|−j+1
1

(
1 − u1

v1

)
×

(
1 −

(
u2
v2

)2j−|p|+1
)
, p < 0,

where u1 ∈ (0, 1), v1 = 1 − u1, v2 ∈ (0, 1), and u2 = 1 − v2.

Theorem 1. Let the distributions F1 and F2 be continuous in the interval

[med ξ1, med η1].

If k̂N is defined by (5), then

H∗(p) := lim
N→∞

P
(
k̂N − k = p

)
= Hu1v2(p)

where u1 = 1 − F1(m̄) and v2 = 1 − F2(m̄). Here the point m̄ is the median of the
distribution F̄ = θF1 + (1 − θ)F2.

Remark. A certain number λ ∈ (0, 1) plays the role of θ in the case of multiple change
points.

Proof. According to the definition of the estimator k̂ the difference k̂N−k can be rewritten
as follows:

k̂N − k = argmax
−k≤l≤N−k

{ l∑
j=1

r(ηj), l > 0; 0, l = 0,−
|l|∑

j=1

r(ξj), l < 0
}

.

Then

k̂N − k = p > 0 ⇔

⎧⎪⎪⎨
⎪⎪⎩

∑p
j=l+1 r(ηj) > 0, 0 ≤ l ≤ p − 1,∑l
j=p+1 r(ηj) ≤ 0, p ≤ l ≤ N − k,∑p
j=1 r(ηj) > −

∑l
j=1 r(ξj), 0 < l ≤ k.
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Put

Sl = Sl(m) =
l∑

j=1

r(ηp+1−j), Tl = Tl(m) =
l∑

j=1

r(ηp+j),

Ul = Ul(m) = −
l∑

j=1

r(ξj).

The distribution of k̂N − k can be represented as follows:

P
(
k̂N − k = p

)
= P

(
Sl > 0, 1 ≤ l ≤ p; Tl ≤ 0, 1 ≤ l ≤ N − k − p; Sp > Ul, 1 ≤ l ≤ k

)
.

To evaluate the latter expression we first consider a simpler case where m is fixed (that
is, we treat the estimator k̂N defined by (4)).

Lemma 1. Let med ξj < m < med ηj . Then H(p) := limN→∞ P(k̂N − k = p), and the
asymptotic distribution of k̂N −k is Hu1v2(p) where u1 = 1−F1(m) and v2 = 1−F2(m).

Proof. If m is nonrandom, then the sums defined above are independent random vari-
ables, thus

P
(
k̂N − k = p

)
= P (Sl > 0, 1 ≤ l ≤ p; Tl ≤ 0, 1 ≤ l ≤ N − k − p; Sp > Ul, 1 ≤ l ≤ k)

=
∑

p/2<j≤p

P (Sl > 0, 1 ≤ l ≤ p − 1, Sp = 2j − p)

× P(Tl ≤ 0, 1 ≤ l ≤ N − k − p)P(Ul ≤ 2j − p − 1, 1 ≤ l ≤ k),

that is, the probability P
(
k̂N − k = p

)
is represented as the sum of products of three

factors.
I) Consider the first of the factors. The sequence Sl, 1 ≤ l ≤ p, is a random walk for

which u2 = P(ηj < m) is the probability to move to the right and v2 = P(ηj > m) is the
probability to move to the left. Thus the first factor is the probability that the random
walk Sl starts at 0 and walks above the zero level up to the moment p when its state
becomes x = 2j − p. Applying the reflection principle we get the desired probability:

(6) P
(
Sl > 0, 1 ≤ l ≤ p − 1, Sp = 2j − p

)
=

(
Cj−1

p−1 − Cj
p−1

)
uj

2v
p−j
2 .

Note that the result remains true for the case of x = p, too. Indeed, j = p in this case
and there is a unique trajectory that reaches x at the moment p. The above result holds,
since Cp−1

p−1 = 1 and Cp
p−1 = 0.

II) Now we evaluate the limit of P(Tl(m) ≤ 0, 1 ≤ l ≤ N − k − p) as N − k → ∞.
We cannot directly apply the continuity of probability, since we consider a scheme of

series, namely ζj = ζN
j . Let T∞

l be an unbounded random walk with parameters u2 and
v2. Then

P
(
TN

l ≤ 0, 1 ≤ l ≤ N − k − p
)

= P (T∞
l ≤ 0, 1 ≤ l ≤ N − k − p)

→ P (T∞
l ≤ 0, l ≥ 1) .

Thus the desired limit is the probability that an unbounded random walk with parameters
u2 and v2 does not cross the zero level from below. To evaluate this probability we find
the distribution of the maximum of T∞

l . Put

pj = P
(
max

N
T∞

N = j
)

.
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It is easy to check that pj satisfies the following recurrence relation:

(7) pj = u2pj−1 + v2pj+1, j ≥ 1.

Solving this equation we get

pj =
(

1 − u2

v2

) (
u2

v2

)j

,

since pj is a distribution. The probability we want to evaluate is the probability that
max T∞

n = 0. Thus

(8) P
(
T∞

l ≤ 0, l ≥ 1
)

= p0 = 1 − u2/v2.

III) Consider the third factor. The sequence

Ul =
l∑

j=1

(−r(ξj)) =
l∑

j=1

(�{ξj>m} − �{ξj<m}
)

is a random walk with parameters u1 = P(ξj < m) and v1 = P(ξj > m).
Similarly to the preceding case, the limit of the probability

P(Ul ≤ 2j − p − 1, 1 ≤ l ≤ k)

as k → ∞ is given by

P(U∞
l ≤ 2j − p − 1, l ≥ 1) = P

(
max
l≥1

U∞
l ≤ 2j − p − 1

)
= 1 −

(
u1

v1

)2j−p

.

Therefore if p > 0, then

lim
n→∞

P
(
k̂n − k = p

)

=
∑

p/2<j≤p

(
Cj−1

p−1 − Cj
p−1

)
uj

2v
p−j
2

(
1 − u2

v2

) (
1 −

(
u1

v1

)2j−p
)

.

The case of p = 0 is simpler:

P
(
k̂n = k

)
= P

⎛
⎝ l∑

j=1

r(ηp−j+1) ≤ 0, 1 ≤ l ≤ n − k; −
l∑

j=1

r(ξj) < 0, 1 ≤ l ≤ k

⎞
⎠

→ P (T∞
l ≤ 0, U∞

l < 0) =
(

1 − u2

v2

) (
1 − u1

v1

)
v1.

(9)

The case of p < 0 is similar to the case of p > 0. Thus H(p) = Hu1v2(p). �

We turn back to the proof of Theorem 1 and study the limit distribution H∗(p) of the
random variable k̂N−k for the case where the median of the sample m̂ = med{ζ1, . . . , ζN}
is substituted for m.

It is easy to check that the distribution function of the distribution F̂N converges
uniformly to

F̄ = λF1 + (1 − λ)F2

where λ is some number of the interval (0, 1), and m̂ converges in probability to m̄ =
med F̄ if F1 and F2 are continuous in a neighborhood of m̄. Recall that med F1 < m̄ <
med F2. The latter inequalities do not depend on the number of changes.

We prove that H∗(p) coincides with H(p) in the case of p > 0 (the proof for other
cases is the same).

Note that r(x, m) is a nondecreasing function of m. Thus the sums Sl and Tl also are
nondecreasing, while Ul is nonincreasing with respect to m. This allows one to get lower
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and upper estimates of P(k̂N (m̂) − k = p) for sufficiently large N (under the condition
that P(|m̂N − m̄| > δ) < ε):

P
(
Sl(m̄ − δ) > 0; Tl(m̄ + δ) ≤ 0; Sp(m̄ − δ) > Ul(m̄ − δ)

)
− ε

≤ P
(
k̂N − k = p

)
≤ P

(
Sl(m̄ + δ) > 0; Tl(m̄ − δ) ≤ 0; Sp(m̄ + δ) > Ul(m̄ + δ)

)
+ ε.

Put v1(x) = P(ξ1 < x), u1(x) = P(ξ1 > x), v2(x) = P(η1 > x), u2(x) = P(η1 < x),
m− = m̄ − δ, and m+ = m̄ + δ.

Now we find the asymptotic distributions of the sums:

P
(
Sl(m−) > 0; Tl(m+) ≤ 0; Sp(m−) > Ul(m−)

)
=

∑
p/2<j≤p

P(Sl(m−) > 0; Sp(m−) = 2j − p)P(Tl(m+) ≤ 0)

× P (Ul(m−) ≤ 2j − p − 1)

→
∑

p/2<j≤p

(
Cj−1

p−1 − Cj
p−1

)
vp−j
2 (m−)uj

2(m−)

×
(

1 − u2(m+)
v2(m+)

) (
1 −

(
u1(m−)
v1(m−)

)2j−p
)

:= H−δ(p),

(10)

P(Sl(m+) > 0; Tl(m−) ≤ 0; Sp(m+) > Ul(m+))

→
∑

p/2<j≤p

(
Cj−1

p−1 − Cj−1
p−1

)
vp−j
2 (m+)uj

2(m+)
(

1 − u2(m−)
v2(m−)

)

×
(

1 −
(

u1(m+)
v1(m+)

)2j−p
)

:= H+δ(p).

(11)

Note that vi(x) → vi, ui(x) → ui, and x → m̄, whence

H−δ(p) − ε → H(p), H+δ(p) + ε → H(p)

as δ → 0 and ε → 0. Hence relations (10)–(11) imply

H∗(p) = H(p).

Therefore the theorem is proved. �

4. The case of multiple change points

Theorem 2. Let F1 and F2 be continuous in the interval [medF1, med F2] and

πN/ ln N → ∞, N → ∞.

Then
lim

N→∞
P

(
k̂j,N − kj = p

)
= H̄(p)

for 1 ≤ j ≤ R where

H̄(p) :=

{
Hu1v2(p), h0

kj
= 1,

Hu2v1(−p), h0
kj

= 2.
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Remark. We do not assume that the number of changes in the sequence is known. When
evaluating the moments of change, we estimate the number of changes. Note that the
number of changes is equal to R after a certain random moment n(ω) < ∞.

Proof. Put

H(dN ) = {h = (h1, . . . , hN ) : R(h) = R, kj(h) ∈ (kj − dN , kj + dN ], j ∈ [1, R]}.
Using the trajectory

ȟ = argmin
h∈H(dN )

J(h)

we construct auxiliary estimators ǩj = kj(ȟ). Consider the events

CN (dN ) =
{
R̂ = R, ĥk̂j

= h0
kj

, k̂j ∈ [kj − dN + 1, kj + dN ]
}

.

It can be proved that if F1 and F2 are continuous at every point between their medians
and

(12)
πN

ln N
→ ∞,

dn

πN
→ ∞, and

dN

N
→ 0

as N → ∞, then the event CN occurs almost surely starting with some random N < ∞.
A similar assertion is proved in [1] for estimators generated by functions φ(ζj , h) of a
general form. The difference between the case of this paper and the case of the paper [1]
is that in [1] the random variables φ(ζj , h) are assumed to be independent for different j.
Below we prove the analog of the lemma in [1] that does not use the assumption on the
independence (other parts of the proof of the lemma in [1] can be adopted to our case
with minor changes).

Lemma 2. Let an > 0 and an/ ln n → ∞ as n → ∞. Then there exists N(ω) such that
the events

An =
{

max
1≤l1≤l2≤n, g=1,2

l2∑
j=l1

(
φ(ξj , h

0
j) − φ(ξj , g)

)
≤ an

}

occur for all n > N .

Proof. Since
φ

(
ξj , h

0
j

)
− φ(ξj , g) = 0

for h0
j = g and

∑l2
j=l1

(
φ(ξj , h

0
j) − φ(ξj , g)

)
can be represented as a sum of no more than

R terms whose indices belong to the intervals of homogeneity of h0
j , we restrict the proof

of the inequality to the case of h0
j = h �= g.

In what follows we need the Vapnik–Chervonenkis inequality (see [8])

P

⎛
⎝sup

y

∣∣∣∣ 1
n

n∑
j=1

�{ζj<y} − G(y)
∣∣∣∣ > ε

⎞
⎠ ≤ 6(2n + 1) exp

{
−ε2(n − 1)

2

}

where the ζj are independent identically distributed random variables with the distribu-
tion G. A generalization of the Vapnik–Chervonenkis inequality holds for sequences of
random variables whose distributions belong to a family of two distributions

P

⎛
⎝sup

y

∣∣∣∣
l2∑

j=l1

(�{ζj<y} − P(ζj < y)
)∣∣∣∣ > x

⎞
⎠ ≤ 12(2n + 1) exp

{
− x2

16(l2 − l1 + 1)

}
,

n ≥ 2,

where [l1, l2] ⊂ [1, N ].
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Put Φj(1) = P(ζj > x)
∣∣
x=m̂

, Φj(2) = P(ζj < x)
∣∣
x=m̂

, and ζjg = φ(ζj , g) − Φj(g). If
h �= g, then

ζjh = −ζjg,

whence

P

( l2∑
j=l1

(ζjh − ζjg) > x

)
= P

( l2∑
j=l1

ζjh >
x

2

)
≤ 12(2n + 1) exp

{
− x2

64(l2 − l1 + 1)

}
.

Assume that |m̂ − m̄| < δ. Since F1 and F2 are continuous at each point between their
medians, there exists δ > 0 such that if |m̂− m̄| < δ, then Φj(g)−Φj(h) is greater than
some κ > 0 and

φ(ξj , h) − φ(ξj , g) = ζjh − ζjg + Φj(h) − Φj(g) ≤ ζjh − ζjg − κ.

Then we set x = an + κ(l2 − l1 + 1) and get

p(l1, l2, n) = P

( l2∑
j=l1

(φ(ξj , g) − Φj(g)) ≥ an, |m̂ − m| < δ

)

≤ 12(2n + 1) exp

{
−

(
an + κ(l2 − l1 + 1)2

)
64(l2 − l1 + 1)

}
,

since
exp

{
−(an + κy)2/64y

}
≤ exp {−anκ/16}

for all y > 0. Now we estimate p(l1, l2, N) and proceed in the same way as in the proof
in [1], namely we apply the Borel–Cantelli lemma, the estimate

P
(
AN , |m̂ − m̄| < δ

)
≤

∑
1≤l1≤l2≤N

p(l1, l2, N),

and the convergence in probability of m̂ to m̄. The lemma is proved. �

Thus P(CN ) → 1 and P(CN ) → 0. Note that {ǩi �= k̂i} ⊂ CN , that is, we need to
determine the asymptotic distribution of ǩj,N − kj (it is the desired distribution).

Put ǩN = (ǩ1,N , . . . , ǩR,N ), k̄ = (k1, . . . , kR), and p̄ = (p1, . . . , pR). Note that

ȟ = argmin
h∈H(dN )

J(h) = argmin
h∈H(dN )

( N∑
j=1

φ(ζj , hj) + πNR

)
= argmin

h∈H(dN )

N∑
j=1

φ(ζj , hj).

If N is sufficiently large, then the intervals (ki − dn, ki + dN ] are disjoint and the sum in
the latter relation splits into k + 1 terms:

N∑
j=1

φ(ζj , hj) =
R∑

i=1

ki+dN∑
j=ki−dN+1

φ(ζj , hj) +
∑

j /∈
⋃

(ki−dN ,ki+dN ]

φ(ζj , hj).

The last term does not depend on h. Thus it does not change the argument of the
minimum and we omit it:

(13) ȟ = argmin
h∈H(dN )

R∑
i=1

ki+dN∑
j=ki−dN+1

φ(ζj , hj).

Other terms depend on the trajectory on their own intervals only, so that the minimal
trajectory can be determined step by step. The parts of the trajectory corresponding to
the intervals [ki − dN + 1, ki + dN ] are denoted by hi = (hki−dN+1, . . . , hki+dN

). Note
that every part hi of the trajectory contains only one change point. The part of the
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trajectory for which the change occurs at the position l is denoted by hi(l). The symbol
Hi denotes the set of all such parts. Thus

(14) P(ǩN − k̄ = p̄) = P

(
hi(dN + pi) = argmin

hi∈Hi

ki+dN∑
j=ki−dN+1

φ(ζj , hj), i = 1, . . . , R

)
.

The latter result means that the distribution of every change point can be found
separately, that is,

(15) P
(
ǩj,N − ki = pj

)
= P

(
hj(dN + pj) = argmin

hj∈Hj

kj+dN∑
l=kj−dN+1

φ(ζl, hl)
)

.

There are two possible cases:
1) If h0

kj
= 1, then

argmin
hj∈Hj

kj+dN∑
l=kj−dN+1

φ(ζl, hl) = argmax
hj∈Hj

kj+pj∑
l=kj−dN+1

r(ζj , m̂).

The latter relation coincides with (5); thus we apply Theorem 1 and conclude that the
distribution of k̂j,N − kj equals Hu1v2(p).

2) If h0
kj

= 2, then

argmin
hj∈Hj

kj+dN∑
l=kj−dN+1

φ(ζl, hl) = argmin
hj∈Hj

kj+pj∑
l=kj−dN+1

r(ζj , m̂)

= argmax
hj∈Hj

kj+pj∑
l=kj−dN+1

r(−ζj ,−m̂).

Applying Theorem 1 to −ζj we prove that the distribution of k̂j,N −kj equals Hu2v1(−p).
Therefore the theorem is proved. �
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Teor. Ĭmov̄ır. Mat. Stat. 57 (1997), 103–108; English transl. in Theory Prob. Math. Statist. 57
(1998), 109–114. MR1806888 (2003b:62100)

2. A. A. Borovkov, Asymptotically optimal solutions in the change-point problem, Teor. Veroyat-
nost. Primenen. 43 (1998), no. 4, 625–654; English transl. in Theory Probab. Appl. 43 (1999),
no. 4, 539–561. MR1692429 (2001g:62044)
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