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ON THE PROBLEM OF FILTRATION
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Abstract. We study the problem of optimal linear estimation of the functional

A�ξ =
∑∞

j=0 �a(j)�ξ(−j) depending on unknown values of a vector stationary sequence

�ξ(j) = {ξk(j)}T
k=1 from observations upon the sequence �ξ(j) + �η(j) for j ≤ 0 where

�η(j) = {ηk(j)}T
k=1 is a vector stationary sequence, being uncorrelated with �ξ(j). We

obtain relations for the mean square error and spectral characteristic of the optimal
estimator of the functional. We also find the least favorable spectral densities and
minimax (robust) spectral characteristics of optimal estimators of the functional for
a particular class D of spectral densities.

1. Introduction

The main assumption of the classical theory of interpolation, extrapolation, and fil-
tration of stationary stochastic processes is that the spectral densities of the processes
are known. However, complete information about the spectral densities is not available
in most of the practical cases. Parametric and nonparametric estimators of the spec-
tral densities serve to solve this problem. There are some other (heuristic) methods to
evaluate initial estimates of spectral densities. Having obtained initial estimates of the
densities, the classical theory is applied under the assumption that the estimators are
true densities. Particular examples show (see Vastola and Poor [1]) that this procedure
may essentially increase the error. Thus it is worthwhile to look for estimators that are
optimal for all densities belonging to a certain class of spectral densities. Estimators
possessing this property are called minimax, since they minimize the maximal value of
the error. A survey of results of the minimax method of estimation can be found in the
paper by Kassam and Poor [2]. The methods of game theory are applied for the first time
to the problems of extrapolation in the paper by Grenander [3]. Franke [4, 5] studied the
problem of extrapolation for stationary sequences with the help of methods of convex
optimization.

The problems of extrapolation, interpolation, and filtration for stationary sequences
and processes are studied in the papers by Moklyachuk [6]–[8]. In this paper, we consider
the problem of optimal linear estimation of the functional

A�ξ =
∞∑

j=0

�a(j)�ξ(−j)
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depending on unknown values of a vector stationary sequence �ξ(j) = {ξk(j)}T
k=1 whose

spectral density is F (λ). We estimate the functional from observations upon the sequence
�ξ(j) + �η(j) for j ≤ 0, where �η(j) = {ηk(j)}T

k=1 is a vector stationary sequence that is
uncorrelated with �ξ(j) and has spectral density G(λ).

2. The classical method of filtration

Assume that the coefficients �a(j) = {ak(j)}T
k=1 that determine the functional A�ξ are

such that

(1)
∞∑

j=0

T∑
k=1

|ak(j)| < ∞,
∞∑

j=0

(j + 1) ‖�a(j)‖2 < ∞,

where

‖�a(j)‖2 =
T∑

k=1

|ak(j)|2.

Then the second moment of the functional A�ξ is finite and the operator A defined below
is compact. The stationary sequence �ξ(j) + �η(j) admits an expansion in the form of the
canonical moving average

(2) �ξ(j) + �η(j) =
j∑

u=−∞
d(j − u)�ε(u)

if the matrix of spectral densities

F (λ) + G(λ) = {fij(λ) + gij(λ)}T
i,j=1

of the sequence �ξ(j) + �η(j) admits the canonical factorization [9]

(3) F (λ) + G(λ) = d
(
eiλ

)
d∗

(
eiλ

)
, d(eiλ) =

∞∑
k=0

d(k)e−ikλ,

where d(k) = {dij(k)}j=1,...,m
i=1,...,T and �ε(u) = {εk(u)}m

k=1 is a vector stationary white noise

sequence such that E |εk(u)|2 = 1, k = 1, . . . , m, and E εi(t)εj(s) = 0, t �= s. If at
least one of the densities F (λ) or G(λ) is regular, then the spectral density F (λ) + G(λ)
admits a factorization. Regular spectral densities F (λ) and G(λ) admit the canonical
factorization

F (λ) = ϕ
(
eiλ

)
ϕ∗ (

eiλ
)
, ϕ

(
eiλ

)
=

∞∑
k=0

ϕ(k)e−ikλ,(4)

G(λ) = ψ
(
eiλ

)
ψ∗(eiλ), ψ

(
eiλ

)
=

∞∑
k=0

ψ(k)e−ikλ,(5)

where ϕ(k) = {ϕij(k)}j=1,...,m
i=1,...,T and ψ(k) = {ψij(k)}j=1,...,m

i=1,...,T .
Let

Â�ξ =
∫ π

−π

h
(
eiλ

) (
Zξ(dλ) + Zη(dλ)

)
=

∫ π

−π

T∑
k=1

hk

(
eiλ

) (
Zξ

k(dλ) + Zη
k (dλ)

)

be the mean square error of the linear estimator of the functional A�ξ, where

Zξ(∆) =
{
Zξ

k(∆)
}T

k=1
and Zη(∆) = {Zη

k (∆)}T

k=1



FILTRATION FOR STATIONARY SEQUENCES 111

are orthogonal random measures of the sequences �ξ(j) and �η(j), respectively, and

h(eiλ) =
∞∑

k=0

�h(k)e−ikλ

is the spectral characteristic of the estimator. The mean square error can be evaluated
by

∆(h; F, G) = E
∣∣∣A�ξ − Â�ξ

∣∣∣2
=

1
2π

∫ π

−π

[
A

(
eiλ

)
G(λ)A∗ (

eiλ
)

+
(
A

(
eiλ

)
− h

(
eiλ

))
(F (λ) + G(λ))

(
A

(
eiλ

)
− h

(
eiλ

))∗
−

(
A

(
eiλ

)
− h

(
eiλ

))
G(λ)A∗ (

eiλ
)

− A
(
eiλ

)
G(λ)

(
A

(
eiλ

)
− h

(
eiλ

))∗]
dλ

=
∞∑

k=0

∞∑
j=0

min(k,j)∑
p=−∞

�a(k)ψ(k − p)ψ∗(j − p)�a∗(j)

+
∞∑

k=0

∞∑
j=0

min(k,j)∑
p=−∞

(
�a(k) − �h(k)

)
d(k − p)d∗(j − p)

(
�a(j) − �h(j)

)∗

−
∞∑

k=0

∞∑
j=0

min(k,j)∑
p=−∞

(
�a(k) − �h(k)

)
ψ(k − p)ψ∗(j − p)�a∗(j)

−
∞∑

k=0

∞∑
j=0

min(k,j)∑
p=−∞

�a(k)ψ(k − p)ψ∗(j − p)
(
�a(j) − �h(j)

)∗
= ‖Ψa‖2 + ‖D(a − h)‖2 − 〈Ψ(a − h), Ψa〉 − 〈Ψa, Ψ(a − h)〉 ,

where

A(eiλ) =
∞∑

j=0

�a(j)e−ijλ, ‖Ψa‖2 =
∞∑

k=0

‖(Ψa)k‖2, (Ψa)k =
k∑

l=0

�a(l)ψ(k − l),

‖D(a − h)‖2 =
∞∑

k=0

‖(D(a − h))k‖2
, (D(a − h))k =

k∑
l=0

(
�a(l) − �h(l)

)
d(k − l),

〈Ψ(a − h), Ψa〉 = 〈Ψa, Ψ(a − h)〉 =
∞∑

k=0

〈(Ψ(a − h))k, (Ψa)k〉.

The spectral characteristic h(F, G) of the optimal linear estimator of the functional A�ξ
for given spectral densities F (λ) and G(λ) is determined by the condition

(6) ∆(F, G) = ∆(h(F, G); F, G) = min
h∈L−

2 (F+G)
∆(h; F, G)

where L−
2 (F + G) is the subspace of the space L2(F + G) generated by functions of the

form einλδk, δk = {δkl}T
l=1, k = 1, . . . , T , n ≤ 0. Here δkk = 1 and δkl = 0 for k �= l. If

the spectral densities admit canonical representations (3) and (5), then the mean square
error of the optimal linear estimator Â�ξ equals

(7) ∆(F, G) = ‖Ψa‖2 − ‖B∗Ψ∗Ψa‖2 = 〈cG, a〉 − ‖CGb∗‖2 ,
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where

cG(k) = (Ψ∗Ψa)k =
∞∑

l=0

(Ψa)l+kψ∗(l)

=
k−1∑
l=0

�a(l)
∞∑

m=0

ψ(m + k − l)ψ∗(m) +
∞∑

l=0

�a(k + l)
∞∑

m=0

ψ(m)ψ∗(m + l),

(B∗Ψ∗Ψa)k =
∞∑

l=0

(Ψ∗Ψa)l+kb∗(l),

(CGb∗)k =
∞∑

l=0

cG(l + k)b∗(l),

and
b
(
eiλ

)
=

{
bij

(
eiλ

)}j=1,...,T

i=1,...,m

is a matrix function such that b(eiλ) =
∑∞

k=0 b(k)e−ikλ and b(eiλ)d(eiλ) = Im, where Im

is the unit m × m matrix. The spectral characteristic h(F, G) of the optimal estimator
is given by

(8) h(F, G) = A
(
eiλ

)
− rG

(
eiλ

)
b
(
eiλ

)
, rG(eiλ) =

∞∑
k=0

(CGb∗)ke−ikλ.

If the spectral densities admit canonical representations (3) and (4), then the mean square
error and spectral characteristic of the optimal estimator can be evaluated as follows:

∆(F, G) = 〈cF , a〉 − ‖CF b∗‖2 ,(9)

h(F, G) = rF

(
eiλ

)
b
(
eiλ

)
, rF

(
eiλ

)
=

∞∑
k=0

(CF b∗)ke−ikλ,(10)

where

cF (k) = (Φ∗Φa)k =
∞∑

l=0

(Φa)l+kϕ∗(l), (Φa)k =
k∑

l=0

�a(l)ϕ(k − l).

We have

(11) ∆(F, G) = σ2
∞∑

k=0

‖�a(k)‖2 − σ4 ‖Ab∗‖2

in the case where �η(j) or �ξ(j) is a sequence of coordinatewise uncorrelated random vectors
with the variance σ2 (a vector white noise sequence). We put

‖Ab∗‖2 =
∞∑

k=0

‖(Ab∗)k‖2, (Ab∗)k =
∞∑

l=0

�a(k + l)b∗(l)

in equality (11).
The mean square error of the optimal linear estimator of �a(N)�ξ(−N) constructed from

observations �ξ(j) + �η(j) for j ≤ 0 can be evaluated in this case as follows:

∆(F, G) = σ2
T∑

k=0

|ak(N)|2 − σ4
N∑

k=0

‖�a(N)b∗(k)‖2.

The coefficients b(k) can be found from the factorization (3) of the density F (λ) + σ2IT .
Therefore the following result holds.
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Theorem 2.1. Let ∆(F, G) be the mean square error of the optimal linear estimator of
the functional A�ξ depending on unknown values of a vector sequence �ξ(j) and constructed
from observations upon the sequence �ξ(j)+�η(j) for j ≤ 0, where �ξ(j) and �η(j) are uncor-
related vector stationary sequences whose spectral densities, F (λ) and G(λ), respectively,
admit canonical representations (3), (5) or (3), (4). Then ∆(F, G) is given by relations
(7), (9). The spectral characteristic h(F, G) of the optimal filtration is given by relations
(8), (10).

Remark 2.1. If a vector stationary sequence is of a maximal rank (that is, if m = T ),
then the matrix function b(eiλ) is the inverse matrix to d(eiλ), that is, b(eiλ) = d−1(eiλ).
If a vector stationary sequence is of rank 1 (that is, if m = 1), then the matrix function
b(eiλ) is a vector row b(eiλ) =

{
bk(eiλ)

}T

k=1
that can be evaluated from the equation∑T

k=1 bk(eiλ)dk(eiλ) = 1.

Example 1. Consider the problem of estimation of a random variable

�a(0)�ξ(0) = a0
1ξ1(0) + a0

2ξ2(0)

from observations of the sequence �ξ(j) + �η(j), j ≤ 0, in the case where

F (λ) =
(

f(λ) f(λ)
f(λ) f(λ) + f1(λ)

)
, f(λ) =

P 2
1

|1 − b1e−iλ|2
, f1(λ) =

P 2
2

|1 − b2e−iλ|2
,

G(λ) =
(

g(λ) g(λ)
g(λ) g(λ) + g1(λ)

)
, g(λ) = σ2, g1(λ) =

P 2
3

|1 − b3e−iλ|2
.

Then F (λ) + G(λ) = d(eiλ)d∗(eiλ), where

d
(
eiλ

)
=

(
A 1−βe−iλ

1−b1e−iλ 0

A 1−βe−iλ

1−b1e−iλ B 1−γe−iλ

(1−b2e−iλ)(1−b3e−iλ)

)
, A2 =

σ2b1

β
, B2 =

P 2
2 b3 + P 2

3 b2

γ
,

β =
1
2

(
b1 + b−1

1

)
(1 + θ) −

[
1
4
(1 + θ)2

(
b1 + b−1

1

)2 − 1
]1/2

,

θ =
P 2

1

σ2(1 + b2
1)

,

and γ is a root (whose absolute value is less than 1) of the equation

z2 − P 2
2 + P 2

3 + P 2
2 b2

3 + P 2
3 b2

2

P 2
2 b3 + P 2

3 b2
z + 1 = 0.

Let us evaluate the inverse matrix:

b
(
eiλ

)
= d−1

(
eiλ

)
=

(
1
A

1−b1e−iλ

1−βe−iλ 0

− 1
B

(1−b2e−iλ)(1−b3e−iλ)
1−γe−iλ

1
B

(1−b2e−iλ)(1−b3e−iλ)
1−γe−iλ

)

and the spectral characteristic of the optimal estimator

h
(
eiλ

)
=

(
h1

(
eiλ

)
, h2

(
eiλ

))
= rF

(
eiλ

)
b
(
eiλ

)
,

where

rF

(
eiλ

)
=

∞∑
k=0

(CF b∗)ke−ikλ, (CF b∗)k =
∞∑

l=0

cF (l + k)b∗(l).
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Since cF (l) = �a(0)
∑∞

k=0 ϕ(k + l)ϕ∗(k) = (c1(l), c2(l)), we have

h1

(
eiλ

)
=

(
a0
1 + a0

2

)
P 2

1

A2

1 − b1e
−iλ

1 − βe−iλ

[
1 − b1e

iλ

1 − βeiλ
· 1

|1 − b1e−iλ|2

]
−

− a0
2P

2
2

B2

(
1 − b2e

−iλ
) (

1 − b3e
−iλ

)
1 − γe−iλ

[(
1 − b2e

iλ
) (

1 − b3e
iλ

)
1 − γeiλ

1

|1 − b2e−iλ|2

]
−

,

where

c1(l) =

[(
a0
1 + a0

2

)
P 2

1

|1 − b1e−iλ|2

]
l

, c2(l) = c1(l) +

[
a0
2P

2
2

|1 − b2e−iλ|2

]
l

are the coefficients of e−ilλ in the Fourier expansions of the function rF and where [f(λ)]−
stands for the Fourier transform of f in negative powers e−ikλ, k ≥ 0. Considering[

eiµλ 1
(1 − γeiλ)(1 − b2e−iλ)

]
−

=
bµ
2

1 − γb2
· 1
1 − b2e−iλ

we obtain

h1(eiλ) =
a0
1 + a0

2

A2(1 − b1β)
P 2

1

1 − βe−iλ
− a0

2(1 − b2b3)P 2
2

B2(1 − γb2)
1 − b3e

−iλ

1 − γe−iλ
.

Similarly,

h2

(
eiλ

)
=

a0
2(1 − b2b3)P 2

2

B2(1 − γb2)
1 − b3e

−iλ

1 − γe−iλ
.

The mean square error is evaluated as follows:

∆(F, G) =

(
a0
1 + a0

2

)2
P 2

1

1 − b2
1

+

(
a0
2

)2
P 2

2

1 − b2
2

− C2

1 − b2
1

− D2

1 − b2
2

,

where

C =

(
a0
1 + a0

2

)
P 2

1

A(1 − b1β)(1 − b2
1)

(
1 − b1

β

)
,

D =
a0
2P

2
2

B(1 − b2
2)(1 − b2γ)

(
1 − b2 + b3

γ
+

b2b3

γ2

)
.

Using the above results one can calculate the spectral characteristic

h
(
eiλ

)
=

(
h1

(
eiλ

)
, h2

(
eiλ

))
of the optimal estimator of the random variable �a(N)�ξ(−N):

h1

(
eiλ

)
=

(
aN
1 + aN

2

)
P 2

1

A2
p

(
eiλ

)
− aN

2 P 2
2

B2
q
(
eiλ

)
, h2

(
eiλ

)
=

aN
2 P 2

2

B2
q
(
eiλ

)
,

where

p
(
eiλ

)
=

(
βeiλ

(
1 − βNeiNλ

)
1 − βeiλ

+
1

1 − b1e−iλ

)
e−iNλ

(
1 − b1e

−iλ
)

(1 − b1β) (1 − βe−iλ)
,

q
(
eiλ

)
=

1 − b2e
−iλ

1 − γb2
e−iNλ 1 − b3e

−iλ

1 − γe−iλ

(
1 − b3b2

1 − b2e−iλ
+

γeiλ
(
1 − γNeiNλ

)
1 − γeiλ

(
1 − b3

γ

))
.

The mean square error is calculated analogously.
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3. Minimax method of linear filtration

One can use relations (1)–(11) if the matrices of spectral densities F (λ) and G(λ)
of vector stationary sequences {�ξ(j)} and {�η(j)} are known. Otherwise, we apply the
minimax approach to problems of estimation of functionals of vector stationary sequences
assuming that a set D = DF × DG containing these densities is known.

Definition 3.1. Spectral densities F 0(λ) and G0(λ) are called the least favorable in a
class D for the optimal linear filtration of the functional A�ξ if

∆
(
h

(
F 0, G0

)
; F 0, G0

)
= max

(F,G)∈D
∆(h(F, G); F, G).

Examining relations (1)–(11) one can prove the following propositions.

Theorem 3.1. Spectral densities F 0(λ) and G0(λ) admitting canonical factorizations
(3)–(5) are the least favorable in a class D for the optimal filtration of the functional A�ξ
if the coefficients of the factorization (3)–(5) are a solution of the following conditional
extremum problem:

∆(F, G) = 〈cG, a〉 − ‖CGb∗‖2 → sup,(12)

G(λ) =

( ∞∑
k=0

ψ(k)e−ikλ

)
·
( ∞∑

k=0

ψ(k)e−ikλ

)∗

∈ DG,

F (λ) =

( ∞∑
k=0

d(k)e−ikλ

)( ∞∑
k=0

d(k)e−ikλ

)∗

−
( ∞∑

k=0

ψ(k)e−ikλ

)( ∞∑
k=0

ψ(k)e−ikλ

)∗

∈ DF

or of the following conditional extremum problem:

∆(F, G) = 〈cF , a〉 − ‖CF b∗‖2 → sup,(13)

F (λ) =

( ∞∑
k=0

ϕ(k)e−ikλ

)
·
( ∞∑

k=0

ϕ(k)e−ikλ

)∗

∈ DF ,

G(λ) =

( ∞∑
k=0

d(k)e−ikλ

)( ∞∑
k=0

d(k)e−ikλ

)∗

−
( ∞∑

k=0

ϕ(k)e−ikλ

) ( ∞∑
k=0

ϕ(k)e−ikλ

)∗

∈ DG.

If one of the densities is known, then (12) and (13) are extremum problems with
respect to the variable b = {b(k) : k = 0, 1, . . . }.
Theorem 3.2. Let the spectral density G(λ) be known and regular. A spectral density
F 0(λ) admitting canonical representations (3), (4) is the least favorable in a class DF

for the optimal linear filtration of the functional A�ξ if

F 0(λ) + G(λ) =

( ∞∑
k=0

d0(k)e−ikλ

)
·
( ∞∑

k=0

d0(k)e−ikλ

)∗

,

where d0 =
{
d0(k) : k = 0, 1, . . .

}
are determined by the coefficients of the expansion of

the matrix function b(eiλ): b(eiλ)d(eiλ) = Im, b(eiλ) =
∑∞

k=0 b0(k)e−ikλ, where

b0 =
{
b0(k) : k = 0, 1, . . .

}
is a solution of the following conditional extremum problem:

‖CGb∗‖2 → inf,(14)

F (λ) =

( ∞∑
k=0

d(k)e−ikλ

)
·
( ∞∑

k=0

d(k)e−ikλ

)∗

− G(λ) ∈ DF .
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Theorem 3.3. Let the spectral density F (λ) be known and regular. A spectral density
G0(λ) admitting canonical factorizations (3), (5) is the least favorable in a class DG for
the optimal linear filtration of the functional A�ξ if

F (λ) + G0(λ) =

( ∞∑
k=0

d0(k)e−ikλ

)
·
( ∞∑

k=0

d0(k)e−ikλ

)∗

,

where d0 =
{
d0(k) : k ≥ 0

}
are determined by the coefficients b0 =

{
b0(k) : k ≥ 0

}
that

are solutions of the following conditional extremum problem:

(15) ‖CF b∗‖2 → inf,

G(λ) =

( ∞∑
k=0

d(k)e−ikλ

)
·
( ∞∑

k=0

d(k)e−ikλ

)∗

− F (λ) ∈ DG.

Definition 3.2. The spectral characteristic h0(λ) of the optimal linear estimator of the
functional A�ξ is called minimax (robust) if

h0(λ) ∈ HD =
⋂

(F,G)∈D

L−
2 (F + G), min

h∈HD

sup
(F,G)∈D

∆(h; F, G) = sup
(F,G)∈D

∆
(
h0; F, G

)
.

The least favorable spectral densities F 0(λ) and G0(λ) and minimax (robust) spectral
characteristic h0(λ) ∈ HD form a saddle point of the function ∆(h; F, G). The saddle
point inequalities

∆
(
h; F 0, G0

)
≥ ∆

(
h0; F 0, G0

)
≥ ∆

(
h0; F, G

)
hold for all (F, G) ∈ D and for all h ∈ HD if h0 = h(F 0, G0) ∈ HD, where (F 0, G0) is a
solution of the conditional extremum problem

(16) ∆
(
h

(
F 0, G0

)
; F 0, G0

)
= sup

(F,G)∈D

∆
(
h

(
F 0, G0

)
; F, G

)
with the following objective function:

∆
(
h

(
F 0, G0

)
; F, G

)
=

1
2π

∫ π

−π

rG

(
eiλ

)
b0

(
eiλ

)
F (λ)

(
b0

(
eiλ

))∗ (
rG

(
eiλ

))∗
dλ

+
1
2π

∫ π

−π

rF

(
eiλ

)
b0

(
eiλ

)
G(λ)

(
b0

(
eiλ

))∗ (
rF

(
eiλ

))∗
dλ

and where the functions rF (eiλ) and rG(eiλ) are obtained from relations (8) and (10),
respectively, considered for

F (λ) = F 0(λ), G(λ) = G0(λ).

4. The least favorable spectral densities in the class D0,0

Consider the problem of the minimax estimation of the functional A�ξ of a vector
stationary sequence �ξ(j) for the following set of spectral densities:

D0,0 =
{

(F (λ), G(λ)) :
1
2π

∫ π

−π

F (λ) dλ = P1,
1
2π

∫ π

−π

G(λ) dλ = P2

}
.

Following the Lagrange multipliers method we obtain the following equalities for the
evaluation of the least favorable densities F 0(λ) and G0(λ):

rG

(
eiλ

)
b0

(
eiλ

)
= �α,

rF

(
eiλ

)
b0

(
eiλ

)
= �β,



FILTRATION FOR STATIONARY SEQUENCES 117

where �α = (α1, . . . , αT )� and �β = (β1, . . . , βT )� are undefined Lagrange multipliers.
This implies that the least favorable spectral densities are

F 0(λ) + G0(λ) = �γ

( ∞∑
k=0

(CGb∗)ke−ikλ

)
·
( ∞∑

k=0

(CGb∗)ke−ikλ

)∗

�γ∗,(17)

F 0(λ) + G0(λ) = �δ

( ∞∑
k=0

(CF b∗)ke−ikλ

)
·
( ∞∑

k=0

(CF b∗)ke−ikλ

)∗
�δ∗.(18)

Taking into account

(19)
1
2π

∫ π

−π

F (λ) dλ = P1,
1
2π

∫ π

−π

G(λ) dλ = P2,

the unknown vectors �β = (β1, . . . , βT )�, �δ = (δ1, . . . , δT )�, and b = {b(k) : k = 0, 1, . . .}
are evaluated with the help of the canonical factorizations (3)–(5) for the densities F 0(λ),
G0(λ), and F 0(λ) + G0(λ).

If at least one of these spectral densities is known, one can use one of the relations (17),
(18) to calculate the least favorable density. If the density G(λ) is known, then the least
favorable density F 0(λ) ∈ D0 is given by

(20) F 0(λ) = max

{
�γ

( ∞∑
k=0

(CGb∗)ke−ikλ

)( ∞∑
k=0

(CGb∗)ke−ikλ

)∗

�γ∗ − G(λ), 0

}
,

where max{B(λ), 0} = B(λ) in the case of B(λ) ≥ 0; otherwise max{B(λ), 0} means the
zero matrix. If the density F (λ) is known, then the least favorable density G0(λ) ∈ D0

is given by

(21) G0(λ) = max

{
�δ

( ∞∑
k=0

(CF b∗)ke−ikλ

)
·
( ∞∑

k=0

(CF b∗)ke−ikλ

)∗
�δ∗ − F (λ), 0

}
.

The unknown vectors �γ, �δ, and b(k) are found from the factorization (3)–(5) of the
densities F 0(λ), G(λ), and F 0(λ) + G(λ) (or, that of F (λ), G0(λ), and F (λ) + G0(λ))
by using condition (19).

Therefore the following result holds.

Theorem 4.1. The least favorable in the class D0,0 spectral densities F 0(λ) and G0(λ)
for the optimal filtration of the functional A�ξ are given by relations (17), (18), (3)–(5),
(12), (13), and (19). If the density G(λ) (or F (λ)) is known and admits the canon-
ical factorization, then the least favorable density F 0(λ) (or G0(λ)) is determined by
relations (20), (3)–(5), (14), and (19) (or (21), (3)–(5), (15), and (19)). The minimax
spectral characteristic of the optimal estimator A�ξ is calculated by relations (8), (10).

Example 2. Consider the problem of estimation of the random variable

A1ξ = ξ(0) + ξ(−1)

in the case where T = 1, G(λ) = 1, and P1 = 2. The least favorable spectral density in
the class D0,0 is

F 0(λ) = max
{

C
∣∣b(0) + b(1) + b(0)e−iλ

∣∣2 − 1, 0
}

,

where the unknown coefficients b(0) and b(1) form a solution of the following conditional
extremum problem: [

(b(0) + b(1))2 + b2(0) → min,
b2(0) + b2(1) = 2b4(0).
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Applying the Lagrange method to solve this problem we obtain

F 0(λ) = max
{

C
∣∣∣√10/8 +

√
10/4e−iλ

∣∣∣2 − 1, 0
}

,

where the unknown constant C is determined by the condition (2π)−1
∫ π

−π
F 0(λ) dλ = 1.

Example 3. Let G(λ) =
∣∣1 + e−iλ

∣∣2 in the latter example. Assume one wants to esti-
mate ξ(0). Then we get the following extremal problem:[

(2b(0) + b(1))2 + b2(0) → min,
b2(0) + b2(1) = 3.

The least favorable spectral density is given by

F 0(λ) = max
{

C
∣∣∣√2/3 +

√
2/3e−iλ

∣∣∣2 − G(λ), 0
}

.

Example 4. Let T = 2, G(λ) = E, and A1
�ξ = �a(0)�ξ(0)+�a(1)�ξ(−1). The least favorable

in the class D0,0 density for the optimal extrapolation of the functional A1
�ξ is given by

equality (20), where the sequence of matrices b = {b(0), b(1)} is a solution of the following
conditional extremum problem:[(

�a(0)b(0) + �a(1)b(1)
)(

�a(0)b(0) + �a(1)b(1)
)∗ + �a(1)b(0)b∗(0)�a∗(1) → max,

E + b(1)b−1(0)(b−1(0))∗b∗(1) = b(0)Pb∗(0), P = P1 + P2.

Consider the real case. Let �a(0) = �a(1) = (1, 1). Then the least favorable density in the
class D0,0 is

F 0(λ) = max
{
�γ

(
d(0) + d(1)e−iλ

) (
d(0) + d(1)e−iλ

)∗
�γ∗ − G(λ), 0

}
,

where d(0) = �a(0)b(0) + �a(1)b(1), d(1) = �a(1)b(0), and the unknown sequence of matri-
ces b is determined by the relations[

b(0) + b(1) = αb(1)b−1(0)(b−1(0))∗,
2b(0) + b(1) = −b(0)P − αb(1)b−1(0)(b−1(0))∗(b−1(0))∗b∗(1).

Here α is the Lagrange multiplier. The vector �γ is determined from the normalizing
condition (2π)−1

∫ π

−π
F (λ) dλ = P1.

5. Concluding remarks

The results of the second section allow one to find the spectral characteristic and mean
square error of the optimal linear estimator of the functional

A�ξ =
∞∑

j=0

�a(j)�ξ(−j)

depending on unknown values of a vector stationary sequence �ξ(n). The estimator is
constructed from observations of the sequence �ξ(j) + �η(j) for j ≤ 0, where �η(n) is a
vector stationary sequence, uncorrelated with �ξ(n). The explicit optimal estimators are
found for particular cases. The problem of estimation is solved in the last three sections
under the condition that the densities are unknown but a class D containing these spectral
densities is known. The least favorable spectral densities and minimax (robust) spectral
characteristics of the optimal estimators are found for some particular classes D.
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