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ASYMPTOTIC PROPERTIES OF AN ESTIMATOR

FOR THE DRIFT COEFFICIENT

OF A STOCHASTIC DIFFERENTIAL EQUATION

WITH FRACTIONAL BROWNIAN MOTION

UDC 519.21

E. I. KASYTS’KA AND P. S. KNOPOV

Abstract. A stochastic differential equation with respect to fractional Brownian
motion is considered. We study the maximum likelihood estimator for the drift
coefficient. We assume that the coefficient belongs to a given compact set of functions
and prove the strong consistency of the estimator and its asymptotic normality.

Let (Ω, F,P) be a probability space and let a real stochastic process

{x(t), t ≥ 0}
and a fractional Wiener process (fractional Brownian motion) {Z(t), t ≥ 0} be defined
on (Ω, F,P), where EZ(t) = 0, Z(0) = 0, and

E{Z(t)Z(τ )} =
1

2

(
t2H + τ2H − |t− τ |2H

)
,

1

2
< H < 1.

Assume that a stochastic process {y(t), t ≥ 0} possesses the stochastic differential

(1) dy(t) = s0(t)x(t) dt+ dZ(t), t ≥ 0,

where s0 is a certain unknown function.
The problem considered in this paper is to estimate the function s0 from the observa-

tions {(x(t), y(t)), 0 ≤ t ≤ T}.
Note that an analogous problem is considered in [1], where a standard Wiener process

is substituted for Z in equation (1).

1. Consistency and the asymptotic distribution of estimators

Below we list the main conditions to be imposed on the function s0 and the stochastic
processes {x(t), t ≥ 0} and {Z(t), t ≥ 0}.

1. The function s0 belongs to the family K of all 2π-periodic functions s : R → R
whose Fourier coefficients

ck(s) =
1

2π

∫ 2π

0

s(t)eikt dt, k ∈ Z,

are such that |c0(s)| ≤ L and |ck(s)| ≤ L|k|−a, k �= 0, for some constants L > 0
and a > 3.
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It is obvious that the functions of the family K are continuously differentiable and
that K is a compact set with respect to the uniform convergence of functions.

For functions s ∈ K, we introduce the norm

‖s‖ =

(
1

2π

∫ 2π

0

s2(t) dt

)1/2

.

We say that s0 ∈ K is an interior point of K if

|c0 (s0)| ≤ L̃, |ck (s0)| ≤
L̃

|k|a , k �= 0,

for some constant L̃ < L.

2. The processes {x(t), t ≥ 0} and {Z(t), t ≥ 0} are independent.
3. There exists a constant c > 0 such that

E
{
(x(t))2

}
≤ c

for all t ≥ 0.
4. The trajectories of the process {x(t), t ≥ 0} are continuously differentiable with

probability 1.
5. The process

{
(x(t))2, t ≥ 0

}
is stationary in the wide sense.

Denote by r(t) the covariance function of the process
{
(x(t))2, t ≥ 0

}
:

r(t) = E
{(

(x(t))2 − E(x(0))2
) (

(x(0))2 − E(x(0))2
)}

.

6. For some L1 > 0 and γ > 0,∫ T

0

|r(t)| dt ≤ L1T
1−γ , T > 0.

Using conditions 2–4 and integration by parts [2], we define the following stochastic
integral: ∫ b

a

s(τ )x(τ ) dZ (τ ) , 0 ≤ a ≤ b,

for an arbitrary continuously differentiable function s : R → C (where C is the set of
complex numbers).

In what follows we need the following properties of the latter integral:

(2) E

{[∫ t

0

s(τ )x(τ ) dZ(τ )

]2}
≤ c1

(∫ t

0

|s(τ )|1/H dτ

)2H

, t > 0,

where c1 is a constant, and

(3)
E

{
sup

a≤t≤b

[∫ t

a

s(τ )x(τ ) dZ(τ )

]2}
≤ c2 (b− a)

(∫ b

a

|s(τ )|2/(2H−1) dτ

)2H−1

,

0 ≤ a < b,

where c2 is another constant.
Note that the constants c1 and c2 depend on H.
To prove (2) and (3) one uses well-known properties of the stochastic integral with re-

spect to a fractional Wiener process ([3, 4]) and the mutual independence of the processes
{x(t), t ≥ 0} and {Z(t), t ≥ 0}.
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With probability one, we have

E

{[∫ t

0

s(τ )x(τ ) dZ(τ )

]2 /
σ {x(τ ), τ ≥ 0}

}

= H(2H − 1)

∫ t

0

∫ t

0

s (τ1)x (τ1) s (τ2)x (τ2) |τ1 − τ2|2H−2 dτ1 dτ2.

Thus

E

{[∫ t

0

s(τ )x (τ ) dZ(τ )
]2}

= H (2H − 1)

∫ t

0

∫ t

0

s (τ1) s (τ2)E {x (τ1)x (τ2)} |τ1 − τ2|2H−2
dτ1 dτ2

≤ c

∫ t

0

∫ t

0

|s (τ1)| |s (τ2)| |τ1 − τ2|2H−2
dτ1 dτ2

≤ c1

(∫ t

0

|s(τ )|1/H dτ

)2H

.

Note that the latter inequality is proved in [3].
Therefore property (2) is proved.
Further, it is shown in [4] that, with probability 1,

E

{
sup

a≤t≤b

[∫ t

a

s(τ )x(τ ) dZ (τ )

]2 /
σ {x(τ ), τ ≥ 0}

}

≤ c3

(∫ b

a

|s(τ )x (τ )|1/H dτ

)2H

≤ c3

⎛
⎝[∫ b

a

(
|s(τ )|1/H

)α/(α−1)

dτ

](α−1)/α [∫ b

a

(
|x (τ )|1/H

)α
dτ

]1/α⎞⎠
2H

= c3

(∫ b

a

|s (τ )|2/(2H−1) dτ

)2H−1 ∫ b

a

|x(τ )|2 dτ

via the Hölder inequality with α = 2H and β = 2H/(2H − 1).
Then

E

{
sup

a≤t≤b

[∫ t

a

s(τ )x(τ ) dZ (τ )

]2}
≤ c3

(∫ b

a

|s (τ )|2/(2H−1) dτ

)2H−1 ∫ b

a

E
{
|x(τ )|2

}
dτ

≤ c2 (b− a)

(∫ b

a

|s (τ )|
2

2H−1 dτ

)2H−1

.

Hence property (3) is proved too.
We turn to the estimation of the function s0. Consider the estimator defined as the

point of maximum of the functional

(4) QT (s) =
1

T

∫ T

0

s(t)x(t) dy(t)− 1

2T

∫ T

0

s2(t)x2(t) dt, s ∈ K.

This estimator exists with probability one. Denote by sT an arbitrary point of maximum
of (4). As in the paper [5], the properties of the family K imply that the function sT (t, ω)
can be chosen to be a separable measurable process.
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Lemma 1.1. Let conditions 1–4 hold. Then

P

{
lim

T→∞
max
s∈K

∣∣∣∣∣ 1T
∫ T

0

s(t)x(t) dZ(t)

∣∣∣∣∣ = 0

}
= 1.

Proof. Put

ηT = max
s∈K

∣∣∣∣∣ 1T
∫ T

0

s(t)x(t) dZ(t)

∣∣∣∣∣ .
Expanding s in the Fourier series we obtain

E
{
(ηT )

2
}
= E

⎧⎨
⎩max

s∈K

(
1

T

∞∑
k=−∞

[
ck(s)

∫ T

0

eiktx(t) dZ(t)

])2
⎫⎬
⎭

≤ E

⎧⎨
⎩
(

1

T

∞∑
k=−∞

[
L

|k|a

∣∣∣∣
∫ T

0

eiktx(t) dZ(t)

∣∣∣∣
])2

⎫⎬
⎭ .

(5)

By definition, the denominator of the term corresponding to k = 0 in the latter sum (and
in similar sums throughout below) is equal to 1 but not |k|a.

Applying the Cauchy–Bunyakovskĭı inequality and the first property of the stochastic
integral, we derive from relation (5) that

(6) E
{
(ηT )

2
}
≤

⎛
⎝ 1

T

∞∑
k=−∞

L

|k|a

[
E

∣∣∣∣
∫ T

0

eiktx(t) dZ(t)

∣∣∣∣
2
]1/2⎞⎠

2

≤ c4
T 2(1−H)

,

where c4 = c1L
2
(∑∞

k=−∞ |k|−a
)2
.

It is clear that there exists a positive integer number p such that 2p(1 − H) > 1.
Consider the sequence T (n) = np, n ∈ N. According to bound (6) and the Borel–
Cantelli lemma,

(7) P
(
lim
n→∞

ηT (n) = 0
)
= 1.

For T0 ≥ 1,

(8) sup
T>T0

ηT ≤ sup
n : T (n+1)>T0

sup
T (n)≤T≤T (n+1)

ηT .

For all n,

sup
T (n)≤T≤T (n+1)

ηT = ηT (n) + sup
T (n)≤T≤T (n+1)

(
ηT − ηT (n)

)
≤ ηT (n)

+ sup
T (n)≤T≤T (n+1)

max
s∈K

∣∣∣∣∣ 1T
∫ T

0

s(t)x(t) dZ(t)− 1

T (n)

∫ T (n)

0

s(t)x(t) dZ(t)

∣∣∣∣∣
≤ ηT (n) +

T (n+ 1)− T (n)

(T (n))2
max
s∈K

∣∣∣∣∣
∫ T (n)

0

s(t)x(t) dZ(t)

∣∣∣∣∣
+

1

T (n)
sup

T (n)≤T≤T (n+1)

max
s∈K

∣∣∣∣∣
∫ T

T (n)

s(t)x(t) dZ(t)

∣∣∣∣∣
=

T (n+ 1)

T (n)
ηT (n) + ζn,

(9)
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where

ζn =
1

T (n)
sup

T (n)≤T≤T (n+1)

max
s∈K

∣∣∣∣∣
∫ T

T (n)

s(t)x(t) dZ(t)

∣∣∣∣∣ .
We have

T (n+ 1)

T (n)
=

(
1 +

1

n

)p

→ 1, n → ∞.

Taking into account equality (7) we get

(10) P

{
lim
n→∞

T (n+ 1)

T (n)
ηT (n) = 0

}
= 1.

Performing elementary transformations and using properties of the stochastic integral,
we obtain

E
{
(ζn)

2
}
≤ 1

(T (n))2
E

( ∞∑
k=−∞

[
L

|k|a sup
T (n)≤T≤T (n+1)

∣∣∣∣∣
∫ T

T (n)

eiktx(t) dZ(t)

∣∣∣∣∣
])2

≤ 1

(T (n))2

⎛
⎜⎝ ∞∑

k=−∞

⎡
⎢⎣ L

|k|a

⎛
⎝E

⎧⎨
⎩ sup

T (n)≤T≤T (n+1)

∣∣∣∣∣
∫ T

T (n)

eiktx(t) dZ(t)

∣∣∣∣∣
2
⎫⎬
⎭
⎞
⎠

1/2
⎤
⎥⎦
⎞
⎟⎠

2

≤ (T (n+ 1)− T (n))
2H

(T (n))2
c2L

2

( ∞∑
k=−∞

1

|k|a

)2

=
c5

n2p(1−H)

((
1 +

1

n

)p

− 1

)2H

≤ c6
n2p(1−H)

,

where c5 and c6 are some constants. This implies that

(11) P
(
lim
n→∞

ζn = 0
)
= 1.

Now the lemma follows from relations (8)–(11). �

Remark 1.1. If the assumptions of Lemma 1.1 hold, then

P

{
lim

T→∞
max
s∈K

∣∣∣∣∣ 1T
∫ T

0

(s(t)− s0(t))x(t) dZ(t)

∣∣∣∣∣ = 0

}
= 1.

Lemma 1.2 ([1]). Let {ξ(t), t ∈ R} be a real wide sense stationary stochastic process
with mean E ξ(t) = 0 and whose covariance function r(t) = E{ξ(t)ξ(0)}, t ∈ R, is such
that ∫ T

0

|r(t)| dt ≤ LT 1−γ

for all T > 0 and some positive numbers L and γ. Then

P

{
lim

T→∞
sup
s∈K

∣∣∣∣∣ 1T
∫ T

0

s(t)ξ(t) dt

∣∣∣∣∣ = 0

}
= 1.

Remark 1.2 ([1]). Lemma 1.2 remains true if the difference of two functions of the fam-
ily K is substituted for s ∈ K in the above integral.

Remark 1.3. Lemma 1.2 holds also for the square of the difference of two functions of
the family K.
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Remark 1.3 can be proved by an observation that the square of the difference of two
functions belonging to K can be used in the proof of Lemma 2.2 in [1].

Theorem 1.1. Let the assumptions of Lemma 1.1 as well as conditions 5 and 6 hold.
Then

P

{
lim

T→∞
sup
t∈R

|sT (t)− s0(t)| = 0

}
= 1.

Proof. Note that

QT (sT )−QT (s0) =
1

T

∫ T

0

(sT (t)− s0(t))x(t) dZ(t)

− 1

2T

∫ T

0

(sT (t)− s0(t))
2
(x(t))2 dt.

(12)

By the definition of the estimator sT ,

QT (sT ) ≥ QT (s0) .

Then

max
s∈K

∣∣∣∣∣ 1T
∫ T

0

(s(t)− s0(t))x(t) dZ(t)

∣∣∣∣∣
+max

s∈K

∣∣∣∣∣ 12T
∫ T

0

(sT (t)− s0(t))
2 [(x(t))2 − E

{
(x(0))2

}]
dt

∣∣∣∣∣
≥ 1

2T
E
{
(x(0))2

}∫ T

0

(sT (t)− s0(t))
2
dt

(13)

by equality (12).
Lemmas 1.1 and 1.2 together with Remarks 1.1 and 1.3 and relation (13) imply that

(14) P

{
lim

T→∞

1

T

∫ T

0

(sT (t)− s0(t))
2 dt = 0

}
= 1,

whence

(15) P
(
lim

T→∞
‖sT − s0‖ = 0

)
= 1.

Now relation (15) yields Theorem 1.1. �

In what follows we will make use of the following conditions.

7. The process {x(t), t ≥ 0} is equal to 1 for all t.
8. Let a function ϕ ∈ K be such that

1) 1
2π

∫ 2π

0
ϕ2(t) dt = 1,

2) limT→∞ H (2H − 1)T−2H
∫ T

0

∫ T

0
ϕ (t1)ϕ (t2) |t1 − t2|2H−2 dt1 dt2 = ∆.

9. The function s0 is an interior point of the set K.

Theorem 1.2. Let conditions 1 and 7–9 hold. Then the random variable

T 1−H

2π

∫ 2π

0

ϕ(t) (sT (t)− s0(t)) dt

converges in distribution as T → ∞ to the Gaussian law N (0,∆) with mean 0 and
variance ∆.
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Proof. By Theorem 1.1, the function sT is an interior point of the family K with proba-
bility converging to 1 as T → ∞. It is easy to show that the functionalQT is differentiable
at the point sT with the same probability. Indeed, we evaluate the weak differential of
QT in some neighborhood of sT as follows:

DQT (s, h) =
d

dε
QT (s+ εh)

∣∣∣
ε=0

=
1

T

∫ T

0

h(t) dZ(t) +
1

T

∫ T

0

h(t)s0(t) dt−
1

T

∫ T

0

h(t)s(t) dt.

Properties of the differential DQT (s, h) imply that the strong differential of QT at the
point sT exists and it coincides with the weak differential [6].

By the necessary condition for the existence of an extremum,

DQT (sT , ϕ) = 0

with probability converging to 1 as T → ∞.
Thus, with the same probability,

(16)
1

T

∫ T

0

ϕ(t) dZ(t) +
1

T

∫ T

0

ϕ(t) (s0(t)− sT (t)) dt = 0

as T → ∞.
We add to and subtract from the left hand side of (16) the following expression:

1

2π

∫ 2π

0

ϕ(t) (sT (t)− s0(t)) dt
1

T

∫ T

0

ϕ2(t) dt.

Note that

− 1

T

∫ 2π[ T
2π ]

0

ϕ(t) (sT (t)− s0(t)) dt+
1

2π

∫ 2π

0

ϕ(t) (sT (t)− s0(t)) dt
1

T

∫ 2π[ T
2π ]

0

ϕ2(t) dt

= − 1

T

[
T

2π

] ∫ 2π

0

ϕ(t) (sT (t)− s0(t)) dt

+
1

2π

∫ 2π

0

ϕ(t) (sT (t)− s0(t)) dt
1

T

[
T

2π

] ∫ 2π

0

ϕ2(t) dt

= 0.

Thus

1

T

∫ T

0

ϕ(t) dZ(t) +
1

T

∫ T

2π[ T
2π ]

ϕ(t) (s0(t)− sT (t)) dt

+
1

2π

∫ 2π

0

ϕ(t) (sT (t)− s0(t)) dt
1

T

∫ T

2π[ T
2π ]

ϕ2(t) dt

− 1

2π

∫ 2π

0

ϕ(t) (sT (t)− s0(t)) dt
1

T

∫ T

0

ϕ2(t) dt

= 0
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with probability converging to 1 as T → ∞. Hence, with the same probability,

(17)

T 1−H 1

2π

∫ 2π

0

ϕ(t) (sT (t)− s0(t)) dt

=

(
1

T

∫ T

0

ϕ2(t) dt

)−1

×
(

1

TH

∫ T

0

ϕ(t) dZ(t) +
1

TH

∫ T

2π[ T
2π ]

ϕ(t) (s0(t)− sT (t)) dt

+
1

2π

∫ 2π

0

ϕ(t) (sT (t)− s0(t)) dt
1

TH

∫ T

2π[ T
2π ]

ϕ2(t) dt

)
.

Consider

1

T

∫ T

0

ϕ2(t) dt =
1

T

(∫ 2π[ T
2π ]

0

ϕ2(t) dt+

∫ T

2π[ T
2π ]

ϕ2(t) dt

)
.

Then

1

T

∫ 2π[ T
2π ]

0

ϕ2(t) dt =
1

T

[
T

2π

] ∫ 2π

0

ϕ2(t) dt =
1

T

[
T

2π

]
2π → 1, T → ∞,

1

T

∫ T

2π[ T
2π ]

ϕ2(t) dt → 0, T → ∞.

Hence

(18)
1

T

∫ T

0

ϕ2(t) dt → 1, T → ∞.

Since the functions of the family K are bounded, the second and third terms in the
expression on the right hand side of (17) converge to 0 with probability 1 as T → ∞.

Now we study the random variable

ξT =
1

TH

∫ T

0

ϕ(t) dZ(t).

Its distribution is normal [3] with mean 0 and variance

H(2H − 1)

T 2H

∫ T

0

∫ T

0

ϕ (t1)ϕ (t2) |t1 − t2|2H−2 dt1 dt2.

The assumptions of the theorem and properties of Gaussian random variables imply
that ξT weakly converges to N(0,∆) as T → ∞.

Taking into account (18) and the preceding reasoning, we prove that the right hand
side of equality (17) converges in distribution to N (0,∆) as T → ∞. This completes the
proof of Theorem 1.2. �

2. Concluding remarks

The results concerning the asymptotic behavior of the estimator of the drift diffusion
of a stochastic differential equation with respect to fractional Brownian motion obtained
above imply that the proposed estimators are optimal, and this allows one to use them
for solving various applied problems.
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