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EVALUATION OF BIAS IN HIGHER-ORDER

SPECTRAL ESTIMATION

UDC 519.21

V. V. ANH, N. N. LEONENKO, AND L. M. SAKHNO

Abstract. This paper is concerned with the estimation of integral functionals of
higher-order spectral densities for stationary random fields. It is shown that in some
cases the problem of bias due to edge effects can be resolved by tapering.

1. Introduction: the problem and background

Let X(t), t ∈ I, be a real-valued measurable strictly stationary zero-mean random
field, where I is Rd or Zd endowed with the measure ν(·) which is the Lebesgue measure
or the counting measure (ν({t}) = 1), respectively. Suppose that the field X(t) has
spectral densities of order k = 2, 3, . . . , that is, there exist complex-valued functions
fk (λ1, . . . , λk−1) ∈ L1

(
S
k−1

)
such that the cumulant function of order k is given by

(1) ck (t1, . . . , tk−1) =

∫

Sk−1

fk (λ1, . . . , λk−1) exp

{
i
k−1∑

j=1

(λj , tj)

}
dλ1 · · · dλk−1,

where S = R
d or (−π, π]d for the continuous-parameter or discrete-parameter cases, re-

spectively. Here (λj , tj) is the inner product of the d-dimensional vectors λj and tj .
Let the field X(t) be observed over the domain DT = [−T, T ]d ⊂ I. We will consider

the problem of estimation of integrals of cumulant spectra of orders k = 2, 3, . . . (spectral
functionals)

(2) Jk(ϕk) =

∫

Sk−1

ϕk (λ) fk(λ) dλ

for appropriate functions ϕk(λ) with ϕk(λ)fk(λ) ∈ L1

(
S
k−1

)
based on the observa-

tions X(t), t ∈ DT .
The functionals (2) can be used to represent some characteristics of stochastic pro-

cesses and fields in a nonparametric setting. These functionals also appear in the para-
metric estimation in the spectral domain, e.g., when the minimum contrast (or quasi-
likelihood) estimators are studied. As examples, we mention estimators based on the
Whittle functional and the functionals investigated in [20]. Estimators based on the
Kullback–Leibler divergence considered in [1]–[3] use information of the spectral den-
sities not only of the second order but also of higher order. To study the properties
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of minimum contrast estimators based on different contrast functionals (objective func-
tions), one needs to know the limit theorems for the spectral functionals of the form (2)
with particular weight functions ϕk. Functionals of the second order have been mostly
used for these purposes and, therefore, have been extensively studied by now. But with
the minimum contrast techniques based on higher-order spectral densities (as those elab-
orated in [1]–[3]), one needs the limit theorems for the functionals (2) with k > 2. Besides,
we should mention that the expressions for the variance matrices in the limiting normal
distribution for minimum contrast estimators contain spectral functionals, and in order
to apply asymptotic theory, these functionals have to be estimated. For example, the
expression for the variance for the estimators based on information of the second order
for non-Gaussian processes contains the integrals of the second- and fourth-order spectral
densities. If the estimators based on higher-order information are used, then one needs to
estimate various functionals of higher-order spectral densities; some of these functionals
are of the form (2). More complicated nonlinear spectral functionals will be addressed
elsewhere.

As one would immediately suggest, a natural way to construct the estimator for the
functional (2) is to replace the spectral density fk(λ) in the integral (2) by a “good”
estimator for it. In the estimation of spectral densities of order k = 2 and higher orders,
which have been described in nonparametric statistics, the periodograms of the second
and higher orders and their modifications based on tapering (tapered periodograms),
smoothing (kernel estimators), or tapering and shift-in-time methods have been exten-
sively investigated. Periodograms constructed via the use of unbiased estimators for
covariances and higher-order moments (or cumulants) with weighting and/or truncation
have also been suggested.

The literature on estimating the spectral densities and asymptotic properties of the
periodograms is rather voluminous. Some references relevant to our exposition are [4]–
[10], [17, 21, 22].

We will study in the present paper the estimators for the functional Jk(ϕk) based on
tapered periodograms to be introduced below. Benefits of tapering the data have been
widely reported in the literature. For example, tapers help to reduce leakage effects,
especially when the spectral density contains high peaks. Also, the use of tapers leads
to bias reduction, which is especially important when dealing with spatial data; namely,
tapers can help to fight the so-called “edge effects” (see, e.g., [11, 14]).

Consider the tapered values

{hT (t)X(t), t ∈ DT } ,
where hT (t) = h(t/T ), t =

(
t(1), . . . , t(d)

)
∈ R

d, and the taper h(t) factorizes as

h(t) =

d∏

i=1

h̃
(
t(i)

)
, t(i) ∈ R,

with h̃(·) satisfying

Assumption 1. h̃(t), t ∈ R, is a positive even function of bounded variation with

bounded support: h̃(t) = 0 for |t| > 1.

Denote

H̃k,T (λ) =

∫
h̃T (t)

ke−iλt ν(dt)

and

Hk,T (λ) =

∫
hT (t)

ke−i(λ,t) ν(dt) =
d∏

i=1

H̃k,T

(
λ(i)

)
.
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These are the so-called spectral windows. The above integrals are one-dimensional and
d-dimensional, respectively, with corresponding measure ν(·) (for the discrete case we
will deal actually with sums).

We next define the finite Fourier transform of tapered data {hT (t)X(t), t ∈ DT }:

(3) dh
T
(λ) =

∫
hT (t)X(t)e−i(λ,t) ν(dt), λ ∈ S,

the tapered periodograms of the second and the third orders:

Ih2,T (λ) =
1

(2π)d H2,T (0)
dh

T
(λ)dh

T
(−λ)

(provided that H2,T (0) �= 0),

Ih3,T (λ1, λ2) =
1

(2π)2dH3,T (0)
dh

T
(λ1)d

h
T
(λ2)d

h
T
(−λ1 − λ2)

(provided that H3,T (0) �= 0) and the tapered periodogram of k-th order:

(4) Ihk,T (λ1, . . . , λk−1) =
1

(2π)
(k−1)d

Hk,T (0)

k∏

i=1

dh
T
(λi) , λi ∈ S

(provided that Hk,T (0) �= 0), where
∑k

i=1 λi = 0, but no proper subset of λi has sum 0
(that is, there is no other subset {λi, i ∈ ν}, where ν = {i1, . . . , il} ⊂ {1, . . . , k} and

∑

i∈ν

λi = 0.

We will call these subsets submanifolds (see, e.g., [8, 7]).
The statistic (4) is a natural generalization of the second-order periodogram and can

be considered as an estimator for the spectral density of k-th order fk (λ1, . . . , λk−1)
at frequencies lying off submanifolds. To be more precise, a consistent estimator of
fk (λ1, . . . , λk−1) can be produced as a weighted average of values (4) in the neighborhood
of spatial frequencies of interest, but avoiding points on submanifolds (see, e.g., [8, 7, 22]).

Substituting the periodogram Ihk,T (λ), λ ∈ S
k−1, k = 2, 3, . . . , instead of the spectral

density fk(λ) in the integral (2), we obtain the empirical spectral functional of k-th order

(5) Jk,T (ϕk) =

∫

Sk−1

ϕk (λ) I
h
k,T (λ) dλ.

We will consider the question: can (5) work as a ‘good’ estimate for the spectral func-
tional (2)?

Our main concern in the present paper is an evaluation of the bias of the estimators
of spectral functionals and the conditions which guarantee an appropriate rate of conver-
gence of a bias to zero, especially for spatial data (d ≥ 2) when the bias can be subject
to edge effects.

Apparently, one of the first authors who addressed the problem of edge effects was
Guyon [13]: considering the usual parametric Whittle estimates for lattice data, he found
that such estimates had bias of order N−1/d for fields observed on a rectangle

PN = {1, . . . , n1} × · · · × {1, . . . , nd}

in Z
d, with N being

∏d
i=1 ni. Indeed, the number of boundary points increases with

dimension, being of order nd−1 for a cube of edge n. If we consider the estimate for the
covariances γ(k) by

cN = N−1
∑

{t,t+k∈PN}
X(t)X(t+ k),
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there is a bias due to boundary which is of order O(N−1/d) or O(n−1) if PN is a cube of
edge n. That is, for d ≥ 2, the bias is of the same order or a higher order as the standard
deviation of cN which is usually O(N−1/2). Analogously one obtains that the bias of
the empirical spectral functional (5), constructed with the usual untapered periodogram
(h(t) ≡ 1) behaves as n−1 = N−1/d. One possible solution to the described edge effect
problem arising for spatial data is tapering the data at the edges of the observation
domain.

We should mention that empirical spectral functionals (5) have a form of smoothing
of the periodogram, which means that such an undesirable property of the periodogram
as its inconsistency when considered as an estimate of the spectral density itself would
not be troublesome when dealing with the spectral functional (5).

For d = 1, k = 2 and d = 1, k = 3 (as long as a zero mean is assumed for the
processes considered) Jk,T (ϕk) under appropriate conditions on ϕk and fk indeed can
serve as an estimator for Jk(ϕk) as numerous studies confirm (actually most of these
studies concentrated on the case k = 2 and under the assumption of weak dependence).

Problems start to arise for k = 2, 3 but d > 1, and particular attention should be paid
now for maintaining a bias due to edge effects. A tool here would be an appropriate taper
in dimensions d = 2, 3, as well as d = 1. This has been shown in the literature for the
cases k = 2, 3. We mention another approach to overcome bias due to edge effects which
is to define the periodogram by means of unbiased estimators for moments/cumulants.

However more precaution is needed for higher orders (k > 3) as inconveniences appear
due to the submanifolds (see the formula (9) below for the expectation of Jk,T (ϕk) for
k > 3). To overcome this kind of difficulties, we introduce some corrections into the
integrals (5) (see Section 2). We will also discuss another possibility to use (5) for the
estimation of (2).

Finally, we should note that particular difficulties arise for the processes and fields
with long-range dependence, as in this case the singularities of the spectral densities
start to play a role. One way to resolve these difficulties is considering the trade-off
between conditions of smoothness of the functions ϕk and spectral densities fk.

A common approach in the evaluation of bias of the estimators of spectral integrals
of the second order is via asymptotic analysis of the following representation of the bias:

(6)

E J2,T (ϕ2)− J2 (ϕ2) =

∫∫
ϕ2(λ) (f2(λ+ u)−f2(λ))K2,T (u) du dλ

=

∫∫
f2(λ) (ϕ2(λ+ u)−ϕ2(λ))K2,T (u) du dλ,

using the smoothness properties of ϕ2 and f2 and the properties of the kernels K2,T ,
which in the tapered case are of the form

K2,T = Kh
2,T (u) =

(
(2π)d H2,T (0)

)−1 ∣∣H
1,T

(u)
∣∣2 .

Analogous representations can be exploited also for Jk,T (ϕk) with k > 2 as we will show
below.

Although the cases k = 2, 3 have been studied in the literature, we prefer to consider
these cases here as well in order to partly revise existing results and to present all the
results in a unified manner. Our results concerning the case k > 3 are stated in the
next section, which are followed by discussions and conjectures on several directions for
further research. To the best of our knowledge, the problem of bias due to edge effects
for spectral estimates of higher orders has not been considered in the literature. The
proof of the main result is given in Section 3.
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2. Results and discussions

The expectation of the empirical spectral functional (5) is given by

E Jk,T (ϕk) =
1

(2π)(k−1)d Hk,T (0)

∫

Sk−1

ϕk(λ)E

{ k∏

i=1

dhT (λi)

}
δ

( k∑

i=1

λj

)
dλ′

=
1

(2π)
(k−1)d

Hk,T (0)

∑

ν=(ν1,...,νp)
|νi|>1

∫

Sk−1

ϕk(λ)

∫

Sk−p

p∏

i=1

f|νi| (γj , j ∈ ν̃i)(7)

×
k∏

j=1

H1,T (γj − λj)

p∏

i=1

δ

(∑

j∈νi

γj

)
dγ′ δ

( k∑

i=1

λj

)
dλ′

=
1

(2π)
(k−1)d

Hk,T (0)

∫

Sk−1

ϕk(λ)

∫

Sk−1

fk (γ1, . . . , γk−1)

×
k∏

j=1

H1,T (γj − λj) δ

( k∑

j=1

γj

)
dγ′δ

( k∑

i=1

λj

)
dλ′

+
1

(2π)(k−1)d Hk,T (0)

∑

ν=(ν1,...,νp)
p≥2,|νi|>1

∫

Sk−1

ϕk(λ)

∫

Sk−p

p∏

i=1

f|νi| (γj , j ∈ ν̃i)(8)

×
k∏

j=1

H1,T (γj − λj)

p∏

i=1

δ

(∑

j∈νi

γj

)
dγ′δ

( k∑

i=1

λj

)
dλ′

= I1 + I2,(9)

where the summation in (7), (8) extends over all partitions ν = (ν1, . . . , νp) of the set
(1, . . . , k). The above expression is obtained using the formula for cumulants of products
of random variables (see [16]).

Here and in similar formulae below, we use the following notation: having a set of
natural numbers ν, we write |ν| to denote the number of elements in ν, and ν̃ to denote
the subset of ν which contains all elements of ν except the last one. In all partitions here
and in what follows, |νi| > 1 for all i (since we consider zero-mean fields). Integration
in the inner integrals (see lines (7), (8)) is understood with respect to the (k − p)d-
dimensional vector γ′, obtained from the kd-dimensional vector γ = (γ1, . . . , γk) due to p
restrictions on the variables γj , j = 1, . . . , k, described by the Kronecker deltas δ(·), and
analogously for the integrals over the λ’s. The same notation will be used in the similar
integrals below.

The term I2 does not appear if k = 2 and k = 3 (for zero-mean fields), which makes the
asymptotic analysis of E Jk,T (ϕk) much simpler. Here we can apply standard arguments
if we impose conditions of regularity on the spectral densities and weight functions ϕ, or,
more generally, on their convolution. We state the results for the cases k = 2 and k = 3
in the next two theorems. The theorems provide conditions which assure the desirable
rate of convergence of the bias of Jk,T (ϕ) for d = 1, 2, 3. We will need the following
assumptions.

Assumption 2. The taper h̃(t) is a Lipschitz-continuous function on [−1, 1].

Assumption 3. The function

κ
h
2 (u) =

∣
∣
∣∣

∫
h̃(t)e−itu dt

∣
∣
∣∣

2
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satisfies ∫
|u|lκh

2 (u)(u) du < ∞, l = 1, 2.

Theorem 2.1. Let the taper h̃(t) satisfy Assumption 2 for discrete-parameter fields and
Assumption 3 for continuous-parameter fields. Suppose further that one of the following
conditions holds:

(i) f2 is twice boundedly differentiable and ϕ2 ∈ L1 (S),
(ii) ϕ2 is twice boundedly differentiable,
(iii) the convolution g2(u) =

∫
f2(λ)ϕ(λ + u) dλ is twice boundedly differentiable at

zero.

Then, as T → ∞,

(10) E J2,T (ϕ2)− J2 (ϕ2) = O
(
T−2

)
.

Assumption 4. The function κ
h
3 (u) =

∫
h̃(t)e−itu dt

∫
h̃2(t)eitu dt satisfies

∫
|u|lκh

3 (u)(u) du < ∞, l = 1, 2.

Theorem 2.2. Let the taper h̃(t) satisfy Assumption 2 for discrete-parameter fields and
Assumption 4 for continuous-parameter fields. Suppose further that one of the following
conditions holds:

(i) f3 is twice boundedly differentiable and ϕ3 ∈ L1(R
2d),

(ii) ϕ3 is twice boundedly differentiable,
(iii) the convolution g3 (u1, u2) is twice boundedly differentiable at zero.

Then, as T → ∞,

(11) E J3,T (ϕ3)− J3 (ϕ3) = O
(
T−2

)
.

Remark 2.1. 1. We can see that if the standard normalizing factor T d/2 is applied (under
the conditions of Theorems 1 and 2), then the bias will be of order T d/2−2; that is, we can
handle dimensions d = 1, 2, 3 using the tapered periodogram in the estimators for J2(ϕ)
and J3(ϕ).

2. When estimating the integrals of the spectrum and bispectrum, one has a possibility
for a trade-off between the smoothness of a spectral density f and that of the weight
function ϕ: as Theorems 1, 2 show, one can relax the conditions on f but imposing at
the same time stronger conditions on ϕ. This allows us to treat the case of processes
with long-range dependence.

For continuous-parameter fields, Theorems 1 and 2 were presented in [18]; arguments
for the proof in the discrete case are the same as those for the analysis of the term I1 in
the proof of Theorem 3 below (see also [11, 17] for an analysis of bias of spectral density
estimators based on tapered data).

For the case k > 3, the term I2 in the expression (9) for E Jk,T (ϕk) creates inconve-
niences. One possible way to overcome these difficulties is to exclude from consideration
the points lying on submanifolds, as prescribed in the definition of the periodogram of
order k > 3 (see formula (4)), and to consider the empirical spectral functional

(12) J∗
k,T (ϕk) = J∗

k,T,ε(ϕk) =

∫

S
k−1
ε

ϕk(λ)I
h
k,T (λ) dλ

as an estimator for

(13) J∗
k (ϕk) = J∗

k,ε (ϕk) =

∫

S
k−1
ε

ϕk(λ)fk(λ) dλ,
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for all ε > 0, where the integration is taken over S
k−1, but avoiding the frequencies on

and neighboring to the submanifolds
{∑

i∈ν

λi = 0

}
, where ν = {i1, . . . , il} ⊂ {1, . . . , k} .

More precisely,

S
k−1
ε = S

k−1 \
{

λ :

∣
∣
∣∣
∑

i∈ν

λi

∣
∣
∣∣ < ε for all ν ⊂ {1, . . . , k}

}

,

where |y| = max1≤i≤d

∣∣y(i)
∣∣.

We will need one more assumption.

Assumption 5. The function

κ
h
k (u) =

∫
h̃(t)e−itu dt

∫
h̃k−1(t)eitu dt

satisfies ∫
|u|lκh

k (u)(u) du < ∞, l = 1, 2.

Theorem 2.3. Let the taper h̃(t) satisfy Assumption 2 for discrete-parameter fields and
Assumption 5 for continuous-parameter fields. Suppose further that the spectral density
of the k-th order fk(λ) is twice boundedly differentiable, ϕk ∈ L1(S

k−1), and the spectral
densities fl(λ) ∈ Lk−2(S

l−1) for l = 2, . . . , k − 2. Then as T → ∞,

(14) EJ∗
k,T (ϕk)− J∗

k (ϕk) = O
(
T−2

)
.

For the discrete-parameter random fields we have an immediate corollary. We can
consider the estimator J∗

k,T (ϕk) = J∗
k,T,ε(ϕk) with ε = 1/T . Let us denote this estimator

as J∗∗
k,T (ϕk).

Theorem 2.4. For the case of discrete-parameter fields, let the taper h̃(t) satisfy As-
sumption 2. Suppose further that the spectral density of the k-th order fk(λ) is twice
boundedly differentiable, ϕk ∈ L1(S

k−1), and the spectral densities fl(λ) ∈ Lk−2(S
l−1)

for l = 2, . . . , k − 2.
Then as T → ∞,

(15) E J∗∗
k,T (ϕk)− Jk (ϕk) = O

(
T−2

)
+O

(
T−d

)
.

In light of Theorems 3 and 4, the results of [1] can be reformulated under the conditions
which now become operational. For continuous-parameter fields, we cannot state (with
the technique we used for the proofs) the analogous result in general, but only under some
additional conditions on ϕk and fk prescribing their specific behavior in the neighborhood
of submanifolds. Since such conditions would be somewhat artificial, we will not pursue
the result further.

Remark 2.2. 1. As we have already noted above, the bias of order O
(
T−2

)
allows us to

handle the dimensions d = 1, 2, 3 and to study the estimators further (their consistency,
asymptotic normality): the standard normalizing factor T d/2 can be used. Some authors
considered the problem of nonparametric estimation of the higher-order cumulant spectra
of stationary random fields by smoothing (nontapered) periodograms; the bias of such
estimators was evaluated to behave as n−1 if the domain of observation is a cube of
edge n (see, e.g., [22]). In such a case, asymptotic normality results can be stated only
for the spectral estimate with its mean value subtracted, as was done in [22].
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2. In the discrete-time case, the domain over which the field is observed has been
traditionally taken to be DT = [1, T ]d. Our results remain valid for such a domain as

well; we just need to adjust the assumptions on a taper h̃(t). Namely, Assumption 1 must

be modified as follows: h̃(t) is a positive function of bounded variation with support on
[0, 1] and h(0) = 0, h(1− v) = h(v) for 0 ≤ v ≤ 1

2 .

3. An example of a taper h̃(t) satisfying the assumptions introduced in the discrete-
parameter case is

h̃(t) =
1

2
(1 + cos(4πt)), t ∈ [−1, 1].

This is a modification of the well-known cosine bell (or the Tukey–Hanning taper)

h̃(t) =
1

2
(1− cos(2πt)), t ∈ [0, 1],

suitable for the domain DT = [1, T ]d.
For the continuous-parameter case, we can consider the taper

h̃(t) = 1− |t| for |t| ≤ 1.

The corresponding spectral window H̃1(λ) is of the form

H̃1(λ) = (sin(λ/2))2/(λ/2)2.

Another example is the taper

h̃(t) =
(
1− |t|2

)α
for |t| ≤ 1 and α > 1/2,

where |t| = (t, t)1/2, with the spectral window of the form

H̃1(λ) = (2π)−1/22αΓ(α+ 1)J1/2+α(|λ|)|λ|−(1/2+α).

4. We have considered in this paper the case of the taper h(t), t ∈ R
d, which factorizes:

h(t) =

d∏

i=1

h̃
(
t(i)

)
, t(i) ∈ R,

since this assumption makes all derivations much simpler and allows us to directly exploit
known results for the one-dimensional case. However we feel that this assumption is too
restrictive, and it would be interesting to study the general situation, when a taper does
not factorize. An example of tapers of interest is

h(t) =
(
1− |t|2

)α
for |t| ≤ 1

with the spectral window of the form

H1(λ) = (2π)−d/22αΓ(α+ 1)Jd/2+α(|λ|)|λ|−(d/2+α).

5. The proof of Theorem 3 relies heavily on the technique developed in [9, 10], which is
based on suitable upper bounds for spectral windows Hk,T (λ). These bounds are given
by the specific function LT (λ) (see the proof in the next section), whose convolution
properties help to simplify the analysis and allow us to impose rather weak conditions on
spectral densities (such as integrability conditions). However, with this approach, tapers
are treated in such a unified manner that we just use the assumption that they are of
bounded variation (in addition to some other general assumptions) and we do not look at
more specific features of tapering functions. We believe that, by considering particular
cases of tapering functions, more refined results can be obtained. In particular, as noted
above, we cannot state the analog of Theorem 4 for continuous-parameter fields. This
limitation is caused by the technique we use for the proofs, but can be overcome, as we
expect, by means of other methods.
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6. The approach considered in the paper for construction of spectral estimators of
higher orders consists of excluding the contribution due to the points on submanifolds
(following [8, 7, 22]). Another approach is to consider as an estimator for (2) the empirical
functional (5) from which we subtract some other empirical functionals to compensate
for the integrals appearing in the term I2 in formula (16). This kind of estimator was
considered in [19] for the fourth-order spectral functional which appears in the asymptotic
variance for the quasi-maximum likelihood estimator in the non-Gaussian case. General
estimators of this kind for higher-order spectral functionals, constructed recursively, were
studied in [15].

We will address the questions raised in the above remarks in our future research.

3. Proof of Theorem 3

Similar to the formula for E Jk,T (ϕk) and using the same notation we have

(16)

EJ∗
k,T (ϕk) =

∫

S
k−1
ε

ϕk (λ)
1

(2π)(k−1)d Hk,T (0)
E

{ k∏

i=1

dhT (λi)

}
δ

( k∑

i=1

λj

)
dλ′

=
1

(2π)(k−1)d Hk,T (0)

∑

ν=(ν1,...,νp)
|νi|>1

∫

S
k−1
ε

ϕk(λ)

∫

Sk−p

p∏

i=1

f|νi| (γj , j ∈ ν̃i)

×
k∏

j=1

H1,T (γj − λj)

p∏

i=1

δ

(∑

j∈νi

γj

)
dγ′δ

( k∑

i=1

λj

)
dλ′

=
1

(2π)
(k−1)d

Hk,T (0)

∫

S
k−1
ε

ϕk(λ)

∫

Sk−1

fk (γ1, . . . , γk−1)

×
k∏

j=1

H1,T (γj − λj) δ

( k∑

j=1

γj

)
dγ′δ

( k∑

i=1

λj

)
dλ′

+
1

(2π)
(k−1)d

Hk,T (0)

∑

ν=(ν1,...,νp)
p≥2,|νi|>1

∫

S
k−1
ε

ϕk (λ)

∫

Sk−p

p∏

i=1

f|νi| (γj , j ∈ ν̃i)

×
k∏

j=1

H1,T (γj − λj)

p∏

i=1

δ

(∑

j∈νi

γj

)
dγ′ δ

( k∑

i=1

λj

)
dλ′

= I1 + I2.

To analyze the term I1 we consider the continuous and discrete cases separately.
Consider firstly the continuous case (S = R

d). We can write

I1 =
1

(2π)
(k−1)d

Hk,T (0)

∫

S
k−1
ε

ϕk (λ)

∫

Sk−1

fk (λ1 + u1, . . . , λk−1 + uk−1)

×
k∏

j=1

H1,T (uj) δ

( k∑

j=1

uj

)
du′ δ

( k∑

i=1

λj

)
dλ′,

where

Hk,T (0) = T d
(
H̃k(0)

)d
,

k∏

j=1

H1,T (uj) = T kd
k∏

j=1

d∏

i=1

H̃1

(
Tu

(i)
j

)
,
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and H̃k(u) =
∫
h̃(t)ke−itu dt. Changing the variables Tu

(i)
j = v

(i)
j , we obtain

I1 =
1

(2π)(k−1)d (H̃k(0)
)d

∫

S
k−1
ε

ϕk(λ)

∫

Sk−1

fk

(
λ1 +

v1
T
, . . . , λk−1 +

vk−1

T

)

×
k∏

j=1

d∏

i=1

H̃1

(
v
(i)
j

)
δ

( k∑

j=1

vj

)
dv′ δ

( k∑

i=1

λj

)
dλ′.

By the assumptions of the theorem, fk is twice boundedly differentiable; therefore, using
Taylor’s theorem, we can write

fk

(
λ1 +

v1
T
, . . . , λk−1+

vk−1

T

)
= fk(λ) + const ·T−1

k−1∑

j=1

d∑

i=1

v
(i)
j +O

(
T−2

) k−1∑

j=1

d∑

i=1

∣∣v(i)j

∣∣2

(uniformly in λ in the O-term). Correspondingly, for I1 we obtain

I1 =

∫

S
k−1
ε

ϕk (λ) fk(λ) dλ
′ +R1 +R2.

We now evaluate R1 and R2. The error term R1 is of the form

R1 = const ·
∫

S
k−1
ε

ϕk (λ)
1

(2π)(k−1)d (H̃k(0)
)d

× 1

T

k−1∑

j=1

d∑

i=1

∫

Sk−1

v
(i)
j

k∏

j=1

d∏

i=1

H̃1

(
v
(i)
j

)
δ

( k∑

j=1

vj

)
dv′ δ

( k∑

i=1

λj

)
dλ′.

This reduces to the sum of terms of the form

const · 1
T

∫

S
k−1
ε

ϕk(λ)

∫

R

v
(i)
j H̃1

(
v
(i)
j

)
H̃k−1

(
−v

(i)
j

)
dv

(i)
j δ

( k∑

i=1

λj

)
dλ′,

each of which is equal to zero since H̃1

(
v
(i)
j

)
H̃k−1

(
−v

(i)
j

)
is an even function.

Analogously, R2 reduces to the sum of terms of the form

(17) const ·
∫

S
k−1
ε

ϕk (λ)

∫

R

∣
∣v(i)j

∣
∣2H̃1

(
v
(i)
j

)
H̃k−1

(
−v

(i)
j

)
dv

(i)
j δ

( k∑

i=1

λj

)
dλ′,

supplied with the multiplier O
(
T−2

)
. In view of Assumption 5 and the integrability of

ϕk, the integrals (17) are bounded; therefore, we obtain the following asymptotics for I1:

I1 =

∫

S
k−1
ε

ϕk (λ) fk(λ) dλ
′ +O

(
T−2

)
.

Consider now the discrete case (S = (−π, π]d). We get

I1 =
1

(2π)(k−1)d Hk,T (0)

∫

S
k−1
ε

ϕk (λ)

∫

Sk−1

fk (λ1 + u1, . . . , λk−1 + uk−1)

×
k∏

j=1

H1,T (uj) δ

( k∑

j=1

uj

)
dγ′ δ

( k∑

i=1

λj

)
dλ′,

where
∏k

j=1 H1,T (uj) =
∏k

j=1

∏d
i=1 H̃1,T

(
u
(i)
j

)
and Hk,T (0) ∼ T d

(
H̃k(0)

)d
as T → ∞.
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By Taylor’s theorem and the assumption that fk(λ) is twice boundedly differentiable
on S

k−1,
∣∣
∣∣
∣
∣
fk (λ1 + u1, . . . , λk−1 + uk−1)− fk(λ)−

k−1∑

j=1

d∑

i=1

u
(i)
j

∂fk(λ)

∂λ
(i)
j

∣∣
∣∣
∣
∣
≤ const ·

k−1∑

j=1

d∑

i=1

∣∣u(i)
j

∣∣2.

We denote

αT = I1 −
∫

S
k−1
ε

ϕk (λ) fk(λ) dλ
′

and consider the expression

(18)

1

(2π)
(k−1)d

Hk,T (0)

k−1∑

j=1

d∑

i=1

∫

S
k−1
ε

ϕk(λ)
∂fk(λ)

∂λ
(i)
j

∫

Sk−1

u
(i)
j

×
k∏

j=1

d∏

i=1

H̃1,T

(
u
(i)
j

)
δ

( k∑

j=1

uj

)
du′ δ

( k∑

i=1

λj

)
dλ′.

The inner integrals in (18) reduce to the expressions
{
(2π)(k−1) H̃k,T (0)

}d−1

(2π)(k−2)
∫ π

−π

u
(i)
j H̃1,T

(
u
(i)
j

)
H̃k−1,T

(
−u

(i)
j

)
du

(i)
j ,

and the last integral is equal to zero since H̃1,T

(
u
(i)
j

)
H̃k−1,T

(
−u

(i)
j

)
is an even function.

We conclude that (18) is equal to zero and

(19)

|αT | ≤ const ·
k−1∑

j=1

d∑

i=1

∫

S
k−1
ε

|ϕk(λ)|

×

⎡

⎣ 1

(2π)(k−1)d Hk,T (0)

∫

Sk−1

∣
∣u(i)

j

∣
∣2

k∏

j=1

d∏

i=1

∣
∣∣H̃1,T

(
u
(i)
j

)∣∣∣ δ
( k∑

j=1

uj

)
du′

⎤

⎦

× δ

( k∑

i=1

λj

)
dλ′.

Now we take into account the following facts:

(i) Hk,T (0) ∼ T d
(
H̃k(0)

)d
as T → ∞,

(ii) for the taper h̃(t) of bounded variation,
∣
∣H̃1,T (u)

∣
∣ ≤ const ·L̃T (u),

where the function L̃T (u) is the periodic extension (with period 2π) of the func-

tion L̃∗
T (u) defined as follows: L̃∗

T (u) = T for |u| ≤ 1/T , and L̃∗
T (u) = 1/|u| for

1/T < |u| ≤ π,

(iii)
∫ π

−π
L̃T (u)L̃T (v − u) du ≤ const ·LT (v)

(see [9, Lemma 2]). An application of (ii) and (iii) implies that

∫

(−π,π]k−1

k∏

j=1

∣
∣H̃1,T (uj)

∣
∣δ
( k∑

j=1

uj

)
du1 · · · duk−1 ≤ const ·LT (0) ≤ const ·T.

This allows us to conclude that the expression in square brackets in (19) is bounded by

const · 1
T

∫ π

−π

|u|2
∣∣
∣H̃1,T (u)H̃k−1,T (−u)

∣∣
∣ du.
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Then the inequality
∫ π

−π

|u|2
∣
∣
∣H̃1,T (u)H̃k−1,T (−u)

∣
∣
∣ du

≤
(∫ π

−π

|u|2
∣∣H̃1,T (u)

∣∣2du
)1/2 (∫ π

−π

|u|2
∣∣H̃k−1,T (−u)

∣∣2du
)1/2

holds. Using the fact that a taper function h̃(t) is Lipschitz-continuous, we have the
estimate ∫ π

−π

∣
∣H̃k,T (u)

∣
∣2du ≤ 1

T

(see, e.g., [17]). Therefore, each term on the left hand side of (19) is bounded by
const ·T−2, which gives the asymptotics for I1 the same as in the continuous case:

I1 =

∫

S
k−1
ε

ϕk (λ) fk(λ) dλ
′ +O

(
T−2

)
.

Returning to the expression (16) for E J∗
k,T (ϕk), we see that we still have to evaluate I2.

Here we will use the same reasoning in both the continuous and discrete cases (S = R
d

and S = (−π, π]
d
) using a technique found in [9, 10]. Under the assumption that h̃(t) is

of bounded variation, we can write the following bounds for the spectral windows:

|H1,T (u)| ≤ const ·LT (u),

where LT (u) =
∏d

i=1 L̃T

(
u(i)

)
and the function L̃T (u) for the discrete case has just been

defined (see (ii) above) and in the continuous case this function is defined as follows:

L̃T (u) = T for |u| ≤ 1/T , and L̃T (u) = 1/|u| for |u| > 1/T .

We will use the convolution properties of the functions L̃T (u): for p > 1,
∫

S̃

L̃p
T (x+ u)L̃p

T (y − u) du ≤ const ·T p−1L̃p
T (x+ y),

where S̃ = R or (−π, π] for the continuous and discrete cases respectively (see [9] and [12]
for the discrete and continuous cases respectively).

We can write

(20)

|I2| ≤
∑

ν=(ν1,...,νp)
p≥2, |νi|>1

∫

S
k−1
ε

|ϕk(λ)|
1

(2π)(k−1)d Hk,T (0)

×
∫

Sk−p

p∏

i=1

∣∣f|νi| (γj , j ∈ ν̃i)
∣∣

k∏

j=1

|H1,T (γj − λj)|

×
p∏

i=1

δ

(∑

j∈νi

γj

)
dγ′ δ

( k∑

i=1

λj

)
dλ′.

Suppose we can apply the Hölder inequality to bound the inner integral in (20) by the
following expression:

(21)

const

⎧
⎨

⎩

∫

Sk−p

p∏

i=1

∣
∣f|νi| (γj , j ∈ ν̃i)

∣
∣r

p∏

i=1

δ

(∑

j∈νi

γj

)
dγ′

⎫
⎬

⎭

1/r

×

⎧
⎨

⎩

∫

Sk−p

k∏

j=1

Lq
T (γj − λj)

p∏

i=1

δ

(∑

j∈νi

γj

)
dγ′

⎫
⎬

⎭

1/q

,
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where r, q > 1, r−1 + q−1 = 1. The term in the second brackets in (21) is equal to

p∏

l=1

∫

S|νl|−1

∏

j∈νl

Lq
T (γj − λj)

p∏

i=1

δ

(∑

j∈νl

γj

)
dγ′

=

p∏

l=1

d∏

i=1

∫

S̃
|νl|−1

∏

j∈νl

L̃q
T

(
γ
(i)
j − λ

(i)
j

) p∏

i=1

δ

(∑

j∈νl

γ
(i)
j

)
dγ′,

which, using the convolution properties of the function L̃T (u), can be bounded by

p∏

l=1

d∏

i=1

⎧
⎨

⎩
T (q−1)(|νl|−1)L̃q

T

(∑

j∈νl

λ
(i)
j

)
⎫
⎬

⎭
= T (q−1)(k−p)d

p∏

l=1

d∏

i=1

L̃q
T

(∑

j∈νl

λ
(i)
j

)
.

Therefore we obtain the following bound for the terms of the sum (20):

const ·T (q−1)(k−p)d/q

∫

S
k−1
ε

|ϕk(λ)|
p∏

l=1

d∏

i=1

L̃T

(∑

j∈νl

λ
(i)
j

)
δ

( k∑

i=1

λj

)
dλ′.

In view of specific domains of integration and a specific form of the arguments of the
functions L̃T , for sufficiently large T these functions can be bounded by 1/T , and with
the choice

q =
k − 2

k − 3
,

the above expression will be of order O
(
T−2

)
as T → ∞. Therefore, under the assump-

tion that fl(λ) ∈ Lk−2(S
l−1) for l = 2, . . . , k − 2 we have

I2 = O
(
T−2

)
as T → ∞,

which completes the proof.
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