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A BOUND FOR THE DISTANCE BETWEEN

FRACTIONAL BROWNIAN MOTION AND THE SPACE

OF GAUSSIAN MARTINGALES ON AN INTERVAL
UDC 519.21

O. L. BANNA AND YU. S. MISHURA

Abstract. We obtain a lower bound for the distance between fractional Brown-
ian motion and the space of Gaussian martingales on an interval. The distances
between fractional Brownian motion and some subspaces of Gaussian martingales
are compared. The upper and lower bounds are obtained for the constant in the
representation of a fractional Brownian motion in terms of the Wiener process.

1. Introduction

A zero mean Gaussian process {BH
t , t ≥ 0}, BH

0 = 0, with the covariance function

EBH
t BH

s =
1

2

(
t2H + s2H − |t− s|2H

)
is called a fractional Brownian motion with the Hurst index H ∈ (0, 1). In what follows
we consider the case where H ∈ ( 12 , 1). It is known that the fractional Brownian motion

{BH
t , t ∈ [0, T ]} admits the representation

BH
t =

∫ t

0

z(t, s) dWs,

where {Wt, t ∈ [0, T ]} is a Wiener process,

z(t, s) =

(
H − 1

2

)
cH s1/2−H

∫ t

s

uH−1/2(u− s)H−3/2 du,

cH =

(
2H · Γ

(
3
2 −H

)
Γ
(
H + 1

2

)
Γ(2− 2H)

)1/2

,(1.1)

and where Γ(x), x > 0, is the Gamma function (see [7]). Throughout the paper we use
the notation α = H − 1

2 .
The best approximation in the space L∞([0, T ];L2(Ω)) of fractional Brownian motion

by martingales of the form ∫ t

0

a(s) dWs

is found in the papers [2]–[4] and [6], where W is a Wiener process and a is a function
possessing one of the following properties:

1) a(s) is a constant, that is, a(s) = a, s ∈ [0, T ];
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2) a(s) is a power function of the form a(s) = k · sα, where k ∈ R, α = H − 1/2,
and H is the Hurst index of the fractional Brownian motion;

3) a(s) is a power function of the form a(s) = k · sγ , where k ∈ R and γ > 0;
4) a(s) is a power function with a negative index, namely a(s) = k · s−α, where

k > 0, α = H − 1/2, and H is the Hurst index of the fractional Brownian
motion;

5) a(s) is a function of the form a(s) = k1 + k2 · sα, where k1, k2 ∈ R and s ∈ [0, T ].

For each case listed above, a function is known at which the square of the distance

ρT := min
a∈L2[0,T ]

max
0≤t≤T

E

(
BH

t −
∫ t

0

a(s) dWs

)2

is minimal; the precise value of the minimum is evaluated in [2]–[4] and [6]. To be specific,
below we write the corresponding functions and minimal values for all five cases listed
above.

1)

min
a

max
0≤t≤T

E
(
BH

t −Mt

)2
= T 2H

(
1− c21

)
,

where

c1 = c1(H) = αcH · 1

α+ 1
·B(1− α, α)

(see [3]). In this case, amin = c1(H) · Tα.
2)

min
k

max
0≤t≤T

E
(
BH

t −Mt

)2
= T 2H

(
1− c2H

2H

)
.

In this case, kmin = cH (see [3]).
3)

min
γ

min
k

max
0≤t≤T

E
(
BH

t −Mt

)2
= T 2H

(
1− c21(H)

)
.

In this case, the minimum is attained for γ = 0 and kmin = c1(H) · Tα (see [3]).
4)

min
k

max
0≤t≤T

E
(
BH

t −Mt

)2
= ϕ1(k

∗).

The minimum is attained at the function a(s) = k∗s1/2−H , where the coefficient
k∗ is the minimum argument of two intersection points of the functions

ϕ1(k) = k
2H

2H−1 c1(H) and ϕ2(k) = T 2H − 4kH

cH
T + k2

T 2−2H

2− 2H

(see [4]); here

c1(H) = (p(H))−
2H

2H−1
2H − 1

1−H

(
2H

cH
p(H)− 1

)
.

5)

min
k1,k2

max
0≤t≤T

E
(
BH

t −Mt

)2
= T 2α+1 − T 2α+1c2H

(
B2(1− α, α)− 2B(1− α, α)

α
+

(α+ 1)2

α2(2α+ 1)

)
.

The minimum is attained for k1 = k∗1 and k2 = k∗2 (the precise values of the
constants are given in [2] and [6]).
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In this paper, we obtain a nonzero lower bound for ρT .
It is proved in the paper [3] that the best approximation among the functions possess-

ing the properties 1)–3) above is given by the constant function mentioned in the case 1).
Below, we compare the minimal values for the cases 1) and 5), as well.

The paper is organized as follows. In Section 2, we recall the properties of a function
that minimizes the square of the distance ρT under the assumption that such a function
exists (the explicit form of this function as well as conditions for its existence are not yet
known). A lower bound for the best approximation of the fractional Brownian motion
by Gaussian martingales is obtained in Section 3. In Section 4, we compare the best
approximations of a fractional Brownian motion by corresponding Gaussian martingales
in some classes of functions. A new upper bound for the square of the distance ρT as
well as a new estimate for the constant cH are obtained in Section 5; these results are
based on the properties established in Section 2. Various bounds for the constant cH are
compared numerically and graphically in Section 6.

2. Auxiliary results

Let {Wt, t ∈ [0, T ]} be a Wiener process and let BH
t =

∫ t

0
z(t, s) dWs be a fractional

Brownian motion with the Hurst index H > 1/2. Set α = H − 1/2. For a locally square
integrable function a : R+ → R, let

Fa(t) = E

[(
BH

t −
∫ t

0

a(s) dWs

)2
]
=

∫ t

0

(
a(s)− z(t, s)

)2
ds.

If c > 0 is arbitrary, then

(2.1) Fa(t) = c2HFc−αa(c ·)(t/c).

This result follows from the equality of distributions(
c−1/2Wct, c

−HBH
ct

)
d
=

(
Wt, B

H
t

)
.

Consider the optimization problem

(2.2) Ma := max
t∈[0,1]

Fa(t) → min

with respect to the function a.
Let a function a∗ ∈ C(R+) minimize the functional Ma.

Lemma 2.1. Ma∗ = Fa∗(1).

Proof. Assume that Fa∗(1) < Ma∗ . Since Fa∗(t) is continuous with respect to t, a number
c > 1 exists such that Fa∗(t) < Ma∗ for t ∈ [1, c]. Thus maxt∈[0,c] Fa∗(t) = Ma∗ . Put

b(t) = c−αa∗(tc). Equality (2.1) implies that Fb(t) = c−2HFa∗(tc), t ∈ [0, 1]. This yields
Mb = c−2HMa∗ < Ma∗ which contradicts the assumption. �

Now we assume that the function Fa∗(t) is continuously differentiable.

Lemma 2.2. F ′
a∗(1) ≥ 2HFa∗(1).

Proof. The preceding lemma implies that F ′
a∗(1) ≥ 0. For c > 1, let b(t) = c−αa∗(tc),

t ∈ [0, 1]. Equality (2.1) implies Fb(t) = c−2HFa(tc), t ∈ [0, 1/c]. Since Mb ≥ Ma∗ , a
point tc ∈ [0, 1] exists such that Fb(tc) ≥ Ma∗ = Fa∗(1). Hence tc ∈ (1/c, 1]. On the
other hand,

Fa∗(1) ≤ Fb(tc) = c−2HFa∗(ctc) ≤ (ctc)
−2HFa∗(ctc).
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Since ctc → 1+ as c → 1+, we get(
x−2HFa∗(x)

)′
x

∣∣∣
x=1

≥ 0,

and this is equivalent to the statement of the lemma. �

The latter lemma implies, in particular, that F ′
a∗(1) > 0, since Fa∗(1) = Ma∗ > 0.

3. A lower bound for the best approximation of fractional Brownian

motion by martingales of the form

∫ t

0
a(s)dWs

Theorem 3.1. The square of the distance

ρT := min
a∈L2[0,T ]

max
0≤t≤T

E

(
BH

t −
∫ t

0

a(s) dWs

)2

admits the following estimate:

(3.1) ρT ≥ max
0≤t1≤1

(
1− t2H1 − (1− t1)

2H
)2

16t2H1
· T 2H > 0.

Proof. In view of property (2.1), ρT can be rewritten via ρ1, namely ρT = T 2H ·ρ1. This
implies that one can restrict the consideration to the case of ρT with T = 1. Now we
construct a lower bound for

max
0≤t≤1

E

(
BH

t −
∫ t

0

a(s) dWs

)2

= max
0≤t≤1

∫ t

0

(z(t, s)− a(s))2 ds.

Let 0 < t1 ≤ 1. Consider the random variable
∫ 1

0
a(s)dWs =: B. Then

max
0≤t≤1

E

(
BH

t −
∫ t

0

a(s) dWs

)2

= max
0≤t≤1

E
(
BH

t − E[B|Ft]
)2

≥ max
(
E
(
BH

t1 − E[B|Ft1 ]
)2

,E(BH
1 −B)2

)
≥ max

(
E
(
BH

t1 − E[B|BH
t1 ]

)2
,E

(
E[BH

1 |BH
t1 ]− E[B|BH

t1 ]
)2)

≥ 1

2

(
E
(
BH

t1 − E
[
B|BH

t1

])2
+ E

(
E
[
BH

1 |BH
t1

]
− E

[
B|BH

t1

])2)
≥ 1

4
E
(
BH

t1 − E
[
BH

1 |BH
t1

])2

=
1

4
E

⎛
⎝BH

t1 −
E
(
BH

1 BH
t1

)
E
((

BH
t1

)2)BH
t1

⎞
⎠

2

=
1

4
E

(
BH

t1 ·
(
1− 1 + t2H1 − (1− t1)

2H

2t2H1

))2

=
1

4
t2H1

(
1− 1 + t2H1 − (1− t1)

2H

2t2H1

)2

=

(
1− t2H1 − (1− t1)

2H
)2

16t2H1
.

The theorem is proved. �

Remark 3.2. Using the inequality 1
2 (a

2 + b2) ≥
(
a+b
2

)2
, we obtain

t2H1 + (1− t1)
2H

2
≥

( t1 + (1− t1)

2

)2H

=
1

22H
.
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Moreover, the equality holds if and only if t1 = 1− t1, that is, if t1 = 1
2 . Thus

ρT ≥ (22H − 2)2

16 · 22H · T 2H

if t1 = 1
2 in Theorem 3.1.

4. A comparison of the best approximations

of fractional Brownian motion in some classes of functions

Let {BH
t , t ≥ 0} be a fractional Brownian motion with the Hurst index H ∈ ( 12 , 1),

T > 0 be fixed, a : [0, T ] → R be a measurable function such that a ∈ L2[0, T ], a

square integrable martingale {Mt, t ∈ [0, T ]} be of the form Mt =
∫ t

0
a(s) dWs, where

{Wt, t ∈ [0, T ]} is a Wiener process related to the fractional Brownian motion BH as
follows: for all t ∈ [0, T ],

(4.1) BH
t =

∫ t

0

z(t, s) dWs,

where

z(t, s) = cH (H − 1/2) s1/2−H

∫ t

s

uH−1/2(u− s)H−3/2 du.

Representation (4.1) is proved in the paper [7]. Here

cH =

(
2H · Γ

(
3
2 −H

)
Γ
(
H + 1

2

)
Γ(2− 2H)

)1/2

.

Class 5) in the list given in Section 1 is wider than the class of constant functions;
namely class 5) consists of the functions a(s) = k1 + k2 · sα, s ∈ [0, T ], for k1, k2 ∈ R.
Thus the best approximation by the elements of this class is not worse than that by
elements of the class 1), that is,

min
k

max
0≤t≤T

E

(
BH

t −
∫ t

0

kdWs

)2

≥ min
k1,k2

max
0≤t≤T

E

(
BH

t −
∫ t

0

(k1 + k2s
α) dWs

)2

.

We prove that the inequality is strict; in fact,

(4.2) min
k

max
0≤t≤T

E
(
BH

t − kWt

)2
> min

k1,k2

max
0≤t≤T

E

(
BH

t −
∫ t

0

(k1 + k2s
α) dWs

)2

.

Put f(t, k1, k2) := E(BH
t −

∫ t

0
(k1 + k2s

α)dWs)
2.

It is known that k02 < 0 and k∗2 < 0. Note that f(T, k1, k2) is a polynomial of the
second order of variables k1 and k2; moreover, the polynomial is concave with respect
to k1 and k2 and attains its minimum at the point (k∗1 , k

∗
2). For k2 ≥ k02 , the function

f(t, k1, k2) increases with respect to t in the interval [0,+∞). It is proved in [3] that

(4.3) min
k

max
0≤t≤T

f(t, k, 0) = T 2H
(
1− c21(H)

)
,

where

c1(H) =
α

α+ 1
cHB(1− α, α).

The minimum is attained at k = c1(H) · Tα, while the maximum

max
0≤t≤T

f(t, c1(H)Tα, 0)

is attained at t = T .
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We have (c1(H)Tα, 0) �= (k∗1 , k
∗
2), since k

∗
2 < 0. Thus f(T, k1, k2) does not have a local

minimum at the point (c1(H)Tα, 0). This implies that there exists a point
(
k
(2)
1 , k

(2)
2

)
,

k
(2)
2 > k02 , such that f

(
T, c1(H)Tα, 0

)
> f

(
T, k

(2)
1 , k

(2)
2

)
.

The minimum of (4.3) is attained at k = c1(H)·Tα. Taking into account the inequality

k
(2)
2 > k02 and that the function f

(
t, k

(2)
1 , k

(2)
2

)
increases, we obtain the following bound:

min
k

max
0≤t≤T

f(t, k, 0) = f(T, c1(H)Tα, 0) > f
(
T, k

(2)
1 , k

(2)
2

)
= max

0≤t≤T
f
(
t, k

(2)
1 , k

(2)
2

)
≥ min

k1,k2

max
0≤t≤T

f(t, k1, k2).

To show that the best approximation by functions of the class 5) is better than that
by functions of the class 1), we need to prove that

T 2α+1

(
1−

( αcH
α+ 1

·B(1− α, α)
)2

)

> T 2α+1

(
1− c2H

(
B2(1− α, α)− 2B(1− α, α)

α
+

(α+ 1)2

α2(2α+ 1)

))

or, in other words,

(4.4) B2(1− α, α)− 2B(1− α, α)

α
+

(α+ 1)2

α2(2α+ 1)
>

(
αcH
α+ 1

·B(1− α, α)

)2

.

Consider the difference between the left and right hand sides of (4.4):

(4.5)

B2(1− α, α)− 2B(1− α, α)

α
+

(α+ 1)2

α2(2α+ 1)
−
(

α

α+ 1
·B(1− α, α)

)2

=
2α+ 1

(α+ 1)2
B2(1− α, α)− 2B(1− α, α)

α
+

(α+ 1)2

α2(2α+ 1)

= (2α+ 1)

(
B(1− α, α)

α+ 1
− α+ 1

α(2α+ 1)

)2

≥ 0.

Now we show that the right hand side of (4.5) does not equal zero, that is,

f(α) := (α+ 1)2 · sinπα− πα(2α+ 1) �= 0.

In fact, we will prove that f(α) < 0 for 0 < α < 1
2 .

We use the Taylor expansion with a remainder term written in the Lagrange form:

f(α) = f(0) + αf ′(0) +
α2f ′′(0)

2
+

α3f ′′′(θα)

3!
, 0 < θ < 1.

It is obvious that f ′(0) = 0, f ′′(0) = 0, and f ′′′(θα) < 0. Indeed,

f ′′′(α) = π cosπα
(
6− (α+ 1)2π2

)
− 6(α+ 1)π2 sinπα < 0.

Since α3f ′′′(θα)/3! < 0, we obtain f(α) < 0 for 0 < α < 1
2 .

This proves that (4.4) holds, indeed.

5. An upper bound for the square of the distance ρT in the class of

functions a(s) = a0s
α + a1s

α+1

Let Mt =
∫ t

0
a(s) dWs, B

H
t =

∫ s

0
z(t, s) dWs, and let

z(t, s) = cHα s−α

∫ t

s

uα(u− s)α−1 du.
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We apply Theorem 2 of the paper [3] and obtain∫ t

0

(z(t, s)− cHsα)2 ds = t2H
(
1− c2H

2H

)
.

According to this result,

(5.1)

E(BH
t −Mt)

2 =

∫ t

0

(z(t, s)− a(s))2 ds

=

∫ t

0

(
(z(t, s)− cHsα) + (cHsα − a(s))

)2
ds

=

∫ t

0

(z(t, s)− cHsα)2 ds

+ 2

∫ t

0

(z(t, s)− cHsα) · (cHsα − a(s)) ds

+

∫ t

0

(cHsα − a(s))2 ds

= t2H
(
1− c2H

2H

)

− 2αcH

∫ t

0

uα

∫ u

0

(u− s)α−1 · (a(s)s−α − a(u)u−α) ds du

+

∫ t

0

(cHsα − a(s))2 ds.

Making the change of variables b(u) = a(u)u−α and c(u) = b(u)− cH we obtain
(5.2)

E
(
BH

t −Mt

)2
= t2H

(
1− c2H

2H

)
− 2αcH

∫ t

0

uα

∫ u

0

(u− s)α−1 · (b(s)− b(u)) ds du

+

∫ t

0

s2α(b(s)− cH)2 ds

= t2H
(
1− c2H

2H

)
− 2αcH

∫ t

0

uα

∫ u

0

(u− s)α−1 · (c(s)− c(u)) ds du

+

∫ t

0

s2αc2(s) ds.

Put c(u) = a0 + a1u on the right hand side of (5.2), which means that

a(u) = (a0 + cH + a1u)u
α

in (5.1). The optimization with respect to both coefficients a0 and a1 requires a cumber-
some calculation; thus we minimize the distance by using Lemmas 2.1 and 2.2. In doing
so, we consider the following class of functions:

A = {a ∈ L2[0, 1] : F
′
a(1) = 2HFa(1)}.

Theorem 5.1. Let 1
2 < H < 1 and α = H − 1

2 . Then the minimum

min
a0,a1

max
0≤t≤T

E

(
BH

t −
∫ t

0

(
a0s

α + a1s
α+1

)
dWs

)2
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in the class of functions c(u) = a0 + a1u ∈ A is attained for the coefficients a0 = a∗0 and
a1 = a∗1, where

a∗0 =
α(2α+ 1)(2α+ 3)

(α+ 1)
cH ,

a∗1 = − 2α+ 3

T (2α+ 2)
·
(
a0 +

αcH
α+ 1

)
.

The minimum is equal to

T 2α+1

[
1− c2H

2α+ 1
− α2(2α+ 3)c2H

(α+ 1)2

]
.

Proof. Substituting c(u) = a0 + a1u in (5.2) we obtain

(5.3)

Fa(t) = E(BH
t −Mt)

2

= t2H
(
1− c2H

2H

)
+ 2αcH

∫ t

0

uα

∫ u

0

(u− s)α · a1 ds du

+

∫ t

0

s2α(a20 + 2a0a1s+ a21s
2) ds

= t2α+1

(
1− c2H

2α+ 1
+

a20
2α+ 1

)
+ t2α+2 a1

α+ 1

(
a0 +

αcH
α+ 1

)

+ t2α+3 · a21
2α+ 3

.

Passing to the derivatives with respect to t on both sides of (5.3) we get

(5.4) F
′

a(t) = t2α(κ0 + κ1t+ κ2t
2),

where

(5.5) κ0 = 2α+ 1− c2H + a20, κ1 = 2a1

(
a0 +

αcH
α+ 1

)
, κ2 = a21.

Recalling that the functions under consideration belong to the class A, we evaluate at
the point T that

T 2α(κ0 + κ1T + κ2T
2) =

2α+ 1

T
· T 2α+1 ·

(
κ0

2α+ 1
+ T · κ1

2α+ 2
+ T 2 · κ2

2α+ 3

)
,

whence

(5.6) κ2 = −κ1 ·
2α+ 3

2T · (2α+ 2)
.

The latter equality is equivalent to the following one:

(5.7) a1 = − 2α+ 3

T · (2α+ 2)
·
(
a0 +

αcH
α+ 1

)
,

whence
(5.8)

Fa(T ) = T 2α+1

[
1− c2H

2α+ 1

+
1

(2α+ 2)2

(
a20 ·

1

2α+ 1
− a0 ·

2(2α+ 3)αcH
α+ 1

− (2α+ 3)α2 · c2H
(α+ 1)2

)]
.
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The minimum of the expression on the right hand side of (5.8) with respect to a0 is
attained at

a0 =
α(2α+ 1)(2α+ 3)

(α+ 1)
· cH

and is equal to

(5.9)

min
a0

Fa(T ) = T 2α+1

[
1− c2H

2α+ 1
+

1

(2α+ 2)2

(
−α2(2α+ 3)2(2α+ 1)c2H

(α+ 1)2

− (2α+ 3)α2c2H
(α+ 1)2

)]

= T 2α+1

[
1− c2H

2α+ 1
− α2(2α+ 3)c2H

(α+ 1)2

]
.

It remains to prove that the function Fa(t) increases with respect to t if a0 = a∗0 and
a1 = a∗1. Then

min
a0,a1

max
0≤t≤T

Fa(T ) ≤ Fa∗(T ), a∗ = (a∗0, a
∗
1).

Taking into account (5.4), we need to prove that the least root of the equation

κ0 + κ1t+ κ2t
2 = 0

exceeds T . Without loss of generality we restrict the consideration to the case of T = 1.
Then this root is equal to

t1 =
−κ1 −

√
κ2
1 − 4κ0κ2

2κ2
= α+ 1− 1

αcH

√
c2Hα2(α+ 1)2 − κ0.

The inequality t1 > 1 is equivalent to

α2 > (α+ 1)2 − κ0

α2c2H
or 2α+ 1 <

κ0

α2c2H
.

On the other hand,

κ0

α2c2H
=

(
2H − c2H +

α2c2H(2α+ 1)2(2α+ 3)2

(α+ 1)2

)
· 1

α2c2H

=
2H − c2H
(α+ 1)2

+
(2α+ 1)2(2α+ 3)2

(α+ 1)2
>

(2α+ 1)2(2α+ 3)2

(α+ 1)2
> (2α+ 1)2 > 2α+ 1,

that is, t1 > 1, indeed. �

Corollary 5.2. Equality (5.9) implies

1− c2H
2α+ 1

− α2(2α+ 3)c2H
(α+ 1)2

> 0,

whence we obtain a bound for cH :

(5.10) cH <

√
(2α+ 1)(α+ 1)2

(α+ 1)2 + α2(2α+ 1)(2α+ 3)
=: C

(c)
H .

Estimate (5.10) obviously improves the estimate c2H ≤ 2H obtained in the paper [2].
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6. A comparison of some lower and upper bounds for cH

Several upper bounds for the constant cH are obtained in the papers [2] and [3]. Below
are two of these bounds:

(6.1) cH <
√
2α+ 1 =: C

(a)
H

([2], Corollary 1; Figure 1, graph (a));

(6.2) cH <
(α+ 1) sinπα

πα
=: C

(b)
H

([3], Remark 1; Figure 1, graph (b)). The latter bound is obtained by transforming the
distance

(6.3) ρT = T 2H
(
1− c21

)
,

where

c1 = c1(H) = αcH · 1

α+ 1
·B(1− α, α).

Relation (5.10) provides another upper bound for cH , namely C
(c)
H .

The paper [4] (Lemma 3.1; Figure 1, graph (d)) contains a lower bound for the con-
stant cH , namely

(6.4) cH >
√
8H2(1−H) =: C

(d)
H .

Below we compare these four bounds with the help of Mathematica.

It is seen from Figure 1 that C
(b)
H approximates cH better than C

(a)
H does in the whole

interval ( 12 , 1). It is also clear that C
(c)
H approximates cH better than C

(b)
H does in the

interval H ∈ ( 12 , 0.853497) (the upper end point of this interval is found numerically with

the help of Mathematica). On the other hand, C
(b)
H approximates cH better than C

(c)
H

does in the interval H ∈ (0.853497, 1). The graphs of the differences C
(a)
H − C

(b)
H and

C
(b)
H − C

(c)
H depicted in Figure 2 and Figure 3 confirm this conclusion.
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7. Concluding remarks

We obtained some upper bounds for the constant cH . The bounds C
(b)
H and C

(c)
H are

the best among them in the corresponding intervals mentioned above. This allows one
to determine the best upper bound for ρT .

We compare the upper bound for ρT and lower bound (3.1) (see Figure 4, curve (a)).
We substitute the expression for cH given by (1.1) to (6.3) and to (5.9) (see Figure 4,
curve (c) and Figure 4, curve (b)). Thus we obtain the best upper bounds for ρT .
The difference between the curves (b) and (c) presented on Figure 4 is depicted on
Figure 5. We see that the best upper bound for ρT is given by the approximation
obtained from (5.9) in the interval ( 12 , 0.720536) and by the approximation obtained
from (6.3) in the interval (0.720536, 1).
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