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ESTIMATION AND INFERENCE OF THE VECTOR

AUTOREGRESSIVE PROCESS UNDER HETEROSCEDASTICITY

UDC 519.21

T. BODNAR AND T. ZABOLOTSKYY

Abstract. In this paper we derive the asymptotic distribution of the estimator for
the parameters of the vector autoregressive process of order p with an unconditionally
heteroscedastic error process. The covariance matrix of the error process is modeled
as a deterministic matrix function and it is estimated nonparametrically at each time
point. This estimator is used for deriving inference procedures for the parameters of
the vector autoregressive process.

1. Introduction

Autoregressive processes are widely spread in the statistical and economical literature.
The idea of modeling the conditional mean of the process by using the autoregressive
structure is also applied for other purposes. For instance, Engle (1982) [8] suggested a
model for conditional volatility, the so-called ARCH (autoregressive conditionally het-
eroscedastic) process, which implements the design of the autoregressive process for mod-
eling the conditional variance. Moreover, it is the case that the squared values of the
ARCH process follow an autoregressive process. Hansen (1994) [14] applied the autore-
gressive method for modeling the density function by suggesting a process that is based on
the t-distribution with time-varying degrees of freedom. Rockinger and Jondeau (2002)
[21] considered the process with time-varying higher moments; i.e., the conditional time-
varying skewness and kurtosis were modeled. Finally, Darolles et al. (2006) [5] considered
a general class of autoregressive processes. As a partial case, the autoregressive Wishart
process was introduced by Gourieroux et al. (2009) [12].

A common assumption, which is imposed when an autoregressive process is fitted to
real data, is that its parameters are time-invariant. This assumption significantly simpli-
fies the estimation of the parameters and the derivation of the distributional properties
of the estimator (see, e.g., Brockwell and Davis (1991) [3]). However, it can be unrealistic
in a practical situation. Usually, the variance of the error process used in the equation of
the autoregressive process is heteroscedastic. This problem has been extensively treated
in the case of the linear regression model (see, e.g., Greene (2008) [13]), where several
tests for the homoscedasticity versus the heteroscedasticity were derived by White (1980)
[24], Godfrey (1978) [11], Breusch and Pagan (1979) [2].

Although the ARCH-type models, which are developed to model the conditionally
time-varying variance, can capture a lot of properties of financial and economical data, Xu
and Phillips (2008) [26] argued that economical time series, like exchange rates, interest
rates, GDP, usually follow a heteroscedastic process. An improvement can be obtained
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by modeling the unconditional heteroscedasticity by complicated ARCH-type processes
(see, e.g., Engle and Rangel (2004) [9], Polzehl and Spokoiny (2006) [20]). Alternatively,
the time-varying variance is modeled as a nonparametric function by using a smooth
deterministic framework (see, e.g., Hsu et al. (1974) [16], Merton (1980) [18], Drees and
Stărică (2002) [7], Xu and Phillips (2008) [26]). Drees and Stărică (2002) [7] and Stărică
(2003) [22] compared the deterministic framework with the ARCH-type models by using
the S&P 500 return series and concluded that the deterministic framework has a better
performance in the sense of both fitting data and forecasting the next day volatility.

Although several series of economic variables are, usually, modeled simultaneously,
the impact of the heteroscedasticity in the error process has not been treated in the
literature up to now. This is a goal of the present paper. Namely, we contribute to
the existing literature by extending the findings of Phillips and Xu (2006) [19] to the
vector autoregressive process (VAR), a multivariate generalization of the autoregressive
process. The obtained results can be widely applied in economic theory. For instance,
the cointegration analysis, which is based on the VAR process, is, usually, performed for
studying the relationship between the macroeconomic variables and stock market returns
(see, e.g., Fama (1981) [10], Kwon and Shin (1999) [17]). Since the univariate times series
of the macroeconomic variables are heteroscedastic, it is obvious to assume that the joint
model possesses a heteroscedastic covariance matrix.

The rest of the paper is structured as follows. In the next section, some preliminary
results are given. Here, we provide the definition of the VAR process with heteroscedastic
errors and discuss the imposed conditions. The main results are given in Section 3 where
the asymptotic distribution of the estimated parameters is derived. In Section 3.2, the
inference procedures are presented.

2. Preliminary results

Let {uτ}, τ ∈ (−∞, T ], τ ∈ Z, be a k-dimensional martingale difference process with
respect to the increasing filtration Fτ , where Fτ = σ(us, s ≤ τ ) is the σ-field generated
by the events {us, s ≤ τ} with E(uτu

′
τ | Fτ−1) = Ik, a.s., for all τ . The symbol Ik stands

for the k-dimensional identity matrix. We assume that {Yt} follows a k-dimensional
vector autoregressive process of known and finite order p expressed as

(1)
Yt = θ0 + θ1Yt−1 + · · ·+ θpYt−p + εt,

εt = Σtut

with Σt = G(t/T ) for t ∈ [0, T ], t, T ∈ N. The k-dimensional vector θ0 and the
k× k matrices θ1, . . . , θp determine the parameters of the process. We also assume that
G(·) is a deterministic matrix function such that rank(G(t/T )) = k for all t, where
rank(A) denotes the rank of the matrix A. This assumption ensures that the covariance
matrix Var(εt | Ft−1) = ΣtΣ

′
t is a positive definite deterministic matrix function for

all t. Because the infinite moving average representation of the process {Yt} is used
in the derivation of the results we assume that both the process {εt} and the matrix
function G(·) are also defined for negative values of t.

Throughout the paper we assume that the following four assumptions hold:

Assumption 1. All eigenvalues of the matrix
∑p1

i=1 θi have modulus smaller than one.

When {ut} is a weakly stationary process and Σt = Σ, i.e. the matrix Σt is time-
invariant, Assumption 1 ensures that the process {Yt} is also weakly stationary with the

mean vector E(Yt) =
(
I−
∑p

i=1 θi

)−1
θ0 and the cross-covariance matrix Γ(h) of lag h,
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which is given by

(2) Γ(h) =
+∞∑
i=0

Ai+hΣA′
i ,

where the matrices Ai are uniquely defined by the matrices θi, i.e.

A0 = Ik and Aj =

j∑
i=1

θiAj−i, j = 1, 2, . . . ,(3)

with θi = 0 for i > p.

Assumption 2. The matrix function G(·) is nonstochastic, measurable and uniformly
bounded on the interval (−∞; 1] with a finite numbers of points of discontinuity and it
satisfies a Lipschitz condition except at points of discontinuity.

This assumption is similar to Assumption (ii) of Phillips and Xu (2006) [19]. It implies
that each component of the matrix G(·) is integrable on [0, 1] up to any finite order, i.e.∫ 1

0
|gij(r)|m dr < ∞ for all m > 0, where G(r) = (gij(r))i,j=1,...,k. Note, that the matrix

function G(·) is defined for r ∈ (−∞, 1] since the initial conditions are in the infinite
past and we make use of the infinite moving average representation of the process {Yt}.

In the following we use the notions of strong mixing (α-mixing) and of near-epoch
dependence which are defined by

Definition 1. A sequence of random variables {ξt(w)}+∞
−∞ with

F t
−∞ = σ(. . . , ξt−2, ξt−1, ξt)

and

F+∞
t+m = σ(ξt+m, ξt+m+1, ξt+m+2, . . . )

is strong mixing (or α-mixing) if limm→+∞ αm = 0, where αm = supt α(F t
−∞,F+∞

t+m)
with

α
(
F t

−∞,F+∞
t+m

)
= sup

F1∈Ft
−∞,F2∈F+∞

t+m

|P(F1 ∩ F2)− P(F1)P(F2)|.

Definition 2. For a sequence {ξt(w)}+∞
−∞, let F t+m

t−m = σ(ξt−m, . . . , ξt+m), such that

{F t+m
t−m}+∞

m=0 is an increasing sequence of σ-fields. If, for p > 0, a sequence of integrable

random variables {ζt(w)}+∞
−∞ satisfies∥∥ζt − E

(
ζt | F t+m

t−m

)∥∥
p
≤ dtνm,

where νm → 0 and {dt}+∞
−∞ is a sequence of positive constants, then ζt is near-epoch

dependent in the Lp-norm (Lp-NED) on {ξt(w)}+∞
−∞.

Assumption 3. {ut} is a strong mixing (α-mixing) martingale difference process with
E(ut | Ft−1) = 0 and E(utu

′
t | Ft−1) = Ik, a.s., for all t, with the natural filtration

Ft = σ(us, s ≤ t). There exist δ > 1 and C > 0, such that supt E ‖ut‖4δ < C < ∞.

This assumption implies that E(utu
′
s) = 0k for s �= t, where 0k is a k× k zero matrix.

We also have that E(|ut,i|4δ) < C with ut = (ut,1, . . . , ut,k)
′ and, consequently, by the

Lyapunov’s inequality it follows that E(|ut,i|η) < C for all η ≤ 4δ. The same results
are true for any expression of ut,i with the overall power less than or equal to 4δ. From
Var(ut | Ft−1) = Ik we obtain Var(εt) = Var(εt | Ft−1) = ΣtΣ

′
t. The last identity

specifies the unconditional heteroscedasticity in the process {Yt} modeled in (1). In the
univariate case, Cavaliere (2004) [4] discussed the allowable variance patterns in detail.
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For the rest of the paper it is assumed that a multivariate sample of T +p observations
is available given by {Y−p+1,Y−p+2, . . . ,Y−1,Y0,Y1, . . . ,YT }. Let

Xt−1 =
(
1′,Y′

t−1, . . . ,Y
′
t−p

)′
.

The parameters of the process (1) we denote by θ = (θ0, . . . , θp)
′. The expression (1) is

rewritten as

Yt = θ′Xt−1 + εt.(4)

Under Assumption 1, Yt has the infinite moving average representation, the so-called
Wold representation, given by

Yt = μ+

∞∑
i=0

Aiεt−i ,(5)

where the matrices Ai = (Ai,jl)j,l=1,...,k are defined in (3).

Assumption 4. Let
∑∞

i=0 ‖Ai‖2 < ∞, where ‖Ai‖2 =
∑k

j,l=1 A
2
i,jl.

The estimator of the parameter matrix θ is, usually, derived by considering (4) as a
multivariate regression given by⎛

⎜⎜⎜⎝
Y′

1

Y′
2
...

Y′
T

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

X′
0

X′
1
...

X′
T−1

⎞
⎟⎟⎟⎠θ +

⎛
⎜⎜⎜⎝
ε′1
ε′2
...
ε′T

⎞
⎟⎟⎟⎠

and estimating θ of this regression by the OLS (ordinary least square) estimator. This
leads to

(6) θ̂ =

(
T∑

t=1

Xt−1X
′
t−1

)−1 T∑
t=1

Xt−1Y
′
t .

3. Main results

In Section 3.1, we derive the asymptotic distribution of θ̂, while the inference proce-
dures are given in Section 3.2.

3.1. Asymptotic distribution of θ̂. Let ‖ξ‖k = (E ‖ξ‖k)1/k. In Theorem 1, we present

the asymptotic distribution of θ̂ and show that θ̂ is consistent. For the proof of Theorem
1 we need the following two lemmas.

Lemma 1. Under Assumptions 1–4, we obtain
(a) sup1≤t≤T E ‖Yt − μ‖4δ < ∞, for δ > 1.
(b) Let 1 ≤ h ≤ p, 0 ≤ j ≤ p− h. Then

lim
T→∞

E
(
Y[Tr]−h − μ

) (
Y[Tr]−h−j − μ

)′
=

∞∑
i=0

Ai+jG(r)G′(r)A′
i ,

for values r ∈ (0, 1] at which the function G(·) is continuous.

The proof of this lemma is given in the Appendix.
By 1k = (1, 1, . . . , 1)′ we denote the k-dimensional vector of ones. Let

(7) Ω1 =

⎛
⎜⎜⎜⎝
11′ 1μ′ . . . 1μ′

μ1′ μμ′ + Ω̃
0

. . . μμ′ + Ω̃
(p−1)

. . . . . .

μ1′ μμ′ + Ω̃
(p−1) ′

. . . μμ′ + Ω̃
0

⎞
⎟⎟⎟⎠
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with Ω̃
j
=
∑∞

i=0 Ai+j

(∫ 1

0
G(r)G′(r) dr

)
A′

i. Let K(i, j, t/T ) =
∑k

l=1 gil(t/T )gjl(t/T )

and Ω2 = {Ωi,j}i,j=1,...,k with

(8) Ωi,j =

⎛
⎜⎜⎜⎜⎜⎝

νi,j11
′ νi,j1μ

′ . . . νi,j1μ
′

νi,jμ1
′ νi,jμμ

′ +Ω0
ij . . . νi,jμμ

′ +Ω
(p−1)
ij

. . . νi,jμμ
′ +Ω1′

ij . . . νi,jμμ
′ +Ω

(p−2)
ij

. . . . . . . . . . . .

μ1′ νi,jμμ
′ +Ω

(p−1) ′
ij . . . νi,jμμ

′ +Ω0
ij

⎞
⎟⎟⎟⎟⎟⎠ ,

where νi,j =
∫ 1

0
K(i, j, r) dr and Ωl

ij =
∑∞

m=0 Am+l

(∫ 1

0
K(i, j, r)G(r)G′(r) dr

)
A′

m.

Lemma 2. Under Assumptions 1–4 as T → ∞,

(a) T−1
∑T

t=1 Xt−1ε
′
t

P→ 0;

(b) T−1
∑T

t=1 Xt−1X
′
t−1

P→ Ω1;

(c) T−1
∑T

t=1 vec
(
Xt−1ε

′
t

)
vec
(
Xt−1ε

′
t

)′ P→ Ω2;

(d) T−1/2
∑T

t=1 vec
(
Xt−1ε

′
t

) d→ N (0,Ω2).

The proof of this lemma is given in the Appendix.
Applying the OLS estimator (6) of θ we obtain the scaled error expressed as

(9)
√
T (θ̂ − θ) =

(
1

T

T∑
t=1

Xt−1X
′
t−1

)−1(
1√
T

T∑
t=1

Xt−1ε
′
t

)
.

Theorem 1. Under Assumptions 1–4, θ̂ is consistent and asymptotically normally dis-
tributed and

vec
(√

T (θ̂ − θ)
)

d→ N (0,Λ),

with T → ∞ and Λ = Ω̃
−1

1 Ω2Ω̃
−1

1 , where Ω̃1 = Ip ⊗Ω1 and the symbol ⊗ denotes the
Kronecker product.

Proof. The results of Theorem 1 follow from Lemma 2. �

3.2. Inference procedure. The results of Theorem 1 can be applied to construct tests
for some hypotheses on θ by using a consistent estimator ofΛ. If the matrix functionG(·)
is known, the consistent estimator of Λ is obtained by replacing μ by

μ̂ =

(
I−

p∑
i=1

θ̂i

)−1

θ̂0,

which is consistent since θ̂0, θ̂1, . . . , θ̂p are consistent.
However, the function G(·) is, usually, unknown and has to be estimated. In the

univariate case, Phillips and Xu (2006) [19] suggested three possible consistent estimators
of Λ when G(·) is an unknown deterministic function. The first two approaches are
based on the Eicker–White correction for heteroscedasticity and on the modification of
the Eicker–White correction. In the third approach, an application of the nonparametric
estimator of G(·) is suggested.

Next, we generalize this approach to the multivariate case. We estimate the matrix
function G(·)G(·)′ nonparametrically by a weighted sum of squared OLS residuals using
kernel smoothing. Let

Ĝ(r)Ĝ′(r) =
T∑

t=1

ωrtε̂tε̂
′
t,
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where ε̂t = Yt−θ̂X′
t−1 are the OLS residuals, r ∈ [0, 1] and the weights ωrt (t = 1, . . . , T )

are given by

ωrt =
K
(
([Tr]− t)/(Tb)

)
∑T

t=1 K
(
([Tr]− t)/(Tb)

) ,
where the kernel function K : R → [0,∞) satisfies the following two inequalities:

0 ≤ K(x) < C1 < ∞ and

∫ ∞

−∞
K(x) dx < ∞

with C1 being a positive constant. The bandwidth parameter b depends on T , such that
b + (1/Tb) → 0, as T → ∞. In the univariate case, Wong (1983) [25] proposed to use
cross-validation on the average squared error for choosing the bandwidth parameter b.

Let W = {W(i, j)}i,j=1,...,k, where W(i, j) = E(ut,iut,j(utu
′
t)).

Lemma 3. Under Assumptions 1–4, as T → ∞,

(a) T−1
∑T

t=1 ε̂tε̂
′
t

P→
∫ 1

0
G(r)G′(r) dr;

(b) T−1
∑T

t=1 vec
(
vec(ε̂tε̂

′
t)vec(ε̂tε̂

′
t)

′) P→
∫ 1

0

(
G(r)⊗G(r)⊗G(r)⊗G(r)

)
dr vecW;

(c) T−1
∑T

t=1 vec(Xt−1ε̂
′
t)vec(Xt−1ε̂

′
t)

′ P→ Ω2;

(d) Ĝ(r)Ĝ′(r)
P→ G(r)G′(r), for all r ∈ [0, 1] for which the function G is continuous.

The proof of this lemma is given in the Appendix. The results of Lemma 3 imply

three consistent estimators of Λ. Let Q =
∑T

t=1 Xt−1X
′
t−1. The first one is given by

Λ̂1 = T (Ip ⊗Q)−1

(
T∑

t=1

vec(Xt−1ε̂
′
t)
(
vec(Xt−1ε̂

′
t)
)′)

(Ip ⊗Q)−1 ,

which is based on the Eicker–White correction for heteroscedasticity. The second esti-
mator is

Λ̂2 = ˆ̃Ω−1
1

(
1

T

T∑
t=1

vec(Xt−1ε̂
′
t)
(
vec(Xt−1ε̂

′
t)
)′) ˆ̃Ω−1

1 ,

where ˆ̃Ω1 = Ip ⊗ Ω̂1 with Ω̂1 obtained from (7) by substituting

ˆ̃Ωj =

∞∑
i=0

Âi+j

(
1

T

T∑
t=1

ε̂tε̂
′
t

)
Â′

i

and μ̂ instead of Ω̃
j
and μ.

The third estimator is given by

Λ̂3 = ˆ̃Ω−1
1 Ω̂2

ˆ̃Ω−1
1 ,

where Ω̂2 is obtained by substituting

K̂

(
i, j,

t

T

)
=

k∑
l=1

ĝil

(
t

T

)
ĝjl

(
t

T

)
,

ν̂i,j =
∫ 1

0
K̂(i, j, r) dr, and Ω̂

l

ij =
∑∞

m=0 Âm+l

(∫ 1

0
K̂(i, j, r)Ĝ(r)Ĝ′(r) dr

)
Â′

m in (8).

Theorem 2. Under Assumptions 1–4, as T → ∞ it follows that:

(a) Λ̂j
P→ Λ, for j = 1, 2, 3.
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(b) Under H0 : θ0 = θ̃0 (H0 : θl = θ̃l for l = 1, . . . , p),

T0;j =
√
T (θ̂0 − θ̃0)

′(Λ̂j)
−1
00 (θ̂0 − θ̃0)

d→ χ2
k(

Tl;j =
√
T
(
vec(θ̂l)− vec(θ̃l)

)′
(Λ̂j)

−1
ll

(
vec(θ̂l)− vec(θ̃l)

) d→ χ2
k2

)
,

where (Λ̂j)ll is the (l, l)-th block of Λ̂j for l = 0, 1, . . . , p.
(c) Under H0 : a(θ) = 0, where a(θ) is an s-vector of continuously differentiable

restrictions for which the s× (p+1)k matrix A(θ) of first derivatives is of full row rank,

Wj = Ta(θ̂)′
(
A(θ̂)Λ̂jA(θ̂)′

)−1
a(θ̂)

d→ χ2
s.

Proof. The results follow from Theorem 1 and Lemma 3. �

A test for general linear restrictions is obtained from Theorem 2 by setting

a(θ) = Rvec(θ),

where R is a q × (pk2 + k) matrix of constants and q defines the number of linear
restrictions to be tested. The testing problem is given by

H0 : Rvec(θ) = 0 against H1 : Rvec(θ) �= 0,

with the test statistic expressed as

Lj = (vec(θ))′R′Λ̂
−1

j Rvec(θ),

which is asymptotically χ2
q-distributed under H0.

4. Appendix

In this section we present the proofs of Lemmas 1–3.

Proof of Lemma 1. (a) The following holds:

E
(
‖Yt − μ‖4δ

)
= ‖Yt − μ‖4δ4δ =

∥∥∥∥
∞∑
i=0

Aiεt−i

∥∥∥∥
4δ

4δ

.

Let Ai,j be the j-th column of the matrix Ai. The application of the Minkowski inequal-
ity leads to

E
(
‖Yt − μ‖4δ

)
=
∣∣∣∣∣∣ ∞∑

i=0

k∑
j=1

Ai,jεt−i,j

∣∣∣∣∣∣4δ
4δ

≤
( ∞∑

i=0

k∑
j=1

‖Ai,jεt−i,j‖4δ
)4δ

,

where εt = (εt,1, . . . , εt,k)
′. Using the fact that ‖Ai,j‖ ≤ ‖Ai‖ we get

E
(
‖Yt − μ‖4δ

)
≤
( ∞∑

i=0

‖Ai‖
k∑

j=1

‖εt−i,j‖4δ
)4δ

=

⎛
⎝ ∞∑

i=0

‖Ai‖
k∑

j=1

∥∥∥∥Gj

(
t− i

T

)
ut−i

∥∥∥∥
4δ

⎞
⎠

4δ

,
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whereGj((t−i)/T ) is the j-th row of the matrixG((t−i)/T ). Finally, from Assumption 3
we get

E
(
‖Yt − μ‖4δ

)
≤

⎛
⎝ ∞∑

i=0

‖Ai‖
∥∥∥∥G
(
t− i

T

)∥∥∥∥
k∑

j=1

‖ut−i‖4δ

⎞
⎠

4δ

≤ Ck

( ∞∑
i=0

‖Ai‖
∥∥∥∥G
(
t− i

T

)∥∥∥∥
)4δ

< ∞.

(b) Let t = [Tr]. Then

E ((Yt−h − μ)(Yt−h−j − μ)′) = E

( ∞∑
i=0

Aiεt−h−i

∞∑
i=0

ε′t−h−j−iA
′
i

)

=

∞∑
i=0

Ai+j E
(
εt−h−j−iε

′
t−h−j−i

)
A′

i

=
∞∑
i=0

Ai+jG

(
t− h− j − i

T

)
G′
(
t− h− j − i

T

)
A′

i.

Let LT > 0 such that

LT

T
+

1

LT
→ 0.

We obtain

E
(
(Yt−h − μ)(Yt−h−j − μ)′

)
=

LT∑
i=0

Ai+jG

(
t− h− j − i

T

)
G′
(
t− h− j − i

T

)
A′

i

+

∞∑
i=LT+1

Ai+jG

(
t− h− j − i

T

)
G′
(
t− h− j − i

T

)
A′

i.

Since Tr − 1 ≤ [Tr] ≤ Tr and (Tr − 1− h− j − i)/T → r as well as

Tr − h− j − i

T
→ r,

we get that

[Tr]− h− j − i

T
→ r.

This limit implies that

LT∑
i=0

Ai+jG

(
t− h− j − i

T

)
G′
(
t− h− j − i

T

)
A′

i →
∞∑
i=0

Ai+jG(r)G′(r)A′
i,

as T → ∞.
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Using the fact that the function G(·) is uniformly bounded on (−∞, 1] we get∥∥∥∥∥
∞∑

i=LT+1

Ai+jG

(
t− h− j − i

T

)
G′
(
t− h− j − i

T

)
A′

i

∥∥∥∥∥
≤

∞∑
i=LT+1

‖Ai+j‖
∥∥∥∥G
(
t− h− j − i

T

)∥∥∥∥
∥∥∥∥G′

(
t− h− j − i

T

)∥∥∥∥ ‖A′
i‖

≤ ‖C‖2
∞∑

i=LT+1

‖Aj+k‖ · ‖A′
i‖ → 0,

as T → ∞. Hence,

lim
T→∞

E ((Yt−h − μ)(Yt−h−j − μ)′) =
∞∑
i=0

Ai+jG(r)G′(r)A′
i. �

Proof of Lemma 2. (a) We have

1

T

T∑
t=1

Xt−1ε
′
t =

1

T

T∑
t=1

(
εt1

′, εtY
′
t−1, . . . , εtYt−p

)′
,

where

1ε′t =

⎛
⎝εt,1 . . . εt,k

. . .
εt,1 . . . εt,k

⎞
⎠ and Yt−hε

′
t =

⎛
⎝Yt−h,1εt,1 . . . Yt−h,1εt,k

. . .
Yt−h,kεt,1 . . . Yt−h,kεt,k

⎞
⎠ .

First, consider 1ε′t. The application of Assumption 3 leads to E(εt,i | Ft−1) = 0. From
Assumption 2 we obtain

E(ε2t,i) = E(|εt,i|2) ≤ E ‖εt‖2 = E

∥∥∥∥G
(

t

T

)
ut

∥∥∥∥
2

=

∥∥∥∥G
(

t

T

)∥∥∥∥
2

E ‖ut‖2 < ∞.

Next, we consider the product Yt−hε
′
t, 1 ≤ h ≤ p. Assumption 3 implies that

E (Yt−h,iεt,j | Ft−1) = Yt−h,i E (εt,j | Ft−1) = 0 for i, j ∈ {1, . . . , k}.
The application of Assumptions 2, 3 and Lemma 1 leads to

E
(
Y 2
t−h,jε

2
t,i

)
≤
√
EY 4

t−h,j E ε4t,i ≤
√
E ‖Yt−h‖4 E ‖εt‖4

≤

√
E sup

t
‖Yt−h‖4C

∥∥∥∥G
(

t

T

)∥∥∥∥
4

sup
t

E
∣∣∣∣∣∣ut

∣∣∣∣∣∣4 < ∞.

Applying the law of large numbers for martingale differences we get that

1

T

T∑
t=1

εt,i
P→ 0 and

1

T

T∑
t=1

Yt−h,jεt,i
P→ 0.

(b) Let

Xt−1X
′
t−1 =

⎛
⎜⎜⎝

11′ 1Y′
t−1 . . . 1Y′

t−p

Yt−11
′ Yt−1Y

′
t−1 . . . Yt−1Y

′
t−p

. . . . . .
Yt−p1

′ Yt−pY
′
t−1 . . . Yt−pY

′
t−p

⎞
⎟⎟⎠ .

In order to prove the statement (b) of Lemma 2, we have to calculate the following
three limits in probability:

(i) limT→∞ T−1
∑T

t=1 11
′;

(ii) limT→∞ T−1
∑T

t=1 1Y
′
t−h and limT→∞ T−1

∑T
t=1 Yt−h1

′, where 1 ≤ h ≤ p;
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(iii) limT→∞ T−1
∑T

t=1 Yt−hY
′
t−h−j , where 1 ≤ h ≤ p and 1 ≤ j ≤ p− h.

Because 1 is a constant vector, we get that limT→∞ T−1
∑T

t=1 11
′ = 11′.

For calculating the limits in probability of (ii), we have to check all the conditions
of the law of large numbers for martingale differences. We choose m ≥ p such that
‖Am−p+1‖ �= 1. Then,

Yt−p − μ =

m−p∑
i=0

Aiεt−p−i +Am−p+1(Yt−m−1 +B2Yt−m−2 + · · ·+BpYt−m−p),

where B2, . . . ,Bp are some constant matrices. Let F t+m
t−m be a sigma field generated by

{ut−m, . . . ,ut+m}. We obtain

E
(
Yt−p − μ | F t+m

t−m

)
=

m−p∑
i=0

Aiεt−p−i

+Am−p+1 E
(
Yt−m−1 +B2Yt−m−2 + · · ·+BpYt−m−p | F t+m

t−m

)
.

Using the previous equality we get∥∥Yt−p − μ− E
(
Yt−p − μ | F t+m

t−m

)∥∥
2

= ‖Am−p+1‖

×
∥∥∥Yt−m−1 +B2Yt−m−2 + · · ·+BpYt−m−p

− E
(
Yt−m−1 +B2Yt−m−2 + · · ·+BpYt−m−p

∣∣ F t+m
t−m

)∥∥∥
2
.

Using the Minkowski inequality, the conditional Jensen inequality and the law of iterated
expectation we conclude that∥∥Yt−p − μ− E

(
Yt−p − μ

∣∣ F t+m
t−m

)∥∥
2

≤ ‖Am−p+1‖

×
(
‖Yt−m−1 +B2Yt−m−2 + · · ·+BpYt−m−p‖2

+
∥∥E (Yt−m−1 +B2Yt−m−2 + · · ·+BpYt−m−p

∣∣ F t+m
t−m

)∥∥
2

)
≤ 2‖Am−p+1‖ ‖Yt−m−1 +B2Yt−m−2 + · · ·+BpYt−m−p‖2
≤ C‖Am−p+1‖ sup

t
‖Yt‖2.

Using the fact that ‖Am−p+1‖ → 0 as m → ∞ and the fact that supt ‖Yt‖2 < ∞ we
get that {Yt−p−μ} is mean-zero near-epoch dependent in the L2-norm on the α-mixing
sequence {ut}. From Theorem 17.10 of Davidson (1994) [6], {Yt−h − μ}, 1 ≤ h ≤ p,
is also mean-zero near-epoch dependent in the L2-norm on {ut}, and necessarily an L1-
mixingale. Lemma 1 gives us that it is uniformly integrable, and the application of the
law of large numbers (Andrews (1988) [1, Theorem 1]) leads to

lim
T→∞

1

T

T∑
t=1

Yt−h1
′ = μ1′ and lim

T→∞

1

T

T∑
t=1

1Y′
t−h = 1μ′.

To prove (iii) we note that {Yt−h − μ} and {Yt−h−j − μ} are mean-zero near-epoch
dependent in the L2-norm on {ut}. From Theorem 17.9 of Davidson (1994) [6], it follows
that {(Yt−h −μ)(Yt−h−k −μ)′ − E(Yt−h −μ)(Yt−h−k −μ)′} is mean-zero near-epoch
dependent in the L1-norm on {ut} and necessarily an L1-mixingale. Lemma 1 gives
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us that this sequence is uniformly integrable. From the law of large numbers for L1-
mixingales we obtain

1

T

T∑
t=1

(
(Yt−h − μ)(Yt−h−j − μ)′ − E(Yt−h − μ)(Yt−h−j − μ)′

) P→ 0.

Hence,

1

T

T∑
t=1

(
(Yt−h − μ)(Yt−h−j − μ)′

)
=

1

T

T∑
t=1

(
E(Yt−h − μ)(Yt−h−j − μ)′

)
+ oP (1)11

′

=
T∑

t=1

∫ (t+1)/T

t/T

E
(
Y[Tr]−h − μ

) (
Y[Tr]−h−j − μ

)′
dr + oP (1)11

′

=

∫ (T+1)/T

1/T

E
(
Y[Tr]−h − μ

) (
Y[Tr]−h−j − μ

)′
dr + oP (1)11

′

P→
∞∑
i=0

Ai+j

(∫ 1

0

G(r)G′(r) dr

)
A′

i.

Finally, taking (ii) into account we get

1

T

T∑
t=1

(
Yt−hY

′
t−h−j

) P→ μμ′ +
∞∑
i=0

Ai+j

(∫ 1

0

G(r)G′(r) dr

)
A′

i.

(c) Using the properties of the vec operator and the Kronecker product (see, e.g.,
Harville (1997) [15]) we get

vec(Xt−1ε
′
t) = vec (ε′t ⊗Xt−1) = εt ⊗Xt−1.

Hence,

vec(Xt−1ε
′
t) (vec(Xt−1ε

′
t))

′
= (εt ⊗Xt−1)

(
ε′t ⊗X′

t−1

)
= (εtε

′
t)⊗

(
Xt−1X

′
t−1

)
=

⎛
⎝ ε2t,1Xt−1X

′
t−1 . . . εt,1εt,kXt−1X

′
t−1

. . .
εt,1εt,kXt−1X

′
t−1 . . . ε2t,kXt−1X

′
t−1

⎞
⎠ .

Without loss of generality we calculate limT→∞ ε2t,1Xt−1X
′
t−1. The other limits in prob-

ability can be computed in the same way. It follows that

ε2t,1Xt−1X
′
t−1 =

⎛
⎜⎜⎝

ε2t,111
′ ε2t,11Y

′
t−1 . . . ε2t,11Y

′
t−p

ε2t,1Yt−11
′ ε2t,1Yt−1Y

′
t−1 . . . ε2t,1Yt−1Y

′
t−p

. . . . . .
ε2t,1Yt−p1

′ ε2t,1Yt−pY
′
t−1 . . . ε2t,1Yt−pY

′
t−p

⎞
⎟⎟⎠ .

It is necessary to find the next three limits in probability:

(i) limT→∞ T−1
∑T

t=1 ε
2
t,111

′;

(ii) limT→∞ T−1
∑T

t=1 ε
2
t,1Yt−h1

′ and limT→∞ T−1
∑T

t=1 ε
2
t,11Y

′
t−h, where 1 ≤ h ≤ p;

(iii) limT→∞ T−1
∑T

t=1 ε
2
t,1Yt−hY

′
t−h−j , where 1 ≤ h ≤ p and 1 ≤ j ≤ p− h.

First, (i) is proved. The identity

ε2t,1 =

( k∑
j=1

g1j(t/T )ut,j

)2
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and the application of Assumption 3 lead to E(ε2t,1 | Ft−1) =
∑k

j=1 g
2
1j(t/T ). Because{

ε2t,1 −
∑k

j=1 g
2
1j(t/T )

}
is α-mixing (see Davidson (1994) [6, Theorem 14.1]), and

E

(
ε2t,1 −

k∑
j=1

g21j(t/T )

)2

< ∞

(Assumptions 2 and 3), the law of large numbers for L1-mixingales implies that

1

T

T∑
t=1

ε2t,1 =
1

T

T∑
t=1

E
(
ε2t,1
)
+ oP (1) =

1

T

T∑
t=1

k∑
j=1

g21j

(
t

T

)
+ oP (1)

P→
k∑

j=1

∫ 1

0

g21j(r)dr.

Hence,

lim
T→∞

1

T

T∑
t=1

ε2t,111
′ =

( k∑
j=1

∫ 1

0

g21j(r) dr

)
11′.

(ii) Using the fact that {ε2t,1} is α-mixing and therefore near-epoch dependent in the

L2-norm on {ut} as well as the fact that {Yt−h − μ} is also near-epoch dependent in
the L2-norm on {ut}, we obtain that {ε2t,1(Yt−h − μ)} is near-epoch dependent in the

L1-norm on {ut} (see Davidson (1994) [6, Theorem 17.9]). Moreover, from Assumption
3 and Lemma 1 it follows that

E
∥∥ε2t,1(Yt−h − μ)

∥∥δ ≤ E ε4δt,1 E ‖(Yt−h − μ)‖2δ < ∞.

The application of the law of large numbers for L1-mixingales yields

T−1
T∑

t=1

ε2t,1(Yt−h − μ)
P→ 0

and, consequently,

T−1
T∑

t=1

ε2t,1Yt−h
P→

⎛
⎝ k∑

j=1

∫ 1

0

g21j(r) dr

⎞
⎠μ.

Hence,

1

T

T∑
t=1

ε2t,1Yt−h1
′ P→

( k∑
j=1

∫ 1

0

g21j(r) dr

)
μ1′

and

1

T

T∑
t=1

ε2t,11Y
′
t−h

P→
( k∑

j=1

∫ 1

0

g21j(r) dr

)
1μ′.

(iii) Consider⎧⎨
⎩ε2t,1(Yt−h − μ)(Yt−h−j − μ)′ −

( k∑
j=i

g21i

(
t

T

))
(Yt−h − μ)(Yt−h−j − μ)′,Ft

⎫⎬
⎭ .

It follows that

E

(
ε2t,1(Yt−h − μ)(Yt−h−j − μ)′ −

( k∑
i=1

g21i

(
t

T

))
(Yt−h − μ)(Yt−h−j − μ)′

∣∣∣∣ Ft−1

)

= (Yt−h − μ)(Yt−h−j − μ)′ E

(
ε2t,1 −

k∑
i=1

g21i

(
t

T

) ∣∣∣∣ Ft−1

)
= 0.
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From the Minkowski and the Cauchy–Schwarz inequalities and the application of Lem-
ma 1, we obtain∥∥∥∥∥ε2t,1(Yt−h − μ)(Yt−h−j − μ)′ −

( k∑
i=1

g21i

(
t

T

))
(Yt−h − μ)(Yt−h−j − μ)′

∥∥∥∥∥
δ

≤
∥∥ε2t,1(Yt−h − μ)(Yt−h−j − μ)′

∥∥
δ

+

∥∥∥∥∥
( k∑

i=1

g21i

(
t

T

))
(Yt−h − μ)(Yt−h−j − μ)′

∥∥∥∥∥
δ

=
(
E ε2δt,1‖Yt−h − μ‖δ‖Yt−h−j − μ‖δ

)1/δ
+

( k∑
i=1

g21i

(
t

T

))(
E ‖Yt−h − μ‖δ

∥∥Yt−h−j − μ
∥∥δ)1/δ

≤
(
E ε4δt,1

(
E ‖Yt−h − μ‖4δ E ‖Yt−h−j − μ‖4δ

)1/2)1/(2δ)

+

( k∑
i=1

g21i

(
t

T

))(
E ‖Yt−h − μ‖2δ E

∥∥Yt−h−j − μ
∥∥2δ)1/(2δ)

< ∞.

Hence,{
ε2t,1(Yt−h − μ)(Yt−h−j − μ)′ −

( k∑
i=1

g21i

(
t

T

))
(Yt−h − μ)(Yt−h−j − μ)′,Ft

}

is a martingale difference sequence. From the law of large numbers, we get

1

T

T∑
t=1

ε2t,1(Yt−h − μ)
(
Yt−h−j − μ

)′

− 1

T

T∑
t=1

( k∑
i=1

g21i

(
t

T

))
(Yt−h − μ)

(
Yt−h−j − μ

)′
P→ 0.

Next, we calculate

1

T

T∑
t=1

( k∑
i=1

g21i

(
t

T

))
(Yt−h − μ)

(
Yt−h−j − μ

)′

=
1

T

T∑
t=1

( k∑
i=1

g21i

(
t

T

))
E(Yt−h − μ)

(
Yt−h−j − μ

)′
+ oP (1)11

′

=
1

T

T∑
t=1

∫ (t+1)/T

t/T

( k∑
i=1

g21i

(
[Tr]

T

))
E
(
Y[Tr]−h − μ

) (
Y[Tr]−h−j − μ

)′
dr

+ oP (1)11
′

=

∫ (T+1)/T

1/T

( k∑
i=1

g21i

(
[Tr]

T

))
E
(
Y[Tr]−h − μ

) (
Y[Tr]−h−j − μ

)′
dr + oP (1)11

′

P→
∞∑
l=0

Al+j

(∫ 1

0

( k∑
i=1

g21i(r)

)
G(r)G′(r) dr

)
A′

l.
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Thus,

1

T

T∑
t=1

ε2t,1(Yt−h − μ)
(
Yt−h−j − μ

)′ 1
T

T∑
t=1

( k∑
i=1

g21i

(
t

T

))
(Yt−h − μ)

(
Yt−h−j − μ

)′
+ oP (1)11

′

P→
∞∑
l=0

Al+j

(∫ 1

0

( k∑
i=1

g21i(r)

)
G(r)G′(r) dr

)
A′

l.

Finally we get

lim
T→∞

1

T

T∑
t=1

ε2t,1Yt−hY
′
t−h−j =

( k∑
i=1

∫ 1

0

g21i(r) dr

)
μμ′

+

∞∑
l=0

Al+j

(∫ 1

0

( k∑
i=1

g21i(r)

)
G(r)G′(r) dr

)
A′

l.

(d) By the Cramer–Wold device it is sufficient to show that

1√
T

T∑
t=1

λ′ vec(Xt−1ε
′
t) →d N (0,λ′Ω2λ)

for every fixed k2(p+ 1)-vector λ = (λ1, . . . , λk2(p+1))
′ �= 0. Note that

{λ′ vec(Xt−1ε
′
t),Ft}

is a martingale difference sequence and by (c),

1√
T

T∑
t=1

λ′ vec(Xt−1ε
′
t) (vec(Xt−1ε

′
t))

′
λ

P→ λ′Ω2λ.

Moreover,

E
(
λ′ vec(Xt−1ε

′
t)
)2δ

=
∥∥∥(λ1 + · · ·+ λk)εt,1 + (λk+1Yt−1,1 + · · ·+ λ2kYt−1,k)εt,1 + · · ·

+ (λpk+1Yt−p,1 + · · ·+ λp(k+1)Yt−p,k)εt,1 + · · ·
∥∥∥2δ
2δ

≤
(
‖(λ1 + · · ·+ λk)εt,1‖2δ + ‖λk+1Yt−1,1εt,1‖2δ + · · ·

+ ‖λ2kYt−1,kεt,1‖2δ + · · ·+ ‖λpk+1Yt−p,1εt,1‖2δ + · · ·

+
∥∥λp(k+1)Yt−p,kεt,1

∥∥
2δ

+ · · ·
)2δ

< ∞,

since for 1 ≤ h ≤ p and 1 ≤ i, j ≤ k,

‖Yt−h,iεt,j‖2δ = (E(Yt−h,iεt,j))
1/(2δ) ≤

(
E(Yt−h,i)

4δ E(εt,j)
4δ
)1/(4δ)

< ∞

by Lemma 1. Thus from the central limit theorem for martingale differences (e.g., White
(1984) [24, Corollary 5.25]) we get that

1√
T

T∑
t=1

λ′ vec(Xt−1ε
′
t)

d→ N (0,λ′Ω2λ)
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for every fixed k2(p+ 1)-vector λ �= 0. Consequently,

1√
T

T∑
t=1

vec(Xt−1ε
′
t) →d N (0,Ω2). �

Proof of Lemma 3. (a) From the definition of ε̂t we get

ε̂t = Yt − θ̂X′
t−1 = εt − (θ̂ − θ)X′

t−1 = ε̂t − ζt,

where

ζt = (θ̂ − θ)X′
t−1.

From Theorem 1, Lemma 1 and Markov’s inequality, it follows that

(θ̂ − θ) = OP

(
T−1/2

)
11′, Xt−1 = OP (1)1, ζt = OP

(
T−1/2

)
1.

Then

1

T

T∑
t=1

ε̂tε̂
′
t =

1

T

T∑
t=1

εtε
′
t −

1

T

T∑
t=1

εtζ
′
t −

1

T

T∑
t=1

ζtε
′
t +

1

T

T∑
t=1

ζtζ
′
t

=
1

T

T∑
t=1

εtε
′
t −

2

T
OP

(√
T
)
11′ +

1

T
OP (1)11

′ =
1

T

T∑
t=1

εtε
′
t + oP (1)11

′

P→
∫ 1

0

G(r)G′(r) dr.

(b) Using the definition of the matrix W and the properties of the Kronecker product
and the vec operator we obtain

E
(
vec
(
vec(εtε

′
t)(vec(εtε

′
t))

′))
= E

(
vec

(
vec

(
G

(
t

T

)
utu

′
tG

′
(

t

T

))(
vec

(
G

(
t

T

)
utu

′
tG

′
(

t

T

)))′
))

= E

(
vec

((
G

(
t

T

)
⊗G

(
t

T

))
vec(utu

′
t)(vec(utu

′
t))

′

×
(
G′
(

t

T

)
⊗G′

(
t

T

))))

= E

(
vec

((
G

(
t

T

)
⊗G

(
t

T

))
((utu

′
t)⊗ (utu

′
t))

(
G′
(

t

T

)
⊗G′

(
t

T

))))

=

(
G

(
t

T

)
⊗G

(
t

T

)
⊗G

(
t

T

)
⊗G

(
t

T

))
vec
(
E((utu

′
t)⊗ (utu

′
t))
)

=

(
G

(
t

T

)
⊗G

(
t

T

)
⊗G

(
t

T

)
⊗G

(
t

T

))
vecW.

Since{
vec
(
vec(εtε

′
t)(vec(εtε

′
t))

′)− (G(t/T )⊗G(t/T )⊗G(t/T )⊗G(t/T )
)
vecW

}
is α-mixing and

E
(
vec
(
vec(εtε

′
t)(vec(εtε

′
t))

′))4δ < ∞
for some δ > 1, it is an L1-mixingale. The application of the law of large numbers leads
to

1

T

T∑
t=1

(
vec (vec(εtε

′
t)(vec(εtε

′
t))

′)−G(4)

(
t

T

)
vecW

)
P→ 0,
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where

G(4)(t/T ) = G(t/T )⊗G(t/T )⊗G(t/T )⊗G(t/T ).

From the arguments similar to (a) we conclude that

1

T

T∑
t=1

vec
(
vec(ε̂tε̂

′
t)(vec(ε̂tε̂

′
t))

′) = 1

T

T∑
t=1

vec
(
vec(εtε

′
t)(vec(εtε

′
t))

′)+ oP (1)1

=
1

T

T∑
t=1

(
G(4)

(
t

T

)
vecW

)
+ oP (1)1

P→
∫ 1

0

G(4)(r) dr vecW.

(c) Similarly to (a), we obtain

1

T

T∑
t=1

(
vec(Xt−1ε̂

′
t)vec(Xt−1ε̂

′
t)

′) = 1

T

T∑
t=1

(
(ε̂tε̂

′
t)⊗ (Xt−1X

′
t−1)
)

=
1

T

T∑
t=1

((
(εt − ζt)(ε

′
t − ζ′

t)
)
⊗ (Xt−1X

′
t−1)
)

=
1

T

T∑
t=1

(
(εtε

′
t)⊗ (Xt−1X

′
t−1)
)
+

1

T

T∑
t=1

(
(−εtζ

′
t − ζtε

′
t + ζtζ

′
t)⊗ (Xt−1X

′
t−1)
)

=
1

T

T∑
t=1

(
(εtε

′
t)⊗ (Xt−1X

′
t−1)
)
+ oP (1)11

′ P→ Ω2,

where the last equality holds since

∥∥∥∥ 1T
T∑

t=1

(
(−εtζ

′
t − ζtε

′
t + ζtζ

′
t)⊗ (Xt−1X

′
t−1)
)∥∥∥∥

≤ 2

T

T∑
t=1

‖εt‖
∥∥ζ′

t

∥∥ ‖Xt−1X
′
t−1‖+

1

T

T∑
t=1

‖ζt‖2‖Xt−1X
′
t−1‖

=
2

T

T∑
t=1

OP

(
1/
√
T
)
+

1

T

T∑
t=1

OP (1/T ) = oP (1).

(d) Let

Krt = K

(
[Tr]− t

T b

)

and for 1 ≤ t ≤ T let

[Tr]− t = [Tx],

where −1 ≤ x < 1. Then

1

Tb

T∑
t=1

Krt =
T∑

t=1

∫ ([Tr]−t+1)/T

([Tr]−t)/T

K

(
[Tx]

Tb

)
d
(x
b

)
=

T∑
t=1

∫ ([Tr]−t+1)/Tb

([Tr]−t)/Tb

K

(
[Tbx]

Tb

)
dx

=

∫ [Tr]/T

([Tr]−T )/Tb

K

(
[Tx]

Tb

)
d
(x
b

)
→
∫ +∞

−∞
K(x) dx < ∞.
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The application of ε̂t = εt − ζt yields

(10)

∥∥∥∥∥
(

1

Tb

T∑
t=1

Krt

)(
Ĝ(r)Ĝ(r)′ −G(r)G′(r)

)∥∥∥∥∥ =
∥∥∥∥∥ 1

Tb

T∑
t=1

Krt

(
ε̂tε̂

′
t −G(r)G′(r)

)∥∥∥∥∥
=

∥∥∥∥∥ 1

Tb

T∑
t=1

Krt

(
εtε

′
t − ζtε

′
t − εtζ

′
t + ζtζ

′
t +G

(
t

T

)
G′
(

t

T

)

−G

(
t

T

)
G′
(

t

T

)
−G(r)G′(r)

)∥∥∥∥∥
≤
∥∥∥∥∥ 1

Tb

T∑
t=1

Krt

(
εtε

′
t −G

(
t

T

)
G′
(

t

T

))∥∥∥∥∥
+

∥∥∥∥∥ 1

Tb

T∑
t=1

Krt

(
G

(
t

T

)
G′
(

t

T

)
−G(r)G′(r)

)∥∥∥∥∥
+ 2

∥∥∥∥ 1

Tb

T∑
t=1

Krtζtε
′
t

∥∥∥∥+
∥∥∥∥ 1

Tb

T∑
t=1

Krtζtζ
′
t

∥∥∥∥.
Taking into account the fact that {εtε′t − G(t/T )G′(t/T )} is a martingale difference
sequence we obtain

E

∥∥∥∥∥ 1

Tb

T∑
t=1

Krt

(
εtε

′
t −G

(
t

T

)
G′
(

t

T

))∥∥∥∥∥
2

=
1

T 2b2

T∑
t=1

K2
rt E

∥∥∥∥εtε′t −G

(
t

T

)
G′
(

t

T

)∥∥∥∥
2

≤ 1

Tb

(
sup
t

Krt

)(
sup
t

E

∥∥∥∥εtε′t −G

(
t

T

)
G′
(

t

T

)∥∥∥∥
2
)(

1

Tb

T∑
t=1

Krt

)
→ 0.

Hence, the first term in (10) vanishes in the L2-norm as T → ∞.
For the second term in (10) we get∥∥∥∥∥ 1

Tb

T∑
t=1

Krt

(
G

(
t

T

)
G′
(

t

T

)
−G(r)G′(r)

)∥∥∥∥∥
≤

∥∥∥∥∥∥
1

Tb

∑
|t−Tr|≤TMb

Krt

(
G

(
t

T

)
G′
(

t

T

)
−G(r)G′(r)

)∥∥∥∥∥∥
+

∥∥∥∥∥∥
1

Tb

∑
|t−Tr|>TMb

Krt

(
G

(
t

T

)
G′
(

t

T

)
−G(r)G′(r)

)∥∥∥∥∥∥ .
Because the function G(·) is uniformly bounded and satisfies the Lipschitz condition
(Assumption 2), we obtain∥∥∥∥∥∥

1

Tb

∑
|t−Tr|≤TMb

Krt

(
G

(
t

T

)
G′
(

t

T

)
−G(r)G′(r)

)∥∥∥∥∥∥
≤ C

Tb

∑
|t−Tr|≤TMb

Krt

(
t

T
− r

)
≤ CMb

Tb

∑
|t−Tr|≤TMb

Krt ≤ 2CM2b2
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and ∥∥∥∥∥∥
1

Tb

∑
|t−Tr|>TMb

Krt

(
G

(
t

T

)
G′
(

t

T

)
−G(r)G′(r)

)∥∥∥∥∥∥
≤ C

Tb

∑
|t−Tr|>TMb

Krt → C

∫
|x|≥M

K(x) dx.

Letting T → ∞ and taking M such that M → ∞ and Mb → 0, we get that the second
term in (10) converges to zero.

Since

1

Tb

T∑
t=1

Krtζtζ
′
t = OP

(
1

T

)
11′,

we conclude that the third and the fourth terms of (10) converge in probability to zero as

T → ∞. Therefore, Ĝ(r)Ĝ′(r)
P→ G(r)G′(r), for all r ∈ [0, 1] for which the functionG(·)

is continuous. �
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