
Teor�� �Imov�r. ta Matem. Statist. Theor. Probability and Math. Statist.
Vip. 83, 2010 No. 83, 2011, Pages 47–57

S 0094-9000(2012)00840-5
Article electronically published on February 2, 2012

LAW OF THE ITERATED LOGARITHM

FOR SOLUTIONS OF STOCHASTIC EQUATIONS

UDC 519.21

D. S. BUDKOV AND S. YA. MAKHNO

Abstract. Strassen’s law of the iterated logarithm for a solution x(t) of Itô’s sto-
chastic equation is considered in the paper. We obtain a result for small times in
the uniform metric and for a more general normalizing function than the classical√

h ln ln 1
h
.

1. Introduction

We consider Strassen’s law of the iterated logarithm for solutions of stochastic equa-
tions for small times in the uniform metric. We use a general normalizing function

√
hϕh

instead of the classical one
√
h ln ln 1

h . A. Bulinskĭı developed in [1] an approach to study

such general normalizing functions for the Wiener process as the time goes to infinity.
The result obtained below allows one to study the asymptotic behavior of integral func-
tionals of solutions of stochastic equations. In particular, Theorem 2.2 of [5] for a Wiener
process w(t),

lim
h→0

1
h

∫ t+h

t
w(s) ds− w(t)√
2h ln ln 1

h

=
1√
3
,

follows from our Theorem 2 stated below.

2. Main results

This section contains the definitions and statements of the main results of the paper.
The proofs are given in Section 4 below on the basis of some auxiliary results obtained
in Section 3.

Let (Ω,F,Ft,P) be a probability space equipped with a filtration Ft, t ∈ [0, 1]. Denote
by Ed the d-dimensional Euclidean space with the scalar product (· , ·). Let C([0, 1], d)
denote the space of all continuous functions on [0, 1] assuming values in Ed and let
ρ(f, g) = supt∈[0,1] |f(t) − g(t)| and B be the metric and Borel σ-algebra in this space,

respectively. The symbol I(A) stands for the indicator of a random event A and Ā
denotes the complement of the event A.

Let x(t) be a solution of the stochastic equation

(1) x(t) = x0 +

∫ t

0

b(s, x(s)) ds+

∫ t

0

σ(s, x(s)) dw(s),
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where b(t, x) ∈ Ed, σ(t, x) is a d× n matrix, and w is an n-dimensional and Ft-adapted
Wiener process. Put a(t, x) = σ(t, x)σ∗(t, x), σ0 = σ(0, x0), and a0 = σ0σ

∗
0 , where

∗ is
the transposition symbol.

We assume the following conditions.

(i) There exists a constant K such that

|bi(t, x)|+ |σij(t, x)| ≤ K

for all i = 1, 2, . . . , d and j = 1, 2, . . . , n, where the functions σij(t, x) are contin-
uous at the point (0, x0).

(ii) There exists λ > 0 such that (a0θ, θ) ≥ λ|θ|2 for all θ ∈ Ed.

By Φ we denote the class of increasing functions ϕ(x), x ≥ 0, such that

lim
x→∞

ϕ(x) = ∞, lim
x→∞

ϕ(x)√
x

= 0.

Let c > 1 be a number and let [c] denote its integer part. For every ϕ ∈ Φ, we define
R2(ϕ) as follows:

(2) R2(ϕ) = inf

{
r > 0:

∞∑
n=1

exp

{
−r

ϕ2([cn])

2

}
< ∞

}
.

We set R2(ϕ) = ∞ if the series in (2) diverges for all finite r. Note that if the series in (2)
converges for some c > 1, then it converges for all c > 1. It is proved in [1, Theorem 3]
that R = Q−1, where

Q = lim
x→∞

ϕ(x)√
2 ln lnx

.

For an absolutely continuous function f(t), put

I0(f) =
1

2

∫ 1

0

|ḟ(t)|2 dt

and introduce the following classes of functions:

KR =
{
f ∈ (C[0, 1], n) : f(0) = 0, I0(f) ≤ R2/2

}
,

HR = {g(t) : g(t) = σ0f(t), f ∈ KR, t ∈ [0, 1]}.

If R = ∞, then KR = {f ∈ (C[0, 1], n) : f(0) = 0}. Put ϕh = ϕ(1/h) and let

xh(t) = (x(th)− x0)/(
√
hϕh). We derive from (1) that

(3) x(th) = x0 + h

∫ t

0

b(sh, x(sh)) ds+
√
h

∫ t

0

σ(sh, x(sh)) dwh(s)

and

(4) xh(t) =

√
h

ϕh

∫ t

0

b(sh, x(sh)) ds+
1

ϕh

∫ t

0

σ(sh, x(sh)) dwh(s),

where wh(t) = w(th)/
√
h is a Wiener process.

Theorem 2.1 provides the functional law of the iterated logarithm for a solution of the
stochastic equation (1) considered for small times. This result is used in Theorem 2.3 to
study the limit behavior of integral functionals of a solution.

Below are two main results of the paper.

Theorem 2.1. Let conditions (i) and (ii) hold for the coefficients of equation (1). Then,
with probability one, the family of random functions {xh(t)}h>0 is relatively compact in
C([0, 1], d) and the set of limit points of this family coincides with HR.
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The properties of continuous mappings together with Theorem 2.1 imply the following
result concerning the limit points of F (xh).

Corollary 2.2. Let F (·) be a continuous on C([0, 1], d) functional. Then, with probability
one, the set of limit points of F (xh) coincides with F (HR).

Consider the following family of stochastic processes:

ξh(t) =
1
h

∫ th

0
x(s) ds− t x0√

hϕh

, t ∈ [0, 1].

Theorem 2.3. With probability one, the family of random functions {ξh(t)}h>0 is rela-
tively compact in C([0, 1], d) and the set of its limit points coincides with

H̃R =

{
g̃(t) =

∫ t

0

g(s) ds : g(s) = σ0f(s), f ∈ KR, t ∈ [0, 1]

}
.

Corollary 2.4. For d = 1,

lim
h→0

1
h

∫ h

0
x(s) ds− t x0√

hϕh

=
|σ0|R√

3
,

lim
h→0

1
h

∫ h

0
x(s) ds− t x0√

hϕh

= −|σ0|R√
3

.

3. Auxiliary results

In this section, we prove some auxiliary results needed in the proof of the main results
of this paper.

We say that the large deviations principle holds for a family of probability measures
{Ph}h>0 defined in (C([0, 1], d),B) with a normalizing function ϕ2

h and a rate functional
I(f) if

1) for all open sets G ⊂ B,
lim
h→0

ϕ−2
h lnPh(G) ≥ − inf{I(f); f ∈ G};

2) for all closed sets U ⊂ B,
lim
h→0

ϕ−2
h lnPh(U) ≤ − inf{I(f); f ∈ U};

3) for all a < ∞, the set {ψ : I(ψ) ≤ a} is compact;

see [3, Chapter 3].

Lemma 3.1. Let conditions (i) and (ii) hold for the coefficients of equation (1). Then
the large deviations principle holds for a family of probability measures {Ph}h>0 as h ↓ 0
with the normalizing function ϕh ∈ Φ and the following rate functional:

I(f) =

{
1
2

∫ 1

0

(
a−1
0 ḟ(t), ḟ(t)

)
dt, if f(t) is absolutely continuous and f(0) = 0;

+∞, otherwise,

where Ph(A) = P{xh(·) ∈ A} for A ∈ B.

Proof. We rewrite representation (4) for the process xh(t) and obtain the following equa-
tion:

xh(t) =

∫ t

0

bh(s, xh(s)) ds+
1

ϕh

∫ t

0

σh(h, xh(s)) dwh(s),

where

bh(s, x) =
√
hϕ−1

h b
(
sh, x

√
hϕh + x0

)
and σh(s, x) = σ

(
sh, x

√
hϕh + x0

)
.
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Put ah(s, x) = σh(s, x)σ
∗
h(s, x). Under condition (i),

lim
h→0

bh(s, x) = 0 and lim
h→0

ah(s, x) = a0

uniformly in (s, x) belonging to an arbitrary compact set. Thus the proof is completed
by [2, Theorem 3.2.1 and Corollary 2]. �

The following result is a multidimensional analogue of a corollary to Theorem 5 in
Section 2 of Chapter 3 in [7]. The changes in the proof are obvious.

Lemma 3.2. Let w(t) be an n-dimensional Wiener process, f(t) be a d × n matrix
function whose entries are bounded by a constant K. We also assume that f(t) is Ft-
adapted. Then

(5) P

{
sup

t∈[0,1]

∣∣∣ ∫ t

0

f(s) dw(s)
∣∣∣ ≥ δ

}
≤ 2d exp

{
− δ2

2nK2

}
for all δ > 0.

Lemma 3.3. Assume that conditions (i) and (ii) hold. Then, for every δ > 0, there
exists h0 such that

(6) P

{
sup

t∈[0,1]

|x(th)− x0| ≥ δ

}
≤ 2d exp

{
− δ2

8dnK2h

}
for all h < h0.

Proof. It follows from (3) that

(7)

P

{
sup

t∈[0,1]

|x(th)− x0| ≥ δ

}
≤ P

{
h sup

t∈[0,1]

∣∣∣∣∫ t

0

b(sh, x(sh)) ds

∣∣∣∣ ≥ δ

2

}

+ P

{
√
h sup

t∈[0,1]

∣∣∣∣∫ t

0

σ(sh, x(sh)) dwh(s)

∣∣∣∣ ≥ δ

2

}
.

Since the coefficient b(t, x) is bounded, the first term on the right hand side of (7) vanishes
if h is sufficiently small. The second term on the right hand side of (7) is estimated by
Lemma 3.2. The proof is completed. �

Lemma 3.4. Assume that conditions (i) and (ii) hold. For all L > 0 and δ > 0, there
exists h0 such that

(8) P

{
sup

t∈[0,1]

∣∣∣∣∫ t

0

(σ(sh, x(sh))− σ(0, x0)) dw(s)

∣∣∣∣ ≥ δϕh

}
≤ 4d exp

{
−Lϕ2

h

}
for all h < h0.

Proof. According to condition (i), the functions σij(t, x) are continuous at the point
(0, x0). Thus, given ε > 0, there exists γ > 0 such that

(9) |σ(s, x)− σ(0, x0)| < ε

for 0 ≤ s < γ and |x− x0| < γ.
Further,

(10) P

{
sup

t∈[0,1]

∣∣∣∣∫ t

0

(σ(sh, x(sh))− σ(0, x0)) dw(s)

∣∣∣∣ ≥ δϕh

}
= I1 + I2,
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where

I1 = P

{
sup

t∈[0,1]

∣∣∣∣∫ t

0

(σ(sh, x(sh))− σ(0, x0)) dw(s)

∣∣∣∣ ≥ δϕh, sup
t∈[0,1]

|x(th)− x0| ≥ γ

}
,

I2 = P

{
sup

t∈[0,1]

∣∣∣∣∫ t

0

(σ(sh, x(sh))− σ(0, x0)) dw(s)

∣∣∣∣ ≥ δϕh, sup
t∈[0,1]

|x(th)− x0| < γ

}
.

The term I1 in (10) is estimated by inequality (6) as follows:

(11) I1 ≤ P

{
sup

t∈[0,1]

|x(th)− x0| ≥ γ

}
≤ 2d exp

{
− γ2

8dnK2h

}
.

Since hϕ2
h → 0, one can find h1 for a given L > 0 such that

γ2

8ndK2hϕ2
h

≥ L

for h < h1. This together with (11) implies that

(12) I1 ≤ 2d exp
{
− Lϕ2

h

}
.

To estimate the term I2, we use (9) and bound (5). Then

(13) I2 ≤ 2d exp
{
− ϕ2

h

( δ2

8ndε2h

)}
.

For all L > 0, there exists h2 such that the expression in the parentheses on the right
hand side of (13) is greater than or equal to L if h < h2. In this case, (14) implies that

(14) I2 ≤ 2d exp
{
− Lϕ2

h

}
.

Putting h0 = h1 ∧ h2 in (12) and (14) we prove (8). The proof is completed. �

Lemma 3.5. For all functions f ∈ KR and all δ > 0, there exist γ > 0 and h0 > 0 such
that

(15) P

{
sup

t∈[0,1]

∣∣∣∣∫ t

0

(σ(sh, x(sh))− σ0)ḟ(s) ds

∣∣∣∣ ≥ δ, sup
t∈[0,1]

|x(th)− x0| < γ

}
= 0

for all h < h0.

Proof. Using the γ specified for (9) we obtain

δ2 ≤ sup
t∈[0,1]

∣∣∣∣∫ t

0

(σ(sh, x(sh))− σ0)ḟ(s) ds

∣∣∣∣2 ≤ sup
t∈[0,1]

ε2
∫ t

0

|ḟ(s)|2 ds ≤ ε2R2.

The random event in the braces on the left hand side of (15) has the probability zero if
ε < δ/R in (9). The lemma is proved. �

Denote by H1([0, 1], n) the space of absolutely continuous functions f(t) ∈ En such
that ∫ 1

0

|ḟ(s)|2 ds < ∞.

Lemma 3.6. The functional I(f) defined in Lemma 3.1 admits the following represen-
tation:

(16) I(f) = inf
g∈H1([0,1],n)

{I0(g) : f(t) = σ0g(t), g(0) = 0}

(we agree that the infimum of an empty set is equal to +∞).
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Proof. Consider the following stochastic processes ξε(t) = εw(t) and ηε(t) = εσ0w(t). It
is well known that I0(f) and I(f) are rate functionals for the processes ξε(t) and ηε(t),
respectively (see [3, Theorem 5.3.1]). On the other hand, ηε(t) = F (ξε(t)), where

F (x) = σ0x.

Representation (16) follows from the contraction principle; see [3, Theorem 3.3.1]. The
lemma is proved. �

The following result for ϕh =
√
2 ln ln 1

h is Theorem 1 of [4]. The proof for the case

considered in the current paper is given in [6, Theorem 2].

Lemma 3.7. With probability one, the set of limit points, as h → 0, of the family{
w(th)√
hϕh

}
coincides with the set KR.

4. Proof of the main results

In this section, we prove the main results of the paper.

Proof of Theorem 2.1. We split the proof of this result into the three standard steps.
Put

LR =

{
f : f(0) = 0, I(f) ≤ R2

2

}
.

Lemma 3.6 implies that if f ∈ LR, then a function g ∈ KR exists such that f(t) = σ0g(t),
that is, f ∈ HR, whence

(17) LR ⊆ HR.

Set hk = [ck]−1 and zk(t) = xhk
(t), where c > 1 is a given number.

Step 1. We show that, for all c > 1, δ > 0, and R2 < ∞, an integer number k0 > 0
exists such that

(18) ρ(zk, HR) < δ

with probability one for all k > k0. Put Bδ = {f : ρ(f,LR) ≥ δ}. Note that a number
δ > 0 exists such that

inf
f∈Bδ

I(f) ≥ R2(ϕ)

2
+ δ.

Since the large deviation principle holds for zh(t),

lnP{zk ∈ Bδ} ≤ −ϕ2
(
[ck]

)
inf

f∈Bδ

I(f)

for a closed set Bδ and for sufficiently large k. Then

P{zk ∈ Bδ} ≤ exp

{
−ϕ2

(
[ck]

)(R2(ϕ)

2
+ δ

)}
.

Recalling the definition of the number R2(ϕ) we deduce from the Borel–Cantelli lemma
that, with probability one,

(19) ρ(zk, LR) < δ

for sufficiently large k. Now (17) and (19) imply (18).
Step 2. Now we show that each limit point of the sequence xh belongs to HR. This

is already proved for hk = [ck]−1 in Step 1. Let h ∈ [hk+1, hk].
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Since
√
hϕ(h) is an increasing function,

(20)
1√

hϕ(h)
=

α(h, k)√
hkϕhk

+
β(h, k)√
hk+1ϕhk+1

,

where α(h, k) > 0 and β(h, k) > 0 are such that α(h, k) + β(h, k) = 1. Let

x̂h,k(t) = α(h, k)zk(t) + β(h, k)zk+1(t).

Then x̂h,k ∈ {f : ρ(f,HR) < δ} for sufficiently large k, since αf(t) + β g(t) ∈ LR for
α > 0 and β > 0 such that α+ β = 1, provided that f(t), g(t) ∈ LR.

The goal of Step 2 is achieved if we show that, for all δ > 0, there exist a number
cδ > 1 and an integer k0 such that

(21) sup
t∈[0,1],h∈[hk+1,hk]

|xh(t)− x̂h,k(t)| ≤ δ

for all k > k0 and c > cδ. Recalling the definition of zk(t) and accounting equality (20)
we obtain

xh(t) = zk

(
t
h

hk

) √
hkϕhk√
hϕh

= zk

(
t
h

hk

)
α(h, k) + zk+1

(
t

h

hk+1

)
β(h, k).

Then

sup
t∈[0,1],h∈[hk+1,hk]

|xh(t)− x̂h,k(t)| ≤ sup
t∈[0,1],s∈[t/c,t]

|zk(t)− zk(s)|

+ sup
t∈[0,1], s∈[t,tc∧1]

|zk+1(t)− zk+1(s)|.

Now we derive the inequality

P

{
sup

t∈[0,1], h∈[hk+1,hk]

|xh(t)− x̂h,k(t)| ≥ δ

}

≤ P

{
sup

t∈[0,1], s∈[t/c,t]

|zk(t)− zk(s)| ≥
δ

2

}

+ P

{
sup

t∈[0,1], s∈[t,tc∧1]

|zk+1(t)− zk+1(s)| ≥
δ

2

}
.

We apply the large deviation principle to estimate the terms on the right hand side of
the latter relation. Let

Qδ =

{
f ∈ C([0, 1], n) : f(t) is absolutely continuous

and such that sup
t∈[0,1],s∈[t/c,t]

|f(t)− f(s)| ≥ δ

2

}
.

Note that the set Qδ, δ > 0, is closed. Applying the Cauchy–Schwarz inequality, we
prove that

δ2

4
≤ |f(t)− f(s)|2 ≤

∣∣∣∣∫ t

s

ḟ(v) dv

∣∣∣∣2 ≤ (t− s)

∫ t

s

|ḟ(v)|2dv ≤ 2(c− 1)

λ
I(f),

whence

I(f) ≥ λδ2

8 (c− 1)
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for f ∈ Qδ. If cδ = 1 + λδ2/
(
4R2

)
, then

(22) P

{
sup

t∈[0,1], s∈[t/c,t]

|zk(t)− zk(s)| ≥
δ

2

}
= P{zk ∈ Qδ} ≤ exp

{
−
R2ϕ2

hk

2

}

for c > cδ.
Reasoning similarly we prove that

(23) P

{
sup

t∈[0,1], s∈[t,tc∧1]

|zk+1(t)− zk+1(s)| ≥
δ

2

}
≤ exp

{
−
R2ϕ2

hk

2

}

for the same c. Now we obtain inequality (21) from relations (22) and (23) and from the
Borel–Cantelli lemma.

Step 3. We show, for an arbitrary function g(t) = σ0f(t) ∈ HR, that a subsequence
exists such that xhk

→ g almost surely. Consider the following random events:

Ch =
{

sup
t∈[0,1]

∣∣∣wh(t)

ϕh
− f(t)

∣∣∣ ≤ ε
}
, Dh =

{
sup

t∈[0,1]

|xh(t)− g(t)| < δ

}
.

It is easy to see that

Ch = (Ch ∩Dh) ∪ (Ch ∩Dh) ⊂ Dh ∪ (Ch ∩Dh).

By Lemma 3.7, the events Ch occur infinitely often (i.o.) for whatever ε > 0. Thus

(24) 1 = P{Ch i.o.} ≤ P{Dh i.o.}+ P{Ch ∩Dh i.o.}.

Now we show that a sequence hk exists such that the second term on the right hand side
of inequality (24) equals zero. We have

(25)

P{Ch ∩Dh} = P

{
sup

t∈[0,1]

∣∣∣∣
√
h

ϕh

∫ t

0

b(sh, x(sh)) ds

+

∫ t

0

σ(sh, x(sh))d

(
wh(s)

ϕh
− f(s)

)
+

∫ t

0

(σ(sh, x(sh)− σ0))ḟ(s) ds

∣∣∣∣ ≥ δ;

sup
t∈[0,1]

∣∣∣wh(t)

ϕh
− f(t)

∣∣∣ ≤ ε

}

≤ P

{
sup

t∈[0,1]

∣∣∣∣∣
√
h

ϕh

∫ t

0

b(sh, x(sh)) ds

∣∣∣∣∣ ≥ δ

3

}

+ P

{
sup

t∈[0,1]

∣∣∣∣∫ t

0

(σ(sh, x(sh))− σ0)ḟ(s) ds

∣∣∣∣ ≥ δ

3

}

+ P

{
sup

t∈[0,1]

∣∣∣∣∫ t

0

σ(sh, x(sh))d

(
wh(s)

ϕh
− f(s)

)∣∣∣∣ ≥ δ

3
;

sup
t∈[0,1]

∣∣∣wh

ϕh
− f

∣∣∣ ≤ ε

}
= P1 + P2 + P3.
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Since b(t, x) is a bounded function, there exists h0 such that

(26) P1 = P

{
sup

t∈[0,1]

∣∣∣∣∣
√
h

ϕh

∫ t

0

b(sh, x(sh)) ds

∣∣∣∣∣ ≥ δ

3

}
= 0

for all 0 < h < h0. Further,

P2 = P

{
sup

t∈[0,1]

∣∣∣ ∫ t

0

(σ(sh, x(sh))− σ(0, x0))ḟ(s) ds
∣∣∣ ≥ δ

3

}

= P

{
sup

t∈[0,1]

∣∣∣ ∫ t

0

(σ(sh, x(sh))− σ(0, x0))ḟ(s) ds
∣∣∣ ≥ δ

3
; sup
t∈[0,1]

|x(ht)− x0| ≥ γ

}

+ P

{
sup

t∈[0,1]

∣∣∣∣∫ t

0

(σ(sh, x(sh))− σ(0, x0))ḟ(s) ds

∣∣∣∣ ≥ δ

3
; sup
t∈[0,1]

|x(ht)− x0| < γ

}
= P4 + P5.

We pick up a number γ such that P5 = 0 by Lemma 3.5. Now Lemma 3.3 with such a
number γ yields

P4 ≤ P
{
supt∈[0,1] |x(ht)− x0| ≥ γ

}
≤ 2d exp

{
− γ2

8nK2dh

}
.

Choosing h0 in such a way that

− γ2

8nK2dh
≤ −R2ϕ2

h

for h < h0 we get

(27) P2 ≤ 2d exp

{
−R2ϕ2

h

2

}
.

Now we estimate the probability P3 in (25). Let

Gh = exp

{
ϕh

∫ 1

0

ḟ(s) dwh(s)−
ϕ2
h

2

∫ 1

0

|ḟ(s)|2 ds
}

and let P̃h be a probability measure on (Ω, F ) possessing a density which we denote byGh.

By Girsanov’s theorem, w̃h(t) = wh(t)− ϕhf(t) is a Wiener process on (Ω,F , P̃h).
Put

Sh =

{
sup

t∈[0,1]

∣∣∣∣∫ t

0

σ(sh, x(sh)) dw̃h(s)

∣∣∣∣ ≥ δϕh

3
; sup
t∈[0,1]

|w̃h(t)| ≤ εϕh

}
.

By Ẽh we denote the expectation with respect to the measure P̃h. Then

(28) P3 = ẼhI(Sh)G
−1
h ≤

(
P̃h(Sh)

) 1
2
(
ẼhG

−2
h

) 1
2

.

Further,

(29)

P̃h(Sh) ≤ P̃h

{
sup

t∈[0,1]

∣∣∣∣∫ t

0

(σ(sh, x(sh)− σ0) dw̃h(s)

∣∣∣∣ ≥ δϕh

6

}

+ P̃h

{
sup

t∈[0,1]

|σ0w̃h(s)| ≥
δϕh

6
; sup
t∈[0,1]

|w̃h(t)| ≤ εϕh

}
.
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Let α =
∑

ij(σ0)
2
ij . We choose ε < δ/(6α). Then the second term on the right hand

side of (29) equals zero. We estimate the first term in (29) by Lemma 3.4. Therefore,
for all L > 0 and δ > 0, there exists h0 such that

(30) P̃h(Sh) ≤ 4d exp
{
−Lϕ2

h

}
for h < h0. Since f ∈ KR, we obtain

(31)

Ẽh

(
G−1

h

)2
= Ẽh

(
exp

{
−2ϕh

∫ 1

0

ḟ(s) dwh(s) + ϕ2
h

∫ 1

0

|ḟ(s)|2 ds
})

= Ẽh

(
exp

{
−2ϕh

∫ 1

0

ḟ(s) dwh(s)− 2ϕ2
h

∫ 1

0

|ḟ(s)|2 ds
})

× exp

{
3ϕ2

h

∫ 1

0

|ḟ(s)|2 ds
}

≤ exp
{
3R2ϕ2

h

}
.

Relations (30) and (31) yield

P3 ≤
√
4d exp

{
−ϕ2

h

2

(
L− 3R2

)}
,

where the probability P3 is defined by (25). Choosing L = 4R2 in this inequality, we get

(32) P3 ≤ exp

{
−R2ϕ2

h

2

}
.

Turning back to relations (25), we note by (26), (27), and (32) that a number h0 exists
such that

P{Ch ∩Dh} ≤ (2d+ 1) exp

{
−R2ϕ2

h

2

}
for h < h0. Thus a number c > 1 exists such that∑

k

P{Chk
∩Dhk

} ≤ (2d+ 1)
∑
k

exp

{
−R2ϕ2([ck])

2

}
for the sequence hk = [ck]−1.

Recalling the definition of R, we conclude that the latter series converges. Using the
Borel–Cantelli lemma, we conclude that P{Chk

∩ Dhk
i.o.} = 0 for all δ > 0. Inequal-

ity (24) implies that

P{Dhk
} = P

{
sup

t∈[0,1]

|xhk
(t)− g(t)| < δ i.o.

}
= 1

for all δ > 0. The theorem is proved. �

Proof of Theorem 2.3. It remains to apply Corollary 2.2 and choose the functional

F (x(·)) =
∫ t

0

x(s) ds. �

Proof of Corollary 2.4. If g̃ ∈ H̃R, then

g̃2(1) = σ2
0

(∫ 1

0

∫ t

0

ḟ(s) ds dt

)2

= σ2
0

(∫ 1

0

(1− s)ḟ(s) ds

)2

≤ σ2
0

∫ 1

0

(1− s)2 ds

∫ 1

0

(ḟ(s))2 ds =
σ2
0

3

∫ 1

0

(ḟ(s))2 ds ≤ σ2
0R

2

3
.
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This implies that

−|σ0|R√
3

≤ g̃(1) ≤ |σ0|R√
3

.

Note that the upper and lower bounds are attained at the functions

f1(t) =
|σ0|R

√
3

σ0

(
t− t2

2

)
and

f2(t) = −f1(t),

respectively. �
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