AN APPROXIMATION OF $L_{p}(\Omega)$ PROCESSES

UDC 519.21

O. E. KAMENSHCHIKOVA AND T. O. YANEVICH

Abstract

Bounds for the increments of stochastic processes belonging to some classes of the space $L_{p}(\Omega)$ are obtained in the $L_{q}[a, b]$ metric. An approximation of such processes by trigonometric sums is studied in the space $L_{q}[0,2 \pi]$.

1. Introduction

Conditions for stochastic processes to belong to the spaces $L_{p}(\Omega)$ (being a subclass of Orlicz spaces) as well as bounds for the norms of processes of the spaces $L_{p}(\Omega)$ are studied in the paper [1]. Properties of increments of stochastic processes belonging to Orlicz spaces and, as a particular case, those of increments of processes belonging to the spaces $L_{p}(\Omega)$ are studied in the paper [2].

An approximation of SSub_{φ} stochastic processes by cubic splines in the norm of the space $L_{p}(T)$ is considered in the paper [3]. The same problem but for the approximation by interpolation lines is considered in 4.

In the current paper, we consider a 2π-periodic stochastic process

$$
X=\{X(t), t \in \mathbf{R}\}
$$

belonging to the space $L_{p}(\Omega)$. We study the approximation of such processes by trigonometric sums in the space $L_{q}[0,2 \pi]$ for various relations between the numbers p and q. For all cases considered in the paper, we obtain a bound for the best approximation with respect to accuracy and reliability. We also obtain bounds for the increments of $L_{p}(\Omega)$ processes in the metric of the space $L_{q}[a, b]$.

First we recall some definitions and results needed in what follows.
Let (Ω, B, P) be a standard probability space. Consider a stochastic process

$$
X=\{X(t), t \in T\}
$$

where $T=[a, b]$ is an interval.
Theorem 1.1 ([5]). Let $\{X(t), t \in T\}$ be a bounded and separable $L_{p}(\Omega)$ process. Assume that there exists an increasing continuous function $\sigma(h), h>0$, such that $\sigma(h) \rightarrow 0$ as $h \rightarrow 0$ and

$$
\begin{equation*}
\sup _{\rho(t, s) \leq h}\|(X(t)-X(s))\|_{L_{p}(\Omega)} \leq \sigma(h) . \tag{1}
\end{equation*}
$$

Let $\rho_{X}(t, s)=\|X(t)-X(s)\|_{L_{p}(\Omega)}, t, s \in T$, and let $N(\varepsilon)=N_{\rho_{X}}(T, \varepsilon), \varepsilon>0$, denote the metric entropy of the set of parameters T with respect to the pseudometric ρ_{X}. Recall that $N(\varepsilon)$ is the minimal number of closed balls (defined with respect to the pseudometric $\left.\rho_{X}\right)$ of radius ε that cover T. Let $\varepsilon_{0}=\sup _{t, s \in T} \rho_{X}(t, s)$.

[^0]Assume that

$$
\int_{0}^{\varepsilon_{0}} N^{1 / p}(\varepsilon) d \varepsilon<\infty
$$

Then

$$
\left(\mathrm{E}\left(\sup _{t \in T}|X(t)|\right)^{p}\right)^{1 / p} \leq B_{p}
$$

and

$$
\mathrm{P}\left(\sup _{t \in T}|X(t)| \geq \varepsilon\right) \leq \frac{B_{p}^{p}}{\varepsilon^{p}}
$$

for all $\varepsilon>0$, where

$$
B_{p}=\inf _{t \in T}\left(\mathrm{E}|X(t)|^{p}\right)^{1 / p}+\inf _{0<\theta<1} \frac{1}{\theta(1-\theta)} \int_{0}^{\theta \varepsilon_{0}} N^{1 / p}(\varepsilon) d \varepsilon
$$

Definition 1.1. We say that $\widetilde{X}(t)$ approximates a process $X(t)$ with given accuracy $\varepsilon>0$ and reliability $1-\delta, 0<\delta<1$, in the space $L_{q}(T)$ if

$$
\mathrm{P}\left\{\left(\int_{T}|X(t)-\widetilde{X}(t)|^{q} d t\right)^{1 / q}>\varepsilon\right\} \leq \delta
$$

Definition 1.2 ([6]). Let $q \geq 1$ and let $f \in L_{q}[0,2 \pi]$. The function

$$
\omega_{q}(\delta)=\omega_{q}(\delta ; f)=\sup _{0<h \leq \delta}\left\{\int_{0}^{2 \pi}|f(x+h)-f(x)|^{q} d x\right\}^{1 / q}, \quad \delta>0
$$

is called the modulus of continuity of the function f.
Definition 1.3 (6$]$). Let $f \in L_{q}[0,2 \pi]$ be a 2π-periodic function. We approximate the function f with its trigonometric sums $S_{n-1}(t)$ of an order that does not exceed $n-1$ and with period 2π. Recall that the trigonometric sum of order n and with period 2π is any linear combination of the following form:

$$
S_{n}(t)=\sum_{k=-n}^{n} c_{k} e^{i k t}
$$

Put

$$
I_{n}^{(q)}[f]=\inf _{S_{n-1} \in L_{q}[0,2 \pi]}\left\|f-S_{n-1}\right\|_{L_{q}[0,2 \pi]}
$$

The finding of $I_{n}^{(q)}[f]$ is called the forward problem of the harmonic approximation in the metric of the space $L_{q}[0,2 \pi]$.

Theorem 1.2 ([6]). Let $q \geq 1$ and let $f \in L_{q}[0,2 \pi]$ be a 2π-periodic function. For every natural number n, there exists a trigonometric sum $S_{n-1}(x)=S_{n-1}(x ; f)$ of an order that does not exceed $n-1$ such that

$$
I_{n}^{(q)}[f] \leq\left\|f-S_{n-1}\right\|_{L_{q}[0,2 \pi]} \leq \frac{3}{n} \omega_{q}\left(\frac{1}{n} ; f\right)
$$

Remark 1.1. The above definition and theorem are given in [6]. We use these results for stochastic processes for which they are valid almost surely.
2. The approximation of $L_{p}(\Omega)$ processes in the metric of the Space $L_{q}[0,2 \pi]$. Case of $p>q>1$
Lemma 2.1. Let $p>q>1$ and let $X=\{X(t), t \in[a, b]\}$ be $a(b-a)$-periodic stochastic process. We assume that X is bounded, separable, and belongs to the space $L_{p}(\Omega)$. We further assume that inequality (1) holds for the process X.

Let $T_{\delta}=[0, \delta]$ and put

$$
Y(w):=\|X(t+w)-X(t)\|_{L_{q}[a, b]}
$$

for $w \in T_{\delta}$. Then $Y(w) \in L_{p}(\Omega)$ and moreover

$$
\begin{equation*}
\sup _{w \in T_{\delta}}\|Y(w+h)-Y(w)\|_{L_{p}(\Omega)} \leq|b-a|^{1 / q} \cdot \sigma(h) \tag{2}
\end{equation*}
$$

for all $h>0$.
Proof. We use the Hölder inequality:

$$
\int_{a}^{b}|f(t) g(t)| d t \leq\left(\int_{a}^{b}|f(t)|^{m} d t\right)^{1 / m}\left(\int_{a}^{b}|g(t)|^{n} d t\right)^{1 / n}
$$

for $m>1$ and $n>1$ such that

$$
\frac{1}{m}+\frac{1}{n}=1
$$

Putting $m=p / q, n=p /(p-q), f(t)=X(t+w)-X(t)$, and $g(t) \equiv 1, t \in[a, b]$, in this inequality we obtain

$$
\left(\int_{a}^{b}|X(t+w)-X(t)|^{q} d t\right)^{1 / q} \leq\left(\int_{a}^{b}|X(t+w)-X(t)|^{p} d t\right)^{1 / p} \cdot c_{1}^{1 / q}
$$

where $c_{1}=|b-a|^{1-q / p}$. Thus

$$
\begin{equation*}
\mathrm{E}\left(\int_{a}^{b}|X(t+w)-X(t)|^{q} d t\right)^{p / q} \leq c_{1}^{p / q} \cdot \mathrm{E}\left(\int_{a}^{b}|X(t+w)-X(t)|^{p} d t\right) \tag{3}
\end{equation*}
$$

and

$$
\begin{aligned}
\|Y(w)\|_{L_{p}(\Omega)} & =\left(\mathrm{E}\left(\int_{a}^{b}|X(t+w)-X(t)|^{q} d t\right)^{p / q}\right)^{1 / p} \\
& \leq c_{1}^{1 / q}\left(\int_{a}^{b} \mathrm{E}|X(t+w)-X(t)|^{p} d t\right)^{1 / p} \\
& \leq c_{1}^{1 / q} \cdot(b-a)^{1 / p} \cdot \sigma(w)=(b-a)^{1 / q} \cdot \sigma(w)
\end{aligned}
$$

that is, $Y(w) \in L_{p}(\Omega)$.

Using inequality (3), we get

$$
\begin{aligned}
\sup _{w \in T_{\delta}} & \|Y(w+h)-Y(w)\|_{L_{p}(\Omega)}^{p} \\
& =\sup _{w \in T_{\delta}} \mathrm{E}\left|\left(\int_{a}^{b}|X(t+w+h)-X(t)|^{q} d t\right)^{1 / q}-\left(\int_{a}^{b}|X(t+w)-X(t)|^{q} d t\right)^{1 / q}\right|^{p} \\
& \leq \sup _{w \in T_{\delta}} \mathrm{E}\left(\int_{a}^{b}|X(t+w+h)-X(t+w)|^{q} d t\right)^{p / q} \\
& \leq \sup _{w \in T_{\delta}}|b-a|^{p / q-1} \cdot \mathrm{E}\left(\int_{a}^{b}|X(t+w+h)-X(t+w)|^{p} d t\right) \\
& \leq|b-a|^{p / q} \cdot(\sigma(h))^{p}
\end{aligned}
$$

whence $\sup _{w \in T_{\delta}}\|Y(w+h)-Y(w)\|_{L_{p}(\Omega)} \leq|b-a|^{1 / q} \cdot \sigma(h)$.
Theorem 2.1. Let $\{X(t), t \in[0,2 \pi]\}$ be a 2π-periodic stochastic process. Assume that X is bounded, separable, and belongs to the space $L_{p}(\Omega)$. We further assume that

$$
\begin{equation*}
\sup _{t, s \in T}\|X(t)-X(s)\|_{L_{p}(\Omega)} \leq c|t-s|^{\alpha}, \quad c>0,0<\alpha<1 \tag{4}
\end{equation*}
$$

where $p>q>1$.
Then there exists a trigonometric sum S_{n-1} of an order that does not exceed $n-1$ such that

$$
\mathrm{P}\left\{I_{n}^{(q)}[X]>\varepsilon\right\} \leq \mathrm{P}\left\{\left\|X(t)-S_{n-1}(t)\right\|_{L_{q}[0,2 \pi]}>\varepsilon\right\} \leq \frac{3}{n^{\alpha p}} \frac{(2 \pi)^{p / q} \cdot c^{p}(1+\alpha p)^{1 / \alpha+p}}{\varepsilon^{p} \cdot(\alpha p-1)^{p}}
$$

Proof. Since $Y(w) \in L_{p}(\Omega)$, one can use Theorem 1.1 for this process.
Put $\widetilde{\sigma}(h)=\widetilde{c} h^{\alpha}$ and $\widetilde{c}=|b-a|^{1 / q} \cdot c$. Since

$$
N(\varepsilon) \leq \frac{\delta}{2 \widetilde{\sigma}^{(-1)}(\varepsilon)}+1=\frac{\delta \widetilde{c}^{1 / \alpha}}{2 \varepsilon^{1 / \alpha}}+1, \quad \varepsilon_{0} \leq \widetilde{\sigma}(\delta)
$$

we derive from Theorem 1.1 that
(5)

$$
\begin{aligned}
& \mathrm{P}\left\{\sup _{w \in T_{\delta}}\left|\left(\int_{a}^{b}|X(t+w)-X(t)|^{q} d t\right)^{1 / q}\right|>\varepsilon\right\} \\
& \quad=\mathrm{P}\left\{\sup _{w \in T_{\delta}}|Y(w)|>\varepsilon\right\} \\
& \quad \leq \frac{1}{\varepsilon^{p}}\left(\inf _{0<\theta<1} \frac{1}{\theta(1-\theta)} \int_{0}^{\theta \widetilde{c^{\alpha}}}\left(\frac{\delta \widetilde{c}^{1 / \alpha}}{2 \varepsilon^{1 / \alpha}}+1\right)^{1 / p} d \varepsilon\right)^{p} \\
& \quad \leq \frac{1}{\varepsilon^{p}}\left(\inf _{0<\theta<1} \frac{1}{\theta(1-\theta)} \int_{0}^{\theta \widetilde{c} \delta^{\alpha}}\left(\frac{\delta \widetilde{c}^{1 / \alpha}}{\varepsilon^{1 / \alpha}}\right)^{1 / p} d \varepsilon\right)^{p} \\
& \quad=\frac{1}{\varepsilon^{p}}\left(\frac{\widetilde{c} \delta^{\alpha}}{\left(1-\frac{1}{\alpha p}\right)} \inf _{0<\theta<1} \frac{1}{\theta^{1 /(\alpha p)}(1-\theta)}\right)^{p}=\frac{1}{\varepsilon^{p}}\left(\frac{\widetilde{c} \delta^{\alpha}}{\left(1-\frac{1}{\alpha p}\right)} \frac{(1+\alpha p)^{1 /(\alpha p)}}{1-\frac{1}{1+\alpha p}}\right)^{p} \\
& \quad=\frac{|b-a|^{p / q} \cdot c^{p} \delta^{\alpha p}(1+\alpha p)^{1 / \alpha+p}}{\varepsilon^{p} \cdot(\alpha p-1)^{p}} .
\end{aligned}
$$

Substituting $a=0, b=2 \pi$, and $\delta=1 / n$ in (5) we deduce from Theorem 1.2 that

$$
\begin{aligned}
\mathrm{P}\left\{I_{n}^{(q)}[X]>\varepsilon\right\} & \leq \mathrm{P}\left\{\left\|X(t)-S_{n-1}(t)\right\|_{L_{q}[0,2 \pi]}>\varepsilon\right\} \\
& \leq \frac{3}{n^{\alpha p}} \frac{(2 \pi)^{p / q} \cdot c^{p}(1+\alpha p)^{1 / \alpha+p}}{\varepsilon^{p} \cdot(\alpha p-1)^{p}} .
\end{aligned}
$$

3. The approximation of $L_{p}(\Omega)$ processes in the metric of the Space $L_{q}[0,2 \pi]$. Case of $p=q>1$
Lemma 3.1. Let $p=q>1$ and let $X=\{X(t), t \in[a, b]\}$ be $a(b-a)$-periodic, bounded, and separable stochastic process belonging to the space $L_{p}(\Omega)$. We further assume that inequality (1) holds.

Set $T_{\delta}=[0, \delta]$ and denote $Y(w):=\|X(t+w)-X(t)\|_{L_{p}[a, b]}$ for $w \in T_{\delta}$. Then $Y(w) \in L_{p}(\Omega)$ and moreover

$$
\sup _{w \in T_{\delta}}\|Y(w+h)-Y(w)\|_{L_{p}(\Omega)} \leq|b-a|^{1 / p} \cdot \sigma(h) .
$$

Proof. We have

$$
\begin{aligned}
\mathrm{E}|Y(w)|^{p} & =\mathrm{E}\left(\int_{a}^{b}|X(t+w)-X(t)|^{p} d t\right) \\
& \leq|b-a| \cdot \sup _{t \in[a, b]} \mathrm{E}|X(t+w)-X(t)|^{p} \leq|b-a| \cdot(\sigma(w))^{p} .
\end{aligned}
$$

We further show that $\sup _{w \in T_{\delta}}\|Y(w+h)-Y(w)\|_{L_{p}} \leq|b-a|^{1 / p} \cdot \sigma(h)$. Indeed,

$$
\begin{aligned}
\sup _{w \in T_{\delta}} & \|Y(w+h)-Y(w)\|_{L_{p}(\Omega)}^{p} \\
& =\sup _{w \in T_{\delta}} \mathrm{E}\left|\left(\int_{a}^{b}|X(t+w+h)-X(t)|^{p} d t\right)^{1 / p}-\left(\int_{a}^{b}|X(t+w)-X(t)|^{p} d t\right)^{1 / p}\right|^{p} \\
\quad & \leq \sup _{w \in T_{\delta}} \mathrm{E}\left(\int_{a}^{b}|X(t+w+h)-X(t+w)|^{p} d t\right) \leq|b-a| \cdot(\sigma(h))^{p}
\end{aligned}
$$

whence

$$
\begin{equation*}
\sup _{w \in T_{\delta}}\|Y(w+h)-Y(w)\|_{L_{p}} \leq|b-a|^{1 / p} \cdot \sigma(h) . \tag{6}
\end{equation*}
$$

Theorem 3.1. Let $\{X(t), t \in[0,2 \pi]\}$ be a 2π-periodic, bounded, and separable stochastic process belonging to the space $L_{p}(\Omega)$. We further assume that inequality (4) holds for the process X and that $p=q>1$. Then there exists a trigonometric sum S_{n-1} of an order that does not exceed $n-1$ such that

$$
\mathrm{P}\left\{I_{n}^{(p)}[f]>\varepsilon\right\} \leq \mathrm{P}\left\{\left\|X(t)-S_{n-1}(t)\right\|_{L_{p}[0,2 \pi]}>\varepsilon\right\} \leq \frac{6 \pi}{n^{\alpha p}} \frac{c^{p}(1+\alpha p)^{1 / \alpha+p}}{\varepsilon^{p} \cdot \alpha^{p} p^{p}}
$$

Proof. The proof follows from Lemma 3.1 and is completely identical to that of the case $p>q>1$.
4. The approximation of $L_{p}(\Omega)$ processes in the metric of the Space $L_{q}[0,2 \pi]$. Case of $q>p>1$
Theorem 4.1. Let $\{X(t), t \in[a, b]\}$ be $a(b-a)$-periodic, separable, and bounded stochastic process belonging to the space $L_{p}(\Omega)$. We further assume that inequality (1) holds for this process and that $q>p>1$. By

$$
\Delta_{h} X(t)=X(t+h)-X(t), \quad t \in[a, b],
$$

we denote the increments of the process X.
Then there exists a number $m=m(h) \in\{1,2, \ldots\}$ such that

$$
\begin{align*}
\left\|\left\|\Delta_{h} X(\cdot)\right\|_{L_{q}[a, b]}\right\|_{L_{p}(\Omega)} \leq & 2(b-a)^{1 / p} \sum_{k=m}^{\infty}\left(\varepsilon_{k+1}\right)^{1 / q-1 / p}\left[\sigma\left(\varepsilon_{k+1}\right)+\sigma\left(\varepsilon_{k}\right)\right] \tag{7}\\
& +2 \varepsilon_{m}^{1 / q-1 / p}(b-a)^{1 / p} \sigma\left(2 \varepsilon_{m}\right)=: B_{m},
\end{align*}
$$

where the sequence $\left\{\varepsilon_{k}\right\}_{k \geq 0}$ is such that

1) $\varepsilon_{k} \geq \varepsilon_{k+1}$ for all $k \geq 0$,
2) $\varepsilon_{k} \rightarrow 0$ as $k \rightarrow \infty$,
3) there is a sequence $\left\{\alpha_{k}\right\}_{k \geq 0}$ such that $0<\alpha_{k}<1$ and

$$
\frac{\sigma\left(\varepsilon_{k}\right)}{\alpha_{k}} \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty \quad \text { and } \quad \sum_{k=0}^{\infty} \alpha_{k}<\infty
$$

Proof. Let $\varepsilon_{k}>0, k \geq 0$, be a sequence such that $\varepsilon_{k}>\varepsilon_{k+1}$ and $\varepsilon_{k} \rightarrow 0$ as $k \rightarrow \infty$. Let $I_{\varepsilon_{k}}$ be a partition of the set $[a, b]$. Assume that the elements of this partition B_{k}^{r}, $1 \leq r \leq N(k)$, are measurable sets such that

1) $B_{k}^{u} \cap B_{k}^{r}=\varnothing$ for $u \neq r$ and $\bigcup_{r=1}^{N(k)} B_{k}^{r}=[a, b]$;
2) for every B_{k}^{r}, there exists a point t_{k}^{r} such that $\left|t-t_{k}^{r}\right|<\varepsilon_{k}$ for all $t \in B_{k}^{r}$.

Note that one can always find a partition for a given k such that the length of each segment does not exceed ε_{k}. In what follows we consider partitions satisfying this property.

Consider the following stochastic process:

$$
X_{k}(t)=\sum_{r=1}^{N\left(\varepsilon_{k}\right)} X\left(t_{k}^{r}\right) \chi_{B_{k}^{r}}(t), k \geq 0, t \in[a, b], \quad \text { where } \chi_{B_{k}^{r}}(t)= \begin{cases}1, & t \in B_{k}^{r} \\ 0, & t \notin B_{k}^{r}\end{cases}
$$

Let m be a number such that $2 \varepsilon_{m+1}<h \leq 2 \varepsilon_{m}$. Then

$$
\begin{aligned}
\left|\Delta_{h} X(t)\right| \leq & \left|X(t+h)-X_{m}(t+h)\right|+\left|X_{m}(t+h)-X_{m}(t)\right|+\left|X_{m}(t)-X(t)\right| \\
\leq & \sum_{k=m}^{n-1}\left[\left|X_{k+1}(t+h)-X_{k}(t+h)\right|+\left|X_{k+1}(t)-X_{k}\right|\right] \\
& +\left|X_{m}(t+h)-X_{m}(t)\right|+\left|X(t+h)-X_{n}(t+h)\right|+\left|X(t)-X_{n}(t)\right| .
\end{aligned}
$$

Passing to the limit as $n \rightarrow \infty$, we get

$$
\begin{aligned}
\left|\Delta_{h} X(t)\right| & \leq\left|X_{m}(t+h)-X_{m}(t)\right|+\sum_{k=m}^{\infty}\left[\left|X_{k+1}(t+h)-X_{k}(t+h)\right|+\left|X_{k+1}(t)-X_{k}\right|\right] \\
& =: I_{1}+I_{2}
\end{aligned}
$$

for all $t \in[a, b]$. The properties of the partition mentioned above imply that

$$
\begin{aligned}
& \left\|X_{k+1}(t+h)-X_{k}(t+h)\right\|_{L_{p}(\Omega)} \\
& \quad \leq\left\|X_{k+1}(t+h)-X(t+h)\right\|_{L_{p}(\Omega)}+\left\|X(t+h)-X_{k}(t+h)\right\|_{L_{p}(\Omega)} \\
& \quad \leq \sigma\left(\varepsilon_{k+1}\right)+\sigma\left(\varepsilon_{k}\right)
\end{aligned}
$$

and similarly

$$
\begin{aligned}
\left\|X_{k+1}(t)-X_{k}(t)\right\|_{L_{p}(\Omega)} & \leq\left\|X_{k+1}(t)-X(t)\right\|_{L_{p}(\Omega)}+\left\|X(t)-X_{k}(t)\right\|_{L_{p}(\Omega)} \\
& \leq \sigma\left(\varepsilon_{k+1}\right)+\sigma\left(\varepsilon_{k}\right) .
\end{aligned}
$$

Assuming that a point $t+h$ belongs to the interval B_{m}^{r+1} and that t belongs to B_{m}^{r}, where $\left\{t_{m}^{k, 1}, 0 \leq k \leq N\left(\varepsilon_{m}\right)\right\}$ are the points of the partition

$$
B_{m}^{k}=\left[t_{m}^{k-1}, t_{m}^{k}\right), \quad 1 \leq k \leq N\left(\varepsilon_{m}\right)
$$

we get

$$
\begin{aligned}
I_{1}= & \left|X_{m}(t+h)-X_{m}(t)\right| \\
\leq & \sum_{r=1}^{N\left(\varepsilon_{m}\right)}\left|X\left(t_{m}^{r+1}\right)-X\left(t_{m}^{r}\right)\right| \chi_{B_{m}^{r}}(t) \chi_{B_{m}^{r+1}}(t+h) \\
\leq & \sum_{k=1}^{N\left(\varepsilon_{m}\right)-1}\left|X\left(t_{m}^{k+1}\right)-X\left(t_{m}^{k}\right)\right| \chi_{\left[t_{m}^{k-1,1}, t_{m}^{k, 1}\right)}(t) \\
& +\left|X\left(t_{m}^{N\left(\varepsilon_{m}\right)+1}\right)-X\left(t_{m}^{N\left(\varepsilon_{m}\right)}\right)\right| \chi_{\left[t_{m}^{N\left(\varepsilon_{m}\right)-1,1}, t_{m}^{N\left(\varepsilon_{m}\right), 1}\right.}(t)
\end{aligned}
$$

where $X\left(t_{m}^{N\left(\varepsilon_{m}\right)+1}\right)=X\left(t_{m}^{1}\right)$.
We need the following result proved in [7].
Lemma 4.1 (7). Let (T, ρ) be a compact pseudometric space, let B be the σ-algebra of Borel sets in (T, ρ), and let $\mu(\cdot)$ be a finite measure in the measurable space (T, B). Assume that $A_{k} \in B, k=1,2, \ldots, n$, are some sets such that $A_{k} \cap A_{l}=\varnothing$ for $k \neq l$ and $\bigcup_{k=1}^{n} A_{k}=T$. Further we assume that $Y^{(n)}=\left\{Y^{(n)}(t), t \in T\right\}$ is a function such that

$$
Y^{(n)}(t)=\sum_{k=1}^{n} c_{k} \chi_{A_{k}}(t)
$$

where

$$
\chi_{A_{k}}(t)= \begin{cases}1, & t \in A_{k}, \\ 0, & t \notin A_{k} .\end{cases}
$$

Then

$$
\begin{equation*}
\left\|Y^{(n)}(t)\right\|_{L_{q}(T)} \leq\left(\frac{1}{r_{n}}\right)^{1 / p-1 / q}\left\|Y^{n}(t)\right\|_{L_{p}(T)} \tag{8}
\end{equation*}
$$

where $r_{n}=\inf _{1 \leq k \leq n} \mu\left(A_{k}\right)$.

Set

$$
\begin{gathered}
A_{k}=\left[t_{m}^{k-1,1}, t_{m}^{k, 1}\right), \quad 1 \leq k \leq N\left(\varepsilon_{m}\right)-1, \\
A_{N\left(\varepsilon_{m}\right)}=\left[t_{m}^{N\left(\varepsilon_{m}\right)-1,1}, t_{m}^{N\left(\varepsilon_{m}\right), 1}\right] \\
Y^{(n)}(t)=\sum_{k=1}^{N\left(\varepsilon_{m}\right)-1}\left|X\left(t_{m}^{k+1}\right)-X\left(t_{m}^{k}\right)\right| \chi_{\left[t_{m}^{k-1,1}, t_{m}^{k, 1}\right)}(t) \\
+\left|X\left(t_{m}^{N\left(\varepsilon_{m}\right)+1}\right)-X\left(t_{m}^{N\left(\varepsilon_{m}\right)}\right)\right| \chi_{\left[t_{m}^{N\left(\varepsilon_{m}\right)-1,1}, t_{m}^{N\left(\varepsilon_{m}\right), 1}\right]}(t)
\end{gathered}
$$

in Lemma 4.1. Then we conclude that

$$
\inf _{k=1, \ldots, N\left(\varepsilon_{m}\right)} \mu\left(A_{k}\right) \geq \varepsilon_{m}
$$

and

$$
\begin{aligned}
\left\|I_{1}\right\|_{L_{q}[a, b]} & =\left\|X_{m}(t+h)-X_{m}(t)\right\|_{L_{q}[a, b]} \\
& \leq\left(\varepsilon_{m}\right)^{1 / q-1 / p}\left(2 \varepsilon_{m}\right)^{1 / p}\left(\sum_{k=1}^{N\left(\varepsilon_{m}\right)}\left|X\left(t_{m}^{k+1}\right)-X\left(t_{m}^{k}\right)\right|^{p}\right)^{1 / p} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left\|\left\|I_{1}\right\|_{L_{q}[a, b]}\right\|_{L_{p}(\Omega)} & \leq 2^{1 / p} \varepsilon_{m}^{1 / q}\left(\mathrm{E} \sum_{k=1}^{N\left(\varepsilon_{m}\right)}\left|X\left(t_{m}^{k+1}\right)-X\left(t_{m}^{k}\right)\right|^{p}\right)^{1 / p} \\
& =2^{1 / p} \varepsilon_{m}^{1 / q}\left(\sum_{k=1}^{N\left(\varepsilon_{m}\right)} \mathrm{E}\left|X\left(t_{m}^{k+1}\right)-X\left(t_{m}^{k}\right)\right|^{p}\right)^{1 / p} \\
& \leq 2^{1 / p} \varepsilon_{m}^{1 / q} N^{1 / p}\left(\varepsilon_{m}\right) \sigma\left(2 \varepsilon_{m}\right) \leq 2^{1 / p} \varepsilon_{m}^{1 / q}\left(\frac{b-a}{2 \varepsilon_{m}}+1\right)^{1 / p} \sigma\left(2 \varepsilon_{m}\right) \\
& \leq 2 \varepsilon_{m}^{1 / q-1 / p}(b-a)^{1 / p} \sigma\left(2 \varepsilon_{m}\right) .
\end{aligned}
$$

Further

$$
\begin{aligned}
& I_{2}^{*}=\left\|\left\|I_{2}\right\|_{L_{p}(\Omega)}\right\|_{L_{q}[a, b]} \\
&=\| \| \sum_{k=m}^{\infty}\left\{\frac{\left|X_{k+1}(t)-X_{k}(t)\right|}{\left\|X_{k+1}(t)-X_{k}(t)\right\|_{L_{p}(\Omega)}}\left\|X_{k+1}(t)-X_{k}(t)\right\|_{L_{p}(\Omega)}\right. \\
&+\frac{\left|X_{k+1}(t+h)-X_{k}(t+h)\right|}{\left\|X_{k+1}(t+h)-X_{k}(t+h)\right\|_{L_{p}(\Omega)}} \\
&\left.\quad \times\left\|X_{k+1}(t+h)-X_{k}(t+h)\right\|_{L_{p}(\Omega)}\right\}\left\|_{L_{q}[a, b]}\right\|_{L_{p}(\Omega)} \\
& \leq \| \sum_{k=m}^{\infty}\left\{\left\|\frac{\left|X_{k+1}(t)-X_{k}(t)\right|}{\left\|X_{k+1}(t)-X_{k}(t)\right\|_{L_{p}(\Omega)}}\right\|_{L_{q}[a, b]}\right. \\
&\left.\quad+\left\|\frac{\left|X_{k+1}(t+h)-X_{k}(t+h)\right|}{\left\|X_{k+1}(t+h)-X_{k}(t+h)\right\|_{L_{p}(\Omega)}}\right\|_{L_{q}[a, b]}\right\} \|_{L_{p}(\Omega)} \cdot\left[\sigma\left(\varepsilon_{k+1}\right)+\sigma\left(\varepsilon_{k}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
\leq & \| \sum_{k=m}^{\infty}\left\{\left\|\frac{\left|X_{k+1}(t)-X_{k}(t)\right|}{\left\|X_{k+1}(t)-X_{k}(t)\right\|_{L_{p}(\Omega)}}\right\|_{L_{p}[a, b]}\right. \\
& \left.\quad+\left\|\frac{\left|X_{k+1}(t+h)-X_{k}(t+h)\right|}{\left\|X_{k+1}(t+h)-X_{k}(t+h)\right\|_{L_{p}(\Omega)}}\right\|_{L_{p}[a, b]}\right\} \|_{L_{p}(\Omega)} \\
& \times\left(\varepsilon_{k+1}\right)^{1 / q-1 / p}\left[\sigma\left(\varepsilon_{k+1}\right)+\sigma\left(\varepsilon_{k}\right)\right] \\
\leq & \sum_{k=m}^{\infty}\left\{(b-a)^{1 / p}+(b-a)^{1 / p}\right\}\left(\varepsilon_{k+1}\right)^{1 / q-1 / p}\left[\sigma\left(\varepsilon_{k+1}\right)+\sigma\left(\varepsilon_{k}\right)\right] \\
= & 2(b-a)^{1 / p} \sum_{k=m}^{\infty}\left(\varepsilon_{k+1}\right)^{1 / q-1 / p}\left[\sigma\left(\varepsilon_{k+1}\right)+\sigma\left(\varepsilon_{k}\right)\right] .
\end{aligned}
$$

The latter two inequalities are proved in Lemmas 3.5 and 4.1 of [7].
Therefore,

$$
\begin{aligned}
\left\|\left\|\Delta_{h} X(\cdot)\right\|_{L_{q}[a, b]}\right\|_{L_{p}(\Omega)} \leq & 2(b-a)^{1 / p} \sum_{k=m}^{\infty}\left(\varepsilon_{k+1}\right)^{1 / q-1 / p}\left[\sigma\left(\varepsilon_{k+1}\right)+\sigma\left(\varepsilon_{k}\right)\right] \\
& +2 \varepsilon_{m}^{1 / q-1 / p}(b-a)^{1 / p} \sigma\left(2 \varepsilon_{m}\right)
\end{aligned}
$$

Corollary 4.1. Let a stochastic process $\{X=X(t), t \in[a, b]\}$ be $(b-a)$-periodic, bounded, and separable. Assume further that inequality (4) holds for this process and that $q>p>1$. Then

$$
\begin{equation*}
\left\|\left\|\Delta_{h} X(\cdot)\right\|_{L_{q}[a, b]}\right\|_{L_{p}(\Omega)} \leq \frac{36 \cdot 2^{-\alpha+1 / p-1 / q}(b-a)^{1 / p} c h^{\alpha-1 / p+1 / q}}{1+\frac{1}{\alpha}\left(\frac{1}{q}-\frac{1}{p}\right)} \tag{9}
\end{equation*}
$$

Proof. We choose a sequence $\left\{\varepsilon_{k}\right\}_{k \geq 0}$ such that

$$
\varepsilon_{0}=\frac{b-a}{2}, \quad \gamma_{0}=\sigma\left(\varepsilon_{0}\right), \quad \varepsilon_{k}=\sigma^{(-1)}\left(\theta^{k} \gamma_{0}\right)
$$

where $0<\theta<1$ is an arbitrary number. It is obvious that such a sequence satisfies the assumptions of Theorem 4.1, Put

$$
\begin{aligned}
B_{m}:= & 2(b-a)^{1 / p} \sum_{k=m}^{\infty}\left(\sigma^{(-1)}\left(\theta^{k+1} \gamma_{0}\right)\right)^{1 / q-1 / p}\left[\theta^{k+1} \gamma_{0}+\theta^{k} \gamma_{0}\right] \\
& +2 \varepsilon_{m}^{1 / q-1 / p}(b-a)^{1 / p} \sigma\left(2 \varepsilon_{m}\right)
\end{aligned}
$$

Then

$$
\begin{aligned}
B_{m} \leq & 2(b-a)^{1 / p} \sum_{k=m}^{\infty} \frac{\theta^{k+1} \gamma_{0}+\theta^{k} \gamma_{0}}{\theta^{k+1} \gamma_{0}-\theta^{k+2} \gamma_{0}} \int_{\theta^{k+2} \gamma_{0}}^{\theta^{k+1} \gamma_{0}}\left(\sigma^{(-1)}(u)\right)^{1 / q-1 / p} d u \\
& +2 \varepsilon_{m}^{1 / q-1 / p}(b-a)^{1 / p} \sigma\left(2 \varepsilon_{m}\right) \\
\leq & 2(b-a)^{1 / p} \frac{1+\theta}{\theta(1-\theta)} \int_{0}^{\theta \sigma\left(\varepsilon_{m}\right)}\left(\sigma^{(-1)}(u)\right)^{1 / q-1 / p} d u+2 \varepsilon_{m}^{1 / q-1 / p}(b-a)^{1 / p} \sigma\left(2 \varepsilon_{m}\right) .
\end{aligned}
$$

If $\sigma(h)=c h^{\alpha}$, then

$$
\begin{aligned}
B_{m} & \leq 2(b-a)^{1 / p} \frac{1+\theta}{\theta(1-\theta)} \int_{0}^{\theta c \varepsilon_{m}^{\alpha}}\left(\frac{u}{c}\right)^{(1 / q-1 / p) / \alpha} d u+4 c \varepsilon_{m}^{\alpha+1 / q-1 / p}(b-a)^{1 / p} \\
& =2(b-a)^{1 / p} c \frac{1+\theta}{(1-\theta)} \frac{\theta^{(1 / q-1 / p) / \alpha}\left(\varepsilon_{m}\right)^{1 / q-1 / p+\alpha}}{\left(\frac{1}{\alpha}\left(\frac{1}{q}-\frac{1}{p}\right)+1\right)}+4 c \varepsilon_{m}^{\alpha+1 / q-1 / p}(b-a)^{1 / p} \\
& =2(b-a)^{1 / p} c\left(\varepsilon_{m}\right)^{1 / q-1 / p+\alpha}\left(\frac{\theta^{(1 / q-1 / p) / \alpha}(1+\theta)}{\left(\frac{1}{\alpha}\left(\frac{1}{q}-\frac{1}{p}\right)+1\right)(1-\theta)}+2\right)
\end{aligned}
$$

Since $0<\theta<1$, we have

$$
2<\frac{2 \theta^{(1 / q-1 / p) / \alpha}(1+\theta)}{\left(\frac{1}{\alpha}\left(\frac{1}{q}-\frac{1}{p}\right)+1\right)(1-\theta)}
$$

that is,

$$
B_{m} \leq 6(b-a)^{1 / p} c\left(\varepsilon_{m}\right)^{1 / q-1 / p+\alpha} \frac{\theta^{(1 / q-1 / p) / \alpha}(1+\theta)}{\left(\frac{1}{\alpha}\left(\frac{1}{q}-\frac{1}{p}\right)+1\right)(1-\theta)}
$$

Since $2 \varepsilon_{m+1}<h \leq 2 \varepsilon_{m}$, the properties of the sequence ε_{m} and those of the function $\sigma(h)$ imply that

$$
\begin{gathered}
\sigma\left(\varepsilon_{m+1}\right)<\sigma(h / 2) \leq \sigma\left(\varepsilon_{m}\right) \\
\varepsilon_{m}<\frac{h}{2 \theta^{1 / \alpha}},
\end{gathered}
$$

whence

$$
B_{m} \leq \frac{3 \cdot 2^{1-\alpha+1 / p-1 / q}(b-a)^{1 / p} c h^{1 / q-1 / p+\alpha}(1+\theta)}{\left(\frac{1}{\alpha}\left(\frac{1}{q}-\frac{1}{p}\right)+1\right) \theta(1-\theta)}
$$

For $\theta=1 / 2$, the latter bound transforms to

$$
B_{m} \leq \frac{36 \cdot 2^{-\alpha+1 / p-1 / q}(b-a)^{1 / p} c h^{1 / q-1 / p+\alpha}}{\frac{1}{\alpha}\left(\frac{1}{q}-\frac{1}{p}\right)+1}
$$

Therefore

$$
\left\|\left\|\Delta_{h} X(\cdot)\right\|_{L_{q}[a, b]}\right\|_{L_{p}(\Omega)} \leq \frac{36 \cdot 2^{-\alpha+1 / p-1 / q}(b-a)^{1 / p} c h^{\alpha-1 / p+1 / q}}{1+\frac{1}{\alpha}\left(\frac{1}{q}-\frac{1}{p}\right)}
$$

Theorem 4.2. Let $\{X(t), t \in T=[0,2 \pi]\}$ be a 2π-periodic, bounded, and separable stochastic process belonging to the space $L_{p}(\Omega)$. Assume further that inequality (4) holds for this process and that $q>p>1$. Then there exists a trigonometric sum S_{n-1} of an order that does not exceed $n-1$ and such that

$$
\begin{aligned}
\mathrm{P}\left\{I_{n}^{(q)}[X]>\varepsilon\right\} & \leq \mathrm{P}\left\{\left\|X(t)-S_{n-1}(t)\right\|_{L_{q}[0,2 \pi]}>\varepsilon\right\} \\
& \leq \frac{12 \pi \cdot c^{p} 36^{p}\left(\alpha p+\frac{p}{q}\right)^{p+\frac{1}{\alpha-1 / p+1 / q}}}{\left(1+\frac{1}{\alpha}\left(\frac{1}{q}-\frac{1}{p}\right)\right)^{p} 2^{p \alpha+p / q} n^{\alpha p+p / q^{p}} p^{p}\left(p\left(\alpha-\frac{1}{p}+\frac{1}{q}\right)-1\right)^{p}} .
\end{aligned}
$$

Proof. Similarly to the proof of Lemma 2.1 and Theorem 2.1 for $p>q>1$, we apply Theorem 1.1 for the stochastic process

$$
Y(w):=\|X(t+w)-X(t)\|_{L_{q}[a, b]} \in L_{p}(\Omega), \quad q>p>1
$$

Let $T_{\delta}=[0, \delta]$. Then

$$
\begin{aligned}
\sup _{w \in T_{\delta}}\|Y(w+h)-Y(w)\|_{L_{p}}^{p} & \leq \sup _{w \in T_{\delta}} \mathrm{E}\left(\int_{a}^{b}|X(t+w+h)-X(t+w)|^{q} d t\right)^{p / q} \\
& \leq \frac{36 \cdot 2^{-\alpha+1 / p-1 / q}(b-a)^{1 / p} c h^{\alpha-1 / p+1 / q}}{1+\frac{1}{\alpha}\left(\frac{1}{q}-\frac{1}{p}\right)}
\end{aligned}
$$

whence

$$
\begin{gather*}
\sup _{w \in T_{\delta}}\|Y(w+h)-Y(w)\|_{L_{p}} \leq \widehat{c} h^{\alpha-1 / p+1 / q}=\widehat{\sigma}(h), \\
\widehat{c}=\frac{36 \cdot 2^{-\alpha+1 / p-1 / q}(b-a)^{1 / p} c}{1+\frac{1}{\alpha}\left(\frac{1}{q}-\frac{1}{p}\right)} \tag{10}
\end{gather*}
$$

Hence

$$
\begin{gathered}
N(\varepsilon) \leq \frac{\delta}{2 \widehat{\sigma}^{(-1)}(\varepsilon)}+1=\frac{\delta \widehat{c}^{\frac{1}{\alpha-1 / p+1 / q}}}{2 \varepsilon^{\frac{1}{\alpha-1 / p+1 / q}}}+1, \\
\varepsilon_{0} \leq \widehat{\sigma}(\delta)=\widehat{c} \delta^{\alpha-1 / p+1 / q} .
\end{gathered}
$$

Thus

$$
\left.\left.\begin{array}{rl}
I & :=\mathrm{P}\left\{\sup _{w \in T_{\delta}}\left|\left(\int_{a}^{b}|X(t+w)-X(t)|^{q} d t\right)^{1 / q}\right|>\varepsilon\right\}=\mathrm{P}\left\{\sup _{w \in T_{\delta}}|Y(w)|>\varepsilon\right\} \\
& \leq \frac{1}{\varepsilon^{p}}\left(\inf _{0<\theta<1} \frac{1}{\theta(1-\theta)} \int_{0}^{\theta \widehat{c} \delta^{\alpha-1 / p+1 / q}}\left(\frac{\delta \widehat{c}^{\frac{1}{\alpha-1 / p+1 / q}}}{2 \varepsilon^{\frac{1}{\alpha-1 / p+1 / q}}}+1\right)^{1 / p} d \varepsilon\right)^{p} \\
& \leq \frac{1}{\varepsilon^{p}}\left(\inf _{0<\theta<1} \frac{1}{\theta(1-\theta)} \int_{0}^{\theta \widehat{c} \delta^{\alpha-1 / p+1 / q}}\left(\frac{\delta \widehat{c}^{\frac{1}{\alpha-1 / p+1 / q}}}{\varepsilon^{\frac{1}{\alpha-1 / p+1 / q}}}\right)^{1 / p} d \varepsilon\right)^{p} \\
& =\frac{1}{\varepsilon^{p}}\left(\operatorname { i n f } _ { 0 < \theta < 1 } \frac { 1 } { \theta (1 - \theta) } \left(\delta \widehat{c}^{\alpha-1 / p+1 / q}\right.\right.
\end{array}\right)^{1 / p} \cdot \frac{\left(\theta \widehat{c} \delta^{\alpha-1 / p+1 / q}\right)^{-\frac{1}{p(\alpha-1 / p+1 / q)}}+1}{1-\frac{1}{p(\alpha-1 / p+1 / q)}}\right)^{p} \quad \begin{aligned}
& \widehat{c}^{p} \delta^{p(\alpha-1 / p+1 / q)} \\
& \\
&
\end{aligned}
$$

Note that the infimum in the latter relation is attained at the point

$$
\theta=\frac{1}{1+p\left(\alpha-\frac{1}{p}+\frac{1}{q}\right)}
$$

that is,

$$
\begin{equation*}
I \leq \frac{\widehat{c}^{p} p^{p(\alpha-1 / p+1 / q)}\left(1+p\left(\alpha-\frac{1}{p}+\frac{1}{q}\right)\right)^{p+\frac{1}{\alpha-1 / p+1 / q}}}{\varepsilon^{p}\left(p\left(\alpha-\frac{1}{p}+\frac{1}{q}\right)-1\right)^{p} p^{p}} . \tag{11}
\end{equation*}
$$

Using Theorem 1.2 and substituting $a=0, b=2 \pi$, and $\delta=1 / n$ in inequality (11), we complete the proof.

Bibliography

1. T. O. Yakovenko, Conditions for the belonging of stochastic processes to some Orlicz spaces of functions, Visnyk Kyiv University, Ser. fiz-mat. nauk (2002), no. 5, 64-74. (Ukrainian)
2. T. O. Yakovenko, Properties of increments of processes belonging to Orlicz spaces, Visnyk Kyiv University, Ser. Matematika, Mekhanika (2003), no. 9-10, 142-147. (Ukrainian).
3. O. Kamenshchykova, Approximation of random processes by cubic splines, Theory Stoch. Processes 14(30) (2008), no. 3-4, 53-66. MR2498604 (2010h:65007)
4. Yu. V. Kozachenko and O. E. Kamenshchikova, Approximation of $\operatorname{SSub}_{\varphi}(\Omega)$ stochastic processes in the space $L_{p}(\mathbb{T})$, Teor. Imovirnost. ta Mat. Statist. 79 (2008), 73-78; English transl. in Theor. Probability and Math. Statist. 79 (2009), 83-88. MR2494537 (2010d:60097)
5. V. V. Buldygin and Yu. V. Kozachenko, Metric Characterization of Random Variables and Random Processes, TViMS, Kiev, 1998; English transl., American Mathematical Society, Providence, RI, 2000. MR 1743716 (2001g:60089)
6. N. I. Akhiezer [Achieser], Theory of Approximation, Nauka, Moscow, 1965; English transl. of the 1st edition: Frederick Ungar Publishing, New York, 1956. MR $0095369 \mid(20: 1872)$
7. Yu. V. Kozachenko, Stochastic processes in Orlicz function spaces, Teor. Imovirnost. i Mat. Statist. 60 (1999), 64-76; English transl. in Theor. Probability and Math. Statist. 60 (2000), 73-85. MR 1826143

Department of Probability Theory, Statistics, and Actuarial Mathematics, Faculty for Mechanics and Mathematics, National Taras Shevchenko University, Academician Glushkov Avenue 2, Kiev 03127, Ukraine

E-mail address: kamalev@gmail.com
Department of Probability Theory, Statistics, and Actuarial Mathematics, Faculty for Mechanics and Mathematics, National Taras Shevchenko University, Academician Glushkov Avenue 2, Kiev 03127, Ukraine

E-mail address: yata452@univ.kiev.ua
Received 10/JUN/2010
Translated by O. KLESOV

[^0]: 2010 Mathematics Subject Classification. Primary 60G07, 41A25; Secondary 42A10.
 Key words and phrases. The forward problem of harmonic approximation, L_{p} processes, increments, accuracy of approximation, reliability of approximation.

