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LIMIT THEOREMS FOR DIFFERENCE ADDITIVE FUNCTIONALS
UDC 519.21

YU. M. KARTASHOV

Abstract. We consider additive functionals defined on Markov chains that approx-
imate a Markov process. Sufficient conditions are obtained for the convergence of
the functionals. These conditions are expressed in terms of convergence of some
conditional expectations (called the characteristics of the functionals) under general
assumptions on the convergence of processes. Sufficient conditions for the uniform
convergence of additive functionals are also given.

1. Introduction

We study the limit behavior of the following functionals:

(1.1) φs,t
n

def
=

∑
k:s≤tn,k<t

Fn,k (Xn (tn,k)) , 0 ≤ s < t,

where λn
def
= {tn,k, n, k ≥ 1} is a sequence of partitions of R+, Xn, n ≥ 1 is a sequence of

processes assuming values in a locally compact metric space X, and where Fn,k, n, k ≥ 1,
are nonnegative Borel functions defined on X. Let Xn have the Markov property at
points tn,k and let Xn weakly converge to a Markov process X.

An approach is proposed in the papers [1]–[3] to study the limit behavior of the above
functionals by using the limit behavior of their characteristics (conditional expectations).
General results obtained in these papers imply the weak convergence of functionals under
the assumption that the characteristics φn converge uniformly. This idea is an extension
of the Dynkin approach [9] to the proof of the convergence ofW -functionals (nonnegative,
continuous, homogeneous functionals of Markov processes with bounded characteristics).
Our contribution to this approach is that we study functionals of the form (1.1) and that
we weaken the conditions for the uniform convergence (see [3]).

The results of [1], [2], and [3] are based on a certain type of convergence of the
processes Xn, namely on the so-called Markov approximation (see [4] for the definition
and main examples). The Markov approximation holds for many well-known cases, for
example if Xn are random walks converging to a Wiener process (or, more generally, to
a stable process) or if Xn are difference approximations of diffusions. However, the proof
of the Markov approximation becomes too complicated for more advanced models.

This paper allows one to obtain analogous results on the convergence of φn expressed
in terms of characteristics if the Markov approximation not necessarily holds. Instead,
we propose a scheme suitable to deduce the convergence of φn from the convergence of
their smoothed modifications. Such a result is expected in the case where the φn are
integral sums for functions that uniformly converge to a continuous function. In such a

2010 Mathematics Subject Classification. Primary 60J55, 60J45, 60F17.
Key words and phrases. Additive functional, characteristics of an additive functional, invariance

principle.

c©2012 American Mathematical Society

83



84 YU. M. KARTASHOV

case, an analogue of the Donsker invariance principle implies the convergence of φn to
the integral functional of X. On the other hand, the distance between two smoothed
functionals of the form of (1.1) (of the same process Xn) can be estimated by the distance
between their characteristics by using the Markov property of Xn and following an idea
of [1].

Another part of this paper is devoted to the proof of the uniform convergence of func-
tionals. This result is motivated by the paper of Bass and Khoshnevisan [7], where the
uniform convergence of families of functionals of the form (1.1) is obtained for the case
where the prelimit process Xn is defined via a random walk approximating a multidi-
mensional Wiener process. The main result of the current paper (see Theorem 2 below)
can also be applied to prove the uniform convergence of approximations of additive func-
tionals for a wide class of stochastic processes. In doing so, we are able to drop the
assumption that the increments of prelimit processes are independent (this assumption
is crucial for the method used in the paper [7]).

The construction of an example of a situation where the results of Section 2 apply but
methods of [1]–[3] do not work leads to a nontrivial case where the Markov approximation
does not hold or, at least, cannot be proved in a simple way. One of the possible
examples here is a random walk in a fractal set approximating a diffusion process. The
convergence of functionals can be proved in this case by using the results of Section 3
and a reasoning in [7] (see the proof of Theorem 7.1 therein). This program requires an
extended treatment and will be published elsewhere.

2. Results needed to weaken the conditions

on the convergence of processes

Let the trajectories of processes Xn belong to the space D (which, in particular, means
that the trajectories have left limits at all points) and let them have the Markov property

at the points of a partition λn
def
= {tn,k} such that |λn| → 0 as n → ∞. Assume the

weak convergence in distribution in the Skorokhod space D(R+); namely, we assume that

Xn
w→ X as n → ∞.

Let

Gn,k(·) =
Fn,k(·)
Δtn,k

, Δtn,k
def
= tn,k − tn,k−1.

Using this notation, the functionals φn can be rewritten in the form of partial integral
sums as follows:

(2.1) φs,t
n =

∑
k : s≤tn,k<t

Gn,k (Xn (tn,k))Δtn,k.

According to Donsker’s invariance principle, the functionals of the above type converge
to the integral functional

φs,t def
=

∫ t

s

G(r,X(r)) dr

if some mild conditions are imposed on Gn,k, where G is the limit of Gn,k and if G is a
smooth function.

If the limit of Gn,k is “essentially” discontinuous (or if the limit does not exist at all
in the class of usual functions), an approach based on the convergence of functionals
constructed from smoothed functions Gε

n,k, i.e. from

φs,t
n,ε =

∑
k : s≤tn,k<t

Gε
n,k (Xn (tn,k))Δtn,k,
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can be useful. The following functions

(2.2) fs,t
n,ε(x)

def
= Mx

(
φs,t
n,ε

)
= E

(
φs,t
n,ε|X(s) = x

)
, fs,t

n (x)
def
= Mx

(
φs,t
n

)
are called the characteristics of the above functionals.

The latter are defined as integrals of measurable functions of transition probabilities
existing at points tn,k in view of the Markov property of the processes Xn with respect
to the natural flow, since these functionals are determined by values of the processes at
a finite number of arguments.

For the sake of simplicity, we use the following notation:

G0
n,k

def
= Gn,k, φn,0

def
= φn, and fn,0

def
= fn.

Consider the following random polygonal lines that are “linearizations” of discontin-
uous functionals φn:

ψs,t
n = φ

tn,j−1,tn,k−1
n − (ns− j + 1)φtn,j−1,tn,j

n + (nt− k + 1)φ
tn,k−1,tn,k
n ,(2.3)

s ∈ [tn,j−1, tn,j) , t ∈ [tk−1, tn,k) .

The random polygonal lines ψn and functional φ can be treated as random elements
with values in C(T), where T = {(s, t) : 0 ≤ s < t < T}.

We derive the limit behavior of functionals with the help of their characteristics and
combine this approach with the smoothing procedure that allows us to weaken conditions
on the convergence of the processes Xn used in Theorem 1 of [1].

Put ‖g‖ def
= supx∈X |g(x)|.

Theorem 1. Consider a family of functions
{
Gε

n,k

}
∈ C(X,R+), k ≥ 0, n ≥ 1, ε > 0,

and the corresponding family of limit functions {Gε ∈ C(R+ × X,R+)}. We assume that
the limit functions are bounded with respect to the second coordinate and are such that
the following conditions hold for all T > 0:

(1) for all ε > 0,

κn,ε
def
= sup

tn,k<T
sup
x∈X

∣∣Gε
n,k(x)−Gε(tn,k, x)

∣∣→ 0, n → ∞;

(2) for all x ∈ X and n, k : tn,k < T ,

Gε
n,k(x) → Gn,k(x), ε → 0;

(3) φε
w→ φ in distribution in C(T) as ε → 0, where the functional φε is given by

φs,t
ε

def
=

∫ t

s

Gε (u,X(u)) du, (s, t) ∈ T.

Moreover, we assume that the convergence of their characteristics is uniform
in X, namely

αε
def
= sup

(s,t)∈T

∥∥fs,t
ε − fs,t

∥∥→ 0, ε → 0;

(4) as n → ∞,

δn
def
= sup

tn,k<T
sup
x∈X

Δtn,kGn,k(x) → 0;

(5) as n → ∞,

τn
def
= sup

ε≥0
sup

(s,t)∈T

∥∥fs,t
n,ε − fs,t

ε

∥∥→ 0.

Then the random polygonal lines corresponding to the functionals φn converge in distri-
bution in C(T), that is, ψn → φ as n → ∞.
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In this, as well as in the other sections, we assume that the initial distributions of
the processes X and Xn are identical. To prove the main result, it is sufficient to show
that the finite dimensional distributions of ψn converge to those of φ and are dense. The
density of the distributions can be derived from the convergence by the same methods as
in [1] (see the final step of the proof of Theorem 1 on page 12 therein). Thus it remains
to prove that the φs,t

n weakly converge to φs,t for fixed s and t.
We prove that

(2.4) E g
(
φs,t
n,ε

)
→ E g

(
φs,t
ε

)
, n → ∞,

for an arbitrary Lipschitz function g and for all ε > 0. Here and throughout below the
expectation corresponds to a certain fixed initial distribution of the process X.

To make the notation shorter, we put tk = tn,k and Δtk = Δtn,k.
It is easy to check that∣∣E g
(
φs,t
n,ε

)
− E g

(
φs,t
ε

)∣∣
≤ Lip(g) · E

⎛⎝ ∑
k : s≤tk<t

∣∣Gε (tk, Xn (tk))−Gε
n,k (Xn (tk))

∣∣Δtk

⎞⎠
+

∣∣∣∣∣∣E g

⎛⎝ ∑
k : s≤tk<t

Gε (tk, Xn (tk))Δtk

⎞⎠− E g

(∫ t

s

Gε (u,X(u)) du

)∣∣∣∣∣∣
≤ Lip(g) · T · sup

x∈X

sup
k≥0

∣∣Gε (tk, x)−Gε
n,k(x)

∣∣
+

∣∣∣∣∣∣E g

⎛⎝ ∑
k : s≤tk<t

Gε (tk, X (tk))Δtk

⎞⎠− E g

(∫ t

s

Gε (u,X (u)) du

)∣∣∣∣∣∣
+

∣∣∣∣∣∣E g

⎛⎝ ∑
k : s≤tk<t

Gε (tk, Xn (tk))Δtk

⎞⎠− E g

⎛⎝ ∑
k : s≤tk<t

Gε (tk, X (tk))Δtk

⎞⎠
∣∣∣∣∣∣ .

The first term on the right hand side of the latter inequality approaches zero as n → ∞
by the condition of the theorem.

The proof of the convergence to zero of the second term runs as follows. First, since
the trajectories of X belong to the space D, the functions Gε(X(·), ·) belong to the same
space. This implies that the latter functions are integrable in the Riemann sense and
that the corresponding integral sums converge to the Riemann integral. Note that the
integrals in the Riemann and Lebesgue sense coincide in this case. Therefore

∑
k : s≤tk<t

Gε (tk, X (tk))Δtkl →
∫ t

s

Gε (u,X (u)) du, |λn| → 0,

almost surely. This together with the Lebesgue dominated convergence theorem and
continuity of g completes the proof of convergence to zero of the second term.

To prove that the third term approaches zero we use Skorokhod’s common probability
space principle, which allows us to assume that the Xn converge to X in the Skorokhod
metric d(·, ·) almost surely. According to the proposition stated in [5, p. 112], there exists
a sequence of increasing random bijections θn : [0, T ] → [0, T ] such that

a′n = ‖θn(·)− ·‖C[0,T ] → 0 and a′′n = ‖X (θn (·))−Xn (·)‖∞ → 0
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as n → ∞. Now we estimate the third term as follows:∑
k : s≤tk<t

|Gε (tk, Xn (tk))−Gε (tk, X (θn (tk)))|Δtk

+
∑

k : s≤tk<t

|Gε (tk, X (tk))−Gε (tk, X (θn (tk)))|Δtk

≤ ωGε
(a′′n + |λn|) +

∑
k : s≤tk<t

|Gε (tk, X (tk))−Gε (tk, X (θn (tk)))|Δtk,

where ωf (ε)
def
= supx1,x2∈X |f(x1)− f(x2)|. The first term on the right hand side of the

latter inequality approaches zero. The second term also approaches zero almost surely.
To prove this result we need the following lemma.

Lemma 1. Let g ∈ C([0, 1] × X,R) be bounded, h ∈ D ([0, 1],X), and let λn = {tn,k}
and θn be the same as above. Put Δg,h,θn (tn,k)

def
= g (tn,k, h (tk))− g (tn,k, h (θn (tn,k))).

Then

(2.5)
∑
k

|Δg,h,θn (tn,k)|Δtn,k → 0, n → ∞.

Put

ω̃A
h (ε) = sup

|u−v|<ε
u,v∈A

ρ (h(u), h(v))

and

ω̃A
h = lim

ε→0
ω̃A
h (ε)

for A ⊂ [s, t]. Note that ω̃A
h does not exceed the highest jump of h in the closure of A.

Let Υ = {un} be the points of jump of h. Since h belongs to the space D, we may assume
that these points are written in the ascending order of heights of their jumps. Fix δ > 0

and put Nδ
def
= sup {n : un ≥ δ} and Υδ = {un, n = 1, . . . , Nδ}. Now we fix ε > 0 and

consider Υε
δ = B (Υδ, ε). By construction, ω̃

[0,1]\Υε
δ

h ≤ δ. Finally we fix γ > 0 and let n
be sufficiently large to satisfy the inequality a′n = ‖θn(·)− ·‖ < γ. Thus the expression
on the left hand side of (2.5) is estimated as follows:∑

k:tn,k∈Υ2ε
δ

|Δg,h,θn (tn,k)|Δtn,k +
∑

k:tn,k∈Υ2ε
δ

|Δg,h,θn (tn,k)|Δtn,k

≤ 4Nδε× 2 ‖g‖∞ + ωg

(
λn + ω̃

[0,1]\Υ2ε
δ

h (γ)
)
.

Since γ is arbitrary, the upper limit as n → ∞ of the left hand side of (2.5) does not
exceed

8Nδε ‖g‖∞ + ωg

(
ω̃
[0,1]\Υ2ε

δ

h

)
≤ 8Nδε ‖g‖∞ + ωg (δ) .

The latter relation proves the lemma, since δ and ε are arbitrary. Therefore rela-
tion (2.4) holds.

The next step of the proof of the theorem is to show that

(2.6) lim
ε→0

lim sup
n→∞

∣∣E g
(
φs,t
n,ε

)
− E g

(
φs,t
n

)∣∣ = 0

for an arbitrary function g ∈ Lip(R). To prove (2.6), we need an estimate for the limit
behavior of E

∣∣φs,t
n,ε1 − φs,t

n,ε2

∣∣ as n → ∞.
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Lemma 2. The following inequality holds:

E
∣∣φs,t

n,ε1
− φs,t

n,ε2

∣∣
≤
[
2
(∥∥f0,T

∥∥+ τn + αε1 + αε2

)] 1
2

[
κn,ε + δn + sup

0≤s<t≤T

∥∥fs,t
n,ε1 − fs,t

n,ε2

∥∥] 1
2

.

By the Cauchy inequality,

(2.7) E
∣∣φs,t

n,ε1 − φs,t
n,ε2

∣∣ ≤ (E (φs,t
n,ε1 − φs,t

n,ε2

)2) 1
2

.

Put

ξn
def
= φn,ε1 , ζn

def
= φn,ε2 , and ε

def
= max(ε1, ε2).

We define the flow Fn
t as the natural filtration generated by the process Xn. Let

NT = # {λn ∩ [0, T ]} ,

where the symbol # stands for the number of elements of a set. It is sufficient to consider
the case where s = 0, t = T , and tn,NT+1 = T .

We rewrite E
(
φs,t
n,ε1 − φs,t

n,ε2

)2
as follows:

(2.8)

E

(
NT∑
i=0

NT∑
k=0

(
ξtn,i,tn,i+1
n − ζtn,i,tn,i+1

n

) (
ξ
tn,k,tn,k+1
n − ζ

tn,k,tn,k+1
n

))

= 2E

[
NT∑
i=0

NT∑
k=i+1

(
ξtn,i,tn,i+1
n − ζtn,i,tn,i+1

n

) (
ξ
tn,k,tn,k+1
n − ζ

tn,k,tn,k+1
n

)]

+

NT∑
i=0

(
ξ
tn,i,tn,i+1

n − ζ
tn,i,tn,i+1

n

)2
≤ 2E

[
E

(
NT∑
i=0

NT∑
k=i+1

ξtn,i,tn,i+1
n ×

(
ξ
tn,k,tn,k+1
n − ζ

tn,k,tn,k+1
n

) ∣∣∣∣ Fn
tn,i+1

)]

≤ 2E

[
E

(
NT∑
i=0

NT∑
k=i+1

ζtn,i,tn,i+1
n ×

(
ξ
tn,k,tn,k+1
n − ζ

tn,k,tn,k+1
n

) ∣∣∣∣ Fn
tn,i+1

)]
+ βn,ε

≤ 2
(∥∥f0,T

n,ε1

∥∥+ ∥∥f0,T
n,ε2

∥∥)× sup
0≤s<t≤T

∥∥fs,t
n,ε1 − fs,t

n,ε2

∥∥+ βn,ε,

where

βn,ε
def
=
(∥∥f0,T

n,ε1

∥∥+ ∥∥f0,T
n,ε2

∥∥)× (κn,ε + δn) ≤ 2
(∥∥f0,T

∥∥+ τn + αε1 + αε2

)
× (κn,ε + δn) .

Now we apply Fatou’s lemma as ε2 → 0 and use condition (1) of Theorem 1:

E
∣∣φs,t

n,ε1 − φs,t
n

∣∣ = E lim
ε2→0

∣∣φs,t
n,ε1 − φs,t

n,ε2

∣∣ ≤ lim
ε2→0

E
∣∣φs,t

n,ε1 − φs,t
n,ε2

∣∣
≤
(
2
∥∥f0,T

∥∥+ τn + αε1

) 1
2 × [κn,ε + δn + αε1 + τn]

1
2 .

Finally we obtain

lim sup
n→∞

E
∣∣φs,t

n,ε − φs,t
n

∣∣ ≤ (2αε

∥∥f0,T
∥∥+ (αε)

2
) 1

2

,

where the right hand side approaches zero as ε → 0.
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To complete the proof of the theorem we note that∣∣E g(φs,t)− E g(φs,t
n )
∣∣

≤
∣∣E g(φs,t)− E g(φs,t

ε )
∣∣+ ∣∣E g(φs,t

ε )− E g(φs,t
n,ε)
∣∣+ ∣∣E g(φs,t

n )− E g(φs,t
n,ε)
∣∣

for all Lipschitz functions g. Passing to the limit as n → ∞ we derive the statement of
Theorem 1 from the above bounds, since ε is arbitrary.

3. Uniform invariance principle

In this section, we consider a family of functionals {φn,μ, n ≥ 1, μ ∈ M} represented
in the form of (1.1). In contrast to the preceding section, the set of parameters M is of
a general nature and may not be equal to R+.

The functionals φn,μ are written in the same way as φn,ε and are of the same form (1.1);
however, the index ε for the setting of Section 1 is positive and measures a “closeness”
to some fixed functional.

The corresponding functions and random polygonal lines are denoted by Fn,μ and ψn,μ,
respectively. Let the setM be equipped with a sequence of premetrics δn(·, ·). Recall that
a function is called a premetric if it is finite, symmetric, and equals zero if its arguments
coincide (see Definition 1.1, Section 4.1, Chapter 4 in [8]).

The characteristics for these functionals are defined similarly to the case considered
in the preceding section, namely

(3.1) fs,t
n,μ(x)

def
= Mx

(
φs,t
n,μ

)
.

In this section, we study the convergence of generalized processes {φn,μ} with the set
of parameters M and with the phase space C(T). This result, being interesting in its
own right, helps to obtain the uniform convergence in M of distributions of functionals
with respect to a certain metric that metrizes the weak convergence.

The proof of the convergence of generalized processes is based on an upper bound
for the exponential moment of the difference of two functionals corresponding to two
different parameters. Such a bound is derived by using a technique similar to that of [7]
and by an estimate of the L2 distance between two functionals expressed in terms of
the distance between their characteristics. The latter estimate is obtained by a method
presented in the papers [1]–[3]. In contrast to [7], we do not impose the condition that
the increments of the prelimit functionals are independent.

To apply the results of this section, one needs to prove the convergence of functionals
for any given parameter. This can be done either with the help of methods presented
in [1]–[3], or by using the idea of the preceding section.

Put

ρn(μ, ν)
def
= sup

(s,t)∈T

[∥∥fs,t
n,μ − fs,t

n,ν

∥∥+ δn(μ, ν)
] 1

2 .

Let N(n, ε) be the minimal number of balls of radius ε (considered with respect to the

premetrics ρn) needed to cover the setM. Put Hn(ε)
def
= lnN(n, ε). To make the notation

shorter we also put tk = tn,k. As in the preceding section, we consider random polygonal
lines ψn,μ. By C, we denote an arbitrary constant whose precise value does not matter
for the reasoning, and thus we use the symbol C for different constants in the same
relation.

Theorem 2. Let, for some T > 0,

(1) supn≥1,μ∈M

∥∥f0,T
n,μ

∥∥ < +∞,

(2) supμ∈M sup(s,t)∈T

∥∥fs,t
n,μ − fs,t

μ

∥∥→ 0 as n → ∞,

(3) supx∈X sup(s,t)∈T
Mx

(∑
k : s≤tk<t

(
Fμ
n,k (Xn (tk))−F ν

n,k (Xn (tk))
)2) ≤ Cδn(μ, ν),
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(4) supn≥1

∫∞
0

Hn(ε) dε < +∞.

(5) supμ,ν∈M : ρn(μ,ν)<Δ sup(s,t)∈T

∥∥fs,t
μ − fs,t

ν

∥∥→ 0 as Δ → 0,

(6) random polygonal lines converge in C(T), that is,

ψn,μ
w→ φμ as n → ∞

for every fixed μ; moreover we assume that the joint distributions weakly converge
for all finite sets of parameters μ.

Then the generalized process ψn,· with the set of parameters M and with values in
C(T) weakly converges in the space C(M, C(T)) to a generalized process φ·.

Remark 1. We assume that the generalized processes φn,μ and φμ are continuous with
respect to the parameter μ for all n.

Proof. We recall that a family of probability measures P is called relatively compact if,
for every sequence

{Pn, n ≥ 1} ⊂ P,

one can choose a weakly convergent subsequence. A family of measures P is called dense
if, for every ε > 0, there exists a compact set K such that

inf
P∈P

P (K) > 1− ε.

By a well-known result (see Section 5 of Chapter 1 in [5]), the weak convergence in in-
finite dimensional spaces follows from the convergence of finite dimensional distributions
and from relative compactness of such a sequence of measures. Prokhorov’s theorem [5]
states that a family of measures in a complete separable metric space is relatively compact
if it is dense.

Thus the proof of the main result of this section reduces to the proof of the density
of the family of measures generated by the generalized process {φn,μ, μ ∈ M}.

Fix n and consider two arbitrary parameters μ and ν. By ξn
def
= φn,μ and ζn

def
= φn,ν

we denote the corresponding functionals. Let σ and τ be two Markov stopping times
with respect to the filtration {Ft : t ≥ 0} such that 0 < σ ≤ τ < T and σ, τ ∈ nZ almost
surely. Now we estimate

Mx (|ξσ,τn − ζσ,τn | /Fσ) .

First we apply the Cauchy inequality

(3.2) Mx (|ξσ,τn − ζσ,τn | /Fσ) ≤ Mx

(
(ξσ,τn − ζσ,τn )2 /Fσ

) 1
2

and then obtain L2 estimates similarly to the preceding section. Such estimates are
obtained in the following result.

Lemma 3. The following inequality holds:

sup
x∈X

Mx (|ξσ,τn − ζσ,τn |/Fσ) ≤
(
8C sup

(s,t)∈T

∥∥fs,t
n − gs,tn

∥∥+ 2Cδn(μ, ν)

) 1
2

≤ Cρn(μ, ν).
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As in the preceding section, we put NT = |λn ∩ {0, T}|. We assume that tNT+1 = T .
The square of the right hand side can be rewritten in the following form:

E

(
NT∑
i=0

NT∑
k=0

1Iσ≤ti<τ1Iσ≤tk<τ

(
ξti,ti+1
n − ζti,ti+1

n

) (
ξtk,tk+1
n − ζtk,tk+1

n

) ∣∣∣∣ Fσ

)

= 2E

(
NT∑
i=0

1Iσ≤ti<τ

(
ξti,ti+1
n − ζti,ti+1

n

) (
ξti+1,τ
n − ζti+1,τ

n

) ∣∣∣∣ Fσ

)

+ E

(
NT∑
i=0

1Iσ≤ti<τ

(
ξti,ti+1
n − ζti,ti+1

n

)2 ∣∣∣∣ Fσ

)

≤ 2E

(
NT∑
i=0

1Iσ≤ti<τ ξ
ti,ti+1
n

(
ξti+1,τ
n − ζti+1,τ

n

) ∣∣∣∣ Fσ

)

+ 2E

⎛⎝ ∑
i:ti≤τ

1Iσ≤ti<τ ζ
ti,ti+1
n

(
ζti+1,τ
n − ξti+1,τ

n

) ∣∣∣∣ Fσ

⎞⎠+ Cδn (μ, ν) .

Here we used the following inequality:

E

(
1Iσ=ti

NT−1∑
k=i

(
ξ
tn,k,tn,k+1
n − ζ

tn,k,tn,k+1
n

)2 ∣∣∣∣ Fσ

)

= E

(
1Iσ=ti E

(
NT−1∑
k=i

(
ξ
tn,k,tn,k+1
n − ζ

tn,k,tn,k+1
n

)2 ∣∣∣∣ Fti

) ∣∣∣∣ Fσ

)
≤ Cδn(μ, ν).

Next we prove that

(3.3)
E
(
1Iσ≤ti<τζ

ti,ti+1
n

(
ζti+1,τ
n − ξti+1,τ

n

) ∣∣ Fσ

)
= E

(
E
(
1Iσ≤ti<τ ζ

ti,ti+1
n

(
ζti+1,τ
n − ξti+1,τ

n

) ∣∣ Fti+1

) ∣∣ Fσ

)
.

Indeed, for all m > 0 and B ∈ Fσ, we have

E
(
1Iσ≤tm1IB × E

(
1Iσ≤ti<τ ζ

ti,ti+1
n

(
ζti+1,τ
n − ξti+1,τ

n

) ∣∣ Fti+1

))
= E

(
1Iσ≤tm1IB × E

(
1Iσ≤ti1Iti<τ ζ

ti,ti+1
n

(
ζti+1,τ
n − ξti+1,τ

n

) ∣∣ Fti+1

))
= E

(
1Iσ≤tm1Iσ≤ti1IB × E

(
1Iti<τ ζ

ti,ti+1
n

(
ζti+1,τ
n − ξti+1,τ

n

) ∣∣ Fti+1

))
= E

(
1Iσ≤ti∧tm1IB × E

(
1Iti<τ ζ

ti,ti+1
n

(
ζti+1,τ
n − ξti+1,τ

n

) ∣∣ Fti+1

))
= E

(
M
(
1Iσ≤ti∧tm1IB × 1Iti<τζ

ti,ti+1
n

(
ζti+1,τ
n − ξti+1,τ

n

) ∣∣ Fti+1

))
= E

(
1Iσ≤ti∧tm1IB × 1Iti<τζ

ti,ti+1
n

(
ζti+1,τ
n − ξti+1,τ

n

))
= E

(
1Iσ≤tm1IB × 1Iσ≤ti<τ ζ

ti,ti+1
n

(
ζti+1,τ
n − ξti+1,τ

n

))
,

where a ∧ b = min(a, b). We used here the property that

{σ ≤ ti} ∈ Fti+1
, {σ ≤ ti ∧ tm} ∩B ∈ Fti∧tm ⊂ Fti+1

.

Summing up the above equalities with respect to m, we prove (3.3) (this means that
the balance equation holds in the definition of the conditional expectation; note that the
integrability of the variables under consideration follows from the boundedness of the
functionals ξn and ζn for all n).
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Now we turn to the initial estimates:

(3.4)

E

(
NT∑
i=0

1Iσ≤ti<τξ
ti,ti+1
n

(
ξti+1,τ
n − ζti+1,τ

n

) ∣∣∣∣ Fσ

)

= E

(
NT∑
i=0

E
(
1Iσ≤ti<τ ξ

ti,ti+1
n

(
ξti+1,τ
n − ζti+1,τ

n

) ∣∣ Fti+1

) ∣∣∣∣ Fσ

)

= E

(
NT∑
i=0

1Iσ≤ti<τ ξ
ti,ti+1
n E

(
ξti+1,τ
n − ζti+1,τ

n

∣∣ Fti+1

) ∣∣∣∣ Fσ

)
.

Consider the variable E
(
ξ
ti+1,τ
n − ζ

ti+1,τ
n | Fti+1

)
in more detail:∣∣E (ξti+1,τ

n − ζti+1,τ
n

∣∣ Fti+1

)∣∣
≤
∣∣E (ξti+1,T

n − ζti+1,T
n

∣∣ Fti+1

)∣∣+ 1Iτ>ti+1

∣∣E (ξτ,Tn − ζτ,Tn

∣∣ Fti+1

)∣∣
≤ sup

(s,t)∈T

∥∥fs,t
n − gs,tn

∥∥+ ∣∣∣∣∣E
(

NT∑
k=i+1

1Iτ=tk

(
ξτ,Tn − ζτ,Tn

) ∣∣∣∣ Fti+1

)∣∣∣∣∣
≤ sup

(s,t)∈T

∥∥fs,t
n − gs,tn

∥∥+ ∣∣∣∣∣E
(

NT∑
k=i+1

1Iτ=tk

(
ξtk,Tn − ζtk,Tn

) ∣∣∣∣ Fti+1

)∣∣∣∣∣
≤ sup

(s,t)∈T

∥∥fs,t
n − gs,tn

∥∥+ ∣∣∣∣∣E
(

NT∑
k=i+1

1Iτ=tk E
(
ξtk,Tn − ζtk,Tn

∣∣ Ftk

) ∣∣∣∣ Fti+1

)∣∣∣∣∣
≤ sup

(s,t)∈T

∥∥fs,t
n − gs,tn

∥∥+ ∣∣∣∣∣E
(

NT∑
k=i+1

1Iτ=tk sup
(s,t)∈T

∥∥fs,t
n − gs,tn

∥∥ ∣∣∣∣ Fti+1

)∣∣∣∣∣
≤ 2 sup

(s,t)∈T

∥∥fs,t
n − gs,tn

∥∥ .
This implies an upper bound for (3.3):

2E

(
NT∑
i=0

1Iσ≤ti<τ ξ
ti,ti+1
n sup

0<s<t<T

∥∥fs,t
n − gs,tn

∥∥ ∣∣∣∣ Fσ

)
≤ 2
∥∥fs,t

n − gs,tn

∥∥E (ξσ,τn | Fσ) .

Therefore the right hand side of (3.2) is bounded from above as follows:

Cδn(μ, ν) +

(
4 sup
(s,t)∈T

∥∥fs,t
n − gs,tn

∥∥)E (ξσ,τn + ζσ,τn | Fσ)

≤ Cδn(μ, ν) +

(
4 sup
(s,t)∈T

∥∥fs,t
n − gs,tn

∥∥)E
(
ξσ,σ+T
n + ζσ,σ+T

n

∣∣ Fσ

)
≤ Cδn(μ, ν) +

(
4 sup
(s,t)∈T

∥∥fs,t
n − gs,tn

∥∥)(fσ,σ+T
n (Xn (σ)) + gσ,σ+T

n (Xn (σ))
)

≤ Cδn(μ, ν) +

(
4 sup
(s,t)∈T

∥∥fs,t
n − gs,tn

∥∥)( sup
0<s<t<2T

∥∥fs,t
n

∥∥+ sup
0<s<t<2T

∥∥gs,tn

∥∥)
≤ Cδn(μ, ν) + 4C sup

(s,t)∈T

∥∥fs,t
n − gs,tn

∥∥ ≤ Cρ2n(μ, ν).

Hence
E
(
|ξσ,τn − ζσ,τn |

/
Fσ

)
≤ Cρn(μ, ν).
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Now we apply Theorem 109 in Section 3, Chapter VI of [6] and obtain

E exp

⎛⎝λ sup
sn,tn∈Z

0<s<t<T

∣∣ξs,tn − ζs,tn

∣∣⎞⎠ ≤ 1

1− 4λCρn(μ, ν)
,

where

λ ∈
(
0,

1

4ρn(μ, ν)

)
.

Choosing λn
def
= 1/(8ρn(μ, ν)), we prove the following bound:

E exp

⎛⎜⎝λn sup
sn,tn∈Z

(s,t)∈T

∣∣ξs,tn − ζs,tn

∣∣
⎞⎟⎠ ≤ 1

1− 4λnρn(μ, ν)
= 2.

This relation together with the Chebyshev inequality allows one to get an estimate for
the tails of the distribution of the difference of two local times:

P

⎧⎪⎨⎪⎩ sup
sn,tn∈Z

(s,t)∈T

∣∣ξs,tn − ζs,tn

∣∣ > H

⎫⎪⎬⎪⎭ = P

⎧⎪⎨⎪⎩λn sup
sn,tn∈Z

(s,t)∈T

∣∣ξs,tn − ζs,tn

∣∣ > λnH

⎫⎪⎬⎪⎭
≤ E exp

⎛⎜⎝λn sup
sn,tn∈Z

(s,t)∈T

∣∣ξs,tn − ζs,tn

∣∣
⎞⎟⎠ · exp (−λnH)

≤ 2 exp (−λnH) = 2 exp

(
−H

1

8ρn(μ, ν)

)
.

Now we turn to the initial notation, that is, to φn,μ = ξm and φn,ν = ζn. Note that
ψn,μ are piecewise linear, whence

‖ψn,μ − ψn,ν‖C(T) = sup
(s,t)∈T

∣∣ψs,t
n,μ − ψs,t

n,ν

∣∣ = sup
sn,tn∈Z

(s,t)∈T

∣∣φs,t
n,μ − φs,t

n,ν

∣∣.
This gives the following estimate for the distribution of the distance between random

polygonal lines:

P
{
‖ψn,μ − ψn,ν‖C(T) > H

}
≤ 2 exp

(
− H

8ρn(μ, ν)

)
.

Next we apply Lemma 2.1 in Section 4.2, Chapter 4 of [8]. Note that a generalization
of this result is straightforward for the case where the Xλ(t) assume values in C(T) if
the metric in this space is uniform.

In the case under consideration, μ and ν are substituted for s and t defining the
functionals ξn and ζn in Lemma 2.1 of [8]. As Λ and the premetric ρ, we use the set of
natural numbers N and ρn, respectively.

Further we check the assumptions of Lemma 2.1 of [8]:

(1) for all A > 0 and n ∈ N,

P
{
‖ψn,μ − ψn,ν‖C(T) > A

}
≤ C exp

(
− A

8ρn(μ, ν)

)
;

(2) this condition holds, since

sup
n≥1

ρn(μ, ν) ≤
√

δ(μ, ν) + 2 sup
n,κ

∥∥∥f0,T
n,κ

∥∥∥ < +∞;
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(3) the condition ∫
(0,+∞)

Hρn
(ε) dε < +∞

follows explicitly from condition (4) of Theorem 2.

Now we conclude that, for all ε > 0,

lim
Δ→0

sup
n∈N

P

⎧⎪⎨⎪⎩ sup
μ,ν∈S

ρn(μ,ν)<Δ

‖ψn,μ − ψn,ν‖ > ε

⎫⎪⎬⎪⎭ = 0,

where S is an arbitrary countable subset of M.
The rest of the proof is standard and coincides with that of the proof of the weak

convergence in metric spaces. Note that the property of the equicontinuity of the family
of functionals with respect to the parameter μ proved above implies that the family
of distributions of processes φn,· is relatively compact. Since the finite dimensional
distributions of functionals converge, this completes the proof of the theorem. �
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