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SAMPLE CONTINUITY AND MODELING

OF STOCHASTIC PROCESSES FROM THE SPACES DV,W

UDC 519.21

YU. V. KOZACHENKO AND O. M. MOKLYACHUK

Abstract. Random sequences and stochastic processes belonging to the spaces
DV,W are studied in the paper. Conditions for the sample continuity of such pro-
cesses are found. The convergence of series of random variables belonging to the
spaces DV,W are considered. Models of stochastic processes belonging to the spaces
DV,W are studied. Several examples of models are given.

Introduction

The spaces DV,W introduced in the paper [1] are defined as pre-Banach spaces gener-
ated by certain pre-metrics, namely by

‖ξ‖ = sup
x≥0

V (x)W (−1)(P{|ξ| > x}).

The basic properties of the spaces DV,W , conditions for the convergence of series of
random variables belonging to these spaces, and behavior of the supremum of stochastic
processes in the spaces DV,W are considered in [1]. In this paper, we continue studies of
the spaces DV,W and stochastic processes belonging to these spaces.

In Section 1, we give basic definitions and results concerning the spaces DV,W . Sec-
tion 2 contains several other results on the random variables and stochastic processes
belonging to the spaces DV,W that will be used in the later sections. The sample conti-
nuity of stochastic processes is studied in Section 3. Some results concerning the models
of stochastic processes in DV,W are obtained in Section 4; the models approximate the
initial processes with a given reliability and accuracy. Examples of models for some
stochastic processes are discussed in Section 5.

1. The spaces DV,W

Let {Ω,B,P} be a standard probability space, L0(Ω) the space of random variables
defined on {Ω,B,P}, and let M ⊂ L0(Ω) be some linear space.

Definition 1.1 ([2]). A function Θ = (Θ(ξ), ξ ∈ M) is called a pre-norm if, for all
random variables ξ ∈ M,

1. Θ(ξ) ∈ [0,∞);
2. Θ(0) = 0;
3. Θ(−ξ) = Θ(ξ).
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Definition 1.2 ([2]). If M is complete with respect to a pre-norm Θ, then it is called a
pre-Banach space.

Definition 1.3. A pre-Banach space M is called a pre-Kσ-space if

a1) max(ξ, η) ∈ M and min(ξ, η) ∈ M for all ξ, η ∈ M (this, in particular, means
that |ξ| ∈ M);

a2) |ξ| ∈ M provided that |ξ| ≤ |η| and η ∈ M.

Definition 1.4 ([4]). Let every random variable ξ ∈ M correspond to a nonnegative
number ‖ξ‖ such that

1. ‖ξ‖ = 0 ⇔ ξ = 0 with probability one;
2. ‖ξ + η‖ ≤ ‖ξ‖+ ‖η‖;
3. if |λ| ≤ 1, then ‖λξ‖ ≤ ‖ξ‖.

Then the functional ‖ · ‖ is called a quasi-norm.

Definition 1.5. If M is complete with respect to a quasi-norm ‖ · ‖, then M is called a
quasi-Banach space.

Remark 1.1. Every quasi-norm is a pre-norm. If we assume that ‖λξ‖ = |λ| · ‖ξ‖ instead
of condition 3 in Definition 1.4, then a quasi-norm is a usual norm.

Definition 1.6 ([3]). A positive nondecreasing sequence μ(n), n ≥ 1, is called a ma-
jorizing characteristics of a pre-Banach Kσ-space M if

Θ( max
1≤k≤n

|ξk|) ≤ μ(n) max
1≤k≤n

Θ(ξk)

for all ξk ∈ M, k = 1, 2, . . . , n.

The notion of a characteristic is introduced in the papers [7] and [8] for Orlicz spaces,
in [5] for Kσ-spaces, and in [6] for quasi-Banach Kσ-spaces.

Definition 1.7 ([3]). Let J = J(λ) be a nondecreasing function such that J(λ) ≥ 0 and
J(λ) → 0 as λ → 0. If a pre-norm Θ(·) defined in M is such that

Θ(λξ) ≤ J(|λ|)Θ(ξ),

then Θ is called a pre-norm subordinate to the function J .

Definition 1.8 ([2]). A continuous even convex function U = (U(x), x ∈ R) is called a
C-function if U(0) = 0 and U(x) is increasing for x > 0.

Now we define the space DV,W (Ω).

Definition 1.9 ([1]). Let W = {W (x), x ∈ R} and V = {V (x), x ∈ R} be two functions
such that W (0) = 0, W (x) > 0, and V (x) > 0 for x 
= 0. Moreover, we assume that
both functions are even, increasing, and continuous for x > 0. Let there exist a constant
C > 0 and a continuous function Z = {Z(x), x > 0} such that

W (−1)(x+ y) ≤ C
(
W (−1)(x) +W (−1)(y)

)
,

V (ax) ≤ Z(a)V (x)

for x > 0 and for all constants a > 0, and

0 < Z(x) < ∞
for |x| < ∞. We say that a random variable ξ belongs to the space DV,W (Ω) if

(1) sup
x≥0

V (x)W (−1)(P{|ξ| > x}) < ∞.
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Examples of functions W and V with the above properties are W (x) = |x|a or W (x) =
exp{|x|a} − 1, a > 0, and V (x) = |x|b, b > 0.

Theorem 1.1 ([1]). The space DV,W (Ω) is a pre-Kσ-space with respect to the following
pre-norm:

‖ξ‖V,W =

(
sup
x>0

V (x)W−1(P{|ξ| > x})
)1/2

.

If ‖ξn−ξm‖V,W → 0 as n,m → ∞ and supn ‖ξn‖V,W < ∞, then there exists a random
variable ξ ∈ DV,W (Ω) such that ‖ξn − ξ‖V,W → 0 as n → ∞. Moreover, the pre-norm

‖ · ‖V,W is subordinate to the function J(λ) = (Z(λ))1/2.
Let W (x) be an Orlicz C-function and let V (x) be the inverse to an Orlicz C-function.

Then the functional ‖ · ‖ is a quasi-norm and the space is complete with respect to this
quasi-norm.

Finally,

(2) P{|ξ| > x} ≤ W

(
‖ξ‖2V,W
V (x)

)
for all x > 0.

Theorem 1.2 ([1]). The sequence

μ(n) = sup
0<t<1/n

(
W (−1)(tn)

W (−1)(t)

)1/2

is a majorizing characteristic of the space DV,W (Ω).

2. Properties of series of random variables and stochastic processes

belonging to the spaces DV,W

Theorem 2.1 ([1]). Let ξk be random variables belonging to DV,W (Ω), ‖ · ‖ be a pre-

norm such that ‖ξk‖ > 0, f(x) = xV (W (x)), x > 0, and let f (−1)(x) be the inverse to
the function f(x). The series

(3)

∞∑
k=1

ξk

converges in probability if the series

(4)

∞∑
k=1

α∗
k

converges, where

α∗
k = V (−1)

(
‖ξk‖2

f (−1)(‖ξk‖2)

)
.

Moreover, if

x ≥ μ =
∞∑
k=1

V (−1)

(
‖ξk‖2

f (−1)(‖ξk‖2)

)
,

then

(5) P

{∣∣∣∣∣
∞∑
k=1

ξk

∣∣∣∣∣ ≥ x

}
≤

∞∑
k=1

W

(
‖ξk‖2

V (
α∗

kx

μ )

)
,

where the series on the right hand side of (5) converges for x ≥ μ.
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Remark 2.1. The function x/f (−1)(x) increases, since the function f(x)/x = V (W (x))
increases.

Theorem 2.2 ([1]). Let W (x) = |x|a, a > 0, and let V (x) = |x|b, b > 0. Then series (3)
converges in probability if the series

μ =

∞∑
k=1

‖ξk‖2a/(ab+1)

converges. Moreover,

P

{∣∣∣∣∣
∞∑
k=1

ξk

∣∣∣∣∣ > x

}
≤ 1

xab

( ∞∑
k=1

‖ξk‖2a/(ab+1)

)ab+1

for x ≥ μ, that is,
∑∞

k=1 ξk belongs to the space DV,W , and∥∥∥∥∥
∞∑
k=1

ξk

∥∥∥∥∥ ≤
( ∞∑

k=1

‖ξk‖2a/(ab+1)

)(ab+1)/(2a)

.

Definition 2.1 ([1]). We say that a stochastic process X(t) = {X(t), t ∈ T} belongs to
the space DV,W if X(t) ∈ DV,W for all t.

The processes represented in the form

(6) ξ(t) =

∞∑
k=1

ξkφk(t), t ∈ T,

are examples of stochastic processes belonging to the space DV,W if ξk ∈ DV,W and if
the latter series converges in the space DV,W .

Conditions for the convergence of series in (6) are presented in [1].

Definition 2.2 ([2]). A function ρ(t, s), t, s ∈ T , is called a quasi–metric if ρ(t, s) ∈
[0,∞), ρ(t, t) = 0, and ρ(t, s) = ρ(s, t).

Let X = {X(t), t ∈ T} be a stochastic process belonging to the space DV,W . Then
ρX(t, s) = ‖X(s)−X(t)‖ is called the pre-metric generated by the process X.

Let a process X be such that

(A1) supt∈T ‖X(t)‖ < ∞;
(A2) the space (T, ρX) is separable and X is a separable process in (T, ρX).

Put ε0 = supt,s∈T ρX(t, s). Condition (A1) implies that ε0 < ∞. Let θ ∈ (0, 1),

εk = ε0θ
k, and let N(ε) be the metric capacity of the space (T, ρ), that is, N(ε) is the

minimum number of closed balls covering (T, ρ).
The following result contains conditions for supt∈T X(t) < ∞ with probability one as

well as estimates for the distribution of this supremum.

Theorem 2.3 ([1]). Let a stochastic process X satisfy conditions (A1) and (A2). If
the series

∞∑
n=1

V (−1)

(
μ(N(εn))

2ε2n−1

f (−1)(μ(N(εn))2ε2n−1)

)
converges, where f is defined in Theorem 2.1, then

(7) P

{
sup
t∈T

|X(t)| ≥ x

}
≤ W

(
inft∈T ‖X(t)‖2

V (ψ0x)

)
+

∞∑
k=1

W

(
μ(N(εk))

2ε2k−1

V (ψkx)

)
,
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where

ψ0 =
1

Ψ
V (−1)

(
inft∈T ‖X(t)‖2

f (−1)(inft∈T ‖X(t)‖2)

)
, ψk =

1

Ψ
V (−1)

(
μ(N(εk))

2ε2k−1

f (−1)(μ(N(εk))2ε2k−1)

)
,

Ψ =

∞∑
k=0

ψk, x > Ψ.

Theorem 2.4 ([1]). Let a stochastic process X = {X(t), t ∈ T} be such that X ∈
DV,W and let W (x) = |x|a, a > 0, and V (x) = |x|b, b > 0. Assume that X satisfies
conditions (A1) and (A2).

If

(8)

∫ Δ0p

0

(
N(u(ab+1)/(2a))

)1/(ab+1)

du < ∞,

where p = θ2a/(ab+1), 0 < θ < 1, Δ0 = ε
2a/(ab+1)
0 , and ε0 = supt,s∈T ρX(t, s), then

sup
t∈T

|X(t)| ∈ DV,W

and, moreover,

P

{
sup
t∈T

|X(t)| ≥ x

}
≤ 1

xab

(
inf
t∈T

‖X(t)‖2a/(ab+1) +
1

p(1− p)

∫ Δ0p

0

(
N

(
u(ab+1)/(2a)

))1/(ab+1)

du

)
.

3. The continuity of stochastic processes belonging to the spaces DV,W

Let X be a stochastic process belonging to the space DV,W such that

sup
t∈T

‖X(t)‖ < ∞.

Let ρX(t, s) = ‖X(t)−X(s)‖ be the quasi-metric generated by the process X. Also let
(T, ρX) be a separable space and X be a separable process in (T, ρX).

Let θ ∈ (0, 1) and εk = ε0θ
k, k ≥ 1, where

ε0 = sup
t,s∈T

‖X(t)−X(s)‖.

By Vεk , we denote the set of centers of closed balls of radius εk that form a minimal
covering of the space (T, ρ). The cardinality of the set Vεk is equal to N(εk). Let t, s ∈ T
be some points such that ρ(t, s) < ε for 0 < ε < ε0.

Now we find k such that εk < ε < εk−1. Then

Vk =

∞⋃
j=k

Vεj

is the set of separability of the process X(t), since X(t) is continuous in probability.
By Sn, we denote the minimal εn-net of the set T with respect to the pseudo-metric ρx.

Put S =
⋃∞

n=0 Sn.

Definition 3.1 ([2]). A family of mappings αk(t), k = 0, 1, . . . , is called an α-procedure
if every point of S corresponds to a unique point αk of Sk such that ρ(t, αk(t)) ≤ εk.
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Theorem 3.1. Assume that a stochastic process X satisfies all the above conditions. If
the following two series

∞∑
l=k

V (−1)

(
μ2(N2(εl))ε

2
l−1

f (−1)μ2(N2(εl))ε2l−1)

)

and
∞∑
l=k

V (−1)

(
ε2l−1

f (−1)(ε2l−1)

)

converge and x ≥ Ψ, where

Ψ = V (−1)

(
μ2(N2(εk))ε̂

2

f (−1)(μ2(N2(εk))ε̂2)

)
+

∞∑
l=k

V (−1)

(
μ2(N2(εl))ε

2
l−1

f (−1)(μ2(N2(εl))ε2l−1)

)
,

then

P

{
sup

ρ(t,s)<ε

|X(t)−X(s)| ≥ x

}

≤ W

(
μ2(N2(εk))ε̂

2
k

V (ψ0x)

)
+

∞∑
l=k

W

(
μ2(N2(εl))ε

2
l−1

V (ψlx)

)
,

where

ψ0 =
1

Ψ
V (−1)

(
μ2(N2(εk))ε̂

2

f (−1)(μ2(N2(εk))ε̂2)

)
,

ψl =
1

Ψ
V (−1)

(
μ2(N2(εl))ε

2
l−1

f (−1)(μ2(N2(εl))ε2l−1

)
,

and

ε̂ = ε
5− 3θ

1− θ
.

Moreover X(t) is a sample-continuous stochastic process in the space (T, ρ).

Proof. Let m > k be an arbitrary number. Consider the points

tm = αm(t), tm−1 = αm−1(tm), . . . , tk = αk(tk+1)

and

sm = αm(t), sm−1 = αm−1(sm), . . . , sk = αk(sk+1),

where αk(t) is an α-procedure. Then

(9)

X(t)−X(s)

=
(
X(t)−X(αm(t))

)
+
(
X(s)−X(αm(s))

)
+

m−1∑
l=k

(X(tl+1)−X(tl)) +
m−1∑
l=k

(X(sl+1)−X(sl)) + (X(tk)−X(sk)).
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This implies that

(10)

P{|X(tk)−X(sk)| ≥ x}
≤ P{|X(t)−X(αm(t))| > xψ′

1}+ P{|X(s)−X(αm(s))| > xψ′′
1}

+
m−1∑
l=k

P{|X(tl+1)−X(tl)| > xψ′
l}+

m−1∑
l=k

P{|X(sl+1)−X(sl)| > xψ′′
l }

+ P{|X(t)−X(s)| > xψ0}

≤ W

(
‖X(t)−X(αm(t))‖2

V (xψ′
1)

)
+W

(
‖X(s)−X(αm(s))‖2

V (xψ′′
1 )

)
+

m−1∑
l=k

W

(
‖X(tl)−X(αl−1(tl))‖2

V (xψ′
l)

)

+
m−1∑
l=k

W

(
‖X(sl)−X(αl−1(sl))‖2

V (xψ′′
l )

)
+W

(
‖X(t)−X(s)‖2

V (xψ0)

)
≤ 2W

(
ε2m−1

V (xψ1)

)
+ 2

m−1∑
l=k

W

(
ε2l−1

V (xψl)

)
+W

(
ε20

V (xψ0)

)
,

since ‖X(t)−X(αn−1(t))‖ ≤ εn−1.
Then equality (9) implies that

|X(tk)−X(sk)| ≤ |X(t)−X(αm(t))|+ |X(s)−X(αm(s))|

+

m−1∑
l=k

|X(tl+1)−X(tl)|+
m−1∑
l=k

|X(sl+1)−X(sl)|+ |X(t)−X(s)|

≤ 2

m−1∑
l=k

max
u∈Vεl

|X(u)−X(αl(u))|+ |X(t)−X(αk(t))|

+ |X(s)−X(αk(s))|+ |X(t)−X(s)|

≤ 2

m−1∑
l=k

εl + 2εk + ε ≤ ε̂,

where

ε̂ = ε
5− 3θ

1− θ
.

Passing to the limit in (9) as m → ∞ we get

sup
ρ(t,s)≤ε

|X(t)−X(s)| = sup
|t−s|≤ε,t,s,∈V

|X(t)−X(s)|

≤ max
v,w∈Vk

|X(v)−X(w)|+ 2

∞∑
l=k

max
u∈Vl+1

|X(u)−X(αl(u))|

provided inequality (10) holds.
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After some transformations we obtain

P

{
sup

ρ(t,s)≤ε

|X(t)−X(s)| ≥ x

}
≤ P

{
max

v,w∈Vk

|X(v)−X(w)| ≥ ψ0x

}

+
∞∑
l=k

P

{
max

u∈Vl+1

|X(u)−X(αl(u))| ≥ ψlx

}
.

Reasoning similarly to the proof of Theorem 2.3 (see [1])) we get

P

{
sup

ρ(t,s)≤ε

|X(t)−X(s)| ≤ x

}

≤ W

(
μ2(N2(εk))ε̂

2
k

V (ψ0x)

)
+

∞∑
l=k

W

(
μ2(N2(εl))ε

2
l−1

V (ψlx)

)
,

where

ψ0 =
1

Ψ
V (−1)

(
μ2(N2(εk))ε̂

2

f (−1)(μ2(N2(εk))ε̂2)

)
,

ψl =
1

Ψ
V (−1)

(
μ2(N2(εl))ε

2
l−1

f (−1)(μ2(N2(εl))ε2l−1

)
,

Ψ = V (−1)

(
μ2(N2(εk))ε̂

2

f (−1)(μ2(N2(εk))ε̂2)

)
+

∞∑
l=k

V (−1)

(
μ2(N2(εl))ε

2
l−1

f (−1)(μ2(N2(εl))ε2l−1

)
.

Since W (x) increases for x > 0,

W

(
μ2(N2(εk))ε̂

2

V (ψ0x)

)
→ 0

if x is fixed. Since the series

∞∑
l=k

W

(
μ2(N2(εl))ε

2
l−1

V (ψlx)

)
converges, we pass to the limit as k → ∞ and obtain

W

(
μ2(N2(εk))ε̂

2

V (ψ0x)

)
+

∞∑
l=k

W

(
μ2(N2(εl))ε

2
l−1

V (ψlx)

)
→ 0,

whence

P

{
sup

ρ(t,s)<ε

|X(t)−X(s)| ≥ x

}
→ 0

as k → ∞.
This implies that the process is sample-continuous in (T, ρ). �

Theorem 3.2. Let W (x) = xa, a > 1, and V (x) = xb, 0 < b < 1. If∫ Δ0p
k+1

0

N
(
u(ab+1)/(2a)

)2/(ab+1)

du < ∞,
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then

(11)

P

{
sup

ρ(t,s)<ε

|X(s)−X(t)| ≥ x

}

≤ 1

xabp(1− p)

(
Ĉ

∫ Δ0p
k

Δ0pk+1

N
(
u(ab+1)/(2a)

)2/(ab+1)

du

+ 2

∫ Δ0p
k+1

0

N
(
u(ab+1)/(2a)

)2/(ab+1)

du

)
,

where

(12) Ĉ =

(
5− 3θ

1− θ

)2/(ab+1)

.

Moreover, X(t) is a sample-continuous stochastic process in (T, ρ).

Proof. Reasoning as in the proof of Theorem 2.3 (see [1]) we get

P

{
sup

ρ(t,s)<ε

|X(s)−X(t)| ≥ x

}

≤ 1

xabp(1− p)

((
μ
(
N2(εk)

)
ε̂
)2a/(ab+1)

+ 2
∞∑

l=k+1

(
μ
(
N2(εl)

)
εl−1

)2a/(ab+1)

)

≤ 1

xabp(1− p)

⎛⎝∫ Δ0p
k

Δ0pk+1

μ

(
N2

(
u(ab+1)/(2a)

)(
5− 3θ

1− θ

)2
)2a/(ab+1)

du

+2

∫ Δ0p
k+1

0

μ
(
N2

(
u(ab+1)/(2a)

))2a/(ab+1)

du

)
,

where the numbers Δ0 and p are defined in the proof of Theorem 2.3 in [1].
Theorem 1.2 implies that

μ(n) = sup
0<t<1/n

(
W (−1)(tn)

W (−1)(t)

)1/2

= n1/2a.

Then

P

{
sup

ρ(t,s)<ε

|X(s)−X(t)| ≥ x

}

≤ 1

xabp(1− p)

(
Ĉ

∫ Δ0p
k

Δ0pk+1

(
N

(
u(ab+1)/(2a)

))2/(ab+1)

du

+ 2

∫ Δ0p
k+1

0

(
N2

(
u(ab+1)/(2a)

))2/(ab+1)

du

)

≤ C

xabp(1− p)

∫ Δ0p
k+1

0

N
(
u(ab+1)/(2a)

)2/(ab+1)

du. �

Theorem 3.3. Let X = {X(t), t ∈ [0, T ]} be a stochastic process such that X ∈ DV,W .
Assume that X is a separable process in [0, T ]. Let W (x) = |x|a, a > 0, and V (x) = |x|b,
b > 0. If

sup
|t−s|≤h

‖X(t)−X(s)‖ ≤ Dhζ
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for some D > 0 and ζ > 1/a, then

sup
t∈[0,T ]

|X(t)| ∈ DV,W

and

P

{
sup

ρ(t,s)≤ε

|X(s)−X(t)| ≥ x

}

≤ 1

xabp(1− p)

(
Ĉ

∫ Δ0p
k

Δ0pk+1

(
DT

2u(ab+1)/(2aζ)
+ 1

)2/(ab+1)

du

+ 2

∫ Δ0p
k+1

0

(
DT

2u(ab+1)/(2aζ)
+ 1

)2/(ab+1)

du

)
for all x > 0, where Ĉ is defined in (12).

Moreover, X(t) is a sample-continuous stochastic process in (T, ρ).

Proof. The assumptions of the theorem imply that

N(ε) ≤ DT

2ε1/ζ
+ 1.

Inequality (11) can be used to obtain the following estimates:

P

{
sup

ρ(t,s)<ε

|X(s)−X(t)| ≥ x

}

≤ 1

xabp(1− p)

(
Ĉ

∫ Δ0p
k

Δ0pk+1

(
N

(
u(ab+1)/(2a)

))2/(ab+1)

du

+ 2

∫ Δ0p
k+1

0

(
N

(
u(ab+1)/(2a)

))2/(ab+1)

du

)
≤ 1

xabp(1− p)

(
Ĉ

∫ Δ0p
k

Δ0pk+1

(
DT

2u(ab+1)/(2aζ)
+ 1

)2/(ab+1)

du

+ 2

∫ Δ0p
k+1

0

(
DT

2u(ab+1)/(2aζ)
+ 1

)2/(ab+1)

du

)
.

The two latter integrals converge if so does the integral∫ Δ0p
k+1

0

1

u1/(aζ)
du,

which is the case if ζ > 1/a.
The integrals ∫ Δ0p

k+1

0

(
DT

2u(ab+1)/(2aζ)
+ 1

)2/(ab+1)

du

and ∫ Δ0p
k

Δ0pk+1

(
DT

2u(ab+1)/(2aζ)
+ 1

)2/(ab+1)

du

can be estimated via the hypergeometric function. �
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4. Models of stochastic processes belonging to the spaces DV,W

Consider a stochastic process X represented in the following form:

(13) X(t) =

∞∑
k=1

ξkφk(t)

for t ∈ [0, T ]. We also consider another process XN given by

XN (t) =
N∑

k=1

ξkφk(t).

Then XN (t) is called a model of the process X.
Put

(14) X̃N (t) :=

∞∑
k=N+1

ξkφk(t) = X(t)−XN (t).

Theorem 4.1. Let X = {X(t), t ∈ [0, T ]} be a stochastic process represented in the form
of (13) and such that ξk ∈ DV,W . Let W (x) = |x|a, a > 1, and V (x) = |x|b, 0 < b < 1.
We assume that conditions (A1) and (A2) hold for X. We further assume that

sup
|t−s|<h

|φk(s)− φk(t)| ≤ Ck|h|ζ .

If
∞∑
k=1

‖ξk‖2a/(ab+1)C
ab/(ab+1)
k < ∞

and

ζ >
1

ab
,

then supt∈T |X̃N (t)| ∈ DV,W . Moreover,

P

{
sup

t∈[0,T ]

|X̃N (t)| > x

}

≤ 1

xab

⎛⎜⎝ ∞∑
k=N+1

‖ξk‖2a/(ab+1) inf
t∈[0,T ]

∣∣∣φab/(ab+1)
k (t)

∣∣∣

+
T 1/(ab+1)

(∑∞
k=N+1 C

ab/(ab+1)
k ‖ξk‖2a/(ab+1)

)1/(abζ)

2ab/(ab+1)p(1− p)

abζ(ΔNp)1−1/(abζ)

abζ − 1

+
ΔN

1− p

⎞⎟⎠,

where

ΔN =

(
sup

t,s∈[0,T ]

(XN (t)−XN (s))

)2a/(ab+1)

.

Proof. Let

sup
|t−s|<h

|φk(t)− φk(s)| ≤ Ck · |h|ζ .
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Then

sup
|t−s|<h

‖X̃N (t)− X̃N (s)‖ = sup
|t−s|<h

∥∥∥∥∥
∞∑

k=N+1

ξk(φk(t)− φk(s))

∥∥∥∥∥
≤

( ∞∑
k=N+1

‖ξk‖2a/(ab+1) sup
|t−s|<h

J2a/(ab+1) (φk(t)− φk(s))

)(ab+1)/(2a)

≤
( ∞∑

k=1

‖ξk‖2a/(ab+1)
(
C

b/2
k hbζ/2

)2a/(ab+1)
)(ab+1)/(2a)

= hbζ/2

( ∞∑
k=1

‖ξk‖2a/(ab+1)C
ab/(ab+1)
k

)(ab+1)/(2a)

,

since J(z) = zb/2 and

∥∥∥∥∥
∞∑

k=N+1

ξk

∥∥∥∥∥ ≤
( ∞∑

k=N+1

‖ξk‖2a/(ab+1)

)(ab+1)/(2a)

.

Since t ∈ [0, T ], we have

N(ε) ≤ T

2δ(−1)(h)
+ 1,

where δ(h) can be chosen such that

δ(h) = hbζ/2

( ∞∑
k=1

‖ξk‖2a/(ab+1)C
ab/(ab+1)
k

)(ab+1)/(2a)

if the series

∞∑
k=N+1

‖ξk‖2a/(ab+1)C
ab/(ab+1)
k

converges.
By Theorem 2.4,

P

{
sup

t∈[0,T ]

|X̃N (t)| > x

}

≤ 1

xab

(
inf

t∈[0,T ]
‖X̃N (t)‖2a/(ab+1) +

1

p(1− p)

∫ ΔNp

0

(
N

(
u(ab+1)/(2a)

))1/(ab+1)

du

)

≤ 1

xab

⎛⎝ inf
t∈[0,T ]

‖X̃N (t)‖2a/(ab+1)

+
1

p(1− p)

∫ ΔNp

0

(
T

2δ(−1)
(
u(ab+1)/(2a)

) + 1

)1/(ab+1)

du

⎞⎠
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≤ 1

xab

⎛⎜⎜⎝ inf
t∈[0,T ]

‖X̃N (t)‖2a/(ab+1)

+
1

p(1− p)

×
∫ ΔNp

0

⎛⎜⎝T
(∑∞

k=N+1C
ab/(ab+1)
k ‖ξk‖2a/(ab+1)

)(ab+1)/(abζ)

2u(ab+1)/(abζ)
+1

⎞⎟⎠
1/(ab+1)

du

⎞⎟⎟⎠
≤ 1

xab

⎛⎝ inf
t∈[0,T ]

‖X̃N (t)‖2a/(ab+1)

+
T 1/2a

(∑∞
k=N+1 C

ab/(ab+1)
k ‖ξk‖2a/(ab+1)

)(ab+1)/(2a2bζ)

p(1− p)2ab/(ab+1)

×
∫ ΔNp

0

du

u(ab+1)/(2a2bζ)
+

Δ0

1− p

⎞⎠

≤ 1

xab

⎛⎜⎝ ∞∑
k=N+1

‖ξk‖2a/(ab+1) inf
t∈[0,T ]

∣∣∣φab/(ab+1)
k (t)

∣∣∣

+
T 1/(ab+1)

(∑∞
k=N+1 C

ab/(ab+1)
k ‖ξk‖2a/(ab+1)

)1/(abζ)

p(1− p)2ab/(ab+1)

× abζ(ΔNp)1−1/(abζ)

abζ − 1
+

ΔN

1− p

⎞⎟⎠
if the integral ∫ ΔNp

0

1

u1/(abζ)
du

is finite, which is the case for

ζ >
1

ab
. �

Corollary 4.1. Assume that

sup
|t−s|<h

|φk(s)− φk(t)| ≤ Ck|h|ζ .

A model XN (t) approximates a process X(t) for t ∈ [0, T ] in the space DV,W (Ω) with
given accuracy æ > 0 and reliability 1− ν, 0 < ν < 1, which means that

P

{
sup

t∈[0,T ]

|X̃N (t)| > æ

}
≤ ν



108 YU. V. KOZACHENKO AND O. M. MOKLYACHUK

if

ν ≥ 1

æab

⎛⎜⎝ ∞∑
k=N+1

‖ξk‖2a/(ab+1) inf
t∈[0,T ]

∣∣∣φab/(ab+1)
k (t)

∣∣∣

+
T 1/(ab+1)

(∑∞
k=N+1 C

ab/(ab+1)
k ‖ξk‖2a/(ab+1)

)1/(abζ)

2ab/(ab+1)p(1− p)

abζ(ΔNp)1−1/(abζ)

abζ − 1

+
ΔN

1− p

⎞⎟⎠,

∞∑
k=1

|Ck|ab/(ab+1)‖ξk‖2a/(ab+1) < ∞,

and

ζ >
1

ab
,

where

ΔN =

(
sup

s,t∈[0,T ]

(XN (t)−XN (s))

)2a/(ab+1)

.

5. Examples of models of stochastic processes

belonging to the spaces DV,W

In this section we consider stochastic processes X represented in the interval [0, T ] in
the form of the following series:

X(t) =

∞∑
k=1

ξkϕk(t),

where ξk ∈ DV,W .

Example 5.1. Assume that a process X(t) is represented as follows:

(15) X(t) =

∞∑
k=1

√
2ξk sin(πkt).

For this process,

sup
|t−s|<h

|φk(t)− φk(s)| = sup
|t−s|<h

| sin(πkt)− sin(πks)|

≤ 2

∣∣∣∣sin(πkh

2

)∣∣∣∣ ≤ πkh,

that is, Ck = πk and ζ = 1 if

a ∈
(
1

b
,+∞

)
.

At the same time,

∞∑
k=N+1

‖ξk‖2a/(ab+1) inf
t∈[0,T ]

| sin(πkt)|ab/(ab+1) = 0
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and

εN = sup
t,s∈[0,T ]

‖XN (t)−XN (s)‖

≤ sup
t,s∈[0,T ]

( ∞∑
k=N

∥∥∥√2ξk(sin(πkt)− sin(πks))
∥∥∥2a/(ab+1)

)(ab+1)/(2a)

≤ 23b/4

( ∞∑
k=N

‖ξk‖2a/(ab+1)

)(ab+1)/(2a)

,

ΔN = 23ab/(2ab+2)
∞∑

k=N

‖ξk‖2a/(ab+1).

The value of N is chosen for the given accuracy æ, reliability 1− ν, and constant θ. The
inequality

ν ≥ 1

æab

(
abT 1/(ab+1)

(
θ2a/(ab+1)23ab/(2ab+2)

∑∞
k=1 ‖ξk‖2a/(ab+1)

)1−1/(ab)

θ2a/(ab+1)(1− θ2a/(ab+1))(ab− 1)

×
( ∞∑

k=N+1

‖ξk‖2a/(ab+1)(πk)ab/(ab+1)

)1/(ab)

+
23ab/(2ab+2)

∑∞
k=1 ‖ξk‖2a/(ab+1)

1− θ2a/(ab+1)

⎞⎠
can be used to choose N provided that

∞∑
k=1

(πk)ab/(ab+1)‖ξk‖2a/(ab+1) < ∞.

The same conditions can be used to study the process

(16) X(t) =

∞∑
k=1

√
2ξk cos(πkt).

Moreover, the same constants can be used for processes (16) as in the case of proces-
ses (15).

Example 5.2. Let a stochastic process X(t) be represented in the following form:

X(t) =
∞∑
k=0

ξk(Ak sin(Bkt) + Ck cos(Dkt)),

where Ak > 0 and Ck > 0. In this case,

sup
|t−s|<h

∣∣(Ak sin(Bkt) + Ck cos(Dkt))− (Ak sin(Bks) + Ck cos(Dks))
∣∣

= sup
|t−s|<h

∣∣∣∣2Ak sin

(
Bk

t− s

2

)
sin

(
Bk

t+ s

2

)
− 2Ck sin

(
Dk

t− s

2

)
sin

(
Dk

t+ s

2

)∣∣∣∣.
Since sin x ≤ xα, 0 < α ≤ 1,

sup
|t−s|<h

∣∣∣∣2Ak sin

(
Bk

t− s

2

)
sin

(
Bk

t+ s

2

)
− 2Ck sin

(
Dk

t− s

2

)
sin

(
Dk

t+ s

2

)∣∣∣∣
≤ 2Ak| sin(Bkh/2)|+ 2Ck| sin(Dkh/2)| ≤ 21−α(AkB

α
k + CkD

α
k )h

α.

The corresponding integral converges if

a ∈
(

1

αb
,+∞

)
.
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Put Ek := 21−α|AkB
α
k + CkD

α
k |. In this case, inft∈[0,T ] ‖X̃N‖ and Δ0 do not depend on

the coefficients and cannot be evaluated explicitly. Thus we first choose the reliability
1− ν, accuracy æ, and the constant θ. Then we use the inequality

ν ≥ 1

æab

(
inf

t∈[0,T ]
‖X̃N (t)‖2a/(ab+1)

+
αabT 1/(ab+1)

(∑∞
k=N+1 ‖ξk‖2a/(ab+1)E

ab/(ab+1)
k

)1/(abα)

θ2a/(ab+1)
(
1− θ2a/(ab+1)

)
× (ΔNp)1−1/(abα)

abα− 1
+

ΔNp

1− θ2a/(ab+1)

)
to evaluate the number N under the assumption that

∞∑
k=1

E
ab/(ab+1)
k ‖ξk‖2a/(ab+1) < ∞.
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