# ASYMPTOTIC EXPANSION FOR TRANSPORT PROCESSES IN SEMI-MARKOV MEDIA 

UDC 519.21

A. A. POGORUI AND RAMÓN M. RODRÍGUEZ-DAGNINO


#### Abstract

In this paper we study asymptotic expansions for a solution of the singularly perturbed equation for a functional of a semi-Markov random evolution on the line. By using the method for solutions of singularly perturbed equations, we obtain the solution in the form of a series of regular and singular terms. The first regular term satisfies a diffusion-type equation, and the first singular term is a semigroup with the infinitesimal operator of the respective related bivariate process. Each regular and singular term can be calculated recursively.


## 1. Introduction

Asymptotic expansions for perturbed equations of Markov and semi-Markov random evolution have generated a great deal of research; see [7]-10] and others. In this paper we investigate solutions of singularly perturbed equations of semi-Markov random evolutions by reducing a semi-Markov process to a Markov process with a more complicated phase space.

Let $\{\xi(t), t \geq 0\}$ be a semi-Markov process on the phase space $\{\mathbb{E}, \mathcal{F}\}$ with the semiMarkov kernel

$$
Q=(x, B, t)=P(x, B) G_{x}(t), \quad B \in \mathcal{F}
$$

where $P(x, B)$ are the transition probabilities of the embedded Markov chain $\left\{\xi_{n}, n \geq 0\right\}$, and $G_{x}(t)$ is the cumulative distribution function (cdf) of a sojourn time (holding time) of $\xi(t)$ in $x \in \mathbb{E}$.

Now, let us assume a function $\mathcal{C}(u, x), u \in \mathbb{R}, x \in \mathbb{E}$ such that it satisfies the uniquevalued solvability condition of the following evolution equation:

$$
\frac{d u(t, x)}{d t}=\mathcal{C}(u(t, x), x), \quad u(0, x)=u_{0}
$$

In addition, we assume that the derivative $\partial \mathcal{C}(u, x) / \partial u$ is bounded.
For the fixed parameter $\varepsilon>0$ consider the following random transport process $u_{\varepsilon}(t)$ in the scaled semi-Markov medium $\left\{\xi\left(t / \varepsilon^{2}\right)\right\}$, as follows [1, 2]:

$$
\begin{equation*}
\frac{d u_{\varepsilon}(t)}{d t}=\frac{1}{\varepsilon} \mathcal{C}\left(u_{\varepsilon}(t), \xi\left(t / \varepsilon^{2}\right)\right), \quad u_{\varepsilon}(0)=u_{0} \tag{1}
\end{equation*}
$$

[^0]Let us assume that the following four conditions hold:
C1. There exist the probability density function (pdf) $g_{x}(t)=\frac{d}{d t} G_{x}(t)$ and the first two moments $m_{x}^{(1)}=\int_{0}^{\infty} t g_{x}(t) d t$ and $m_{x}^{(2)}=\int_{0}^{\infty} t^{2} g_{x}(t) d t$ for all $x \in \mathbb{E}$.
C 2 . The embedded Markov chain $\xi_{n}$ is uniformly ergodic with the stationary distribution

$$
\rho(A)=\int_{\mathbb{E}} \rho(d x) P(x, A), \quad A \in \mathcal{F}
$$

C3. The following supremum is bounded:

$$
\sup _{x, u} \frac{\int_{u}^{\infty} \bar{G}_{x}(t) d t}{\bar{G}_{x}(u)}<\infty
$$

where $\bar{G}_{x}(u)=1-G_{x}(u)$ is the survival function of the sojourn time in state $x$.
C 4 . The following moments are positive:

$$
\widehat{m}^{(k)}=\int_{\mathbb{X}} \rho(d x) m_{x}^{(k)}>0, \quad k=1,2
$$

## 2. Asymptotic expansion of the random switching process

Denote by $\mathbb{X}=\mathbb{E} \times[0, \infty)$ and by $\mathcal{X}=\mathcal{F} \times \mathcal{B}_{+}$, where $\mathcal{B}_{+}$is the Borel $\sigma$-algebra on $[0, \infty)$.

On the phase space $\mathbb{X}$ we consider the following bivariate process:

$$
\{\varsigma(t)=(\xi(t), \tau(t)), t \geq 0\}
$$

where $\tau(t)=t-\sup \left\{u \leq t: \xi_{\varepsilon}(u) \neq \xi_{\varepsilon}(t)\right\}$.
It is well known that $\varsigma(t)$ is Markovian and its infinitesimal operator $Q$ can be written as (3]-5])

$$
Q \varphi(x, \tau)=r_{x}(\tau)[P \varphi(x, 0)-\varphi(x, \tau)]+\frac{\partial}{\partial \tau} \varphi(x, \tau)
$$

where

$$
\begin{gathered}
r_{x}(t)=\frac{g_{x}(t)}{1-G_{x}(t)}, \\
P \varphi(x, 0)=\int_{\mathbb{E}} P(x, d y) \varphi(y, 0),
\end{gathered}
$$

and $\varphi(x, \tau)$ is a continuously differentiable function with respect to $\tau$.
We denote by $\mathbf{B}$ the Banach space of bounded $\mathcal{F}$-measurable functions on $\mathbb{X}$ with supremum norm.

Let us introduce the operator $\Pi_{1} f=(\pi, f) \mathbb{I}(x, \tau)$, where $f \in \mathbf{B}$, and $\mathbb{I}(x, \tau)=1$, for all $(x, \tau) \in \mathbb{X}$,

$$
\pi(B \times[0, s])=\int_{B} \int_{0}^{s} \rho(d x) \bar{G}_{x}(s) d s / \widehat{m}^{(1)}
$$

and the inner product

$$
(\pi, f)=\int_{\mathbb{X}} \pi(d z) f(z)=\int_{\mathbb{X}} \int_{0}^{\infty} \rho(d x) \bar{G}_{x}(s) f(x, s) d s / \widehat{m}^{(1)}
$$

It is well known that $\Pi_{1}$ is the projection operator on $\operatorname{ker}(Q)$, i.e., $\Pi_{1} Q=Q \Pi_{1}=0$; see p. 139 in [4].

Now, denote as $R_{0}$ the potential operator of the embedded Markov chain $\xi_{n}$, i.e., $R_{0}=\Pi_{0}-\left(P-\Pi_{0}\right)^{-1}$, where (see [5])

$$
\Pi_{0} g=\int_{\mathbb{E}} \rho(d x) g(x) \mathbb{I}(x, \tau)
$$

In Lemma 2.2 of 4 it is proved that under conditions $\mathrm{C} 1-\mathrm{C} 4$ the potential operator $\mathcal{R}_{1}$ of $\varsigma(t)$ is given by

$$
\begin{aligned}
\mathcal{R}_{1} f(x, u)= & \int_{0}^{\infty} \frac{\bar{G}_{x}(t)}{\bar{G}_{x}(u)} f(x, t) d t-(\pi, f) \int_{0}^{\infty} \frac{\bar{G}_{x}(t)}{\bar{G}_{x}(u)} d t \\
& -\frac{1}{\widehat{m}^{(1)}} \int_{\mathbb{X}} \int_{y=0}^{\infty} \int_{z=y}^{\infty} \rho(d x) \bar{G}_{x}(s) f(x, z) d y d z+\frac{\widehat{m}^{(2)}}{2 \widehat{m}^{1}}(\pi, f) \\
& +\left(I-\Pi_{1}\right) P R_{0} \int_{0}^{\infty} \bar{G}_{x}(z) f(x, z) d z-(\pi, f)\left(I-\Pi_{1}\right) P R_{0} \widehat{m}^{1} .
\end{aligned}
$$

We should recall that the potential operator of $\varsigma(t)$ is the generalized inverse operator of $Q$ and it satisfies $\mathcal{R}_{1} Q=Q \mathcal{R}_{1}=I-\Pi_{1}$.

It is also well known that the three-component process $\zeta(t)=(u(t, x), \xi(t), \tau(t))$ is Markovian on the phase space $\mathbb{R} \times \mathbb{E} \times[0, \infty)$ with the infinitesimal operator $A$ given by [1, 2, 4]:

$$
\begin{align*}
A \varphi(u, x, \tau) & =\mathcal{C}(u, x) \frac{\partial}{\partial u} \varphi(u, x, \tau)+Q \varphi(u, x, \tau)  \tag{2}\\
& =\mathcal{C}(u, x) \frac{\partial}{\partial u} \varphi(u, x, \tau)+r_{x}(\tau)[P \varphi(u, x, 0)-\varphi(u, x, \tau)]+\frac{\partial}{\partial \tau} \varphi(u, x, \tau),
\end{align*}
$$

where $\varphi(u, z, \tau)$ is a continuously differentiable function with respect to $u$ and $\tau$ and it is in the domain of the operator $A$, and

$$
P \varphi(u, z, 0)=\int_{\mathbb{E}} P(z, d y) \varphi(u, y, 0)
$$

Let us consider the scaled process $\zeta_{\varepsilon}(t)=\left(u_{\varepsilon}(t, x), \xi_{\varepsilon}\left(t / \varepsilon^{2}\right), \tau\left(t / \varepsilon^{2}\right)\right)$. It can be easily verified that its infinitesimal operator $A_{\varepsilon}$ satisfies

$$
\begin{aligned}
A_{\varepsilon} \varphi(u, x, \tau)= & \frac{1}{\varepsilon} \mathcal{C}(u, x) \frac{\partial}{\partial u} \varphi(u, x, \tau)+\frac{1}{\varepsilon^{2}} r_{x}(\tau)[P \varphi(u, x, 0)-\varphi(u, x, \tau)] \\
& +\frac{1}{\varepsilon^{2}} \frac{\partial}{\partial \tau} \varphi(u, x, \tau)
\end{aligned}
$$

By defining $\varphi_{\varepsilon}(t, u, x, \tau)=\mathrm{E}\left[\varphi\left(\zeta_{\varepsilon}(t)\right) / \zeta_{\varepsilon}(0)=(u, x, \tau)\right]$ we can write the inverse Kolmogorov equation for $\zeta_{\varepsilon}(t)$ as follows:

$$
\begin{align*}
\frac{\partial}{\partial t} \varphi_{\varepsilon}(t, u, x, \tau)= & A_{\varepsilon} \varphi_{\varepsilon}(t, u, x, \tau) \\
= & \frac{1}{\varepsilon} \mathcal{C}(u, x) \frac{\partial}{\partial u}, \varphi_{\varepsilon}(t, u, x, \tau)  \tag{3}\\
& +\frac{1}{\varepsilon^{2}} r_{x}(\tau)\left[P \varphi_{\varepsilon}(t, u, x, 0)-\varphi_{\varepsilon}(t, u, x, \tau)\right]+\frac{1}{\varepsilon^{2}} \frac{\partial}{\partial \tau} \varphi_{\varepsilon}(t, u, x, \tau),
\end{align*}
$$

with the boundary condition $\varphi_{\varepsilon}(0, u, x, \tau)=\varphi_{\varepsilon}^{(0)}$.
Theorem. Suppose that conditions C1 to C4 are fulfilled. In addition, assume that the following balance condition holds:

$$
\Pi_{1} \mathcal{C}(u, x) \Pi_{1}=0 .
$$

Then, the solution of (3) can be expanded in the following form:

$$
\varphi_{\varepsilon}(t, u, x, \tau)=\varphi^{(0)}(t, u, x, \tau)+\sum_{n=1}^{\infty} \varepsilon^{n}\left(\varphi^{(n)}(t, u, x, \tau)+\psi^{(n)}\left(\frac{t}{\varepsilon^{2}}, u, x, \tau\right)\right),
$$

where the first regular term $\varphi^{(0)}(t, u, x, \tau)$ satisfies the diffusion equation

$$
\frac{\partial}{\partial t} \varphi^{(0)}(t, u, x, \tau)+\Pi_{1} \mathcal{C}(u, x) \frac{\partial}{\partial u} \mathcal{R}_{o} \mathcal{C}(u, x) \frac{\partial}{\partial u} \Pi_{1} \varphi^{(0)}(t, u, x, \tau)=0
$$

and all the terms $\varphi^{(k)}(t, u, x, \tau), k \geq 1$, can be calculated in a recursive manner. The first singular term is of the following form: $\psi^{(1)}(t, u, x, \tau)=\psi^{(1)}(0, u, x, \tau) \exp \{Q t\}$, and all the terms $\psi^{(k)}(t, u, x, \tau), k \geq 2$, can be recursively calculated in the following form:

$$
\begin{aligned}
\psi^{(k+1)}(t, u, x, \tau)= & \psi^{(k+1)}(0, u, x, \tau) \exp \{Q t\} \\
& +\int_{0}^{t} \exp \{Q(t-s)\} \mathcal{C}(u, x) \frac{\partial}{\partial u} \psi^{(k)}(s, u, x, \tau) d s
\end{aligned}
$$

Proof. By applying the method for singularly perturbed equations considered in 6] we can find a solution of (3) in the following form:

$$
\begin{gather*}
\varphi_{\varepsilon}(t, u, x, \tau)=\varphi^{(0)}(t, u, x, \tau)+\sum_{n=1}^{\infty} \varepsilon^{n}\left(\varphi^{(n)}(t, u, x, \tau)+\psi^{(n)}\left(\frac{t}{\varepsilon^{2}}, u, x, \tau\right)\right), \\
\varphi_{\varepsilon}^{(0)}=\varphi^{(0)}(0, u, x, \tau)+\sum_{n=1}^{\infty} \varepsilon^{n}\left(\varphi^{(n)}(0, u, x, \tau)+\psi^{(n)}(0, u, x, \tau)\right) \tag{4}
\end{gather*}
$$

where $\varphi^{(n)}(t, u, x, \tau), n \geq 0$, are regular terms and $\psi^{(n)}\left(t / \varepsilon^{2}, u, x, \tau\right), n \geq 1$, are singular terms of the expansion (4).

Substituting (4) into (3), we have for regular terms $\varphi^{(0)}(t, u, x, \tau)$,

$$
Q \varphi^{(0)}(t, u, x, \tau)=r_{x}(\tau)\left[P \varphi^{(0)}(t, u, x, 0)-\varphi^{(0)}(t, u, x, \tau)\right]+\frac{\partial}{\partial \tau} \varphi^{(0)}(t, u, x, \tau)=0
$$

Therefore $\varphi^{(0)}(t, u, x, \tau) \in \operatorname{ker}(Q)$.
Then, we can obtain for $\varphi^{(1)}(t, u, x, \tau)$,

$$
\begin{align*}
\mathcal{C}(u, x) & \frac{\partial}{\partial u} \varphi^{(0)}(t, u, x, \tau)+r_{x}(\tau)\left[P \varphi^{(1)}(t, u, x, 0)-\varphi^{(1)}(t, u, x, \tau)\right]  \tag{5}\\
& +\frac{\partial}{\partial \tau} \varphi^{(1)}(t, u, x, \tau)=0 .
\end{align*}
$$

Hence,

$$
\begin{equation*}
\varphi^{(1)}(t, u, x, \tau)=-\mathcal{R}_{1} \mathcal{C}(u, x) \frac{\partial}{\partial u} \varphi^{(0)}(t, u, x, \tau)+n_{1}(t, u, x, \tau) \tag{6}
\end{equation*}
$$

where $n_{1}(t, u, x, \tau) \in \operatorname{ker}(Q)$ and it depends on the initial conditions of equation (4).
Now, for $k \geq 2$ we have

$$
\begin{aligned}
\frac{\partial}{\partial t} \varphi^{(k-2)}(t, u, x, \tau)= & \mathcal{C}(u, x) \frac{\partial}{\partial u} \varphi^{(k-1)}(t, u, x, \tau) \\
& +r_{x}(\tau)\left[P \varphi^{(k)}(t, u, x, 0)-\varphi^{(k)}(t, u, x, \tau)\right]+\frac{\partial}{\partial \tau} \varphi^{(k)}(t, u, x, \tau)
\end{aligned}
$$

Hence,

$$
\begin{equation*}
Q \varphi^{(k)}(t, u, x, \tau)=\frac{\partial}{\partial t} \varphi^{(k-2)}(t, u, x, \tau)-\mathcal{C}(u, x) \frac{\partial}{\partial u} \varphi^{(k-1)}(t, u, x, \tau) . \tag{7}
\end{equation*}
$$

For the specific $k=2$ case, we have

$$
\begin{aligned}
Q \varphi^{(2)}(t, u, x, \tau)= & \frac{\partial}{\partial t} \varphi^{(0)}(t, u, x, \tau)-\mathcal{C}(u, x) \frac{\partial}{\partial u} \varphi^{(1)}(t, u, x, \tau) \\
= & \frac{\partial}{\partial t} \varphi^{(0)}(t, u, x, \tau)+\mathcal{C}(u, x) \frac{\partial}{\partial u} \mathcal{R}_{1} \mathcal{C}(u, x) \frac{\partial}{\partial u} \varphi^{(0)}(t, u, x, \tau) \\
& -\mathcal{C}(u, x) \frac{\partial}{\partial u} n_{1}(t, u, x, \tau) .
\end{aligned}
$$

Now, by applying the operator $\Pi_{1}$ on the left,

$$
\Pi_{1} Q \varphi^{(2)}(t, u, x, \tau)=0=\frac{\partial}{\partial t} \Pi_{1} \varphi^{(0)}(t, u, x, \tau)-\Pi_{1} \mathcal{C}(u, x) \frac{\partial}{\partial u} \varphi^{(1)}(t, u, x, \tau),
$$

and taking into account that $\varphi^{(0)}(t, u, x, \tau) \in \operatorname{ker}(Q)$, i.e.,

$$
\Pi_{1} \varphi^{(0)}(t, u, x, \tau)=\varphi^{(0)}(t, u, x, \tau)
$$

we obtain

$$
\begin{aligned}
0= & \frac{\partial}{\partial t} \varphi^{(0)}(t, u, x, \tau)+\Pi_{1} \mathcal{C}(u, x) \frac{\partial}{\partial u} \mathcal{R}_{1} \mathcal{C}(u, x) \frac{\partial}{\partial u} \Pi_{1} \varphi^{(0)}(t, u, x, \tau) \\
& -\Pi_{1} \mathcal{C}(u, x) \frac{\partial}{\partial u} \Pi_{1} n_{1}(t, u, x, \tau) .
\end{aligned}
$$

Since the operator $\Pi_{1}$ does not depend on $u$, then $\Pi_{1} \mathcal{C}(u, x) \frac{\partial}{\partial u} \Pi_{1} n_{1}(t, u, x, \tau)$ is equivalent to

$$
\Pi_{1} \mathcal{C}(u, x) \Pi_{1} \frac{\partial}{\partial u} n_{1}(t, u, x, \tau)=0
$$

because of the balance condition $\Pi_{1} \mathcal{C}(u, x) \Pi_{1}=0$.
Therefore,

$$
\begin{equation*}
\frac{\partial}{\partial t} \varphi^{(0)}(t, u, x, \tau)+\Pi_{1} \mathcal{C}(u, x) \frac{\partial}{\partial u} \mathcal{R}_{1} \mathcal{C}(u, x) \frac{\partial}{\partial u} \Pi_{1} \varphi^{(0)}(t, u, x, \tau)=0 \tag{8}
\end{equation*}
$$

Since $\mathcal{R}_{1}$ does not operate on $u$ it is easy to see that (8) is the diffusion equation and therefore $\varphi^{(0)}(t, u, x, \tau)$ is a solution of this diffusion equation.

Similarly, it follows from (7) that

$$
\begin{equation*}
\varphi^{(k)}(t, u, x, \tau)=\mathcal{R}_{1}\left[\frac{\partial}{\partial t} \varphi^{(k-2)}(t, u, x, \tau)-\mathcal{C}(u, x) \frac{\partial}{\partial u} \varphi^{(k-1)}(t, u, x, \tau)\right]+n_{k}(t, x, u, \tau) \tag{9}
\end{equation*}
$$

where $n_{k}(t, x, u, \tau) \in \operatorname{ker}(Q)$.
To find $n_{k}(t, u, x, \tau)$ we use the fact that $\varphi^{(0)}(t, u, x, \tau) \in \operatorname{ker}(Q)$, and we put

$$
n_{0}(t, x, u, \tau)=\varphi^{(0)}(t, u, x, \tau)
$$

From (6) and (9) we have for $k=2$,

$$
\begin{align*}
\varphi^{(2)}(t, u, x, \tau)= & \mathcal{R}_{1} \frac{\partial}{\partial t} n_{0}(t, u, x, \tau)+\mathcal{R}_{1} \mathcal{C}(u, x) \frac{\partial}{\partial u} \mathcal{R}_{1} \mathcal{C}(u, x) \frac{\partial}{\partial u} n_{0}(t, u, x, \tau)  \tag{10}\\
& -\mathcal{R}_{1} \mathcal{C}(u, x) \frac{\partial}{\partial u} n_{1}(t, u, x, \tau)+n_{2}(t, u, x, \tau)
\end{align*}
$$

By letting $k=3$ in (77) we obtain

$$
Q \varphi^{(3)}(t, u, x, \tau)=\frac{\partial}{\partial t} \varphi^{(1)}(t, u, x, \tau)-\mathcal{C}(u, x) \frac{\partial}{\partial u} \varphi^{(2)}(t, u, x, \tau) .
$$

Then by using (6) and (10) it follows that

$$
\begin{align*}
Q \varphi^{(3)}(t, u, x, \tau)= & \frac{\partial}{\partial t} \varphi^{(1)}(t, u, x, \tau)-\mathcal{C}(u, x) \frac{\partial}{\partial u} \varphi^{(2)}(t, u, x, \tau) \\
= & -\frac{\partial}{\partial t} \mathcal{R}_{1} \mathcal{C}(u, x) \frac{\partial}{\partial u} n_{0}(t, u, x, \tau)+\frac{\partial}{\partial t} n_{1}(t, u, x, \tau) \\
& -\mathcal{C}(u, x) \frac{\partial}{\partial u} \mathcal{R}_{1} \frac{\partial}{\partial t} n_{0}(t, u, x, \tau)  \tag{11}\\
& -\mathcal{C}(u, x) \frac{\partial}{\partial u} \mathcal{R}_{1} \mathcal{C}(u, x) \frac{\partial}{\partial u} \mathcal{R}_{1} \mathcal{C}(u, x) \frac{\partial}{\partial u} n_{0}(t, u, x, \tau) \\
& +\mathcal{C}(u, x) \frac{\partial}{\partial u} \mathcal{R}_{1} \mathcal{C}(u, x) \frac{\partial}{\partial u} n_{1}(t, u, x, \tau)-\mathcal{C}(u, x) \frac{\partial}{\partial u} n_{2}(t, u, x, \tau) .
\end{align*}
$$

Taking into account the balance condition $\Pi_{1} \mathcal{C}(u, x) \Pi_{1}=0$ and multiplying (11) by $\Pi_{1}$, we have

$$
\begin{align*}
& 0=\left(\frac{\partial}{\partial t}+\right.\left.\Pi_{1} \mathcal{C}(u, x) \frac{\partial}{\partial u} \mathcal{R}_{1} \mathcal{C}(u, x) \Pi_{1} \frac{\partial}{\partial u}\right) n_{1}(t, u, x, \tau) \\
&-\left(\Pi_{1} \mathcal{C}(u, x) \frac{\partial}{\partial u} \mathcal{R}_{1} \frac{\partial}{\partial t} \Pi_{1}+\Pi_{1} \frac{\partial}{\partial t} \mathcal{R}_{1} \mathcal{C}(u, x) \Pi_{1} \frac{\partial}{\partial u}\right.  \tag{12}\\
&\left.\quad+\Pi_{1} \mathcal{C}(u, x) \frac{\partial}{\partial u} \mathcal{R}_{1} \mathcal{C}(u, x) \frac{\partial}{\partial u} \mathcal{R}_{1} \mathcal{C}(u, x) \Pi_{1} \frac{\partial}{\partial u}\right) n_{0}(t, u, x, \tau)
\end{align*}
$$

After solving (12), we can express $n_{1}(t, u, x, \tau)$ in terms of $n_{0}(t, u, x, \tau)$.
Now, we consider (7) for $k=4$, namely,

$$
\begin{equation*}
Q \varphi^{(4)}(t, u, x, \tau)=\frac{\partial}{\partial t} \varphi^{(2)}(t, u, x, \tau)-\mathcal{C}(u, x) \frac{\partial}{\partial u} \varphi^{(3)}(t, u, x, \tau) . \tag{13}
\end{equation*}
$$

Let us substitute

$$
Q \varphi^{(3)}(t, u, x, \tau)=\mathcal{R}_{1}\left[\frac{\partial}{\partial t} \varphi^{(1)}(t, u, x, \tau)-\mathcal{C}(u, x) \frac{\partial}{\partial u} \varphi^{(2)}(t, u, x, \tau)\right]+n_{3}(t, u, x, \tau)
$$

and $\varphi^{(2)}(t, u, x, \tau)$ from (10) into (13), and then we multiply by $\Pi_{1}$ both sides of the resulting equation.

In the same manner we use the balance condition stated in this theorem. Then we obtain a differential equation that relates $n_{1}(t, u, x, \tau)$ and $n_{2}(t, u, x, \tau)$. After solving this equation we can express $n_{2}(t, u, x, \tau)$ in terms of $n_{1}(t, u, x, \tau)$. The same procedure can be applied to obtain $n_{i}(t, u, x, \tau)$ for all $i=0,1,2, \ldots$ as follows:

$$
\begin{align*}
& 0=\left(\frac{\partial}{\partial t}+\right.\left.\Pi_{1} \mathcal{C}(u, x) \frac{\partial}{\partial u} \mathcal{R}_{1} \mathcal{C}(u, x) \Pi_{1} \frac{\partial}{\partial u}\right) n_{i+1}(t, u, x, \tau) \\
&-\left(\Pi_{1} \mathcal{C}(u, x) \frac{\partial}{\partial u} \mathcal{R}_{1} \frac{\partial}{\partial t} \Pi_{1}+\Pi_{1} \frac{\partial}{\partial t} \mathcal{R}_{1} \mathcal{C}(u, x) \Pi_{1} \frac{\partial}{\partial u}\right.  \tag{14}\\
&\left.\quad+\Pi_{1} \mathcal{C}(u, x) \frac{\partial}{\partial u} \mathcal{R}_{1} \mathcal{C}(u, x) \frac{\partial}{\partial u} \mathcal{R}_{1} \mathcal{C}(u, x) \Pi_{1} \frac{\partial}{\partial u}\right) n_{i}(t, u, x, \tau)
\end{align*}
$$

Taking into account (9) and (14), we get $\varphi^{(k)}(t, u, x, \tau)$ for all $k=0,1,2, \ldots$.
Then, regarding the first singular term we have

$$
\begin{equation*}
\frac{\partial}{\partial t} \psi^{(1)}=Q \psi^{(1)} \tag{15}
\end{equation*}
$$

and for $k \geq 1$, we have

$$
\begin{equation*}
\frac{\partial}{\partial t} \psi^{(k+1)}-Q \psi^{(k+1)}=\mathcal{C}(u, x) \frac{\partial}{\partial u} \psi^{(k)} \tag{16}
\end{equation*}
$$

By solving equation (15), we get

$$
\psi^{(1)}(t, u, x, \tau)=\exp _{0}\{Q t\} \psi^{1}(0, u, x, \tau),
$$

where $\exp _{0}\{Q t\}$ is a modified exponent of the following form: $\exp _{0}\{Q t\}=\exp \{Q t\}-\Pi_{1}$. For this case we have $\lim _{t \rightarrow \infty} \psi^{(1)}(t, u, x, \tau)=0$.

Taking into account (15) we obtain

$$
\begin{aligned}
\psi^{(k+1)}(t, u, x, \tau)= & \exp _{0}\{Q t\} \psi^{(k+1)}(0, u, x, \tau) \\
& +\int_{0}^{t} \exp _{0}\{Q(t-s)\} \mathcal{C}(u, x) \frac{\partial}{\partial u} \psi^{(k)}(s, u, x, \tau) d s
\end{aligned}
$$

Thus, $\psi^{(k)}$ can be obtained from (16) recursively for all $k \geq 1$.
Therefore, in the expansion (4) the coefficient of $\varepsilon^{k}$ for $k \geq 2$ is of the following form:

$$
\begin{aligned}
& \varphi^{(k)}(t, u, x, \tau)+\psi^{(k)}\left(\frac{t}{\varepsilon^{2}}, u, x, \tau\right) \\
&= \mathcal{R}_{1}\left[\frac{\partial}{\partial t} \varphi^{(k-2)}(t, u, x, \tau)-\mathcal{C}(u, x) \frac{\partial}{\partial u} \varphi^{(k-1)}(t, u, x, \tau)\right]+n_{k}(t, u, x, \tau) \\
&+\exp _{0}\left\{Q t / \varepsilon^{2}\right\} \psi^{(k)}(0, u, x, \tau) \\
&+\int_{0}^{t / \varepsilon^{2}} \exp _{0}\left\{Q\left(t / \varepsilon^{2}-s\right)\right\} \mathcal{C}(u, x) \frac{\partial}{\partial u} \psi^{(k-1)}(s, u, x, \tau) d s
\end{aligned}
$$

The coefficient of $\varepsilon$ is as follows:

$$
\begin{aligned}
\varphi^{(1)} & (t, u, x, \tau)+\psi^{(1)}\left(\frac{t}{\varepsilon^{2}}, u, x, \tau\right) \\
& =-\mathcal{R}_{1} \mathcal{C}(u, x) \frac{\partial}{\partial u} \varphi^{(0)}(t, u, x, \tau)+n_{1}(t, u, x, \tau)+\exp _{0}\left\{Q t / \varepsilon^{2}\right\} \psi^{1}(0, u, x, \tau)
\end{aligned}
$$

The order of the remainder can be estimated by defining the function

$$
\varphi_{\varepsilon}^{(N)}(t, u, x, \tau)=\varphi_{\varepsilon}^{(0)}(t, u, x, \tau)+\sum_{n=1}^{N} \varepsilon^{n}\left(\varphi^{(n)}(t, u, x, \tau)+\psi^{(n)}\left(\frac{t}{\varepsilon^{2}}, u, x, \tau\right)\right)
$$

Then it follows for the supremum norm that (see [4], [8])

$$
\left\|\varphi_{\varepsilon}(t, u, x, \tau)-\varphi_{\varepsilon}^{(N)}(t, u, x, \tau)\right\|=O\left(\varepsilon^{N+1}\right)
$$

## 3. Conclusions

There are many new results and approaches to deal with the asymptotic expansion for perturbed equations of Markov and semi-Markov random evolutions (see [7-[10] and others). Our approach in this paper has been aimed to finding solutions of singularly perturbed equations of semi-Markov random evolutions by reducing the semi-Markov process to an equivalent Markov process consisting of three known processes. However, the resulting Markov process has a complicated continuous phase space. Upon observing that the projective and potential operators for this Markov process were obtained in [4, we apply the method of asymptotic expansion for Markov random evolutions [7]-9] to find a recursive solution.

Acknowledgments. We wish to thank an anonymous referee for a careful reading of the paper and insightful comments and remarks.

## Bibliography

1. V. S. Korolyuk and V. V. Korolyuk, Stochastic Models of Systems, Kluwer Academic Publishers, 1998. MR 1753470 (2002b:60169)
2. V. S. Korolyuk and A. V. Swishchuk, Evolution of Systems in Random Media, CRC Press, Boca Raton, FL, U.S.A., 1995. MR 1413300 (98g:60116)
3. I. I. Gikhman and A. V. Skorokhod, The theory of Stochastic Processes, vol. 2, Springer-Verlag, New York, 1975. MR0375463 (51:11656)
4. V. S. Korolyuk and A. F. Turbin, Markov Renewal Processes in System Reliability Problems, Naukova Dumka, Kiev, 1982. (Russian) MR695006 (85e:60095)
5. V. S. Korolyuk and A. F. Turbin, Mathematical Foundations of the State Lumping of Large Systems, Kluwer Academic Publishers, 1993. MR 1281385 (95e:60071)
6. A. B. Vasil'eva and V. F. Butuzov, Asymptotic Methods in the Theory of Singular Perturbations, Vysshaya Shkola, Moscow, 1990. (Russian) MR1108181(92i:34072)
7. S. Albeverio, V. S. Korolyuk, and I. V. Samoilenko, Asymptotic expansion of semi-Markov random evolutions, Stochastics: An International Journal of Probability and Stochastics Processes, 81 (October 2009), no. 5, 477-502. MR2569263 (2010k:60311)
8. I. V. Samoilenko, Asymptotic expansion of Markov random evolution, Ukrainian Mathematical Bulletin 3 (2006), no. 3, 394-407. MR2330681 (2008d:60098)
9. A. Pogorui, Asymptotic expansion for the distribution of a Markovian random motion, Random Operators \& Stochastic Equations 17 (2009), 189-196. MR2560865 (2010i:60217)
10. M. A. Pinsky, Lectures on Random Evolutions, World Scientific Publishing, 1991. MR 1143780 (93b:60160)

Zhytomyr State Ivan Franko University, Velyka Berdychivs'ka St. 40, Zhytomyr 10008, Ukraine

E-mail address: pogor@zu.edu.ua
Centro de Electrónica y Telecomunicaciones, ITESM, E. Garza Sada 2501 Sur, C.P. 64849, Monterrey, N.L., MÉxico

E-mail address: rmrodrig@itesm.mx
Received 20/OCT/2009
Originally published in English


[^0]:    2010 Mathematics Subject Classification. Primary 60J25; Secondary 35C20.
    Key words and phrases. Asymptotic expansion, semi-Markov, random evolution, singular perturbed equation.

    We thank ITESM, Campus Monterrey, through the Research Chair in Telecommunications, for the support provided in the development of this work.

