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ASYMPTOTIC EXPANSION FOR TRANSPORT PROCESSES

IN SEMI-MARKOV MEDIA

UDC 519.21

A. A. POGORUI AND RAMÓN M. RODRÍGUEZ-DAGNINO

Abstract. In this paper we study asymptotic expansions for a solution of the sin-
gularly perturbed equation for a functional of a semi-Markov random evolution on
the line. By using the method for solutions of singularly perturbed equations, we
obtain the solution in the form of a series of regular and singular terms. The first
regular term satisfies a diffusion-type equation, and the first singular term is a semi-
group with the infinitesimal operator of the respective related bivariate process. Each
regular and singular term can be calculated recursively.

1. Introduction

Asymptotic expansions for perturbed equations of Markov and semi-Markov random
evolution have generated a great deal of research; see [7]–[10] and others. In this paper we
investigate solutions of singularly perturbed equations of semi-Markov random evolutions
by reducing a semi-Markov process to a Markov process with a more complicated phase
space.

Let {ξ(t), t ≥ 0} be a semi-Markov process on the phase space {E,F} with the semi-
Markov kernel

Q = (x,B, t) = P (x,B)Gx(t), B ∈ F ,

where P (x,B) are the transition probabilities of the embedded Markov chain {ξn, n ≥ 0},
and Gx(t) is the cumulative distribution function (cdf) of a sojourn time (holding time)
of ξ(t) in x ∈ E.

Now, let us assume a function C(u, x), u ∈ R, x ∈ E such that it satisfies the unique-
valued solvability condition of the following evolution equation:

du(t, x)

dt
= C(u(t, x), x), u(0, x) = u0.

In addition, we assume that the derivative ∂ C(u, x)/∂u is bounded.
For the fixed parameter ε > 0 consider the following random transport process uε(t)

in the scaled semi-Markov medium {ξ(t/ε2)}, as follows [1, 2]:

(1)
duε(t)

dt
=

1

ε
C

(
uε(t), ξ

(
t/ε2

))
, uε(0) = u0.
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Let us assume that the following four conditions hold:

C1. There exist the probability density function (pdf) gx(t) =
d
dt Gx(t) and the first

two moments m
(1)
x =

∫ ∞
0

t gx(t) dt and m
(2)
x =

∫ ∞
0

t2gx(t) dt for all x ∈ E.
C2. The embedded Markov chain ξn is uniformly ergodic with the stationary distri-

bution

ρ(A) =

∫
E

ρ(dx)P (x,A), A ∈ F .

C3. The following supremum is bounded:

sup
x,u

∫ ∞
u

Gx(t) dt

Gx(u)
< ∞,

where Gx(u) = 1−Gx(u) is the survival function of the sojourn time in state x.
C4. The following moments are positive:

m̂(k) =

∫
X

ρ(dx)m(k)
x > 0, k = 1, 2.

2. Asymptotic expansion of the random switching process

Denote by X = E × [0,∞) and by X = F × B+, where B+ is the Borel σ-algebra on
[0,∞).

On the phase space X we consider the following bivariate process:{
ς(t) = (ξ(t), τ (t)), t ≥ 0

}
,

where τ (t) = t− sup{u ≤ t : ξε(u) �= ξε(t)}.
It is well known that ς(t) is Markovian and its infinitesimal operator Q can be written

as ([3]–[5])

Qϕ(x, τ ) = rx(τ )[Pϕ(x, 0)− ϕ(x, τ )] +
∂

∂τ
ϕ(x, τ ),

where

rx(t) =
gx(t)

1−Gx(t)
,

Pϕ(x, 0) =

∫
E

P (x, dy)ϕ(y, 0),

and ϕ(x, τ ) is a continuously differentiable function with respect to τ .
We denote by B the Banach space of bounded F-measurable functions on X with

supremum norm.
Let us introduce the operator Π1f = (π, f) I(x, τ ), where f ∈ B, and I(x, τ ) = 1, for

all (x, τ ) ∈ X,

π(B × [0, s]) =

∫
B

∫ s

0

ρ(dx)Gx(s)ds/m̂
(1),

and the inner product

(π, f) =

∫
X

π(dz) f(z) =

∫
X

∫ ∞

0

ρ(dx)Gx(s)f(x, s) ds/m̂
(1).

It is well known that Π1 is the projection operator on ker(Q), i.e., Π1Q = QΠ1 = 0;
see p. 139 in [4].

Now, denote as R0 the potential operator of the embedded Markov chain ξn, i.e.,
R0 = Π0 − (P −Π0)

−1, where (see [5])

Π0g =

∫
E

ρ(dx)g(x)I(x, τ ).
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In Lemma 2.2 of [4] it is proved that under conditions C1–C4 the potential operatorR1

of ς(t) is given by

R1f(x, u) =

∫ ∞

0

Gx(t)

Gx(u)
f(x, t) dt− (π, f)

∫ ∞

0

Gx(t)

Gx(u)
dt

− 1

m̂(1)

∫
X

∫ ∞

y=0

∫ ∞

z=y

ρ(dx)Gx(s) f(x, z) dy dz +
m̂(2)

2m̂1
(π, f)

+ (I −Π1)PR0

∫ ∞

0

Gx(z)f(x, z) dz − (π, f)(I −Π1)PR0m̂
1.

We should recall that the potential operator of ς(t) is the generalized inverse operator
of Q and it satisfies R1Q = QR1 = I −Π1.

It is also well known that the three-component process ζ(t) = (u(t, x), ξ(t), τ (t)) is
Markovian on the phase space R×E× [0,∞) with the infinitesimal operator A given by
[1, 2, 4]:

(2)
Aϕ(u, x, τ ) = C(u, x) ∂

∂u
ϕ(u, x, τ ) +Qϕ(u, x, τ )

= C(u, x) ∂

∂u
ϕ(u, x, τ ) + rx(τ )[Pϕ(u, x, 0)− ϕ(u, x, τ )] +

∂

∂τ
ϕ(u, x, τ ),

where ϕ(u, z, τ ) is a continuously differentiable function with respect to u and τ and it
is in the domain of the operator A, and

Pϕ(u, z, 0) =

∫
E

P (z, dy)ϕ(u, y, 0).

Let us consider the scaled process ζε(t) = (uε(t, x), ξε(t/ε
2), τ (t/ε2)). It can be easily

verified that its infinitesimal operator Aε satisfies

Aεϕ(u, x, τ ) =
1

ε
C(u, x) ∂

∂u
ϕ(u, x, τ ) +

1

ε2
rx(τ )[Pϕ(u, x, 0)− ϕ(u, x, τ )]

+
1

ε2
∂

∂τ
ϕ(u, x, τ ).

By defining ϕε(t, u, x, τ ) = E[ϕ(ζε(t)) / ζε(0) = (u, x, τ )] we can write the inverse
Kolmogorov equation for ζε(t) as follows:

(3)

∂

∂t
ϕε(t, u, x, τ ) = Aεϕε(t, u, x, τ )

=
1

ε
C(u, x) ∂

∂u
, ϕε(t, u, x, τ )

+
1

ε2
rx(τ )[Pϕε(t, u, x, 0)− ϕε(t, u, x, τ )] +

1

ε2
∂

∂τ
ϕε(t, u, x, τ ),

with the boundary condition ϕε(0, u, x, τ ) = ϕ
(0)
ε .

Theorem. Suppose that conditions C1 to C4 are fulfilled. In addition, assume that the
following balance condition holds:

Π1 C(u, x) Π1 = 0.

Then, the solution of (3) can be expanded in the following form:

ϕε(t, u, x, τ ) = ϕ(0)(t, u, x, τ ) +
∞∑

n=1

εn
(
ϕ(n)(t, u, x, τ ) + ψ(n)

(
t

ε2
, u, x, τ

))
,
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where the first regular term ϕ(0)(t, u, x, τ ) satisfies the diffusion equation

∂

∂t
ϕ(0)(t, u, x, τ ) + Π1C(u, x)

∂

∂u
RoC(u, x)

∂

∂u
Π1ϕ

(0)(t, u, x, τ ) = 0,

and all the terms ϕ(k)(t, u, x, τ ), k ≥ 1, can be calculated in a recursive manner. The
first singular term is of the following form: ψ(1)(t, u, x, τ ) = ψ(1)(0, u, x, τ ) exp{Qt}, and
all the terms ψ(k)(t, u, x, τ ), k ≥ 2, can be recursively calculated in the following form:

ψ(k+1)(t, u, x, τ ) = ψ(k+1)(0, u, x, τ ) exp{Qt}

+

∫ t

0

exp{Q(t− s)}C(u, x) ∂

∂u
ψ(k)(s, u, x, τ ) ds.

Proof. By applying the method for singularly perturbed equations considered in [6] we
can find a solution of (3) in the following form:

(4)

ϕε(t, u, x, τ ) = ϕ(0)(t, u, x, τ ) +
∞∑

n=1

εn
(
ϕ(n)(t, u, x, τ ) + ψ(n)

(
t

ε2
, u, x, τ

))
,

ϕ(0)
ε = ϕ(0)(0, u, x, τ ) +

∞∑
n=1

εn
(
ϕ(n)(0, u, x, τ ) + ψ(n)(0, u, x, τ )

)
,

where ϕ(n)(t, u, x, τ ), n ≥ 0, are regular terms and ψ(n)
(
t/ε2, u, x, τ

)
, n ≥ 1, are singular

terms of the expansion (4).
Substituting (4) into (3), we have for regular terms ϕ(0)(t, u, x, τ ),

Qϕ(0)(t, u, x, τ ) = rx(τ )
[
Pϕ(0)(t, u, x, 0)− ϕ(0)(t, u, x, τ )

]
+

∂

∂τ
ϕ(0)(t, u, x, τ ) = 0.

Therefore ϕ(0)(t, u, x, τ ) ∈ ker(Q).
Then, we can obtain for ϕ(1)(t, u, x, τ ),

(5)
C(u, x) ∂

∂u
ϕ(0)(t, u, x, τ ) + rx(τ )

[
Pϕ(1)(t, u, x, 0)− ϕ(1)(t, u, x, τ )

]
+

∂

∂τ
ϕ(1)(t, u, x, τ ) = 0.

Hence,

(6) ϕ(1)(t, u, x, τ ) = −R1 C(u, x)
∂

∂u
ϕ(0)(t, u, x, τ ) + n1(t, u, x, τ ),

where n1(t, u, x, τ ) ∈ ker(Q) and it depends on the initial conditions of equation (4).
Now, for k ≥ 2 we have

∂

∂t
ϕ(k−2)(t, u, x, τ ) = C(u, x) ∂

∂u
ϕ(k−1)(t, u, x, τ )

+ rx(τ )
[
Pϕ(k)(t, u, x, 0)− ϕ(k)(t, u, x, τ )

]
+

∂

∂τ
ϕ(k)(t, u, x, τ ).

Hence,

(7) Qϕ(k)(t, u, x, τ ) =
∂

∂t
ϕ(k−2)(t, u, x, τ )− C(u, x) ∂

∂u
ϕ(k−1)(t, u, x, τ ).
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For the specific k = 2 case, we have

Qϕ(2)(t, u, x, τ ) =
∂

∂t
ϕ(0)(t, u, x, τ )− C(u, x) ∂

∂u
ϕ(1)(t, u, x, τ )

=
∂

∂t
ϕ(0)(t, u, x, τ ) + C(u, x) ∂

∂u
R1 C(u, x)

∂

∂u
ϕ(0)(t, u, x, τ )

− C(u, x) ∂

∂u
n1(t, u, x, τ ).

Now, by applying the operator Π1 on the left,

Π1Qϕ(2)(t, u, x, τ ) = 0 =
∂

∂t
Π1ϕ

(0)(t, u, x, τ )−Π1C(u, x)
∂

∂u
ϕ(1)(t, u, x, τ ),

and taking into account that ϕ(0)(t, u, x, τ ) ∈ ker(Q), i.e.,

Π1ϕ
(0)(t, u, x, τ ) = ϕ(0)(t, u, x, τ ),

we obtain

0 =
∂

∂t
ϕ(0)(t, u, x, τ ) + Π1C(u, x)

∂

∂u
R1 C(u, x)

∂

∂u
Π1ϕ

(0)(t, u, x, τ )

−Π1C(u, x)
∂

∂u
Π1n1(t, u, x, τ ).

Since the operator Π1 does not depend on u, then Π1C(u, x) ∂
∂u Π1n1(t, u, x, τ ) is equiva-

lent to

Π1C(u, x)Π1
∂

∂u
n1(t, u, x, τ ) = 0,

because of the balance condition Π1C(u, x)Π1 = 0.
Therefore,

(8)
∂

∂t
ϕ(0)(t, u, x, τ ) + Π1C(u, x)

∂

∂u
R1 C(u, x)

∂

∂u
Π1ϕ

(0)(t, u, x, τ ) = 0.

Since R1 does not operate on u it is easy to see that (8) is the diffusion equation and
therefore ϕ(0)(t, u, x, τ ) is a solution of this diffusion equation.

Similarly, it follows from (7) that
(9)

ϕ(k)(t, u, x, τ ) = R1

[
∂

∂t
ϕ(k−2)(t, u, x, τ )− C(u, x) ∂

∂u
ϕ(k−1)(t, u, x, τ )

]
+ nk(t, x, u, τ ),

where nk(t, x, u, τ ) ∈ ker(Q).
To find nk(t, u, x, τ ) we use the fact that ϕ(0)(t, u, x, τ ) ∈ ker(Q), and we put

n0(t, x, u, τ ) = ϕ(0)(t, u, x, τ ).

From (6) and (9) we have for k = 2,

(10)
ϕ(2)(t, u, x, τ ) = R1

∂

∂t
n0(t, u, x, τ ) +R1C(u, x)

∂

∂u
R1C(u, x)

∂

∂u
n0(t, u, x, τ )

−R1C(u, x)
∂

∂u
n1(t, u, x, τ ) + n2(t, u, x, τ ).

By letting k = 3 in (7) we obtain

Qϕ(3)(t, u, x, τ ) =
∂

∂t
ϕ(1)(t, u, x, τ )− C(u, x) ∂

∂u
ϕ(2)(t, u, x, τ ).
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Then by using (6) and (10) it follows that

(11)

Qϕ(3)(t, u, x, τ ) =
∂

∂t
ϕ(1)(t, u, x, τ )− C(u, x) ∂

∂u
ϕ(2)(t, u, x, τ )

= − ∂

∂t
R1C(u, x)

∂

∂u
n0(t, u, x, τ ) +

∂

∂t
n1(t, u, x, τ )

− C(u, x) ∂

∂u
R1

∂

∂t
n0(t, u, x, τ )

− C(u, x) ∂

∂u
R1C(u, x)

∂

∂u
R1C(u, x)

∂

∂u
n0(t, u, x, τ )

+ C(u, x) ∂

∂u
R1C(u, x)

∂

∂u
n1(t, u, x, τ )− C(u, x) ∂

∂u
n2(t, u, x, τ ).

Taking into account the balance condition Π1C(u, x)Π1 = 0 and multiplying (11) by
Π1, we have

(12)

0 =

(
∂

∂t
+Π1C(u, x)

∂

∂u
R1C(u, x)Π1

∂

∂u

)
n1(t, u, x, τ )

−
(
Π1C(u, x)

∂

∂u
R1

∂

∂t
Π1 +Π1

∂

∂t
R1C(u, x)Π1

∂

∂u

+Π1C(u, x)
∂

∂u
R1C(u, x)

∂

∂u
R1C(u, x)Π1

∂

∂u

)
n0(t, u, x, τ ).

After solving (12), we can express n1(t, u, x, τ ) in terms of n0(t, u, x, τ ).
Now, we consider (7) for k = 4, namely,

(13) Qϕ(4)(t, u, x, τ ) =
∂

∂t
ϕ(2)(t, u, x, τ )− C(u, x) ∂

∂u
ϕ(3)(t, u, x, τ ).

Let us substitute

Qϕ(3)(t, u, x, τ ) = R1

[
∂

∂t
ϕ(1)(t, u, x, τ )− C(u, x) ∂

∂u
ϕ(2)(t, u, x, τ )

]
+ n3(t, u, x, τ )

and ϕ(2)(t, u, x, τ ) from (10) into (13), and then we multiply by Π1 both sides of the
resulting equation.

In the same manner we use the balance condition stated in this theorem. Then we
obtain a differential equation that relates n1(t, u, x, τ ) and n2(t, u, x, τ ). After solving
this equation we can express n2(t, u, x, τ ) in terms of n1(t, u, x, τ ). The same procedure
can be applied to obtain ni(t, u, x, τ ) for all i = 0, 1, 2, . . . as follows:

(14)

0 =

(
∂

∂t
+Π1C(u, x)

∂

∂u
R1C(u, x)Π1

∂

∂u

)
ni+1(t, u, x, τ )

−
(
Π1C(u, x)

∂

∂u
R1

∂

∂t
Π1 +Π1

∂

∂t
R1C(u, x)Π1

∂

∂u

+Π1C(u, x)
∂

∂u
R1C(u, x)

∂

∂u
R1C(u, x)Π1

∂

∂u

)
ni(t, u, x, τ ).

Taking into account (9) and (14), we get ϕ(k)(t, u, x, τ ) for all k = 0, 1, 2, . . . .
Then, regarding the first singular term we have

(15)
∂

∂t
ψ(1) = Qψ(1),

and for k ≥ 1, we have

(16)
∂

∂t
ψ(k+1) −Qψ(k+1) = C(u, x) ∂

∂u
ψ(k).
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By solving equation (15), we get

ψ(1)(t, u, x, τ ) = exp0{Qt}ψ1(0, u, x, τ ),

where exp0{Qt} is a modified exponent of the following form: exp0{Qt} = exp{Qt}−Π1.
For this case we have limt→∞ ψ(1)(t, u, x, τ ) = 0.

Taking into account (15) we obtain

ψ(k+1)(t, u, x, τ ) = exp0{Qt}ψ(k+1)(0, u, x, τ )

+

∫ t

0

exp0{Q(t− s)}C(u, x) ∂

∂u
ψ(k)(s, u, x, τ ) ds.

Thus, ψ(k) can be obtained from (16) recursively for all k ≥ 1. �

Therefore, in the expansion (4) the coefficient of εk for k ≥ 2 is of the following form:

ϕ(k)(t, u, x, τ ) + ψ(k)

(
t

ε2
, u, x, τ

)

= R1

[
∂

∂t
ϕ(k−2)(t, u, x, τ )− C(u, x) ∂

∂u
ϕ(k−1)(t, u, x, τ )

]
+ nk(t, u, x, τ )

+ exp0
{
Qt/ε2

}
ψ(k)(0, u, x, τ )

+

∫ t/ε2

0

exp0
{
Q

(
t/ε2 − s

)}
C(u, x) ∂

∂u
ψ(k−1)(s, u, x, τ ) ds.

The coefficient of ε is as follows:

ϕ(1)(t, u, x, τ ) + ψ(1)

(
t

ε2
, u, x, τ

)

= −R1 C(u, x)
∂

∂u
ϕ(0)(t, u, x, τ ) + n1(t, u, x, τ ) + exp0

{
Qt/ε2

}
ψ1(0, u, x, τ ).

The order of the remainder can be estimated by defining the function

ϕ(N)
ε (t, u, x, τ ) = ϕ(0)

ε (t, u, x, τ ) +

N∑
n=1

εn
(
ϕ(n)(t, u, x, τ ) + ψ(n)

(
t

ε2
, u, x, τ

))
.

Then it follows for the supremum norm that (see [4], [8])∥∥∥ϕε(t, u, x, τ )− ϕ(N)
ε (t, u, x, τ )

∥∥∥ = O
(
εN+1

)
.

3. Conclusions

There are many new results and approaches to deal with the asymptotic expansion
for perturbed equations of Markov and semi-Markov random evolutions (see [7]–[10] and
others). Our approach in this paper has been aimed to finding solutions of singularly
perturbed equations of semi-Markov random evolutions by reducing the semi-Markov
process to an equivalent Markov process consisting of three known processes. However,
the resulting Markov process has a complicated continuous phase space. Upon observing
that the projective and potential operators for this Markov process were obtained in [4],
we apply the method of asymptotic expansion for Markov random evolutions [7]–[9] to
find a recursive solution.

Acknowledgments. We wish to thank an anonymous referee for a careful reading of
the paper and insightful comments and remarks.
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