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CONVERGENCE OF REWARD FUNCTIONALS

IN A RESELLING MODEL FOR A EUROPEAN OPTION

UDC 519.21

M. S. PUPASHENKO

Abstract. We consider an optimal reselling problem for a European option. A
modification of the Cox–Ingersoll–Ross process is used to model the implied volatil-
ity. We construct a two-dimensional binomial-trinomial exponential approximation
instead of the discrete approximation proposed by Pupashenko and Kukush (2008) in
Theory Stoch. Process. 14(30), no. 3–4, 114–128. We use the results concerning the
convergence of reward functionals for exponential price processes with independent
log-increments obtained by Lundgren et al. (2008) in J. Numer. Appl. Math. 1(96),
90–113. We proved that there is no arbitrage strategy in the proposed discrete model.

1. Introduction

We consider a European option. An owner of a European option is not entitled to
exercise it before a given maturity time T and should wait until this time. On the other
hand, it is known that investors playing in real finance markets are allowed to resell an
option prior to the maturity for a quoted market price. One can ask a question about an
optimal moment for reselling an option. The optimal reselling problem for a European
option is posed in the paper [4].

We use the classical geometric Brownian motion to model the price process of a stock.
We assume that the market price of an option is given by the Black–Scholes formula
where the implied volatility is used instead of its true value. We also use the main
results concerning the convergence of the option rewards for exponential price processes
with independent log-increments obtained in [5].

The model of an implied volatility considered in [4] represents the volatility in terms
of a geometric Brownian motion. Unfortunately, this model is not acceptable in practice
because the implied volatility may differ essentially from its real value as t increases.

Another model based on the Cox–Ingersoll–Ross process is proposed in [6]. However
the Cox–Ingersoll–Ross process as well as its discrete approximation proposed in [6] as
a model of the implied volatility does not satisfy the assumptions of Theorems 1 and 3
of [5]. Thus we use a modification of a Cox–Ingersoll–Ross process that possesses the
necessary properties to model the implied volatility. Note also that we construct an
approximation in a different way as compared to that in the paper [6].

The paper is organized as follows. In Section 2 we set the optimal reselling problem.
We recall the main results of [5] concerning the convergence of rewards for exponen-
tial price processes with independent log-increments in Section 3. A two-dimensional
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binomial-trinomial model is constructed in Section 4. This model approximates the two-
dimensional diffusion process corresponding to the reselling model. Also, we prove the
convergence of optimal expected rewards to the corresponding rewards of the diffusion
process in the binomial-trinomial model. We prove that the binomial-trinomial model is
arbitrage-free in Section 5.

2. Setting of the reselling problem

We consider the classical Black–Scholes market for continuous time, namely

(1)

{
S(t) = S(0)e(μ−σ2/2)t+σW1(t),

B(t) = B(0)ert, t ≥ 0.

Here μ, σ, and r are positive parameters, the values S(0) and B(0) are positive and
nonrandom, and W1(t) is a standard Brownian motion adapted to a filtration

(Ω,F , (F ′
t)t≥0,P).

The price of a stock at a moment t for a European option with exercise price K > 0
and maturity T > 0 is described by the Black–Scholes formula

(2) C(t, S(t), σ) = S(t)Φ(d)−Ke−(T−t)Φ
(
d− σ

√
T − t

)
,

where

d =
ln(S(t)/K) + r(T − t)

σ
√
T − t

+
σ
√
T − t

2
, Φ(x) =

1√
2π

∫ x

−∞
e−y2/2 dy.

It is known that a market price of a European option may differ from the theoretical
price. Thus a certain stochastic process σ(t) appears in formula (2) instead of σ to
describe the market price. The process σ(t) is called an implied volatility.

Consider the following model for σ̃(t) that is based on a Cox–Ingersoll–Ross process
(see [3]),

(3) dσ̃2(t) = −α
(
σ̃2(t)− σ̃2

)
dt+ β

√
σ̃2(t) dW2(t), σ̃(0) = σ̃,

where α, β, σ̃ > 0, β2 ≤ 2ασ̃2, and whereW2(t) also is a standard Brownian motion in the
space (Ω,F , (F ′′

t)t≥0,P). The process W2(t) is adapted to another filtration (F ′′
t)t≥0.

If the above conditions imposed on α, β, and σ̃ hold, then (3) does not cross the level 0
and thus is positive for t ≥ 0 in view of σ̃ > 0.

The mean value and covariance of σ̃ are given by (see, for example, [7]):

(4) Eσ̃2(t) = σ̃2,

(5) Cov
(
σ̃2(t), σ̃2(s)

)
=

σ̃2β2

2α
· e−α(s+t)

(
e2α(s∧t) − 1

)
,

where s ∧ t := min(s, t).

Put σ̃ =
√
σ2 − δ20 > 0, where 0 < δ0 < σ and the number δ0 is sufficiently small. We

model the implied volatility σ(t) as follows:

(6) σ2(t) = σ̃2(t) + δ20 , t ≥ 0.

A motivation for using such a model is that we want to separate σ(t) from 0 by a positive
constant. As mentioned above, process (3) does not cross the level 0 under the above
assumptions imposed on α, β, σ, and δ0 and thus process (6) does not cross this level,
too. Then (6) can be rewritten in a different form, namely

(7) σ(t) =
√
σ̃2(t) + δ20 , t ≥ 0,
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or, passing to the differential form,

(8) dσ2(t) = −α
(
σ2(t)− σ2

)
dt+ β

√
σ2(t)− δ20 dW2(t), σ(0) = σ.

Note that the stochastic differential equation (8) is well defined in view of the inequality
σ(t) > δ0 > 0.

We assume that �W (t) = (W1(t),W2(t)) is a two-dimensional Brownian motion whose
components are positively correlated, that is,

(9) EW1(t)W2(t) = ρt, t ≥ 0,

where ρ ∈ (0, 1].
Consider the following stochastic process:

(10) b(t) =
(
σ̃2(t)− σ̃2

)
eαt, t ≥ 0.

Then (7) can be rewritten as follows:

(11) σ(t) =
√
e−αtb(t) + σ2.

Now we evaluate the cross-covariance function EW1(t)σ̃
2(t). Using (9), we represent

the process W1(t) as follows:

W1(t) = ρW2(t) +
√
1− ρ2W3(t),

where W3(t) is a Wiener process that is independent of W2(t).
Applying Itô’s formula to the function

η(t) = f
(
t,W1(t), σ̃

2(t)
)
= W1(t) · σ̃2(t),

we get

dη(t) = d
(
W1(t)σ̃

2(t)
)

= −αW1(t)
(
σ̃2(t)− σ̃2

)
dt+ ρβ

√
σ̃2(t) dt+

(
ρσ̃2(t) + βW1(t)

√
σ̃2(t)

)
dW2(t)

+
√
1− ρ2σ̃2(t) dW3(t).

Rewriting the latter equation in the integral form and passing to the expectations, we
get the following equation:

EW1(t)σ̃
2(t) = −α

∫ t

0

EW1(s)σ̃
2(s) ds+ ρβ

∫ t

0

E
√
σ̃2(s) ds.

Here we used the property that the expectation of the Itô integral equals zero.
Differentiating both sides of the latter equality we get a linear differential equation of

the first order with respect to the unknown EW1(t)σ̃
2(t):

d

dt
EW1(t)σ̃

2(t) = −αEW1(t)σ̃
2(t) + ρβE

√
σ̃2(t).

Recalling the initial condition EW1(0)σ̃
2(0) = 0 we find a solution of this equation,

(12) EW1(t)σ̃
2(t) = ρβe−αt

∫ t

0

E
√
σ̃2(s)eαs ds = ρβe−αtr(t),

where r(t) =
∫ t

0
E
√
σ̃2(s)eαs ds.

Hence we derive from equalities (4), (5), and (12) that the following properties of the
process b(t) are satisfied:

(1) E b(t) = 0,

(2) E b2(t) = β2σ̃2

2α

(
e2αt − 1

)
,

(3) E b(t)b(s) = β2σ̃2

2α

(
e2α(t∧s) − 1

)
,

(4) EW1(t)b(t) = ρβr(t), ρ ∈ (0, 1].
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The market price C(t, S(t), σ(t)) generates a reselling procedure for a European option.
We assume that an owner of an option is allowed to resell it at a certain random moment
belonging to the class MT of Markov stopping times 0 ≤ τ ≤ T with respect to the
filtration Ft = σ((S(s), σ(s)), s ≤ t), generated by the vector process (S(t), σ(t)).

Our aim is to study the reward functional

(13) Φ(MT ) = sup
τ∈MT

E e−rτC(τ, S(τ ), σ(τ )).

Thus the reselling problem of a European option reduces to the optimal exercise prob-
lem of an American option with the payoff function e−rtC(t, S, σ) for the two-dimensional
process (S(t), σ(t)).

Our approach is based on an approximation of the process (S(t), σ(t)) with the help
of a suitable two-dimensional binomial-trinomial model. Then we solve the following two
problems.

The first problem is to construct a binomial-trinomial model that satisfies the corres-
ponding recombination condition (this condition holds for binomial trees if a result of
the down-and-up traveling is the same as in the case of the up-and-down traveling). The
recombination condition for trinomial trees is defined similarly. The simplest example of
a binomial tree that satisfies the recombination condition is presented by the tree {S0},
{S0p, S0q}, {S0p

2, S0pq, S0q
2}, . . . . Note that this tree has a polynomial rate of growth

of the number of nodes as a function of the number of steps (for example, the growth
rate is quadratic for two-dimensional trees).

The second problem is to check the conditions for the convergence of the above reward
functionals.

3. Convergence of rewards for exponential price processes with

independent log-increments

In this section, we recall the main results of the paper [5] concerning the convergence
of rewards for exponential price processes with independent log-increments.

Given ε ≥ 0, let �Y (ε)(t) =
(
Y

(ε)
1 (t), . . . , Y

(ε)
k (t)

)
, t ≥ 0, be a Markov càdlàg process

whose phase space is R
k. We assume that �Y (ε)(t) has independent increments and

that the transition probabilities P (ε)(t, �y, t + s, A) are related to the distribution of its
increments P (ε)(t, t+ u,A) as follows:

(14) P (ε)(t, �y, t+ u,A) = P (ε)(t, t+ u,A− �y) = P
{
�y + �Y (ε)(t+ u)− �Y (ε)(t) ∈ A

}
.

Here �Y (ε)(t) is the vector logarithmic price process. For the sake of simplicity, we assume

that the initial state �Y (ε)(0) = �y(ε) =
(
y
(ε)
i , i = 1, . . . , k

)
is a nonrandom constant.

Now we define the vector price process �S(ε)(t) =
(
S
(ε)
1 (t), . . . , S

(ε)
k (t)

)
, t ≥ 0, by

(15) S
(ε)
i (t) = eY

(ε)
i (t), i = 1, . . . , k, t ≥ 0.

The phase space of S
(ε)
i is Rk

+ = R+ × · · · × R+, where R+ := (0,∞).

Since the exponential function is bijective and continuous, �S(ε)(t) is a Markov càdlàg
process with independent increments of its logarithm.

Let ε ≥ 0 and let g(ε) (t, �s), (t, �s) ∈ R+×R
k
+, be the payoff function of the correspond-

ing American option. We assume that g(ε) (t, �s) is a real Borel function.

Let F (ε)
t = σ

(
�Y (ε)(s), s ≤ t

)
be the natural filtration of σ-algebras corresponding to

the vector logarithmic price process �Y (ε)(t), t ≥ 0. It is worthwhile mentioning that

this filtration coincides with the natural filtration generated by the price process �S(ε)(t),
t ≥ 0.
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We consider Markov moments τ (ε) with respect to the filtration F (ε)
t , t ≥ 0. This

means that τ (ε) is a random variable assuming values in [0,∞] and such that{
ω : τ (ε)(ω) ≤ t

}
∈ F (ε)

t , t ≥ 0.

Let M(ε)
max,T be the class of all Markov moments τ (ε) ≤ T , where T > 0. Consider a

subclass of Markov moments M(ε)
T ⊆ M(ε)

max,T .

Let Π = {0 = t0 < t1 < · · · < tN = T} be a partition of the interval [0, T ] and let

d(Π) = max1≤i≤N (ti − ti−1). By M(ε)
Π,T we denote the class of all Markov times τ (ε) of

M(ε)
max,T assuming values t0, t1, . . . , tN and such that{

ω : τ (ε)(ω) = tj

}
∈ σ

(
�Y (ε)(t0), . . . , �Y

(ε)(tj)
)

for j = 0, . . . , N .
We are interested in studying the reward functional, that is, the maximum expected

gain over various classes of Markov times, namely

(16) Φ
(
M(ε)

T

)
= sup

τ(ε)∈M(ε)
T

E g(ε)
(
τ (ε), �S(ε)

(
τ (ε)

))
.

In what follows the symbols E�y,t and P�y,t stand for the conditional expectation and

probabilities given condition �Y (ε)(t) = �y.
For θ, c, T > 0, and i = 1, . . . , k we introduce the modulus of compactness of expo-

nential moments for the càdlàg process Y
(ε)
i (t), t ≥ 0:

Δθ

(
Y

(ε)
i (·), c, T

)
= sup

0≤t≤t+u≤t+c≤T
sup
�y∈R

k
+

E�y,t

(
eθ
∣∣Y (ε)

i (t+u)−Y
(ε)
i (t)

∣∣ − 1

)
.

Now we are ready to state Theorems 1 and 3 of the paper [5]. The conditions of
these theorems are quite cumbersome and are thus omitted in the statements below.
Nevertheless we will check all these conditions carefully when applying these general
results.

Theorem 3.1 (see Theorem 1 of [5]). Assume that conditions A1, C1, and C2 hold.
Then there are positive constants L2, L3 < ∞ such that, for all ε ≤ ε1, one has the
following bound for the discrete approximation:

(17)

Φ
(
M(ε)

max,T

)
− Φ

(
M(ε)

Π,T

)
≤ L2d(Π) + L3

( k∑
i=1

Δθ

(
Y

(ε)
i (·), d(Π), T

)) θ−γ
θ

.

Theorem 3.2 (see Theorem 3 of [5]). Assume that conditions A1, A4, and D1–D4

hold. Then

(18) Φ
(
M(ε)

max,T

)
→ Φ

(
M(0)

max,T

)
< ∞ as ε → 0.

Note that the assumptions of Theorem 3.2 imply the assumptions of Theorem 3.1 for
an arbitrary partition Π of the interval [0, T ].

4. The binomial-trinomial approximation for the reselling model

We turn to the reselling model introduced in Section 2.
Consider the model (1) with σ given by (11). Now (S(t), σ(t)) is a Markov process.

We study the reward functional Φ(MT ) for an American option with a payoff function
e−rtC(t, S, σ) for the two-dimensional Markov process (S(t), σ(t)).
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Consider the following two stochastic processes:

(19) S
(0)
1 (t) = eσW1(t), t ≥ 0, and S

(0)
2 (t) = eb(t), t ≥ 0.

Then �S(0)(t) =
(
S
(0)
1 (t), S

(0)
2 (t)

)
, t ≥ 0, is a two-dimensional continuous nonhomogeneous

exponential process with independent log-increments.
It is clear that the filtration Ft = σ((S(s), σ(s)), s ≤ t) generated by the vector process

(S(t), σ(t)) coincides with the filtration Ft = σ
((
S
(0)
1 (s), S

(0)
2 (s)

)
, s ≤ t

)
, t ≥ 0, generated

by the process �S(0)(t).
We introduce the payoff function by

(20)
g(t, �s) = e−rtC

(
t, S(0)e(μ−σ2/2)ts1,

√
e−αt ln s2 + σ2

× Ie−αt ln s2+σ2>δ20
+ δ0Ie−αt ln s2+σ2≤δ20

)
,

where the indicator Ie−αt ln s2+σ2>δ20
equals 1 for (t, s2) such that

e−αt ln s2 + σ2 > δ20 ,

while it equals 0 otherwise.
Note that this payoff function does not depend on the perturbation parameter ε.
Then the reward functional is given by

(21) Φ(MT ) = sup
τ∈MT

E e−rτC(τ, S(τ ), σ(τ )) = sup
τ∈MT

E g
(
τ, �S(0)(τ )

)
.

Consider the corresponding two-dimensional logarithmic price process

�Y (0)(t) =
(
Y

(0)
1 (t), Y

(0)
1 (t)

)
, t ≥ 0,

with the components

(22) Y
(0)
1 (t) = σW1(t), t ≥ 0, and Y

(0)
2 (t) = b(t), t ≥ 0.

We approximate �Y (0)(t) by the binomial-trinomial process

�Y (ε)(t) =
(
Y

(ε)
1 (t), Y

(ε)
2 (t)

)
, t ≥ 0,

with the components

(23) Y
(ε)
i (t) =

∑
1≤n≤[t/ε]

Y
(ε)
n,i , t ≥ 0, i = 1, 2.

Here ε > 0 and �Y
(ε)
n =

(
Y

(ε)
n,1 , Y

(ε)
n,2

)
, n = 1, 2, . . . , are independent random vectors

that assume the following six values:(
+u

(ε)
1 ,+u

(ε)
2

)
,

(
+u

(ε)
1 , 0

)
,

(
+u

(ε)
1 ,−u

(ε)
2

)
,(

−u
(ε)
1 ,+u

(ε)
2

)
,

(
−u

(ε)
1 , 0

)
,

(
−u

(ε)
1 ,−u

(ε)
2

)
with the probabilities p

(ε)
n,++, p

(ε)
n,+·, p

(ε)
n,+−, p

(ε)
n,−+, p

(ε)
n,−·, and p

(ε)
n,−−, respectively, where

u
(ε)
2 
= 0.
For the sake of simplicity, let ε = T/N .
In order to prove the convergence of finite-dimensional distributions of the two-dimen-

sional binomial-trinomial process �Y (ε)(t) to the corresponding distributions of the limit

two-dimensional process �Y (0)(t), the expectations, variances, and cross-covariance of the

components of the random vector
(
Y

(ε)
n,1 , Y

(ε)
n,2

)
and those of the increments(

σ
(
W1(nε)−W1((n− 1)ε)

)
, b(nε)− b((n− 1)ε)

)
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should coincide for n = 1, . . . , N . Note that the values of the vector
(
Y

(ε)
n,1 , Y

(ε)
n,2

)
do

not depend on n but its distribution does depend on n, while the distribution of the
increments

(
σ(W1(nε)−W1((n− 1)ε)), b(nε)− b((n− 1)ε)

)
depends on n.

It is important that the jumps u
(ε)
1 and u

(ε)
2 are independent of n, since the neces-

sary recombination condition holds automatically in this case for the two-dimensional
binomial-trinomial tree. The same concerns the necessary quadratic rate of growth of
the number of nodes as a function of the number of steps in the tree.

It is clear that

E[σ · (W1(nε)−W1((n− 1)ε))] = 0,

Var[σ · (W1(nε)−W1((n− 1)ε))] = σ2ε,

E(b(nε)− b((n− 1)ε)) = 0,

and

(24)

σ2
n,ε = Var(b(nε)− b((n− 1)ε)) = E(b(nε)− b((n− 1)ε))2

= E b2(nε)− 2E b(nε)b((n− 1)ε) + E b2((n− 1)ε)

= β2σ̃2e2αnε
1− e−2αε

2α
.

In addition,

�n,ε = E [σ · (W1(nε)−W1((n− 1)ε)) · (b(nε)− b((n− 1)ε))]

= σρβ(r(nε)− r((n− 1)ε)).
(25)

We have to solve the following system of 5N + 1 equations with 6N + 2 unknowns:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E
[
Y

(ε)
n,1

]
= u

(ε)
1

(
2
(
p
(ε)
n,++ + p

(ε)
n,+− + p

(ε)
n,+·

)
− 1

)
= 0,

Var
[
Y

(ε)
n,1

]
=

(
u
(ε)
1

)2
= σ2ε,

E
[
Y

(ε)
n,2

]
= u

(ε)
2

(
p
(ε)
n,++ + p

(ε)
n,−+ − p

(ε)
n,+− − p

(ε)
n,−−

)
= 0,

Var
[
Y

(ε)
n,2

]
=

(
u
(ε)
2

)2 (
p
(ε)
n,++ + p

(ε)
n,−+ + p

(ε)
n,+− + p

(ε)
n,−−

)
= σ2

n,ε,

EY
(ε)
n,1Y

(ε)
n,2 = u

(ε)
1 u

(ε)
2

(
p
(ε)
n,++ + p

(ε)
n,−− − p

(ε)
n,−+ − p

(ε)
+−

)
= �n,ε,

p
(ε)
n,++ + p

(ε)
n,−+ + p

(ε)
n,+− + p

(ε)
n,−− + p

(ε)
n,+· + p

(ε)
n,−· = 1,

n = 1, . . . , N.

We search for a solution of the form u
(ε)
2 = u

√
ε, where u 
= 0 is a parameter to be

chosen later (recall that the number of unknowns in this system is larger than the number
of equations).

We rewrite the above system as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u
(ε)
1 = σ

√
ε,

u
(ε)
2 = u

√
ε,

p
(ε)
n,++ + p

(ε)
n,+− + p

(ε)
n,+· = 1

2 ,

p
(ε)
n,++ + p

(ε)
n,−+ =

σ2
n,ε

2u2ε ,

p
(ε)
n,+− + p

(ε)
n,−− =

σ2
n,ε

2u2ε ,

p
(ε)
n,++ + p

(ε)
n,−− − p

(ε)
n,−+ − p

(ε)
+− =


n,ε

σuε ,

p
(ε)
n,+· + p

(ε)
n,−· = 1− σ2

n,ε

u2ε ,

n = 1, . . . , N,
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and then in the final form:

(26)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u
(ε)
1 = σ

√
ε,

u
(ε)
2 = u

√
ε,

p
(ε)
n,++ = 1

4 +

n,ε

4σuε − 1
2p

(ε)
n,+·,

p
(ε)
n,−− =

σ2
n,ε

2u2ε − 1
4 − 
n,ε

4σuε + 1
2p

(ε)
n,+·,

p
(ε)
n,−+ =

σ2
n,ε

2u2ε − 1
4 − 
n,ε

4σuε + 1
2p

(ε)
n,+·,

p
(ε)
n,+− = 1

4 +

n,ε

4σuε − 1
2p

(ε)
n,+·,

p
(ε)
n,−· = 1− σ2

n,ε

u2ε − p
(ε)
n,+·,

n = 1, . . . , N.

Let

p
(ε)
n,+· =

1

2
+

�n,ε
2σuε

−
σ2
n,ε

u2ε
.

It is easy to show that

β2σ̃2 ≤
σ2
n,ε

ε
≤ β2σ̃2e2αT

and

0 ≤ �n,ε
ε

≤ ρσβσ̃eαT

for n = 1, . . . , N . Thus we can choose a sufficiently large u such that the above proba-
bilities satisfy the following inequalities:

0 <
1

2
− β2σ̃2e2αT

u2
≤ p

(ε)
n,+· ≤

1

2
+

ρβσ̃eαT

2u
− β2σ̃2

u2
< 1

for n = 1, . . . , N .

According to the system of equations (26) we have p
(ε)
n,−+ = p

(ε)
n,−− = 0 if

p
(ε)
n,++ = p

(ε)
n,+− =

σ2
n,ε

2u2ε
.

Moreover, the parameter u can be chosen such that

0 <
β2σ̃2

2u2
≤ p

(ε)
n,++ ≤ β2σ̃2e2αT

2u2
< 1

for all n = 1, . . . , N .
Finally

p
(ε)
n,−. = 1−

σ2
n,ε

u2ε
− p

(ε)
n,+· =

1

2
− �n,ε

2σuε

according to (26) and u can be chosen such that

0 <
1

2
− ρβσ̃eαT

2u
≤ p

(ε)
n,−. ≤

1

2
< 1

for all n = 1, . . . , N .
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Thus, if a number u satisfies all the restrictions mentioned above, then the probabilities
are given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p
(ε)
n,++ =

σ2
n,ε

2u2ε = β2σ̃2

2u2 e2αnε 1−e−2αε

2αε ,

p
(ε)
n,−− = 0,

p
(ε)
n,−+ = 0,

p
(ε)
n,+− =

σ2
n,ε

2u2ε = β2σ̃2

2u2 e2αnε 1−e−2αε

2αε ,

p
(ε)
n,+· = 1

2 +

n,ε

2σuε − σ2
n,ε

u2ε = 1
2 + ρβ(r(nε)−r((n−1)ε))

2uε − β2σ̃2

u2 e2αnε 1−e−2αε

2αε ,

p
(ε)
n,−· = 1

2 − 
n,ε

2σuε = 1
2 − ρβ(r(nε)−r((n−1)ε))

2uε ,
n = 1, . . . , N.

Further, the moment generating function E exp
{
θ
(
Y

(ε)
i (t+ s)−Y

(ε)
i (t)

)}
exists for all

θ ∈ R and can be evaluated explicitly, namely

(27) E exp
{
θ
(
Y

(ε)
1 (t+ s)− Y

(ε)
1 (t)

)}
=

(
eθu

(ε)
1 p

(ε)
1,+ + e−θu

(ε)
i p

(ε)
1,−

)[(t+s)/ε]−[t/ε]

for ε > 0 and 0 ≤ t ≤ t+ s ≤ T , i = 1, 2. Here

p
(ε)
1,+ = p

(ε)
n,++ + p

(ε)
n,+− + p

(ε)
n,+·, p

(ε)
2,− = p

(ε)
n,−+ + p

(ε)
n,−− + p

(ε)
n,−·

(note that the probabilities p
(ε)
1,+ and p

(ε)
2,− do not depend on n) and

(28) E exp
{
θ
(
Y

(ε)
2 (t+ s)− Y

(ε)
2 (t)

)}
=

[(t+s)/ε]∏
[t/ε]+1

(
eθu

(ε)
2 p

(ε)
n,2,+ + e−θu

(ε)
2 p

(ε)
n,2,− + p

(ε)
n,2,·

)
for ε > 0, where

p
(ε)
n,2,+ = p

(ε)
n,++ + p

(ε)
n,−+, p

(ε)
n,2,− = p

(ε)
n,+− + p

(ε)
n,−−, p

(ε)
n,2,+ = p

(ε)
n,+· + p

(ε)
n,−·.

Now we check the assumptions of Theorems 3.1 and 3.2. As mentioned in Section 3,
we have to check conditions A1, A4 and D1–D4.

Recall that payoff function (20) does not depend on ε and thus condition A4 holds
automatically.

Next we check condition A1:

(a) the function g(t, �s) is absolutely continuous in t with respect to the Lebesgue
measure on [0, T ] for all fixed �s ∈ R

2
+; also it is absolutely continuous in �s with

respect to the Lebesgue measure on R
2
+ for all fixed t ∈ [0, T ];

(b) for all �s ∈ R
2
+, the partial derivative ∂g

∂t is such that∣∣∣∣∂g(t, �s)∂t

∣∣∣∣ = ∣∣∣∣−rg(t, �s) + e−rt

(
C

′

1 + C
′

2S(0)

(
μ− σ2

2

)
e(μ−σ2/2)ts1

+ C
′

3

−αe−αt ln s2

2
√
e−αt ln s2 + σ2

Ie−αt ln s2+σ2>δ20
(t, s2)

)∣∣∣∣
≤ K1 +K2(s1 + s2)

for almost all t ∈ [0, T ] with respect to the Lebesgue measure on the interval [0, T ]

and for some 0 ≤ K1,K2 < ∞. Here C
′

1, C
′

2, and C
′

3 are the partial derivatives
with respect to the first, second, and third argument, respectively;
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(c) for all t ∈ [0, T ],∣∣∣∣∂g(ε) (t, �s)∂s1

∣∣∣∣ = ∣∣∣e−rtC
′

2S(0)e
(μ−σ2/2)t

∣∣∣ ≤ K3,∣∣∣∣∂g(ε) (t, �s)∂s2

∣∣∣∣ = ∣∣∣e−rtC
′

3

e−αts−1
2

2
√
e−αt ln s2 + σ2

Ie−αt ln s2+σ2>δ20

∣∣∣ ≤ K4

for almost all �s ∈ R
2
+ with respect to the Lebesgue measure on R

2
+ and for some

0 ≤ K3,K4 < ∞;
(d) for all t ∈ [0, T ] and some 0 ≤ K5 < ∞,

g(t,�0) = lim
�s→�0

g(t, �s) = e−rtC(t, 0, δ0) ≤ K5.

Thus conditionA1 holds for the payoff function (20) with some constantsKi, i = 1, . . . , 5,
and with parameters γ0 = 1 and γ1 = γ2 = 0, whence γ = max{γ0, γ1, γ2} = 1.

Note that we use model (7) instead of (3) in order to have σ(t) separated from zero
by a positive constant δ0, since all the restrictions involved in condition A1 hold in this
case.

Applying the corresponding limit theorems for the vector sum process with indepen-

dent increments (see [2], §34), one can check that the processes �Y (ε)(t), t ∈ [0, T ], with

parameters given by (26) weakly converge in the Skorokhod space to the process �Y (0)(t),
t ∈ [0, T ], as ε → 0. Thus condition D1 holds.

The distribution of the sum process (23) is given by (26). Condition D2 holds for this
distribution. Further, by using relations (27) and (28) one can easily check condition D3

for the processes �Y (ε)(t) for all θ
′
> θ.

Note also that conditions D1 and D2 imply J-convergence of the processes �Y (ε)(t),

t ∈ [0, T ], to the process �Y (0)(t), t ∈ [0, T ], as ε → 0 (see [2], §39).
Finally, condition D4 automatically holds, since the value �Y (ε)(0) = (0, 0) does not

depend on ε.
Summarizing we conclude that all the assumptions of Theorem 3.2 are satisfied,

whence we derive that Φ
(
M(ε)

max,T

)
→ Φ

(
M(0)

max,T

)
as ε → 0 for the corresponding two-

dimensional exponential price processes �S(ε)(t) = exp
{
�Y (ε)(t)

}
, t ≥ 0, with independent

log-increments.
Now we consider a partition

Πε = 〈t0 = 0 < t1 = ε < · · · < tN−1 = (N − 1)ε < tN = T 〉
of the interval [0, T ].

The Markov chain
(
n, �Y (ε)(nε)

)
, n ≥ 0, is a binomial-trinomial tree in this case with

the initial node (0, (0, 0)) and with (n+ 1)(2n+ 1) nodes of the form(
n,

(
(2l1 − n)

√
εσ, l2

√
εu

))
, l1 = 0, . . . , n, l2 = −n, . . . , n, i = 1, 2,

after n ≥ 1 steps.
If a continuous model of an option with maturity T is approximated by the corre-

sponding discrete model with step ε = T/N , then the corresponding tree has N levels
with (N +1)(2N +1) nodes at the last N -th level, and with ((N − 1)+ 1)(2(N − 1)+ 1)
nodes at the (N − 1)-th level.

The standard backward procedure can be used to find an optimal expected reward
at the moment 0 for the discrete exponential two-dimensional binomial-trinomial price

process �S(ε)(nε) = exp
{
�Y (ε)(nε)

}
. This optimal expected reward coincides in this case

with the reward functional Φ
(
M(ε)

Πε,T

)
for the two-dimensional exponential price processes

�S(ε)(t) = e
�Y (ε)(t).
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To obtain a bound for the difference Φ
(
M(ε)

max,T

)
− Φ

(
M(ε)

Πε,T

)
we use Theorem 3.1.

In this case, d(Πε) = ε, Δθ

(
Y

(ε)
1 (·), ε, T

)
= E eθ|Y

(ε)
1,1 | − 1 ≤ eθσ

√
ε − 1, and

Δθ

(
Y

(ε)
2 (·), ε, T

)
= max

1≤n≤N

(
E eθ

∣∣Y (ε)
n,2

∣∣ − 1

)
≤ eθu

√
ε − 1.

Theorem 3.1 gives in this case

(29)

Φ
(
M(ε)

max,T

)
− Φ

(
M(ε)

Πε,T

)
≤ L2ε+ L3

(
eθσ

√
ε − 1 + eθu

√
ε − 1

) θ−γ
θ → 0 as ε → 0.

Now Theorem 3.2 implies that the optimal expected reward Φ
(
M(ε)

Πε,T

)
converges to

the reward functional Φ
(
M(0)

max,T

)
for the two-dimensional process �S(0)(t) = e

�Y (0)(t) with
independent log-increments.

According to Theorem 3.2, the optimal expected reward for the two-dimensional
binomial-trinomial exponential model described above converges to the optimal expected
reward functional for the corresponding two-dimensional process with independent log-
increments.

5. The discrete model is arbitrage-free

We start with a classical definition of the arbitrage strategy (see [1]):

Definition 5.1. We say that a Markov stopping time τ admits an arbitrage if the
following two conditions hold:

a) P(e−rτC(τ, S(τ ), σ(τ )) ≥ C(0, S(0), σ)) = 1,
b) P(e−rτC(τ, S(τ ), σ(τ )) > C(0, S(0), σ)) > 0.

Consider a partition

Πε = 〈t0 = 0 < t1 = ε < · · · < tN−1 = (N − 1)ε < tN = T 〉

of the interval [0, T ]. We again use the approximation (22), (23) for σW1(t), t ≥ 0, and
b(t), t ≥ 0. Using (1) and (11), one can write down an approximation for S(t) and σ(t)
as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
S(ε)(t) = S(ε)(tj), t ∈ [tj , tj+1), S

(ε)(0) = S(0),

σ(ε)(t) = σ(ε)(tj), t ∈ [tj , tj+1), σ
(ε)(0) = σ,

S(ε)(tj+1) = S(ε)(tj)e
(μ−σ2/2)ε+Y

(ε)
j+1,1 ,

σ(ε)(tj+1) =
√
e−αε((σ(ε)(tj))2 + e−αtjY

(ε)
j+1,2) + σ2(1− e−αε), j = 0, . . . , N − 1.

If a martingale measure P ∗ exists for which e−rtjC
(
tj , S

(ε)(tj), σ
(ε)(tj)

)
is a martingale

with respect to the filtration generated by the vector
(
S(ε)(tj), σ

(ε)(tj)
)
, j = 0, . . . , N ,

then the model is arbitrage-free (see [1]). The latter condition holds if, for all 1 ≤ j ≤ N ,

(30)
E∗

(
e−rtjC

(
tj , S

(ε)(tj), σ
(ε)(tj)

) ∣∣∣ S(ε)(tj−1), σ
(ε)(tj−1)

)
= e−rtj−1C

(
tj−1, S

(ε)(tj−1), σ
(ε)(tj−1)

)
.

The symbol E∗ in equality (30) stands for the expectation with respect to the martin-
gale measure P ∗.
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We choose a measure P ∗ such that Y
(ε)
j,1 and Y

(ε)
j,2 are independent and have the

following distributions:

P ∗
(
Y

(ε)
j,1 = σ

√
ε
)
=

erε−(μ−σ2/2)ε − e−σ
√
ε

eσ
√
ε − e−σ

√
ε

,

P ∗
(
Y

(ε)
j,1 = −σ

√
ε
)
= 1− P ∗

(
Y

(ε)
j,1 = σ

√
ε
)
,

P ∗
(
Y

(ε)
j,2 = u

√
ε
)
= h

(
S(ε)(tj−1), σ

(ε)(tj−1)
)
,

P ∗
(
Y

(ε)
j,2 = −u

√
ε
)
= g

(
S(ε)(tj−1), σ

(ε)(tj−1)
)
,

P ∗
(
Y

(ε)
j,2 = 0

)
= f

(
S(ε)(tj−1), σ

(ε)(tj−1)
)
, j = 1, . . . , N,

f
(
S(ε)(tj−1), σ

(ε)(tj−1)
)
= 1− h

(
S(ε)(tj−1), σ

(ε)(tj−1)
)
− g

(
S(ε)(tj−1), σ

(ε)(tj−1)
)
.

Introducing the notation

σj+1,+ = σj+1,+

(
σ(ε)(tj)

)
=

√
e−αε

((
σ(ε)(tj)

)2
+ e−αtju

√
ε
)
+ σ2(1− e−αε),

σj+1,− = σj+1,−

(
σ(ε)(tj)

)
=

√
e−αε

((
σ(ε)(tj)

)2 − e−αtju
√
ε
)
+ σ2(1− e−αε),

σj+1,0 = σj+1,0

(
σ(ε)(tj)

)
=

√
e−αε

(
σ(ε)(tj)

)2
+ σ2(1− e−αε), j = 0, . . . , N − 1,

we obtain

E∗
(
e−rtjC

(
tj , S

(ε)(tj), σ
(ε)(tj)

) ∣∣∣ S(ε)(tj−1), σ
(ε)(tj−1)

)
= e−rtjE∗

[
C
(
tj , S

(ε)(tj), σj,+

)
h
(
S(ε)(tj−1), σ

(ε)(tj−1)
)

+ C
(
tj , S

(ε)(tj), σj,−

)
g
(
S(ε)(tj−1), σ

(ε)(tj−1)
)

+ C
(
tj , S

(ε)(tj), σj,0

)
f
(
S(ε)(tj−1), σ

(ε)(tj−1)
) ∣∣∣ S(ε)(tj−1), σ

(ε)(tj−1)
]

= e−rtj−1

[
C
(
tj−1, S

(ε)(tj−1), σj,+

)
h
(
S(ε)(tj−1), σ

(ε)(tj−1)
)

+ C
(
tj−1, S

(ε)(tj−1), σj,−

)
g
(
S(ε)(tj−1), σ

(ε)(tj−1)
)

+ C
(
tj−1, S

(ε)(tj−1), σj,0

)
f
(
S(ε)(tj−1), σ

(ε)(tj−1)
)]

.

Now we rewrite (30) as follows:

C
(
tj−1, S

(ε)(tj−1), σj,+

)
h
(
S(ε)(tj−1), σ

(ε)(tj−1)
)

+ C
(
tj−1, S

(ε)(tj−1), σj,−

)
g
(
S(ε)(tj−1), σ

(ε)(tj−1)
)

+ C
(
tj−1, S

(ε)(tj−1), σj,0

)
f
(
S(ε)(tj−1), σ

(ε)(tj−1)
)

= C
(
tj−1, S

(ε)(tj−1), σ
(ε)(tj−1)

)
,

which is equivalent to

(31)

[Cj−1,+ − Cj−1,0]h
(
S(ε)(tj−1), σ

(ε)(tj−1)
)

+ [Cj−1,− − Cj−1,0]g
(
S(ε)(tj−1), σ

(ε)(tj−1)
)

= Cj−1 − Cj−1,0,
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where

Cj−1,+ = C(tj−1, S
(ε)(tj−1), σj,+),

Cj−1,− = C(tj−1, S
(ε)(tj−1), σj,−),

Cj−1,0 = C(tj−1, S
(ε)(tj−1), σj,0),

Cj−1 = C(tj−1, S
(ε)(tj−1), σ

(ε)(tj−1)).

If ε is sufficiently small, then

σj,− < σj,0 < σ(ε)(tj−1) < σj,+ if σ < σ(ε)(tj−1),

σj,− < σ(ε)(tj−1) < σj,0 < σj,+ if σ > σ(ε)(tj−1),

σj,− < σj,0 = σ(ε)(tj−1) < σj,+ if σ = σ(ε)(tj−1)

for all 1 ≤ j ≤ N .
Since C is increasing with respect to the third argument, the following inequalities

hold if ε is sufficiently small:

Cj−1,− < Cj−1,0 < Cj−1 < Cj−1,+ if σ < σ(ε)(tj−1),

Cj−1,− < Cj−1 < Cj−1,0 < Cj−1,+ if σ > σ(ε)(tj−1),

Cj−1,− < Cj−1,0 = Cj−1 < Cj−1,+ if σ = σ(ε)(tj−1)

for all 1 ≤ j ≤ N .
These inequalities allow us to choose the necessary probabilities h, g, and f such that

they are nonzero and relation (31) holds. Note that the expression involving these prob-
abilities depends on specific relations between σ and σ(ε)(tj−1). Consider, for example,

the case of σ < σ(ε)(tj−1). Then

Cj−1,+ − Cj−1,0 > Cj−1 − Cj−1,0 > 0 and Cj−1,− − Cj−1,0 < 0.

Rewriting (31) as

h
(
S(ε)(tj−1), σ

(ε)(tj−1)
)
+

Cj−1,− − Cj−1,0

Cj−1,+ − Cj−1,0
g
(
S(ε)(tj−1), σ

(ε)(tj−1)
)

=
Cj−1 − Cj−1,0

Cj−1,+ − Cj−1,0
,

we find the probabilities h, g, and f such that none of them equals zero.
Thus we proved that the above discrete model is arbitrage-free.

Concluding remarks

In this paper, we considered the reselling problem of a European option for the case
where the implied volatility is described with the help of a modified Cox–Ingersoll–Ross
process. For this model, we constructed a two-dimensional binomial-trinomial exponen-
tial approximation and proved that it is arbitrage-free. Also we proved the convergence of
the optimal expected reward in the model to the optimal expected reward functional for
the corresponding two-dimensional exponential process with independent log-increments.
A nonmodified Cox–Ingersoll–Ross process as a model of the implied volatility can also
be studied in the context of the same problem.
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