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CONVERGENCE OF SERIES

OF GAUSSIAN MARKOV SEQUENCES

UDC 519.21

M. K. RUNOVSKA

Abstract. We find necessary and sufficient conditions for the almost sure conver-
gence of sums of centered Gaussian Markov sequences.

1. Introduction

Consider a sequence of random variables (ξk) = (ξk, k ≥ 1) defined by the system of
recurrence equations

ξ0 = 0, ξk = αkξk−1 + βkθk, k ≥ 1,

where (αk) is a sequence of real numbers, (βk) a sequence of nonnegative numbers,
and (θk) a sequence of independent symmetric random variables such that P{θk = 0} < 1,
k ≥ 1. Necessary and sufficient conditions for the almost sure (a.s.) convergence of the
random series

∑∞
k=1 ξk are obtained in the paper [4].

In this paper, we consider a class of centered Gaussian Markov sequences (ξk) or, in
other words, sequences of random variables defined by the system of recurrence relations

(1) ξ0 = 0, ξk = αkξk−1 + βkγk, k ≥ 1,

where (αk) is a sequence of real numbers, (βk) a sequence of nonnegative numbers,
and (γk) a standard Gaussian sequence, that is, a sequence of independent Gaussian
random variables with zero mean and unit variance.

The aim of this paper is to find conditions for the almost sure convergence of the
random series

(2)

∞∑
k=1

ξk

for a centered Gaussian Markov sequence (ξk, k ≥ 1) defined by (1). Note that the asymp-
totic properties of realizations of Gaussian Markov sequences are studied in the paper [1].
In particular, necessary and sufficient conditions for the almost sure convergence to zero
are obtained in [1] for the case of Gaussian Markov sequences.

An interested reader is invited to consult the paper [4], since we use the main notation
introduced in [4].

2. Auxiliary results

Consider a finite-dimensional space Rd, d ≥ 1. Let c(Rd) be the space of all convergent
sequences belonging to the space Rd; (Xn) a sequence of independent symmetric random
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vectors of the space R
d; Ξn =

∑n
k=1Xk, n ≥ 1; and let (An) be a sequence of linear

continuous operators acting from R
d to R

d. The class of all monotone sequences of
positive integer numbers tending to infinity is denoted by R∞.

Below we give a criterion for the almost sure convergence of sums of independent
symmetric random vectors with an operator normalization in the space R

d (see [2, 3]).

Theorem 2.1. The relation

(AnΞn) ∈ c
(
R

d
)

a.s.

is equivalent to the set of the following three conditions:
A) for all k ≥ 1,

(AnXk) ∈ c
(
R

d
)

a.s.;

B) the series
∑∞

k=1 Yk converges in R
d almost surely, where

Yk = lim
n→∞

(AnXk);

C) for all sequences (mj) of the class R∞,

‖Amj+1
(Ξmj+1

− Ξmj
)‖ −→

j→∞
0 a.s.

We use the following result [2, 3] to check condition C) of Theorem 2.1 in the case of
Gaussian random vectors.

Lemma 2.1. Let (Γk) be a sequence of centered Gaussian random vectors in the space Rd,
d ≥ 1. If

(3)

∞∑
k=1

exp

{
− ε

E ‖Γk‖2

}
< ∞

for all ε > 0, then

(4) lim
k→∞

‖Γk‖ = 0 a.s.

If (Γk) is a sequence of independent random vectors, then relations (3) and (4) are
equivalent.

3. A criterion for the convergence of sums

of Gaussian Markov sequences

Let n ≥ 1 and

(5) A′(n, k) =

⎧⎪⎪⎨⎪⎪⎩
1 +

∑n−k
l=1

(∏k+l
j=k+1 αj

)
, 1 ≤ k ≤ n− 1,

1, k = n,

0, k > n,

and

(6) A(n, k) = βkA
′(n, k), n, k ≥ 1.

For k ≥ 1, put

(7) A(∞, k) = βk +
∞∑
l=1

⎛⎝βk

k+l∏
j=k+1

αj

⎞⎠ .
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Note that A(∞, k) = limn→∞ A(n, k) if the limit exists. The latter condition means that
the series

(8)
∞∑
l=1

βk

( k+l∏
j=k+1

αj

)
converges. Below is the criterion for the almost sure convergence of series (2) with the
terms defined by (1).

Theorem 3.1. The random series (2) converges almost surely if and only if the following
three conditions hold:

1) series (8) converges for all k ≥ 1;
2) the following relation holds:

(9)
∞∑
k=1

(A(∞, k))2 < ∞;

3) for all ε > 0 and all sequences (mj) of the class R∞,

(10)
∞∑
j=1

exp

{
− ε∑mj+1

i=mj+1(A(mj+1, i))2

}
< ∞.

Proof. First we introduce some notation. Consider a sequence (Sn) of partial sums of
series (2):

Sn =

n∑
k=1

ξk, n ≥ 1.

The method of the proof of Theorem 3.1 is to pass from the sequence (Sn) to the sequence
of sums of independent centered Gaussian vectors in the space R

2. This method was
introduced in [2, 3].

Since ξn = Sn − Sn−1, n ≥ 1, relation (1) implies that the sequence (Sn) satisfies the
recurrence relation of the second order, namely

(11) S−1 = S0 = 0, Sn = (1 + αn)Sn−1 − αnSn−2 + βnγn, n ≥ 1.

We pass from relation (11) to a recurrence relation of the first order in the space R
2,

namely

(12) S̃1 = Θ1, S̃n = BnS̃n−1 +Θn, n ≥ 2,

where

S̃n =

(
Sn

Sn−1

)
, Bn =

(
1 + αn −αn

1 0

)
, Θn =

(
βnγn
0

)
, n ≥ 1.

The above notation implies that the random series (2) converges almost surely if and

only if the limit limn→∞ S̃n exists almost surely.
Now we transform the recurrence relation (12) to the following form:

(13) S̃n =

( 2∏
j=n

Bj

)
Θ1 +

( 3∏
j=n

Bj

)
Θ2 + · · ·+BnΘn−1 +Θn, n ≥ 1,

where
∏k

j=nBj = BnBn−1 . . . Bk, k ≤ n.
Using mathematical induction, we prove that

k∏
j=n

Bj =

⎛⎝1 +
∑n−k+1

l=1

(∏k+l−1
j=k αj

)
−
∑n−k+1

l=1

(∏k+l−1
j=k αj

)
1 +

∑n−k
l=1

(∏k+l−1
j=k αj

)
−
∑n−k

l=1

(∏k+l−1
j=k αj

) ⎞⎠ , 2 ≤ k ≤ n.
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Recalling definition (5) we obtain

(14)
k∏

j=n

Bj =

(
A′(n, k − 1) 1−A′(n, k − 1)

A′(n− 1, k − 1) 1−A′(n− 1, k − 1)

)
, 2 ≤ k ≤ n.

Turning back to the proof of the necessity we will show that conditions 1)–3) of
Theorem 3.1 follow from the almost sure convergence of the random series (2).

Let the random series (2) converge almost surely. Then, as proved in the paper [4],
conditions 1) and 2) of Theorem 3.1 hold.

To prove condition 3), we apply the contraction principle in the space of convergent
sequences (see [2, 3]). Fix an arbitrary sequence (mj) of the class R∞.

Consider a family of random vectors (Zn,k;n, k ≥ 1) defined by

Zn,k =

⎧⎪⎪⎨⎪⎪⎩
(∏k+1

j=nBj

)
Θk, 1 ≤ k ≤ n− 1,

Θk, k = n,
−→
0 , k > n,

where
−→
0 is the zero vector in the space R2. This family of random variables satisfies the

following two conditions:

a) for all n ≥ 1, the series
∑∞

k=1 Zn,k converges almost surely in the norm of the
space R

2;
b) the sequences Wk = (Zn,k, n ≥ 1), k ≥ 1, are independent and symmetric as

random elements of the space of sequences. Moreover,

S̃n =

∞∑
k=1

Zn,k, n ≥ 1.

Along with the family (Zn,k;n, k ≥ 1) consider the family of contractions (βn,k;n, k ≥ 1),
where

βn,k =

{
1, n = mj+1, mj < k ≤ mj+1, j ≥ 1,

0, otherwise.

Since the random series (2) converges almost surely, the limit lim
n→∞

S̃n exists almost

surely. This implies that the sequence of vectors (
∑∞

k=1 Zn,k) converges almost surely in
the space R

2 and, moreover,

‖βn,kZn,k‖ −→
n→∞

0, k ≥ 1 almost surely.

According to the contraction principle (see Corollary 2.7.1 in [2]) this implies that∥∥∥∥ ∞∑
k=1

βn,kZn,k

∥∥∥∥ −→
n→∞

0 almost surely.

If one uses the above notation, the latter relation can be rewritten as follows:∥∥∥∥∥∥
mj+1∑

k=mj+1

( k+1∏
i=mj+1

Bi

)
Θk

∥∥∥∥∥∥ −→
j→∞

0 almost surely,

which is equivalent to

(15)

∥∥∥∥∥
( ∑mj+1

k=mj+1 A(mj+1, k)γk∑mj+1−1
k=mj+1 A(mj+1 − 1, k)γk

)∥∥∥∥∥ −→
j→∞

0 almost surely

in view of representation (14).



CONVERGENCE OF SERIES OF GAUSSIAN MARKOV SEQUENCES 153

Since (γk) is a standard Gaussian sequence, the sum

mj+1∑
k=mj+1

A(mj+1, i)γk

is a centered Gaussian random variable for all j ≥ 1. Moreover, the random variables
mj1+1∑

i=mj1
+1

A(mj1+1, i)γi and

mj2+1∑
i=mj2

+1

A(mj2+1, i)γi

are independent whenever j1 �= j2. Thus, in view of (15), Lemma 2.1 implies that

∞∑
j=1

exp

{
− ε∑mj+1

i=mj+1 A(mj+1, i)2

}
< ∞

for all ε > 0.
Therefore condition 3) of Theorem 3.1 holds, and the necessity of the almost sure

convergence of series (2) for the assumptions 1)–3) in Theorem 3.1 is proved.
Now we prove the sufficiency part of the theorem. We show that assumptions 1)–3)

imply the almost sure convergence of series (2). We distinguish between the following
two cases:

I) all coefficients are nonzero, that is, αn �= 0, n ≥ 1;
II) there are some zero coefficients αn.

Case I). Let all coefficients be nonzero, that is, αn �= 0, n ≥ 1. Then all matrices Bn,
n ≥ 1, involved in representation (13) are nonsingular, that is, detBn �= 0, n ≥ 1. This
means that one can pass from relation (13) to the following one:

S̃n =

( 2∏
j=n

Bj

)(
Θ1 +B−1

2 Θ2 +
(
B−1

2 B−1
3

)
Θ3 + · · ·+

(
B−1

2 B−1
3 · · ·B−1

n

)
Θn

)
,

n ≥ 1,

where B−1
k is the inverse matrix for Bk, k ≥ 1.

Now we represent the sequence (S̃n) as a sequence of sums of independent random
vectors with an operator normalization (see [2, 3]), namely

S̃n = An

n∑
k=1

Xk = AnΞn, n ≥ 1,

where

Ξn =

n∑
k=1

Xk, n ≥ 1,

X1 = Θ1, Xk =
( k∏

j=2

B−1
j

)
Θk, k ≥ 2,

A1 = I, An =

2∏
j=n

Bj =

(
A′(n, 1) 1−A′(n, 1)

A′(n− 1, 1) 1−A′(n− 1, 1)

)
, n ≥ 2,

and where I is the unit 2× 2 matrix.
Note that (Xn) is a sequence of independent centered Gaussian random vectors in the

space R
2. Thus the sequence (S̃n) is represented in the form of the sequence (AnΞn)

of sums of independent random vectors with an operator normalization in the space R
2.
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This implies that the random series (2) converges almost surely if (AnΞn) ∈ c(R2) almost
surely. Now we apply Theorem 2.1 to the sequence (AnΞn).

Let the series (8) converge for all k ≥ 1. This means that the limit

lim
n→∞

A(n, k) = A(∞, k)

exists for all k ≥ 1. Since

AnXk = BnBn−1 · · ·Bk+1Θk =

(
A(n, k)γk

A(n− 1, k)γk

)
, k, n ≥ 1,

we have (AnXk) ∈ c(R2) almost surely for all k ≥ 1, whence condition A) of Theorem 2.1
follows. Moreover,

Yk = lim
n→∞

AnXk = lim
n→∞

(
A(n, k)γk

A(n− 1, k)γk

)
=

(
A(∞, k)γk
A(∞, k)γk

)
, k ≥ 1.

Let condition (9) hold. Then the random series

∞∑
k=1

A(∞, k)γk

converges almost surely. Since

∞∑
k=1

Yk =

∞∑
k=1

(
A(∞, k)γk
A(∞, k)γk

)
,

we conclude that the series
∑∞

k=1 Yk converges almost surely in the space R
2. Therefore

condition B) of Theorem 2.1 also holds.
Finally we show that condition C) of Theorem 2.1 holds. Consider an arbitrary se-

quence (mj) of the class R∞. Then

(16)

Amj+1
(Ξmj+1

− Ξmj
) =

( mj+2∏
j=mj+1

Bj

)
Θmj+1 + · · ·+ Bmj+1

Θmj+1−1 +Θmj+1

=

( ∑mj+1

i=mj+1 A(mj+1, i)γi∑mj+1−1
i=mj+1 A(mj+1 − 1, i)γi

)
, j ≥ 1.

Assume that condition (10) holds. Then, according to Lemma 2.1,

lim
j→∞

∣∣∣∣ mj+1∑
i=mj+1

A(mj+1, i)γi

∣∣∣∣ = 0 almost surely.

This together with (16) implies that

lim
j→∞

‖Amj+1
(Ξmj+1

− Ξmj
)‖ = 0 almost surely,

whence condition C) of Theorem 2.1 follows.
Hence all the conditions of Theorem 2.1 hold and thus series (2) converges almost

surely. Therefore Theorem 3.1 is proved for the case where all coefficients αn, n ≥ 1, are
nonzero.

Case II). Now let there be some zero coefficients among αn, n ≥ 1.
The case where there is only a finite number of zeros in the sequence αn, n ≥ 1,

reduces to Case I).
Assume that there is an infinite number of zeros in the sequence αn, n ≥ 1. The

method to prove the result in this case is to construct an auxiliary Gaussian Markov
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sequence (ξ̂k) with nonzero coefficients α̂n, n ≥ 1, such that all the assumptions of
Theorem 3.1 hold for it and the two series

∞∑
k=1

ξ̂k and

∞∑
k=1

ξk

converge or diverge simultaneously. A similar method, called the disturbed coefficients
method, is introduced in [2, 3].

Along with sequence (1), consider a centered Gaussian Markov sequence (ξ̂k) given by
the following recurrence relation of the first order:

ξ̂0 = 0, ξ̂k = α̂k ξ̂k−1 + βkγk, k ≥ 1,

where the sequences (βk) and (γk) are the same as in relation (1), while

α̂k =

{
αk if αk �= 0,

εk if αk = 0.

The sequence (εk) is chosen such that εk > 0, k ≥ 1, and

(17)

∣∣∣∣ k+l∏
j=k+1

α̂j −
k+l∏

j=k+1

αj

∣∣∣∣ ≤ 2−k · 2−l

τk
, k, l ≥ 1,

where

τk =

{
1 if βk ∈ [0, 1),

βk if βk ∈ [1,∞).

First we show that such a sequence (εk) exists. We enumerate the indices k ≥ 1 for
which αk = 0. The resulting sequence is denoted by (ni), i ≥ 1, that is, αni

= 0, i ≥ 1.
Now we choose the sequence (εni

) such that

εni
≤ 2−n(i+1)

δni

∏ni

j=1 τj
, i ≥ 1,

where

δni
=

{
1 if Δni

∈ (0, 1),

Δni
if Δni

∈ [1,∞),

and

Δni
= sup

s≥n(i−1)+1,t≤n(i+1)−1

∣∣∣∣ni−1∏
m=s

αm ·
t∏

m=ni+1

αm

∣∣∣∣, i ≥ 1.

Fix k ≥ 1. Note that ∣∣∣∣ k+l∏
j=k+1

α̂j −
k+l∏

j=k+1

αj

∣∣∣∣ = 0, l ≥ 1,

if αj �= 0 for all k + 1 ≤ j ≤ k + l. Thus we may restrict the consideration to the case
where there exists at least one number ni ∈ {k + 1, k + 2, . . . , k + l} such that αni

= 0.
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Then ∣∣∣∣ k+l∏
j=k+1

α̂j −
k+l∏

j=k+1

αj

∣∣∣∣ = ∣∣∣∣ k+l∏
j=k+1

α̂j

∣∣∣∣ = ∣∣∣∣∏αj

∣∣∣∣
k+1≤j≤k+l : αj �=0

·
∏

εni

i : k+1≤ni≤k+l

≤
∣∣∣∣∏αj

∣∣∣∣
k+1≤j≤k+l : αj �=0

·
∏

i : k+1≤ni≤k+l

2−n(i+1)

δni

∏ni

j=1 τj

≤ 1

τk
·

∏
i : k+1≤ni≤k+l

2−n(i+1)

≤ 2−(k+l)

τk

for all l ≥ 1. This means that inequalities (17) hold if the sequence (εk) is chosen as
indicated above.

We continue the proof of Theorem 3.1 for the case II). We show that assumptions

1)–3) of this theorem hold for the sequence (ξ̂k).
Indeed, inequalities (17) imply that

∣∣∣∣ k+l∏
j=k+1

α̂j

∣∣∣∣ ≤ ∣∣∣∣ k+l∏
j=k+1

α̂j −
k+l∏

j=k+1

αj

∣∣∣∣+ ∣∣∣∣ k+l∏
j=k+1

αj

∣∣∣∣
≤ 2−k · 2−l

τk
+

∣∣∣∣ k+l∏
j=k+1

αj

∣∣∣∣
for k, l ≥ 1. Note that the series

∞∑
l=1

2−k · 2−l

τk
=

2−k

τk

∞∑
l=1

2−l

converges for all k ≥ 1. Moreover,

∞∑
l=1

∣∣∣∣ k+l∏
j=k+1

αj

∣∣∣∣ < ∞

for all k ≥ 1, since the latter series has only a finite number of nonzero terms. This
implies that

∞∑
l=1

∣∣∣∣ k+l∏
j=k+1

α̂j

∣∣∣∣ < ∞

for all k ≥ 1. Hence condition 1) of Theorem 3.1 holds.

Next we show that assumption 2) of Theorem 3.1 holds for the sequence (ξ̂k), that is,

(18)
∞∑
k=1

(
Â(∞, k)

)2
< ∞,
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where the numbers Â(∞, k) are defined by equality (7) and where the coefficients α̂k are
used instead of the coefficients αk. Since(

Â(∞, k)
)2

=
(
(Â(∞, k)−A(∞, k)) +A(∞, k)

)2

≤ 2
(
Â(∞, k)−A(∞, k)

)2

+ 2 (A(∞, k))2

= 2

⎛⎝ ∞∑
l=1

( k+l∏
j=k+1

α̂j −
k+l∏

j=k+1

αj

)⎞⎠2

β2
k + 2(A(∞, k))2

≤ 2

( ∞∑
l=1

2−k · 2−l

τk

)2

β2
k + 2(A(∞, k))2

≤ 2 · 4−k

( ∞∑
l=1

2−l

)2

+ 2(A(∞, k))2 = 2 · 4−k + 2(A(∞, k))2,

condition (9) implies relation (18), which means that condition 2) of Theorem 3.1 holds,
indeed.

Finally we show that assumption 3) of Theorem 3.1 holds for the sequence (ξ̂k). Fix
an arbitrary sequence (mj) of the class R∞. According to inequalities (17),

E

∣∣∣∣∣∣
mj+1∑

k=mj+1

mj+1∑
l=1

( k+l∏
i=k+1

α̂i −
k+l∏

i=k+1

αi

)
βkγk

∣∣∣∣∣∣
≤ E |γk| ·

mj+1∑
k=mj+1

(mj+1∑
l=1

2−k · 2−l

τk

)
βk

≤
√

2

π

mj+1∑
k=mj+1

2−k

(
1−

(
1

2

)mj+1
)

=

√
2

π

(
1−

(
1

2

)mj+1
)
·
(
1−

(
1

2

)mj+1−mj
)

·
(
1

2

)mj

≤
√

2

π

(
1

2

)mj

for all j ≥ 1, whence

∞∑
j=1

E

∣∣∣∣∣∣
mj+1∑

k=mj+1

mj+1∑
l=1

( k+l∏
i=k+1

α̂i −
k+l∏

i=k+1

αi

)
βkγk

∣∣∣∣∣∣ < ∞.

This means that the random series

∞∑
j=1

∣∣∣∣∣∣
mj+1∑

k=mj+1

mj+1∑
l=1

( k+l∏
i=k+1

α̂i −
k+l∏

i=k+1

αi

)
βkγk

∣∣∣∣∣∣
converges almost surely and∣∣∣∣∣∣

mj+1∑
k=mj+1

mj+1∑
l=1

( k+l∏
i=k+1

α̂i −
k+l∏

i=k+1

αi

)
βkγk

∣∣∣∣∣∣ −→
j→∞

0 almost surely.
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The latter relation can be rewritten as follows:

(19)

∣∣∣∣ mj+1∑
k=mj+1

(
Â(mj+1, k)−A(mj+1, k)

)
γk

∣∣∣∣ −→
j→∞

0 almost surely,

where the numbers Â(n, k), n, k ≥ 1, are defined by equality (6), in which the coeffi-
cients α̂k are used instead of the coefficients αk.

Recalling condition (10) we get from Lemma 2.1 that∣∣∣∣ mj+1∑
k=mj+1

A(mj+1, k)γk

∣∣∣∣ −→
j→∞

0 almost surely.

Thus relation (19) yields∣∣∣∣ mj+1∑
k=mj+1

Â(mj+1, k)γk

∣∣∣∣ −→
j→∞

0 almost surely.

According to Lemma 2.1,

∞∑
j=1

exp

{
− ε∑mj+1

k=mj+1 Â(mj+1, k)2

}
< ∞.

Hence assumption 3) of Theorem 3.1 holds. Therefore the sequence (ξ̂k) satisfies all

the assumptions of Theorem 3.1, whence we conclude that the series
∑∞

k=1 ξ̂k converges
almost surely in view of the case I) proved above.

Now we prove that the almost sure convergence of the series
∑∞

k=1 ξk is equivalent to

that of the series
∑∞

k=1 ξ̂k. Since

E
∣∣ξ̂k − ξk

∣∣ = E

∣∣∣∣∣∣
k−1∑
i=1

( k∏
j=i+1

α̂j

)
βiγi −

k−1∑
i=1

( k∏
j=i+1

αj

)
βiγi

∣∣∣∣∣∣
= E

∣∣∣∣∣∣
k−1∑
i=1

( k∏
j=i+1

α̂j −
k∏

j=i+1

αj

)
βiγi

∣∣∣∣∣∣
≤ E |γi| ·

k−1∑
i=1

∣∣∣∣ k∏
j=i+1

α̂j −
k∏

j=i+1

αj

∣∣∣∣βi

≤
√

2

π
·
k−1∑
i=1

2−i · 2−(k−i)

τi
βi ≤

√
2

π
· (k − 1) · 2−k,

the series
∑∞

k=1 E |ξ̂k − ξk| converges. This implies the almost sure convergence of the

random series
∑∞

k=1 |ξ̂k − ξk|, whence we establish the almost sure convergence of the

random series
∑∞

k=1(ξ̂k−ξk). Therefore the almost sure convergence of the series
∑∞

k=1 ξk
is equivalent to that of the series

∑∞
k=1 ξ̂k.

Since the random series
∑∞

k=1 ξ̂k converges almost surely, we conclude that
∑∞

k=1 ξk
converges almost surely, too. Thus Theorem 3.1 is valid for the case II), as well, and the
proof is complete. �
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4. Corollaries

Corollary 4.1. Let αk = 0 for all k ≥ 1, that is, let (ξk) be a sequence of independent
Gaussian random variables. The random series (2) converges almost surely if and only
if

(20)

∞∑
k=1

β2
k < ∞.

Proof. In this case,
A(n, k) = βk, n ≥ 1,

and
A(∞, k) = βk, k ≥ 1.

Thus assumptions 1) and 2) of Theorem 3.1 are equivalent to condition (20).
We show that condition (20) implies assumption 3) of Theorem 3.1. Consider an

arbitrary sequence (mj) of the class R∞. Then

exp

{
− ε∑mj+1

i=mj+1 β
2
i

}
≤ 1

ε

( mj+1∑
i=mj+1

β2
i

)
for all j ≥ 1. The convergence of the series

∞∑
j=1

( mj+1∑
i=mj+1

β2
i

)
follows directly from condition (20). Thus assumption 3) of Theorem 3.1 holds. Ac-
cording to Theorem 3.1, the random series (2) converges almost surely if and only if
condition (20) is satisfied. Corollary 4.1 is proved. �

Note that Corollary 4.1 coincides with the classical two series theorem in the case of
Gaussian random variables.

Corollary 4.2. Let β1 = 1 and βk = 0 for all k ≥ 2. The random series (2) converges
almost surely if and only if the series

∞∑
l=1

l+1∏
j=2

αj

converges.

Proof. Corollary 4.2 follows obviously from Theorem 3.1. �
Corollary 4.3. Let αk ≥ 0 for all k ≥ 2. The random series (2) converges almost surely
if and only if

1) series (8) converges for all k ≥ 1,
2) relation (9) holds.

Proof. Assumptions 1) and 2) of Corollary 4.3 coincide with assumptions 1) and 2) of
Theorem 3.1, respectively. Hence we need to show that assumption 2) of Theorem 3.1
implies assumption 3) of the same theorem and then Corollary 4.3 follows.

Consider an arbitrary sequence (mj) of the class R∞. Since αk ≥ 0 for k ≥ 1,

(A(mj+1, i))
2 ≤ (A(∞, i))2, i ≥ 1,

for all j ≥ 1, whence

exp

{
− ε∑mj+1

i=mj+1(A(mj+1, i))2

}
≤ 1

ε

( mj+1∑
i=mj+1

(A(mj+1, i))
2

)
≤ 1

ε

( mj+1∑
i=mj+1

(A(∞, i))2
)
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for all j ≥ 1. The convergence of the series

∞∑
j=1

( mj+1∑
i=mj+1

(A(∞, i))2
)

follows from relation (9). Therefore assumption 3) of Theorem 3.1 holds. Applying
Theorem 3.1 we complete the proof of Corollary 4.3. �

Remark 4.1. Note that Corollary 4.3 coincides with a result of the paper [4].

Consider a few sufficient conditions following from Theorem 3.1.

Corollary 4.4. Let the following three conditions hold:

1) series (8) converges for all k ≥ 1,
2) relation (9) is satisfied,
3) for all k ≥ 1, there exists a positive constant M such that

sup
n≥1

|A(n, k)| < M · |A(∞, k)|, k ≥ 1.

Then the random series (2) converges almost surely.

Proof. Assumptions 1) and 2) of Corollary 4.4 coincide with assumptions 1) and 2) of
Theorem 3.1, respectively. Hence we need to prove assumption 3) of Theorem 3.1 and
then Corollary 4.4 follows.

Consider an arbitrary sequence (mj) of the class R∞. Then

exp

{
− ε∑mj+1

i=mj+1(A(mj+1, i))2

}
≤ 1

ε

( mj+1∑
i=mj+1

(A(mj+1, i))
2

)

≤ M

ε

( mj+1∑
i=mj+1

(A(∞, i))2
)

for all j ≥ 1. Reasoning as in the proof of Corollary 4.3, we complete the proof of
Corollary 4.4. �

Corollary 4.5. Let the following three conditions hold:

1) series (8) converges for all k ≥ 1,
2) supn,k≥1 |A′(n, k)| < ∞,
3) relation (20) holds.

Then the random series (2) converges almost surely.

Proof. We check the assumptions of Theorem 3.1. Assumptions 1) and 2) of Theorem 3.1
follow directly from assumptions 1) and 2) of Corollary 4.5. We show that assumption 3)
of Theorem 3.1 also holds; namely, we prove that relation (10) holds for all ε > 0 and all
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sequences (mj) of the class R∞. Since

exp

{
− ε∑mj+1

i=mj+1 A(mj+1, i)2

}
= exp

{
− ε∑mj+1

i=mj+1 β
2
i A

′(mj+1, i)2

}

≤ 1

ε

( mj+1∑
i=mj+1

β2
i A

′(mj+1, i)
2

)

≤ 1

ε

⎛⎝ mj+1∑
i=mj+1

β2
i

(
sup
n,k≥1

|A′(n, k)|
)2

⎞⎠
=

1

ε

(
sup
n,k≥1

|A′(n, k)|
)2 ( mj+1∑

i=mj+1

β2
i

)
for all j ≥ 1, relation (10) holds if the series

∞∑
j=1

( mj+1∑
i=mj+1

β2
i

)
converges. The convergence of the latter series follows from relation (20). Thus assump-
tion 3) of Theorem 3.1 holds and this yields that the random series (2) converges almost
surely. This completes the proof of Corollary 4.5. �

Below are some examples of sequences (αk) satisfying assumptions 1) and 2) of Corol-
lary 4.5.

Example 4.1. Let q ∈ (−1, 1) be a fixed number and let

αk = q, k ≥ 1.

Then

A′(n, k) =
n∑

l=0

ql =
1− qn−k+1

1− q
, 1 ≤ k ≤ n.

Hence

sup
n,k≥1

|A′(n, k)| = 2

1− q
< ∞.

Moreover, series (8) converges for all k ≥ 1, whence

A′(∞, k) =

∞∑
l=0

ql =
1

1− q
= const, k ≥ 1.

Thus the random series (2) converges almost surely if relation (20) holds.

Example 4.2. Consider the sequence

αk = −k − 1

k
, k ≥ 1.

In this case

A′(n, k) =
n−k∑
l=0

(−1)l
k

k + l
, 1 ≤ k ≤ n,

and series (8) is of the form

∞∑
l=0

(−1)l
k

k + l
, k ≥ 1.
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This series converges conditionally for all k ≥ 1. Indeed, this series is sign alternating,

and the sequence
(

k
k+n , n ≥ 1

)
decreases. Moreover,

lim
n→∞

k

k + n
= 0, k ≥ 1.

Further, by the Leibniz test,

0 <
1

k + 1
≤ A′(2n, k) ≤ A′(∞, k) ≤ A′(2n+ 1, k) ≤ 1,

for all k ≥ 1 and for all n ≥ 1. Hence

sup
n,k≥1

|A′(n, k)| = 1 < ∞.

Therefore the random series (2) converges almost surely if relation (20) holds.

Example 4.3. Let 0 < q < 1 be fixed and let

αk = 1− 1

kq
, k ≥ 1.

Note that αk ≥ 0 for all k ≥ 1. Thus

1 < A′(n, k) ≤ A′(∞, k), k ≥ 1.

We show that series (8) converges for all k ≥ 1 if 0 < q < 1. Indeed, series (8) can be
rewritten as follows:

∞∑
l=1

k+l∏
j=k+1

(
1− 1

jq

)
.

Since 0 < q < 1, the Raabe test [5] implies that

lim
n→∞

n

(
1

1− 1
(n+1)q

− 1

)
= lim

n→∞

(
n

(n+ 1)q − 1

)
= ∞.

Thus series (8) converges for all k ≥ 1. In addition,

sup
n,k≥1

|A′(n, k)| ≤ sup
k≥1

A′(∞, k) < A′(∞, 1) < ∞.

Thus the random series (2) converges almost surely if relation (20) holds.
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