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PROPERTIES OF TRAJECTORIES

OF A MULTIFRACTIONAL ROSENBLATT PROCESS

UDC 519.21

GEORGĬI SHEVCHENKO

Abstract. A Rosenblatt process and its multifractional counterpart are considered.
For a multifractional Rosenblatt process, we investigate the local properties of its
trajectories, namely the continuity and localizability. We prove the existence of
square integrable local times for both processes.

Introduction

Stochastic processes with long memory (in other words, with long range dependence)
remain an extensively developing topic over more than a half of a century because of their
numerous applications in modelling various natural phenomena, transferring information
in computer nets, dynamics of prices of financial assets, etc.

The long range dependence phenomena is modelled most often with the help of a
fractional Brownian motion. In the monograph by Mishura [5], a detailed survey of
the literature devoted to the fractional Brownian motion as well as main results of this
topic are given. A disadvantage of a fractional Brownian motion that restricts an area
of its possible applications is that this process has light tails of the normal distribution.
There is a number of studies devoted to processes with long range dependence that have
heavier tails. These are, in particular, stable processes (see the book by Samorodnitsky
and Taqqu [9]).

An interesting class of processes with long range dependence that have “moderate”
tails (“moderate” means that the tails are heavier than those of the normal distribution
but lighter than those of a stable distribution), known as Hermite processes, appears in
the so-called noncentral limit theorem for strongly dependent random variables proved in
the papers by Dobrushin and Major [3] and Taqqu [10, 11]. The most studied among these
processes is the Hermite process of rank 2 defined in the paper by Rosenblatt [8] (the latter
is also known as the Rosenblatt process). Among publications devoted to the Rosenblatt
process, we mention papers by Pipiras [7], where a wavelet expansion is constructed for
this process; Tudor [13], where stochastic analysis with respect to the Rosenblatt process
is developed; Albin [1], where the distribution of the maximum of this process is found;
and Tudor and Torres [12], where an application of the Rosenblatt process in finance
mathematics is considered (namely, the Rosenblatt process is considered in [12] as a
model of price evolutions).
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It is often the case that local properties of processes vary with time. This suggests an
idea that another model is needed to describe such phenomena (recall that all the pro-
cesses mentioned above, e.g. the fractional Brownian motion, fractional stable processes,
and Hermite processes, have stationary increments). A demand in a new model is even
higher if the microscopic behavior of a process differs essentially from its macroscopic be-
havior (this phenomenon often occurs in financial markets where annual fluctuations are
much smoother than those observed during a trading session). The latter phenomenon
indicates the lack of self-similarity, which is an intrinsic property of the processes men-
tioned above. This explains why the so-called multifractional processes become popular
as models for such cases.

A multifractional Rosenblatt process is defined and some of its properties are studied
in this paper. The paper is organized as follows. Section 1 discusses briefly the necessary
properties of multiple integrals and local times. A multifractional Rosenblatt process
is defined and its basic properties are studied in Section 2. Among those properties
are the continuity and localizability. The main results of this paper concerning the
existence and quadratic integrability of the local time for the Rosenblatt process and for
the multifractional Rosenblatt process are proved in Section 3.

1. Preliminaries

1.1. Multiple integrals. We briefly discuss necessary notions for two-dimensional in-
tegrals considered with respect to a Wiener process. More details concerning this topic
can be found in [6].

Let W be a standard Wiener measure on the real line, that is, a random measure
with independent values at disjoint sets and such that if A is a set of a finite Lebesgue
measure, then W (A) has the normal N(0, λ(A)) distribution.

The construction of the integral with respect to the measure W is well known for
functions a ∈ L2(R); namely, the integral

I1(a) =

∫
R

a(x)W (dx)

is defined as the L2(Ω) limit of integrals of simple functions that approximate a in the
space L2(R). The integral defined in this way is a linear isometry acting from L2(R) to
L2(Ω).

The two-dimensional integral is defined similarly. Let L̂2(R2) be the space of square

integrable symmetric functions defined on R
2; the space L̂2(R2) inherits the Hilbert

structure from L2(R2). The norm in this space is denoted by ‖·‖. Let S be the set of

simple functions f ∈ L̂2(R2) of the following form:

(1) f(x, y) =
n∑

k,j=1

ak j�Ak
(x)�Aj

(y),

where A1, . . . , An are disjoint subsets of R whose measures are finite, ak j = aj k for all
k, j = 1, . . . , n and ak k = 0 for all k = 1, . . . , n. The integral of such a function is defined
in the natural way, namely

I2(f) =

∫∫
R2

f(x, y)W (dx)W (dy) =

n∑
k,j=1

ak jW (Ak)W (Aj).

It is worthwhile mentioning that the diagonal is excluded from the domain of integration
(this corresponds to the assumption that akk = 0). This is a very important feature of
this construction of the integral. The mapping 1

2I2 : S → L2(Ω) is a linear isometry and

thus it is uniquely extended to the closure of the set S, that is, to the whole space L̂2(R2).
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In addition to the properties of linearity and isometry (which, in particular, means that I2
preserves the Hilbert structure), the mapping I2 has some other important properties.
We mention three of them below.

1. If a, b ∈ L2(R) are orthogonal functions and if f = a ⊗̂ b ∈ L̂2(R2) is the symmetric
tensor product, that is, f(x, y) =

(
a(x)b(y) + a(y)b(x)

)
/2, then

I2(h) = I1(a)I1(b).

2. For all a ∈ L2(R), we have I2(a ⊗̂ a) = (I1(a))
2 − ‖a‖2L2(R).

3. The preceding property implies the following important result concerning the distri-

bution of I2(f). A function f ∈ L̂2(R2) can be identified with a self-adjoint operator Mf

on L2(R) defined by

(Mfa)(x) =

∫
R

f(x, y)a(y) dy.

Let λk,f , k ≥ 1, be the eigenvalues of this operator (the total number of the eigenvalues
can be finite, countable, or even uncountable) ordered with respect to the values of their
modulus. Let ϕk,f , k ≥ 1, be the corresponding orthonormal eigenfunctions. As is well
known,

f(x, y) =
∑
k≥1

λk,fϕk,f ⊗̂ϕk,f ,

whence, by the preceding property,

I2(f) =
∑
k≥1

λk,f

(
ζ2k − 1

)
,

where the random variables ζk = I1(ϕk,f ) are independent and have the standard nor-
mal distribution. Therefore I2(f) has a generalized chi-square distribution. Thus the
characteristic function of I2(f) is equal to

(2) E
[
eiαI2(f)

]
=
∏
k≥1

E
[
eiαλk,f (ζ

2
k−1)

]
=
∏
k≥1

e−iαλk,f√
1− 2iαλk,f

.

Since
∑

k≥1 λ
2
k,f = ‖f‖2 < ∞, the latter product converges for all α ∈ R. The charac-

teristic function can be rewritten in terms of the cumulants, namely

lnE
[
eiαI2(f)

]
=
∑
n≥2

κn
(iα)n

n!
,

where

(3)

κn = 2n−1(n− 1)!
∑
k≥1

λn
k,f = 2n−1(n− 1)! trMn

f

= 2n−1(n− 1)!

∫
· · ·
∫
Rn

f(x1, x2)f(x2, x3) · · ·

× f(xn−1, xn)f(xn, x1) dx1 dx2 · · · dxn.

We obtain from relation (2) that

∣∣∣E [ eiαI2(f) ]∣∣∣ =
⎛⎝∏

m≥1

(
1 + 4α2λ2

k,f

)⎞⎠−1/4

(4)

≤

⎛⎝1 + 4α2
∑
k≥1

λ2
k,f + 16α4

∑
j<k

λ2
j,fλ

2
k,f + 64α6

∑
j<k<l

λ2
j,fλ

2
k,fλ

2
l,f

⎞⎠−1/4

.
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1.2. Local times. Let {Zt, t ≥ 0} be a separable stochastic process. The sojourn mea-
sure for Z is defined as follows:

μ(A,B) = λ({s ∈ A,Zs ∈ B}),
where A ∈ B([0,∞)) and B ∈ B(R). If μ(A, ·) is absolutely continuous with respect to
the Lebesgue measure on R, then we say that Z has the local time in the set A; the local
time is defined as the Radon–Nikodym derivative of the function μ(A, ·):

L(A, x) =
dμ(A, ·)

dλ
(x).

We also use the notation L(t, x) = L([0, t], x) when it is not misleading.
The analytic method due to Berman [2] can briefly be described as follows. For a fixed

trajectory of a process, the Fourier transform

F (u) =

∫
R

eiuxL(t, x) dx

of L(t, x) with respect to the variable x can be represented with the help of the local
time as follows:

F (v) =

∫ t

0

eivZs ds.

Then the local time can be represented via the inverse Fourier transform of this function,
that is,

L(t, x) =
1

2π

∫
R

∫ t

0

eiv(Zs−x) ds dv.

The following criterion for the existence of the square integrable local time is a corollary
of the latter equality.

Proposition 1.1 ([2]). A stochastic process {Zt, t ≥ 0} has the local time

L(A, x) ∈ L2(R× Ω)

if and only if

(5) K =

∫
R

∫
A

∫
A

E
[
eiv(Zt−Zs)

]
ds dt dv < ∞.

In this case, ∫
R

E
[
L2(A, x)

]
dx = K.

2. Definitions

The Rosenblatt process arises as the limit of normalized sums of strongly dependent
random variables (see [3]).

Definition 2.1. Let H ∈ (1/2, 1). Then

ZH
t = c(H)

∫∫
R2

∫ t

0

(s− x)
H/2−1
+ (s− y)

H/2−1
+ dsW (dx)W (dy)

is called the Rosenblatt process with the Hurst parameter H, where

c(H) =

√
2H(2H − 1)

B(H/2, 1−H)

and where B is the Euler beta function.
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It is known (see, for example, [13]) that the Rosenblatt process has the following
properties:

(1) self-similarity: ZH is H-self-similar; that is, the processes{
ZH(ct), t ≥ 0

}
and

{
cHZH(t), t ≥ 0

}
have identical finite-dimensional distributions for all c > 0;

(2) stationary increments: ZH has stationary increments; that is, the finite-
dimensional distributions of the process {ZH(t + s) − ZH(s), t ≥ 0} do not
depend on s ≥ 0;

(3) existence of moments: all the moments of the process ZH are finite; its
covariance function coincides with the covariance function of a standard fractional
Brownian motion with the Hurst parameter H:

E
[
ZH
t ZH

s

]
=

1

2

(
t2H + s2H − |t− s|2H

)
;

(4) continuity: the trajectories of the Rosenblatt process are Hölder continuous
of an arbitrary order δ < H.

The multifractional analogue of the Rosenblatt process is defined in a natural way.
Let a continuous function H : [0,∞) → (1/2, 1) be given (it will play the role of the
Hurst parameter). For simplicity, we do not normalize the process as in the preceding
definition.

Definition 2.2. The multifractional Rosenblatt process with the Hurst function H (or,
with a functional parameter H) is given by

(6) Xt =

∫∫
R2

∫ t

0

(s− x)
H(t)/2−1
+ (s− y)

H(t)/2−1
+ dsW (dx)W (dy).

For the sake of simplicity, we restrict our consideration to a finite interval [0, T ] in

what follows. Put Ĥ = mint∈[0,T ] H(t) and Ȟ = maxt∈[0,T ] H(t). Since H is continuous

and its values belong to the interval (1/2, 1), we conclude that 1/2 < Ĥ ≤ Ȟ < 1. We
further assume that the function H is Hölder continuous of an order γ > Ȟ , that is,

(7) |H(t)−H(s)| ≤ C |t− s|γ .

In fact, all the results given below are true for a more general case where the latter
condition is satisfied locally. The local version of (7) means that, for all u > 0, there
exist two numbers ε > 0 and γ > supt∈(u−ε,u+ε)H(t) such that inequality (7) holds for

all t, s ∈ (u − ε, u + ε). Nevertheless we assume the global version of this condition in
order to make reasoning simpler and statements more transparent.

In what follows, the symbol C denotes a constant whose value may depend on Ĥ , Ȟ ,
γ, T , and on the constant involved in (7) only. If a constant depends on other parameters
(or if we want to indicate explicitly the dependence of C on certain parameters) we use
the notation C with the corresponding subscripts.

For convenience, we denote by fH(t, x, y) = (t − x)
H/2−1
+ (t − y)

H/2−1
+ the function

involved in the definition of the Rosenblatt process. Consider the following two-parameter
random field:

(8) Z(t,H) =
1

c(H)
ZH
t =

∫∫
R2

∫ t

0

fH(s, x, y) dsW (dx)W (dy).

The following continuity property for Z(t,H) with respect to the parameter H plays
an important role in what follows.



168 GEORGĬI SHEVCHENKO

Proposition 2.3. For all H ′, H ′′ ∈ [Ĥ, Ȟ ],

E
[
(Z(t,H ′)− Z(t,H ′′))2

]
≤ C(H ′ −H ′′)2.

Proof. We agree that 0 · ln 0 = 0. Then

E
[ (

Z(t,H ′)− Z(t,H ′′)
)2 ]

= E

[(∫∫
R2

∫ t

0

(
fH′(s, x, y)− fH′′(s, x, y)

)
dsW (dx)W (dy)

)2
]

=

∫∫
R2

(∫ t

0

(
fH′(s, x, y)− fH′′(s, x, y)

)
ds

)2

dx dy

=
1

4

∫∫
R2

(∫ H′′

H′

∫ t

0

fh(s, x, y) ln
(
(s− x)+(s− y)+

)
ds dh

)2

dx dy

≤ C |H ′ −H ′′|
∫∫

R2

∫ H′′

H′

(∫ t

0

fh(s, x, y) ln
(
(s− x)+(s− y)+

)
ds

)2

dh dx dy.

We choose a positive ε < (Ĥ−1/2)∧(1−Ȟ). Using the inequality |lnx| ≤ Cε(x
ε+x−ε),

we obtain

E
[ (

Z(t,H ′)− Z(t,H ′′)
)2 ]

≤ Cε |H ′ −H ′′|
∫ H′′

H′

∫∫
R2

(∫ t

0

(
fh−ε(s, x, y)ds+ fh+ε(s, x, y)

)
ds

)2

dx dy dh.

Now we rewrite the squared expression on the right hand side of the latter inequality
as a product of the integrals with respect to different variables (for example, with respect
to s1 and s2). As a result, the integrand becomes the sum of four functions

fh±ε(s1, x, y)fh±ε(s2, x, y).

The integrals of these functions are estimated similarly; thus we may restrict the con-
sideration to one of them, to fh+ε(s1, x, y)fh+ε(s2, x, y), for example. We estimate the
integral with respect to dx of the function fh+ε(s1, x, y)fh+ε(s2, x, y) (more precisely, the
integral of its part depending on x) under the assumption that s = s2 − s1 > 0:∫ s1

−∞
(s1 − x)(h+ε)/2−1(s2 − x)(h+ε)/2−1 dx

= |change x → s1 − sy|

= sh+ε−1

∫ ∞

0

y(h+ε)/2−1(1 + y)(h+ε)/2−1 dy

= sh+ε−1B(h+ ε, 1− h− ε) ≤ Cεs
h+ε−1.

The latter estimate is due to the choice of ε. Denoting for a moment

h(s) = |s|2(h−ε)−2 + |s|2h−2 + |s|2(h+ε)−2

we obtain

E
[ (

Z(t,H ′)− Z(t,H ′′)
)2 ]

≤ Cε |H ′ −H ′′|
∫ H′′

H′

∫∫
[0,T ]2

h(s1 − s2) ds1 ds2 dh

≤ CT,ε(H
′ −H ′′)2.
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The latter estimate is valid due to the choice of ε, since

2(h− ε)− 2 ≥ 2(Ĥ − ε)− 2 > −1.

Proposition 2.3 is proved. �

Now we estimate the increments of the multifractional Rosenblatt process X defined
by equality (6).

Proposition 2.4. If t, s ∈ [0, T ] are such that the distance |t − s| is sufficiently small,
then

E
[
(Xt −Xs)

2
]
≤ C|t− s|2H(u)

for all u ∈ [t, s].

Proof. Since

E
[
(Xt −Xs)

2
]
= E

[ (
Z(t,H(t))− Z(s,H(s))

)2 ]
≤ 3
(
E
[ (

Z(t,H(t))− Z(t,H(u))
)2 ]

+ E
[ (

Z(s,H(s))− Z(s,H(u))
)2 ]

+ E
[ (

Z(t,H(u))− Z(s,H(u))
)2 ] )

≤ C
(
H(t)−H(u)

)2
+ C

(
H(s)−H(u)

)2
+ (t− s)2H(u)/c2(H(u))

≤ C|t− s|2γ + (t− s)2H(u)/c2(H(u))

≤ C|t− s|2H(u)
(
|t− s|2γ−2Ȟ + 1

)
,

we complete the proof of Proposition 2.4 in view of γ > Ȟ. �

Theorem 2.5. The trajectories of a multifractional Rosenblatt process are continuous
almost surely. Moreover, the trajectories are Hölder continuous on each interval

[a, b] ⊂ [0, T ]

of an arbitrary order δ < mint∈[a,b] H(t).

Proof. From Proposition 2.4 and from an estimate for moments of multiple integrals
(see [14, Corollary 7.36]) we derive that

E
[
(Xt −Xs)

2p
]
≤ Cp|t− s|2Ĥ(a,b)p

for an arbitrary natural number p ≥ 1 and for all t, s ∈ [a, b], where

Ĥ(a, b) = min
t∈[a,b]

H(t).

According to the Kolmogorov–Chentsov theorem, the process X is Hölder continuous
of an arbitrary order δ < 2Ĥ(a, b)p− 1/(2p). Letting p → ∞, we complete the proof of
Theorem 2.5. �

2.1. Localizability. The following definition allows one to describe the behavior of a
stochastic process in a neighborhood of a certain point.

Definition 2.6. We say that a process {Zt, t ≥ 0} is α-localizable at a point t0 with a
local version {Yt, t ≥ 0} if the processes

{
δ−α

(
Zt0+δt − Z(t0)

)
, t ≥ 0

}
weakly converge (in

the sense of the convergence of finite-dimensional distributions) to {Yt, t ≥ 0} as δ → 0+.
If the weak convergence in this definition is understood as the convergence of distri-

butions in C[0, A] for an arbitrary A > 0, then we say that the process Z is strongly
localizable at the point t0.
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Since the limit is unique, the local version, if it exists, is an α-self-similar process. For
this reason, the property of localizability is also called the property of local self-similarity.

Proposition 2.7. Every multifractional Rosenblatt process (6) is localizable at every
point t0 ≥ 0 with the local version Z(·, H(t0)).

Proof. Let Y δ
t = δ−H(t0)

(
Xt0+δt −X(t0)

)
. Then

Y δ
t = δ−H(t0)

(
Z(t0 + δt,H(t0 + δt))− Z(t0, H(t0))

)
= Y δ,1

t + Y δ,1
t ,

where

Y δ,1
t = δ−H(t0)

(
Z(t0 + δt,H(t0))− Z(t0, H(t0))

)
,

Y δ,2
t = δ−H(t0)

(
Z(t0 + δt,H(t0 + δt))− Z(t0 + δt,H(t0))

)
.

Since {Z(t,H(t0)), t ≥ 0} is a Rosenblatt process multiplied by a nonrandom constant,

it has stationary increments and is H(t0)-self-similar. Thus {Y δ,1
t , t ≥ 0} has the same

finite-dimensional distributions as the process {Z(t,H(t0)), t ≥ 0}. Hence the random

vector (Y δ,1
t1 , . . . , Y δ,1

t1 ) converges in probability to (Z(t1, H(t0)), . . . , Z(tn, H(t0))) for all
arguments t1, t2, . . . , tn.

Proposition 2.3 implies that

E

[(
Y δ,2
t

)2 ]
≤ Cδ−2H(t0)δ2γ = Cδ2(γ−H(t0)) → 0, δ → 0.

Given an arbitrary t, we get Y δ,2
t

P−→ 0 as δ → 0+, whence we deduce that the vector

(Y δ,2
t1 , . . . , Y δ,2

t1 ) converges in probability to (0, . . . , 0) for all t1, t2, . . . , tn.
Applying Slutsky’s theorem, we obtain the weak convergence desired. �

Theorem 2.8. A multifractional Rosenblatt process is strongly localizable at every point
t0 ≥ 0 with the local version Z(·, H(t0)).

Proof. We have already established the convergence of finite-dimensional distributions.
It remains to check that the family of distributions of the processes

Y δ
t = δ−H(t0)

(
Z(t0 + δt,H(t0 + δt))− Z(t0, H(t0))

)
is weakly relatively compact in C[0, A]. By Prokhorov’s criterion, this property is equiv-
alent to the following two conditions:

(1) the family of random variables
{
Y δ
0 , δ > 0

}
is bounded in probability;

(2) for all ε > 0,

lim
η→0+

lim sup
δ→0+

P

{
sup

t,s∈[0,A],|t−s|<η

∣∣Y δ
t − Y δ

s

∣∣ ≥ ε

}
→ 0.

The first condition is obvious in our case.
Further,

P (δ, η, ε) = P

{
sup

|t−s|<η

∣∣Y δ
t − Y δ

s

∣∣ ≥ ε

}
= P

{
sup

|t−s|<η

∣∣Y δ
t − Y δ

s

∣∣ ≥ ε

}

≤ ε−2pE

[
sup

|t−s|<η

(
Y δ
t − Y δ

s

)2p ] ≤ ε−2pη2pρ−1E

[
sup

|t−s|<η

(
Y δ
t − Y δ

s

)2p
|t− s|2pρ−1

]

≤ Cp,ρ,Aε
−2pη2pρ−1

∫∫
[0,A]2

E
[ (

Y δ
t − Y δ

s

)2p ]
|t− s|2pρ+1 ds dt
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for p ≥ 1 and ρ > 1/p, where the latter bound follows from the Garsia–Rodemich–Ramsey
inequality (see [4, Theorem 1.4]). Since

Y δ
t − Y δ

s = δ−H(t0)
(
X(t0 + δt)−X(t0 + δs)

)
,

we obtain from Proposition 2.4 and from a bound for moments of multiple stochastic
integrals [14, Corollary 7.3.6] that

E
[ (

Y δ
t − Y δ

s

)2p ] ≤ Cδ−2H(t0)p(δ|t− s|)2H(t0+δt)p

= Cδ2(H(t0+δt)−H(t0))p |t− s|2H(t0+δt) ≤ CA,p |t− s|2H(t0+δt)p

≤ CA,p |t− s|2Ĥp

for a sufficiently small δ. Above we have used the property that

ln
(
δ2(H(t0+δt)−H(t0))p

)
≤ 2p |ln δ| |H(t0 + δt)−H(t0)|
≤ CpAγ |ln δ| δγ → 0, δ → 0 + .

Choosing ρ = Ĥ/2 and p = 2/ρ we obtain

P (δ, η, ε) ≤ CAε
−8/Ĥη → 0, η → 0+,

and this is what was to be proved. �

3. Existence of the local time for a Rosenblatt process and for its

multifractional analogue

In contrast to other results of this paper, the following theorem concerns the usual
Rosenblatt process. Theorem 3.1 is interesting in its own, since the existence of the local
time has not been investigated so far for the Rosenblatt process. Moreover, one can use
it to derive a similar result for a multifractional Rosenblatt process.

Theorem 3.1. A Rosenblatt process has the square integrable local time in each finite
interval [0, T ].

Proof. By Proposition 1.1, we need to check condition (5) for A = [0, T ]. Since a Rosen-
blatt process is H-self-similar and has homogeneous increments,

E
[
eiv(Z

H
t −ZH

s )
]
= E

[
eivZ

H
|t−s|

]
= E

[
eiv|t−s|HZ1

]
.

In addition, Z1 = I2(φ), where

φ(x, y) = φH(x, y) = c(H)

∫ 1

0

fH(s, x, y) ds.

Using bound (4), we get

E
[
eiv|t−s|HZ1

]
= E

[
eiv|t−s|HI2(φ)

]
≤
(
1 + 64v6 |t− s|6H λ2

1,φλ
2
2,φλ

2
3,φ

)−1/4

.

Below we prove that rkMφ > 2, whence λ = λ2
1,φλ

2
2,φλ

2
3,φ > 0 (recall that the eigen-

numbers λk,φ are ordered according to their absolute values).
Hence∫
R

∫ T

0

∫ T

0

E
[
eiv(Zt−Zs)

]
ds dt dv ≤

∫ T

0

∫ T

0

∫
R

(
1 + 64λv6 |t− s|6H

)−1/4

dv ds dt

=

∫ T

0

∫ T

0

1

2
|t− s|−H

∫
R

(
1 + λz6

)−1/4
dz ds dt < ∞,

and this is what was to be proved.
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Proof of the inequality rkMφ > 2. Assume that rkMφ ≤ 2. Let f1(x) = �[0,1](x),
f2(x) = �[0,2/3](x),

and f3(x) = �[1/3,1](x). Since rkMφ ≤ 2, there exist numbers α1, α2, and α3, not all
being zero, such that α1Mφf1 + α2Mφf2 + α3Mφf3 = 0. Let f = α1f1 + α2f2 + α3f3.
Then

0 = (Mφf, f) = c(H)

∫∫
R2

∫ 1

0

(s− x)
H/2−1
+ (s− y)

H/2−1
+ f(x)f(y) ds dx dy

= c(H)

∫ 1

0

(∫
R

(s− x)
H/2−1
+ f(x) dx

)2

ds,

whence a(s) =
∫
R
(s − x)

H/2−1
+ f(x) dx = 0 for almost all x ∈ [0, 1] (in fact, for all

x ∈ [0, 1], since a is continuous as a linear combination of continuous functions). For
s ∈ [0, 1/3], we have a(s) = 2(α1+α2)s

H/2/H, whence α1+α2 = 0. If s ∈ (1/3, 2/3), then
(according to what we proved above) a(s) = 2α3(s−1/3)H/2/H, whence α3 = 0. Finally,
a(s) = 2α1(s − 2/3)H/2/H for s ∈ [2/3, 1], whence α1 = −α2 = 0. This contradiction
proves Theorem 3.1. �

Theorem 3.2. A multifractional Rosenblatt process defined by equality (6) has a square
integrable local time in each finite interval [0, T ].

Proof. As in the proof of the preceding theorem, we need to check condition (5) for
Z = X and A = [0, T ]. In fact, it is sufficient to check it for A = [a, a + Δ], where
a ∈ [0, T −Δ] is arbitrary and Δ > 0 is sufficiently small. The local time in the interval
[0, T ] exists and is square integrable as a sum of local times L([0,Δ], x), L([Δ, 2Δ], x), . . . ,
L([(n− 1)Δ, nΔ], x), and L([nΔ, T ], x), where n = [T/Δ].

For |t− s| < Δ and t > s,

E
[
eiv(Xt−Xs)

]
= E

[
eivI2(g)

]
≤
(
1 + 64v6λ2

1,gλ
2
2,gλ

2
3,g

)−1/4
,

where gt,s(x, y) is the integral kernel corresponding to Xt −Xs. We represent the latter
kernel as the sum g1(x, y) + g2(x, y), where

g1(x, y) =

∫ t

s

fH(t)(u, x, y) du,

g2(x, y) =

∫ s

0

(
fH(t)(u, x, y)− fH(s)(u, x, y)

)
du.

It is clear that

(9)
∣∣λk,gt,s

∣∣ ≥ |λk,g1 | − ‖Mg2‖ ≥ |λk,g1 | − ‖g2‖.
The bound ‖g2‖ ≤ C |H(t)−H(s)| ≤ C(t − s)γ is established already in the proof

of Proposition 2.3. On the other hand, I2(c(H(t))g1) = Z
H(t)
t − Z

H(t)
s has the same

distribution as (t− s)H(t)Z
H(t)
1 . Thus

λk,g1 =
1

c(H(t))
(t− s)H(t)λk,φH(t)

≥ C(t− s)Ȟλk,φH(t)
,

where φH(t) is the kernel corresponding to Z
H(t)
1 . The proof of Theorem 3.1 implies

that λk,φH(t)
> 0, k = 1, 2, 3. Moreover inft∈[0,T ] λk,φH(t)

> 0, k = 1, 2, 3, since λk,f

continuously depends on f (as above, we can write |λk,f1 − λk,f2 | ≤ ‖f1 − f2‖) and since

φH(·) : [0, T ] → L̂2(R2) is continuous (the continuity of φH(·) follows from Proposition 2.3
and from the continuity of H(t) and c(H)).
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Finally, λk,g1 ≥ C(t− s)Ȟ for k = 1, 2, 3. This together with

‖g2‖ ≤ C |H(t)−H(s)| ≤ C(t− s)γ = o
(
(t− s)Ȟ

)
and inequality (9) implies the bound

∣∣λk,gt,s

∣∣ ≥ C(t − s)Ȟ , k = 1, 2, 3, for sufficiently
small Δ. Hence

E
[
eiv(Xt−Xs)

]
≤
(
1 + Cv6(t− s)6Ȟ

)−1/4

.

The rest of the proof is analogous to that of Theorem 3.1. �
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