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CONDITIONS FOR THE CONSISTENCY

OF THE TOTAL LEAST SQUARES ESTIMATOR

IN AN ERRORS-IN-VARIABLES LINEAR REGRESSION MODEL

UDC 519.21

S. V. SHKLYAR

Abstract. A homoscedastic errors-in-variables linear regression model is considered.
The total least squares estimator is studied. New conditions for the consistency and
strong consistency of the total least squares estimator are proposed. These conditions
are weaker than those proposed by Kukush and Van Huffel (Metrika 59 (2004), 75–
97).

1. Introduction

Consider a linear vector regression errors-in-variables model

(1)

{
bi = a0iX0 + b̃i,

ai = a0i + ãi.

Here a0i ∈ R
1×n are unknown nonrandom vectors, X0 ∈ R

n×d is a matrix to be estimated,

and b̃i and ãi are vectors of random errors, i = 1, . . . ,m.
This model can be rewritten in the matrix form as follows:

(2) A0X0 = B0, A = A0 + Ã, B = B0 + B̃,

where A0, B0, Ã, and B̃ are the matrices constituted from the rows a0i , b
0
i , ãi, and b̃i,

respectively.
In fact, (1) is a functional model, since the vectors a0i are nonrandom. Model (2)

is used in one of the approaches to solve overdetermined systems of linear equations
AX ≈ B. A widely used estimator of the parameter X0 for such a model is the so-called
total least squares estimator.

Sufficient conditions for the consistency of the total least squares estimators are given
in the papers [3, 4, 5, 7] under various assumptions concerning the model of observations.
The so-called structured total least squares estimator is studied in [8]. The construction
of this estimator is based on an assumption that the true matrices as well as matrices
of observations have a specific structure. For example, the construction in [8] is suitable
for Toeplitz or Hankel matrices having the block structure.

New conditions for the consistency of the total least squares estimator are given in
the current paper. These conditions are weaker than those given in [7].

The paper is organized as follows. Section 2 describes the model of observations and
defines the total least squares estimator. In Section 3, we recall known conditions for the
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consistency of this estimator. In Section 4, we prove theorems concerning the consistency
under weaker conditions. We recall some known results needed for the proof in Section 5.

2. The model and estimator

2.1. Model. We assume that the true nonrandom matrices A0 and B0 are such that

A0
m×n

· X0
n×d

= B0
m×d

.

We further assume that A0 and B0 are observed with random errors, Ã and B̃, respec-
tively; that is, we observe, in fact, the matrices A and B given by

A = A0 + Ã, B = B0 + B̃.

Our aim is to estimate the parameter X0 from the observations.

Now we rewrite the model in an implicit form. Let C0 ∈ R
m×(n+d), C̃ ∈ R

m×(n+d),
and C ∈ R

m×(n+d) be the m× (n+ d) matrices such that

C0 = [A0 B0], C̃ = [Ã B̃], C = [A B].

Let X0
ext =

(
X0

−Id

)
. Then

C0
m×(n+d)

· X0
ext

(n+d)×d

= 0
m×d

.

The entries of the matrix C̃ (the errors of observations) are denoted by δij and its

rows are denoted by c̃i; namely, C̃ = (δij)
m
i=1

n+d
j=1 and c̃i = (δij)

n+d
j=1 .

We assume the following conditions.

(G.1) The rows c̃i of the matrix C̃ are jointly independent;

(G.2) E C̃ = 0 and, for all i = 1, . . . ,m, the covariance matrix of the vector c̃i is equal
to Var c̃i = Σ;

(G.3) rank(ΣX0
ext) = d.

Example 1 (univariate scalar regression). For i = 1, . . . ,m, let{
xi = ξi + δi;

yi = β0 + β1ξi + εi.

The sequence {(xi, yi), y = 1, . . . ,m} is observed. One needs to estimate the parame-
ters β0 and β1 from the observations.

2.2. Total least squares estimator. This estimator is defined as a solution of the
problem

(3)

⎧⎪⎨⎪⎩
‖ pinv(Σ1/2)Δ�‖F → min;

(I − PΣ)Δ
� = 0;

rank(C −Δ) ≤ n.

Here pinv(Σ) denotes the pseudoinverse matrix to Σ and PΣ is the orthogonal projector
to the column space Σ, so that PΣ = Σpinv(Σ). The estimator is evaluated from the
equations

(C −Δ)X̂ext = 0,(4)

(C −Δ)

(
X̂
−I

)
= 0.(5)
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The columns of X̂ext have to constitute a basis of the invariant subspace of C�C with
respect to Σ that corresponds to d minimal generalized eigenvalues,

∃M ∈ R
d×d : C�CX̂ext = ΣX̂extM.

Two real symmetric matrices A and B are called a definite pair if there exist two real
numbers α and β such that αA + βB is a positive definite matrix. We write 〈A,B〉 in
this case.

Below is a list of possible problems that may arise when solving the minimization
problem (3).

a) The pair of matrices 〈C�C,Σ〉 is degenerate (the matrices C�C and Σ may have
a common eigenvector corresponding to the eigenvalue 0). Even if the point of
minimum is unique, it may change discontinuously with respect to small changes
of C.

b) The eigenvalues are nonseparable: when ordering the generalized eigenvalues of
the matrix C�C in the ascending order, the d-th eigenvalue coincides with the
(d+ 1)-th one. Consider the following two cases:
1) rankC < n. Then problem (3) has a trivial solution Δ = 0, but the

eigenspace of the matrix C − Δ corresponding to the eigenvalue 0 in (4)
is (n+d− rankC)-dimensional (its dimension is greater than n).

2) rankC > n. Then there is an infinite number of points of minimum Δ of
problem (3).

c) The system of linear equations (5) may have no solution for such a number Δ
that gives the minimum to problem (3).

d) If rankΣ < d, then the constraints in (3) may be inconsistent. However, condi-
tion (G.3) implies that rankΣ ≥ d.

We will prove that if the assumptions of at least one of Theorems 4.1, 4.2, or 4.3 hold,
then 〈C�C,Σ〉 is a definite pair almost surely for a sufficiently large number m. A pair
of real symmetric (or complex Hermitian) matrices is called a definite pair if a certain
linear combination of these matrices is a positive definite matrix.

To avoid the case where system (5) is inconsistent we use the following idea. Given

a point of minimum Δ we find X̂ext from equation (4) such that the columns of X̂ext

are linearly independent (of course, the matrices Δ and X̂ext should be Borel functions
of observations (note that measurable solutions of problem (3) exist); or, if we allow the

use of “randomized estimators”, then Δ and X̂ext should be random matrices).
In what follows we will prove (under the conditions of Theorems 4.1, 4.2, or 4.3) that∥∥∥sin∠(X̂ext, X

0
ext)

∥∥∥→ 0, m → ∞.

The convergence in the latter relation is understood in probability or almost surely
depending on a specific setting of the problem. Here∥∥sin∠(A,B)‖ = ‖PAP

⊥
B

∥∥ ,
where PA is an orthogonal projector to the space of columns of the matrix A, P⊥

B is the
complementary projector defined by

P⊥
B = I − PB,

and ‖M‖ is the operator norm of the matrix M defined as the maximum singular value.
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Then we show that the lower d×d block of X̂ext is a nonsingular matrix; that is, there

is a linear transform of its columns such that the matrix X̂ext has the form of
(

̂X
−Id

)
provided that ∥∥∥sin∠(X̂ext, X

0
ext)

∥∥∥ <
1√

1 + ‖X0‖2

and that the columns of the matrix X̂ext are linearly independent.

Proposition 2.1. Suppose that conditions (G.2) and (G.3) hold. If the matrix A�
0 A0

is positive definite, then 〈C�C,Σ〉 is a definite pair almost surely. In other words,

P(C�C +Σ > 0) = 1.

Proof. 1. The result is obvious if the matrix Σ is nonsingular. Thus we consider the case
where the matrix Σ is singular. By F =

(
F1

F2

)
, we denote a (n+ d)× (n+ d− rank(Σ))

matrix whose columns form a basis of the subspace Ker(Σ) = {x : Σx = 0}.
2. We prove that the columns of the matrix [In X0] F are linearly independent. If

this is not the case, then there exists a vector v ∈ R
n+d−rank (Σ) \ {0} such that

[In X0] Fv = 0,

F1v = −X0F2v,

−Fv =
(

X0

−Id

)
F2v = X0

extF2v,(6)

0 = −ΣFv = ΣX0
ext · F2v.

Moreover, Fv �= 0, since v �= 0 and the columns of F are linearly independent, whence
F2v �= 0 according to (6).

The result we just obtained contradicts condition (G.3), since (G.3) implies that the
columns of the matrix ΣX0

ext are linearly independent. Thus the columns of the matrix
[IX0

ext]F are linearly independent, indeed.

3. Condition (G.2) implies that C̃F = 0 almost surely. Indeed, E c̃i = 0 and
Var[c̃iF ] = 0 for all i = 1, 2, . . . ,m.

4. It remains to prove the implication

“A�
0 A0 > 0” and “C̃F = 0” =⇒ “C�C +Σ > 0”.

The matrices C�C and Σ are positive semi-definite. Assume that

(7) x�(C�C + Σ)x = 0.

We will show that x = 0. If this is the case, then C�C +Σ > 0. Equality (7) holds only
if Cx = 0 and Σx = 0. Thus x ∈ KerΣ and hence there exists a vector v ∈ R

n+d−rankΣ

such that x = Fv. This implies that

0 = A�
0 Cx = A�

0 (C0 + C̃)x = A�
0 C0Fv +A�

0 C̃Fv = A�
0 A0

[
In X0

]
Fv + 0.

The matrix A�
0 A0 is nonsingular and the columns of the matrix [In X0] F are linearly

independent, whence we deduce that the columns of the matrix A�
0 A0 [In X0] F are

linearly independent, as well. Therefore v = 0 and x = Fv = 0. �

3. Some known results concerning the consistency

Theorem 3.1 (Gallo [4]). Let d = 1. Suppose that conditions (G.1)–(G.3) hold. We
further assume that

m−1/2λmin(A
�
0 A0) → ∞, m → ∞;

λ2
min(A

�
0 A0)

λmax(A�
0 A0)

→ ∞, m → ∞.
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Let the errors of observations have identical distributions such that the fourth moment is
finite. Then the total least squares estimator is consistent, that is,

X̂
P−→ X0, m → ∞.

Theorem 3.2 (Kukush and Van Huffel [7]). Let conditions (G.1)–(G.3) hold. Assume
further that

sup
i≥1

j=1,...,n+d

E δ4ij < ∞;

m−1/2λmin(A
�
0 A0) → ∞, m → ∞;

λ2
min(A

�
0 A0)

λmax(A�
0 A0)

→ ∞, m → ∞.(8)

Then X̂
P−→ X0 as m → ∞.

Theorem 3.3 (Kukush and Van Huffel [7]). Let conditions (G.1)–(G.3) hold. Assume
further that

sup
i≥1

j=1,...,n+d

E |δij |2r < ∞;

∞∑
m=m0

( √
m

λmin(A�
0 A0)

)r

< ∞;

∞∑
m=m0

(
λmax(A

�
0 A0)

λ2
min(A

�
0 A0)

)r

< ∞

for some r ≥ 2 and m0 ≥ 1. Then the total least squares estimator is strongly consistent,
that is,

X̂
P1−→ X0, m → ∞.

Theorem 3.4 (Kukush and Van Huffel [7]). Let conditions (G.1)–(G.3) hold. Assume
further that

sup
i≥1

j=1,...,n+d

E |δij |2r < ∞;

m−1/rλmin(A
�
0 A0) → ∞, m → ∞;

λ2
min(A

�
0 A0)

λmax(A�
0 A0)

→ ∞, m → ∞,

for some r such that 1 ≤ r < 2. Then X̂
P−→ X0 as m → ∞.

4. Main results

Theorem 4.1. Let conditions (G.1)–(G.3) hold. Assume that

sup
i≥1

j=1,...,n+d

E |δij |2r < ∞,

m−1/rλmin(A
�
0 A0) → ∞, m → ∞,

for some r such that 1 ≤ r ≤ 2. Then X̂
P−→ X0 as m → ∞.



180 S. V. SHKLYAR

Theorem 4.2. Let conditions (G.1)–(G.3) hold. Assume that

sup
i≥1

j=1,...,n+d

E |δij |2r < ∞;

∞∑
m=m0

( √
m

λmin(A�
0 A0)

)r

< ∞

for some r ≥ 2 and m0 ≥ 1. Then X̂
P1−→ X0 as m → ∞.

Theorem 4.3. Let conditions (G.1)–(G.3) hold. Assume that

sup
i≥1

j=1,...,n+d

E |δij |2r < ∞;

∞∑
m=m0

1

λr
min(A

�
0 A0)

< ∞

for some r such that 1 ≤ r ≤ 2 and m0 ≥ 1. Then X̂
P1−→ X0 as m → ∞.

Proof. This part of the proof is common for all Theorems 4.1, 4.2, and 4.3.

1. The (d+1)-th eigenvalue of the matrix C�
0 C0. First, the matrix C�

0 C0 is symmetric
and nonnegative definite. Since C0X

0
ext = A0X0 − B0 = 0, this matrix has at least a

d-dimensional eigenspace corresponding to the eigenvalue 0.
Next we prove that

(9) λd+1(C
�
0 C0) ≥ λmin(A

�
0 A0).

Recall that the eigenvalues are ordered in ascending order. Note also a more general
inequality

λd+j(C
�
0 C0) ≥ λj(A

�
0 A0), j=1, . . . , n.

The latter inequality is a corollary of Theorem I.4.4 of [9], since

λd+1(C
�
0 C0) = σ2

n(C0) ≥ σ2
n(A0) = λmin(A

�
0 A0).

The usual order is kept for singular values:

σ1(A0) ≥ σ2(A0) ≥ · · · .
Inequality (9) implies that if the matrix A�

0 A0 is nonsingular, then λd+1(C
�
0 C0) > 0,

and thus rank(C�
0 C0) = d. The conditions of any of Theorems 4.1, 4.2, or 4.3 imply that

λmin(A
�
0 A0) → ∞.

Thus if the assumptions of at least one of these theorems hold, then

λd+1(C
�
0 C0) ≥ λmin(A

�
0 A0) > 0

for sufficiently large m.

2. Spectral decomposition of the matrices C�
0 C0, N , and N−1/2C�

0 C0N
−1/2. Below is

the canonical decomposition of the matrix C�
0 C0:

C�
0 C0 = U diag

(
λmin(C

�
0 C0), λ2(C

�
0 C0), . . . , λmax(C

�
0 C0)

)
U�

= U diag
((

λj(C
�
0 C0)

)n+d

j=1

)
U�,

where U is an orthogonal matrix (U−1 = U�) and

λj(C
�
0 C0) = 0, j=1, . . . , d.
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In particular, λmin(C
�
0 C0) = 0. Put

N = C�
0 C0 + λmin(A

�
0 A0)I.

Then the canonical decomposition of the matrix N is given by

N = U diag
((

λj(C
�
0 C0) + λmin(A

�
0 A0)

)n+d

j=1

)
U�.

Note that

(10) λmin(N) = · · · = λd(N) = λmin(A
�
0 A0).

If the matrix A�
0 A0 is nonsingular, then the matrix N is nonsingular, too. Note that

the matrix N is nonsingular for sufficiently large m provided the assumptions of one of
Theorems 4.1, 4.2, or 4.3 hold.

Since C0X
0
ext = 0, we get

(11) NX0
ext = λmin(A

�
0 A0)X

0
ext.

If the matrix N is nonsingular, then the canonical decomposition of the matrices
N−1/2 and N−1/2C�

0 C0N
−1/2 is given by

N−1/2 = U diag

⎛⎜⎝
⎛⎝ 1√

λj(C�
0 C0) + λmin(A�

0 A0)

⎞⎠n+d

j=1

⎞⎟⎠U�,

N−1/2C�
0 C0N

−1/2 = U diag

((
λj(C

�
0 C0)

λj(C�
0 C0) + λmin(A�

0 A0)

)n+d

j=1

)
U�.

The above decompositions together with (9) imply the following equalities and in-
equalities for the eigenvalues:∥∥∥N−1/2

∥∥∥ = λmax

(
N−1/2

)
=

1√
λmin(A�

0 A0)
;(12)

λj

(
N−1/2C�

0 C0N
−1/2

)
= 0, j = 1, . . . , d;(13)

1

2
≤ λj

(
N−1/2C�

0 C0N
−1/2

)
≤ 1, j = d+ 1, . . . , n+ d.(14)

3. An upper bound for
∥∥sin∠(X̂ext, X

0
ext)

∥∥. Equality (10) implies that

X̂�
extNX̂ext ≥ λmin(A

�
0 A0)X̂

�
extX̂ext

and

v�X̂�
extX

0
ext

(
X0�

extX
0
ext

)−1
X0�

ext X̂extv

v�X̂�
extX̂extv

≥ λmin(A
�
0 A0)

v�X̂�
extX

0
ext

(
X0�

extX
0
ext

)−1
X0�

ext X̂extv

v�X̂�
extNX̂extv

for all v ∈ R
d \ {0}. Taking into account (11) we get

v�X̂�
extX

0
ext

(
X0�

extX
0
ext

)−1
X0�

ext X̂extv

v�X̂�
extX̂extv

≥
v�NX̂�

extX
0
ext

(
X0�

extNX0
ext

)−1
X0�

extNX̂extv

v�X̂�
extNX̂extv

.
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Using (22) we prove the inequality

1−
∥∥∥sin∠(X̂ext, X

0
ext)

∥∥∥2 ≥ 1−
∥∥∥sin∠(N1/2X̂ext, N

1/2X0
ext)

∥∥∥2 ,∥∥∥sin∠(X̂ext, X
0
ext)

∥∥∥ ≤
∥∥∥sin∠(N1/2X̂ext, N

1/2X0
ext)

∥∥∥ .(15)

Put

ε =
∥∥∥N−1/2

(
C�C − C�

0 C0 −mΣ
)
N−1/2

∥∥∥ .
Now we use Corollary 5.5 of Lemma 5.4 on the stability of the eigenspace. Let

N−1/2C�
0 C0N

−1/2 be the nonperturbed matrix whose null space is the column space
of N1/2X0

ext. Further let N
−1/2(C�C −mΣ)N−1/2 be the perturbed matrix whose gen-

eralized invariant space with respect to the matrix N−1/2ΣN−1/2 corresponding to the d

minimal generalized eigenvalues is the column space of the matrix N1/2X̂ext. Using (13)–
(14) we establish∥∥∥sin∠(N1/2X̂ext, N

1/2X0
ext)

∥∥∥2
≤ ε

0.5

(
1 +

∥∥∥N−1/2ΣN−1/2
∥∥∥λmax

(
(X0�

extΣX
0
ext)

−1X0�
extNX0

ext

))
.

Taking into account equalities (11) and (12) and inequality (15) we obtain∥∥∥sin∠(X̂ext, X
0
ext)

∥∥∥2 ≤
∥∥∥sin∠(N1/2X̂ext, N

1/2X0
ext)

∥∥∥2
≤ 2ε

(
1 +

‖Σ‖
λmin(A�

0 A0)
λmax

(
λmin(A

�
0 A0)(X

0�
extΣX

0
ext)

−1X0�
extX

0
ext

))
= 2ε

(
1 + ‖Σ‖λmax

(
(X0�

extΣX
0
ext)

−1X0�
extX

0
ext

))
.

To complete the proof, it remains to check that ε → 0 (this part of the proof is
specific and is given separately for each of Theorems 4.1, 4.2, and 4.3). If ε → 0, then

‖ sin∠(X̂ext, X
0
ext)‖ → 0 and thus the matrix X̂ext is transformed to the form

(
̂X

−I

)
by transforming its columns for sufficiently large m (this is justified by Lemma 5.8).

Moreover, X̂ → X0 in this case. �

We introduce two (n+ d)× (n+ d) matrices:

M1 = N−1/2C�
0 C̃N−1/2,

M2 = N−1/2(C̃�C̃ −mΣ)N−1/2.

Since ε = ‖M1 +M�
1 +M2‖, we need to prove that M1 → 0 and M2 → 0 as m → ∞ (in

probability or almost surely depending on whether we prove the consistency or strong
consistency of an estimator).

Rest of the proof of Theorem 4.1. We have

‖M1‖2F =
∥∥∥N−1/2C�

0 C̃N−1/2
∥∥∥2
F
= tr

(
N−1/2C�

0 C̃N−1C0C̃
�N−1/2

)
= tr

(
C0N

−1C�
0 C̃N−1C̃�

)
=

m∑
i=1

m∑
j=1

c0iN
−1c�0j c̃jN

−1c̃�i .

Since E c̃jN
−1c̃�i = 0 for i �= j and E c̃iN

−1c̃�i = tr(ΣN−1), we get

E ‖M1‖2F =
m∑
i=1

c0iN
−1c�0i tr

(
ΣN−1

)
= tr

(
C0N

−1C�
0

)
tr
(
ΣN−1

)
.
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Now we estimate the factors on the right hand side of the latter equality:

tr
(
C0N

−1C�
0

)
= tr

(
C�

0 C0N
−1
)
=

n+d∑
i=1

λi

(
C�

0 C0N
−1
)
.

Since λi(C
�
0 C0N

−1) = 0 for i ≤ d and 1
2 ≤ λi(C

�
0 C0N

−1) ≤ 1 for d < i ≤ d + n, we
conclude that

(16)
n

2
≤ tr

(
C0N

−1C�
0

)
≤ n.

Since both matrices N−1 and Σ are positive semi-definite,

tr(ΣN−1) =
∥∥∥N−1/2Σ1/2

∥∥∥2
F
≤
∥∥N−1/2

∥∥2∥∥Σ1/2
∥∥2
F
= λmax

(
N−1

)
trΣ

= λmin

(�
0 A0

)
trΣ.

Finally,

E ‖M1‖2F ≤ n trΣ

λmin(A�
0 A0)

.

The assumptions of Theorem 4.1 imply that λmax(A
�
0 A0) → ∞, whence M1

P−→ 0 as
m → ∞.

Now we prove the convergence M2
P−→ 0 as m→∞:

M2 = N−1/2(C̃�C̃ −mΣ)N−1/2,

‖M2‖ ≤
∥∥N−1/2

∥∥∥∥C̃�C̃ −mΣ
∥∥∥∥N−1/2

∥∥ =

∥∥∑m
i=1(c̃

�
i c̃i − Σ)

∥∥
λmin(A�

0 A0)
.(17)

To estimate ‖M2‖r we use the Rosenthal inequality for 1 ≤ ν ≤ 2 (see Theorem 5.7
below):

E ‖M2‖r ≤
const

∑m
i=1 E

∥∥c̃�i c̃i − Σ
∥∥r

λr
min(A

�
0 A0)

.

According to the assumptions of Theorem 4.1, the sequence
{
E ‖c̃�i c̃i−Σ‖r, i = 1, 2, . . .

}
is bounded, whence

E ‖M2‖r ≤ O(m)

λr
min(A

�
0 A0)

, m → ∞.

Thus E ‖M2‖r → 0 and M2
P−→ 0 as m → ∞. �

Rest of the proof of Theorem 4.2. We have

M1 =

m∑
i=1

N−1/2c�0ic̃iN
−1/2.

By the Rosenthal inequality,

E ‖M1‖2r ≤ const

m∑
i=1

E
∥∥∥N−1/2c�0ic̃iN

−1/2
∥∥∥2r

+ const

( m∑
i=1

E
∥∥N−1/2c�0ic̃iN

−1/2
∥∥2)r

.

The first term is estimated as follows:
m∑
i=1

E
∥∥∥N−1/2c�0ic̃iN

−1/2
∥∥∥2r ≤

m∑
i=1

∥∥N−1/2c�0i
∥∥2r max

i=1,...,m
E ‖c̃i‖2r

∥∥N−1/2
∥∥2r.
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Thus
m∑
i=1

∥∥N−1/2c�0i
∥∥2r ≤

( m∑
i=1

∥∥N−1/2c�0i
∥∥2)r

=

( m∑
i=1

c0iN
−1c�0i

)r

=
(
tr(C0N

−1C�
0 )
)r ≤ nr

by inequality (16). Note that inequality (16) holds if the matrix N is nonsingular. This
is the case not only under the assumptions of Theorem 4.1, this also holds under the
assumptions of Theorems 4.2 or 4.3. Also, the conditions of Theorem 4.2 imply that the
sequence {

max
i=1,...,m

E ‖c̃i‖2r,m = 1, 2, . . .

}
is bounded. We recall that ‖N−1/2‖ = λ

−1/2
min (A�

0 A0). Thus

m∑
i=1

E
∥∥∥N−1/2c�0ic̃iN

−1/2
∥∥∥2r =

O(1)

λr
min(A

�
0 A0)

, m→∞.

The limit relation
m∑
i=1

E
∥∥∥N−1/2c�0ic̃iN

−1/2
∥∥∥2 =

O(1)

λmin(A�
0 A0)

is proved similarly. It is important for the proof of this relation that the sequence{
max

i=1,...,m
E ‖c̃i‖2,m = 1, 2, . . .

}
is bounded by the conditions of Theorem 4.2.

Finally,

E ‖M1‖2r =
O(1)

λr
min(A

�
0 A0)

, m → ∞.

Hence the conditions of Theorem 4.2 imply that
∑∞

m=m0
E ‖M1‖2r < ∞, whence

M1
P1−→ 0 as m → ∞.

Now we prove the convergence M2
P1−→ 0. To estimate E ‖M2‖r, we apply Rosenthal’s

inequality (also see (17)):

E ‖M2‖r ≤
E
∥∥∑m

i=1(c̃
�
i c̃i − Σ)

∥∥r
λr
min(A

�
0 A0)

≤ const
∑m

i=1 E ‖c̃�i c̃i − Σ‖r
λr
min(A

�
0 A0)

+
const

(∑m
i=1 E ‖c̃�i c̃i − Σ‖2

)r/2
λr
min(A

�
0 A0)

.

The sequences{
E ‖c̃�i c̃i − Σ‖r, i = 1, 2, . . .

}
and

{
E ‖c̃�i c̃i − Σ‖2, i = 1, 2, . . .

}
are bounded by the assumptions of Theorem 4.2. Thus

E ‖M2‖r =
O
(
mr/2

)
λr
min(A

�
0 A0)

, m → ∞;

∞∑
m=m0

E ‖M2‖r < ∞

for some m0 ≥ 1, whence we conclude that M2
P1−→ 0 as m → ∞. �
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Rest of the proof of Theorem 4.3. The relation

E ‖M1‖2r =
O(1)

λr
min(A

�
0 A0)

, m → ∞,

is proved in the same way as in the proof of Theorem 4.2, where we dealt with the case

of r ≥ 1. As in the proof of Theorem 4.2, we show that M1
P1−→ 0 as m → ∞.

Now we prove the convergence M2
P1−→ 0 as m → ∞. By the assumptions of Theorem

4.3,
∞∑

m=1

E ‖c̃�mc̃m − Σ‖r
λr
min(A

�
0 A0)

< ∞.

The random matrices c̃�i c̃i − Σ have zero expectations. The sequence of nonnegative
numbers {λmin(A

�
0 A0),m = 1, 2, . . .} goes to +∞ and is nondecreasing, since A�

0 A0 is
nondecreasing in Loewner’s order. By the strong law of large numbers [1, Theorem IX.12],

1

λmin(A�
0 A0)

m∑
i=1

(c̃�i c̃i − Σ)
P1−→ 0, m → ∞.

Recalling (17), we get

‖M2‖ ≤
∥∥∑m

i=1(c̃
�
i c̃i − Σ)

∥∥
λmin(A�

0 A0)

P1−→ 0, m → ∞,

M2
P1−→ 0, m → ∞. �

5. Auxiliary results

5.1. Generalized eigenvectors.

Theorem 5.1 (A proper decomposition of a definite pair of matrices). Let two n × n
matrices A and B be real symmetric or complex Hermitian. Let the matrix αA+ βB be
positive definite for some real numbers α and β. Then there exist a nonsingular matrix
T1 and diagonal matrices Λ and M such that

A =
(
T−1
1

)�
ΛT−1

1 , B =
(
T−1
1

)�
MT−1

1 .

Let

T1 = [u1, u2, . . . , un], Λ = diag(λ1, . . . , λn), M = diag(μ1, . . . , μn)

in the above decomposition. Then the numbers λi/μi ∈ R ∪ {∞} are called generalized
eigenvalues and the columns ui of the matrix T1 are called generalized right eigenvectors
of the matrix A with respect to B. Also,

μiAui = λiBui.

Theorem 5.2 (Fischer). Let A and B be real symmetric matrices of the same sizes. Let
there exist real numbers α > 0 and β > 0 such that the matrix αA+βB is positive definite.
Let the matrix B be positive semidefinite. We order the finite generalized eigenvalues in
the ascending order, namely λ1/μ1 ≤ λ2/μ2 ≤ · · · ≤ λrankB/μrankB. Then

λi

μi
= min

dimV=i
B|V >0

max
v∈V \{0}

v�Av

v�Bv
, i=1, 2, . . . , rankB.

The minimum in the latter relation is taken over i-dimensional subspaces of Rn that have
the trivial intersection with the null subspace of the matrix B.

Theorem 5.2 is a corollary of Lemma VI.3.1 from [9].
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5.2. Perturbation of eigenvectors.

Lemma 5.3. Let A, B, and Ã be symmetric matrices,

λmin(A) = 0, λ2(A) > 0, λmin(B) ≥ 0.

Let Ax0 = 0 and Bx0 �= 0. Let x �= 0 be either a point of minimum of the function

f(x) :=
x�(A+ Ã)x

x�Bx

or a point such that

(18) lim inf
t→x

f(t) = inf
t: t�Bt>0

f(t).

Note that such a point x exists by assumptions of the lemma. Then

sin2 ∠(x, x0) ≤
‖Ã‖
λ2(A)

(
1 +

‖x0‖2
x�
0 Bx0

x�Bx

‖x‖2

)
.

The “angle” between two d-dimensional subspaces V1 ⊂ R
d+n and V2 ⊂ R

d+n is
defined by min(d, n) canonical angles. The largest sinus of the canonical angles is denoted
by

‖ sin∠(V1, V2)‖.
The following is equality (1.5) of [10]:

(19) ‖ sin∠(V1, V2)‖ = ‖PV1
(I − PV2

)‖.
Recall that ‖ · ‖ is the operator norm of a matrix. Applying equality (19), one can prove
that

(20) ‖ sin∠(V1, V2)‖2 = min
v∈V1\{0}

v�P⊥
V2
v

‖v‖2 .

If the columns of the matrix X form a basis of the subspace V1, then

‖ sin∠(X,V2)‖2 := ‖ sin∠(V1, V2)‖2 = λmax

(
(X�X)−1X�P⊥

V2
X
)
,(21)

1− ‖ sin∠(X,V2)‖2 = λmin

(
(X�X)−1X�PV2

X
)
.(22)

The following Lemma 5.4 is a multidimensional generalization of Lemma 5.3. The
existence of the minimum is one of the assumptions of Lemma 5.4.

Lemma 5.4. Let A, B, and Ã be symmetric n × n matrices and let λi(A) = 0 for all
i=1, . . . , d (in particular, λmin(A) = 0), λd+1(A) > 0, and λmin(B) ≥ 0. Let X0 be an
n×d matrix such that AX0 = 0 and the matrix X�

0 BX0 is nonsingular (this implies that
X�

0 BX0 > 0 and rankX0 = d).
Let the functional

f(X) = λmax

(
(X�BX)−1X�(A+ Ã)X

)
, X ∈ R

n×d, X�BX > 0,

attain its minimum. Then, for all points of minimum X,

‖ sin∠(X,X0)‖2 ≤ ‖Ã‖
λd+1(A)

(
1 + ‖B‖λmax

(
(X�

0 BX0)
−1X�

0 X0

))
.

Proof. If A and B are two symmetric matrices of the same sizes and if B > 0, then we
write max A

B instead of λmax(B
−1A). A motivation for such a change of notation is that

λmax

(
B−1A

)
= max

v �=0

v�Av

v�Bv
=: max

A

B
.
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Let X be a point of minimum of the functional f(X). Since the functional f(X) is
defined at the point X0, f(X) ≤ f(X0), that is,

max
X�(A+ Ã)X

X�BX
≤ max

X�
0 (A+ Ã)X0

X�
0 BX0

.

Since

X�ÃX ≥ −‖Ã‖X�X,

X�BX ≤ ‖B‖X�X,

X�
0 ÃX0 ≤ ‖Ã‖X�

0 X0,

AX0 = 0,

we obtain

max
X�AX − ‖Ã‖X�X

‖B‖X�X
≤ max

‖Ã‖X�
0 X0

X�
0 BX0

,

1

‖B‖ ·
(
max

X�AX

X�X
− ‖Ã‖

)
≤ ‖Ã‖max

X�
0 X0

X�
0 BX0

.(23)

Equality (21) implies that

λd+1(A) ‖ sin∠(X,X0)‖2 ≤ max
X�AX

X�X
,

since A ≥ λd+1(A)P⊥
X0

in the sense of Loewner’s order. Thus (23) implies that

‖ sin∠(X,X0)‖2 ≤ ‖Ã‖
λd+1(A)

(
1 + ‖B‖max

X�
0 X0

X�
0 BX0

)
and this is what was to be proved. �

Corollary 5.5. Let A, B, and Ã be symmetric n × n matrices and let λi(A) = 0 for
all i = 1, . . . , d (in particular, λmin(A) = 0), λd+1(A) > 0, and λmin(B) ≥ 0. Let X0 be
an n× d matrix such that AX0 = 0 and the matrix X�

0 BX0 is nonsingular (this implies
that X�

0 BX0 > 0, rankX0 = d, and rankB ≥ d).

Let there exist a scalar k > 0 such that the matrix A + Ã + kB is positive defi-
nite (whence one concludes that 〈A + Ã, B〉 is a definite matrix pair). Let V1 be a
d-dimensional generalized invariant subspace corresponding to the minimal finite gener-
alized eigenvalues of the matrix A+ Ã with respect to B.

Then

‖ sin∠(V1, X0)‖2 ≤ ‖Ã‖
λd+1(A)

(
1 + ‖B‖λmax

(
(X�

0 BX0)
−1X�

0 X0

))
.

5.3. Rosenthal inequality.

Theorem 5.6. Let ν ≥ 2 be a nonrandom number. Then there are α ≥ 0 and β ≥ 0
such that

E

[∣∣∣∣ m∑
i=1

ξi

∣∣∣∣ν
]
≤ α

m∑
i=1

E [|ξi|ν ] + β

( m∑
i=1

E ξ2i

)ν/2

if the random variables {ξi, i = 1, . . . ,m}, m ≥ 1, are independent and have zero expec-
tations, that is, E ξi = 0 for all i = 1, . . . ,m.

A proof of this result can be found in [6].
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Theorem 5.7. Let ν be a nonrandom number such that 1 ≤ ν ≤ 2. Then there exists a
nonrandom number α ≥ 0 such that

E

[∣∣∣∣ m∑
i=1

ξi

∣∣∣∣ν
]
≤ α

m∑
i=1

E [|ξi|ν ]

if the random variables {ξi, i = 1, . . . ,m}, m ≥ 1, are independent and have zero expec-
tations, that is, E ξi = 0 for all i = 1, . . . ,m.

Theorem 5.7 follows from Utev’s interpolation lemma for moments of sums of weakly
dependent random variables [2]. Perhaps, Theorem 5.7 is not new and has already been
published elsewhere.

5.4. An inequality between ‖ sin∠(X̂ext, X
0
ext)‖ and ‖X̂ −X0‖.

Lemma 5.8. Let
(
X0

−I

)
be an (n + d) × d matrix and let

{(
Am

Bm

)
, m = 1, 2, . . .} be a

sequence of (n+ d)× d matrices of rank d (the columns of every matrix are assumed to
be linearly independent). If∥∥∥∥sin∠((Am

Bm

)
,

(
X0

−I

))∥∥∥∥→ 0 as m → ∞,

then

1) the matrix Bm is nonsingular if m is sufficiently large;
2) −AmB−1

m → X0 as m→∞.

Proof. Step 1. Throughout the proof, P1 denotes an n × n submatrix of the matrix
P⊥
(X0
−I)

:

I − P(X0
−I)

= P⊥
(X0
−I)

=

(
P1 P2

P�
2 P4

)
.

Note that
P1 = I −X0(X

�
0 X0 + Id)

−1X�
0 .

It is easy to show that
P1 = (X0X

�
0 + In+d)

−1.

Thus

λmin(P1) =
1

λmax(X0X
�
0 + I)

=
1

1 + ‖X0‖2
.

Step 2. If m is sufficiently large, then

(24)

∥∥∥∥sin∠((Am

Bm

)
,

(
X0

−I

))∥∥∥∥ <
1√

1 + ‖X0‖2
.

For such m, we show that the matrix Bm is nonsingular. Assume the converse. Then
there exists f ∈ R

d \ {0} such that Bmf = 0. For this f and for u = Amf , we have(
u

0d×1

)
=

(
Amf
Bmf

)
∈ span

〈(
Am

Bm

)〉
.

Since the columns of the matrix
(
Am

Bm

)
are linearly independent, we conclude that(
u
0

)
�= 0.

Then (20) implies that∥∥∥∥sin∠((Am

Bm

)
,

(
X0

−I

))∥∥∥∥2 ≥

(
u
0

)�
P⊥
(X0
−I)

(
u
0

)
‖( u0 )‖2

=
u�P1u

‖u‖2 ≥ λmin(P1) =
1

1 + ‖X0‖2
,
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which contradicts inequality (24). Therefore, if m is such that inequality (24) holds, then
the matrix Bm is nonsingular.

Step 3. Let δ > 0. We show that ‖AmB−1
m +X0‖ < δ for sufficiently large m.

Indeed, if m is sufficiently large, then

(25)

∥∥∥∥sin∠((Am

Bm

)
,

(
X0

I

))∥∥∥∥ <
δ√

1 + ‖X0‖2
√
1 + (‖X0‖+ δ)2

<
1√

1 + ‖X0‖2
.

We already proved in Step 2 that the matrix Bm is nonsingular for such a number m.
Now we prove that ‖AmB−1

m +X0‖ < δ for such m.
Indeed, there exists f ∈ R

d \ {0} such that ‖(AmB−1
m +X0) f‖ = ‖AmB−1

m +X0‖ ‖f‖.
Put

u = (AmB−1
m +X0)f,

z =

(
Am

Bm

)
B−1

m f =

(
AmB−1

m f
f

)
=

(
u
0

)
−
(
X0

−I

)
f ∈ span

〈(
Am

Bm

)〉
.

Since (X�
0 ,−I)P⊥

(X0
−I)

= 0 and P⊥
(X0
−I)

(
X0
−I

)
= 0, we have

z�P⊥
(X0
−I)

z =

((
u
0

)
−
(
X0

−I

)
f

)�
P⊥
(X0
−I)

((
u
0

)
−
(
X0

−I

)
f

)
=

(
u
0

)�
P⊥
(X0
−I)

(
u
0

)
= u�P1u ≥ ‖u‖2λmin(P1) =

‖AmB−1
m +X0‖2 ‖f‖2
1 + ‖X0‖2

.

Since the columns of the matrix
(
Am

Bm

)
are linearly independent, we conclude that

z �= 0. Further

0 < ‖z‖2 = ‖AmB−1
m f‖2 + ‖f‖2 ≤

(
1 + ‖AmB−1

m ‖2
)
‖f‖2.

From (20) we get∥∥∥∥sin∠((Am

Bm

)
,

(
X0

−I

))∥∥∥∥2 ≥
z�P⊥

(X0
−I)

z

‖z‖2 ≥ ‖AmB−1
m +X0‖2

(1 + ‖X0‖2) (1 + ‖AmB−1
m ‖2)

,∥∥∥∥sin∠((Am

Bm

)
,

(
X0

−I

))∥∥∥∥ ≥ ‖AmB−1
m +X0‖√

1 + ‖X0‖2
√
1 + (‖X0‖+ ‖AmB−1

m +X0‖)2
.(26)

Since the function

δ �→ δ√
1 + ‖X0‖2

√
1 + (‖X0‖+ δ)2

increases in (0,+∞), bounds (25) and (26) imply that ‖AmB−1
m +X0‖ < δ. �

Concluding remarks

Sufficient conditions for the consistency and strong consistency of the total least
squares estimator are given in the paper for the vector linear regression errors-in-variables
model. These conditions are weaker than those given in the paper [7]. We are able to
drop assumption (8) describing a bound for the growth of the condition number of the
matrix A�

0 A0. If the errors have finite moments of order 2 + ε and, generally speaking,
an infinite fourth moment, then we found conditions for the strong consistency of the
estimator. A typical case where these conditions hold is presented by

λmin(A
�
0 A0) = O(1)m.

It is quite possible that the assumption rank(ΣX0
ext) = d can also be dropped. If it

does not hold, then one needs to apply the theory of degenerate definite matrix pairs
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which results in complications of numerical procedures for the evaluation of the estimator.
However, there is a hope that the total least squares estimator defined as a solution of
the problem (3), (5) remains consistent even in this case.

In some forthcoming publications, we plan to find new conditions for the consis-
tency of the total least squares estimator in heteroscedastic regression (for the so-called
Elementwise-Weighted TLS Estimator, which is a total least squares estimator with ele-
mentwise weighting).
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