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THE DISTANCE BETWEEN FRACTIONAL BROWNIAN MOTION

AND THE SUBSPACE OF MARTINGALES

WITH “SIMILAR” KERNELS

UDC 519.21

V. DOROSHENKO, YU. MISHURA, AND O. BANNA

Abstract. We study the problem of approximation of a fractional Brownian motion
with the help of Gaussian martingales that can be represented as the integrals with
respect to a Wiener process and with nonrandom integrands being “similar” to the
kernel of the fractional Brownian motion. The “similarity” is understood in the sense
that an integrand is the value of the kernel at some point. We establish analytically
and evaluate numerically the upper and lower bounds for the distance between the
fractional Brownian motion and the space of Gaussian martingales.

1. Introduction

Let (Ω,F , {Ft, t ∈ [0, 1]},P) be a complete probability space. Consider a fractional
Brownian motion BH = {BH

t ,Ft, t ∈ [0, 1]} with the Hurst index H ∈ (0, 1) defined
in this space. In other words, BH is a zero mean Gaussian stochastic process whose
covariance function is given by

EBH
t BH

s =
1

2

(
s2H + t2H − |t− s|2H

)
.

Such a process with the Hurst index H > 1
2 is widely used for modeling various phenom-

ena in economics and nature in the case of a long range dependence. It is well known
that the fractional Brownian motion is neither semimartingale nor a Markov process with
the exception of H = 1

2 (fractional Brownian motion is a standard Wiener process in
this case). A natural question arises as to how far the fractional Brownian motion is
from other stochastic processes of a simpler structure, in particular, how far it is from
Gaussian martingales. The Gaussian martingales are defined by∫ t

0

a(s) dW̃ (s), t ∈ [0, 1],

where W̃ (t), t ∈ [0, 1], is some Wiener process. Therefore we face the following problem.

Let W̃ = {W̃t,Ft, t ∈ [0, 1]} be a certain Wiener process. We search for a function
a ∈ L2([0, 1]) that minimizes the distance

�2H := inf
a∈L2([0,1])

sup
t∈[0,1]

E

(
BH

t −
∫ t

0

a(s) dW̃s

)2

.
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To solve this problem, we first use the integral representation obtained in [1] for a frac-
tional Brownian motion in terms of a standard Wiener process on a finite interval. Con-
sider an integral kernel with a weak singularity

K(t, s) = Cα

(
tαs−α(t− s)α − αs−α

∫ t

s

uα−1(u− s)α du

)
�0<s<t≤1,

where

Cα = α

√
(2α+ 1)Γ(1− α)

Γ(α+ 1)Γ(1− 2α)

and where Γ is the Gamma function, α = H − 1
2 . Then there is a Wiener process

W = {Wt,Ft, t ∈ [0, 1]} considered with respect to the filtration F such that BH admits
the following representation:

(1)

BH
t =

∫ 1

0

K(t, s) dWs =

∫ t

0

K(t, s) dWs

= Cα

∫ t

0

(
tαs−α(t− s)α − αs−α

∫ t

s

uα−1(u− s)αdu

)
dWs.

If H ∈ ( 12 , 1), then the kernel K(t, s) can be reduced to the following form:

K(t, s) = Cαs
−α

∫ t

s

uα(u− s)α−1 du�0<s<t≤1 .

Having in mind possible applications we further consider the fractional Brownian motions
whose Hurst indices are such that H ∈ ( 12 , 1).

It is proved in [2] that the best approximation is attained if W = W̃ , that is, the
problem is reduced to the problem of minimization of the expression

�2H = inf
a∈L2([0,1])

sup
t∈[0,1]

∫ t

0

(K(t, s)− a(s))2 ds,

and thus the problem becomes an essentially analytical problem.
The functional

(2) f(x) = sup
t∈[0,1]

∫ t

0

(K(t, s)− x(s))2 ds

is well defined for all x ∈ L2([0, 1]). It is proved in [2] that the functional f attains
its minimum at a unique point x ∈ L2([0, 1]). An exact analytical expression for a
function that minimizes the functional f is unknown. Hence it is worthwhile to study
the functional f in some subclasses of functions of L2([0, 1]) and search for its minimum
in those subclasses. This minimum is an upper bound for the distance between the
fractional Brownian motion and the space of Gaussian martingales.

Some of the subclasses of functions are considered in [3]–[7]. In this paper, we consider
the subclass K ⊂ L2([0, 1]) of functions being of the form

a(s) = K(t0, s)�0<s<t0

for some point t0 ∈ [0, 1]. We find analytically a point t∗0 that minimizes the functional f
in the subclass K and estimate numerically the distance

(3) �̂2H = sup
t∈[0,1]

∫ t

0

(K(t, s)−K(t∗0, s))
2 ds.

This number is an upper bound for �2H . We also find a lower bound for this distance.
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2. Finding a minimizing function in the class K
Let t0 ∈ [0, 1]. We evaluate the values of the functional f at functions belonging to

the subclass K, that is, at functions of the form

at0(s) =

{
K(t0, s), for 0 < s ≤ t0,

0, for t0 ≤ s ≤ 1,

and find a point t∗0 ∈ [0, 1] for which the function at∗0 minimizes the functional f in the
subclass K. Put

�̂2H = sup
t∈[0,1]

∫ t

0

(K(t, s)−K(t∗0, s))
2 ds and gt0(t) =

∫ t

0

(at0(s)−K(t, s))2 ds.

The function gt0 is continuous in the interval [0, 1] in view of the properties of the ker-
nel K. Then

�̂2H = max
0≤t≤1

gt∗0 (t) = min
t0∈[0,1]

f(at0).

Lemma 2.1. The equality

sup
0≤t≤t0

gt0(t) = C2
αt

2H
0 sup

0≤p≤1

∫ p

0

y2α

(∫ 1/y

p/y

xα(x− 1)α−1 dx

)2

dy

holds.

Proof. Let t < t0. We have

(4)

gt0(t) =

∫ t

0

(at0(s)−K(t, s))2 ds =

∫ t

0

(K(t0, s)−K(t, s))2 ds

= C2
α

∫ t

0

(
s−α

∫ t0

s

uα(u− s)α−1 − s−α

∫ t

s

uα(u− s)α−1

)2

ds

= C2
α

∫ t

0

s−2α

(∫ t0

t

uα(u− s)α−1 du

)2

ds

= C2
α

∫ t

0

s−2α

(
s2α

∫ t0/s

t/s

xα(x− 1)α−1 dx

)2

ds

= C2
α

∫ t

0

s2α

(∫ t0/s

t/s

xα(x− 1)α−1 dx

)2

ds

= C2
α

∫ t/t0

0

(yt0)
2α

(∫ 1/y

t/t0y

xα(x− 1)α−1 dx

)2

t0 dy

= C2
αt

2H
0

∫ t/t0

0

y2α

(∫ 1/y

t/t0y

xα(x− 1)α−1 dx

)2

dy.

Put p = t/t0. Then

gt0(t) = C2
αt

2H
0

∫ p

0

y2α

(∫ 1/y

p/y

xα(x− 1)α−1 dx

)2

dy,

whence we derive the result needed. �

Lemma 2.2. If t > t0, then

(5) gt0(t) = (t− t0)
2H .



44 V. DOROSHENKO, YU. MISHURA, AND O. BANNA

Proof. Put Mt =
∫ t

0
a(s) dWs. If t > t0, then

Mt =

∫ t0

0

K(t0, s) dWs = BH
t0 ,

whence

gt0(t) = E
(
BH

t −Mt

)2
= E

(
BH

t − BH
t0

)2
= (t− t0)

2H .

�

Thus supt0≤t≤1 gt0(t) = (1− t0)
2H . Let

(6) Dα = C2
α sup

0≤p≤1

∫ p

0

s2α

(∫ 1/s

p/s

xα(x− 1)α−1 dx

)2

ds.

Lemma 2.3. The equality

�̂2H = min
t0∈[0,1]

f(at0) =
Dα

(1 +D
1/2H
α )2H

holds.

Proof. Consider two functions u(t) = Dαt
2H and v(t) = (1− t)2H for t ∈ [0, 1]. Then

f(at0) = max{u(t0), v(t0)}.
The function u increases while the function v decreases in the interval [0, 1]. Both

functions u and v are continuous. Moreover, 0 = u(0) < v(0) = 1 and

Dα = u(1) > v(1) = 0.

Thus there exists a unique point t∗0 ∈ (0, 1) such that u(t∗0) = v(t∗0) and

u(t∗0) = v(t∗0) = min
t0∈[0,1]

max{u(t0), v(t0)}.

Now we evaluate the point t∗0. Since Dαt
∗
0
2H = (1− t∗0)

2H ,

t∗0 =
1

1 +D
1/2H
α

.

Therefore

min
t0∈[0,1]

f(at0) = u(t∗0) =
Dα(

1 +D
1/2H
α

)2H . �

3. Lower bounds for the distance between the fractional Brownian

motion and the space of Gaussian martingales

A lower bound for the distance �2H is obtained in [2]. According to Lemma 4 in [2],

(7) sup
t∈[0,1]

∫ t

0

(K(t, s)− a(s))2 ds ≥ 1

4

∫ t1

0

(K(t2, s)−K(t1, s))
2 ds

for an arbitrary function a ∈ L2([0, 1]) and for all 0 ≤ t1 < t2 ≤ 1.
This means that

�2H ≥ 1

4
sup

0≤t≤1

∫ t

0

(K(1, s)−K(t, s))2 ds.

Put

�̌2H =
1

4
sup

0≤t≤1

∫ t

0

(K(1, s)−K(t, s))2 ds.
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Hence �̌2H is a lower bound for the distance between a fractional Brownian motion and
the space of Gaussian martingales. Now we study the behavior of the function

g(t) =

∫ t

0

(K(1, s)−K(t, s))2 ds.

Lemma 3.1. (1) The function g defined above has a unique point of maximum in
the interval [0, 1].

(2) The equality

�̌2H =
Dα

4
holds if 1

2 < H < 1.

Proof. 1) It is obvious that g(0) = g(1) = 0. Thus the points of maximum of the
function g belong to the open interval (0, 1). The derivative of g is given by

g′(t) = K2(1, t)− 2

∫ t

0

(K(1, s)−K(t, s))K ′
t(t, s) ds.

Consider the integral I(t) =
∫ t

0
(K(1, s) − K(t, s))K ′

t(t, s)ds on the left hand side of
the preceding equality. Obviously the integral is equal to

(8)

I(t) =

∫ t

0

(K(1, s)−K(t, s))K ′
t(t, s) ds

= tα
∫ t

0

(t− s)α−1s−2α

∫ 1

t

uα(u− s)α−1 du ds

= tα
∫ 1

t

uα

∫ t

0

s−2α(t− s)α−1(u− s)α−1 ds du

= tα−1

∫ 1

t

uα

∫ 1

0

s−2α(1− s)α−1
(u
t
− s

)α−1

ds du.

It is proved in [1] that∫ 1

0

sμ−1(1− s)ν−1(c− s)−μ−ν ds = c−ν(c− 1)−μB(μ, ν)

for all c > 1, μ > 0, and ν > 0, where B(·, ·) is the beta function. We apply the latter
equality in the right hand side of (8) and obtain

(9)
I(t) = B(1− 2α, α)tα−1

∫ 1

t

uα
(u
t
− 1

)2α−1

du = B(1− 2α, α)

∫ 1

t

(u− t)2α−1 du

=
B(1− 2α, α)

2α
(1− t)2α.

Using equality (9), we transform the equation g′(t) = 0 to the form

K2(1, t) =
B(1− 2α, α)

2α
(1− t)2α

or, equivalently, to the form

(10) K(1, t) = Cα(1− t)α,

where C2
α = B(1− 2α, α)/α.

Since K(1, 1) = 0, t = 1 is a root of (10). The left hand side of (10) equals +∞ at
t = 0, while the right hand side equals Cα at t = 0. Then we rewrite (10) as follows:

tα
∫ 1/t

1

uα(u− 1)α−1du = Cα(1− t)α
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or

(11)

∫ 1/t

1

uα(u− 1)α−1 du =

(
1

t
− 1

)α

.

Consider the function

G(t) =

∫ 1/t

1

uα(u− 1)α−1 du−
(
1

t
− 1

)α

in the interval (0, 1). It is easily seen that G(t) ∼ t−2α/(2α)− Cαt
−α → +∞ as t → 0,

while G(t) → 0 as t → 1. The derivative of the function G(t) is given by

G′(t) = (t−1 − 1)α−1t−2
(
αCα − t−α

)
.

The derivative G′(t) equals zero at a unique point that belongs to the open interval (0, 1),
since αB(1− 2α, α) > 1 for α ∈ (0, 1/2), whence αCα > 1 (see [3]).

Therefore, the functionG(t) decreases in the left part of the interval (0, 1) and increases
to zero in the right part of the same interval. Thus the function has a unique point of
minimum in the interval (0, 1), and the minimum is negative. This implies that the
function equals zero at a unique point between the origin and the point of minimum.
The case (1) of the lemma is proved.

2) Note that g(t) = g1(t), t ∈ [0, 1], where the function gt0 is defined in Section 2.
According to Lemma 2.1 and the definition of Dα, we get

sup
0≤t≤1

g1(t) = C2
α sup

0≤p≤1

∫ p

0

y2α

(∫ 1/y

p/y

xα(x− 1)α−1 dx

)2

dy = Dα. �

Corollary 3.1. For all H ∈ ( 12 , 1),

(12) �̌2H =
Dα

4
≤ �2H ≤ Dα(

1 +D
1/2H
α

)2H
= �̂2H .

4. Evaluation of �̌2H and �̂2H

First we evaluate Dα, and then we find �̌2H and �̂2H by using equality (12). The
numerical procedure for the evaluation of Dα is reduced to the evaluation of the integral

(13)

∫ B

A

s2α

(∫ v(s)

u(s)

xα(x− 1)α−1 dx

)2

ds,

where A,B ∈ [0, 1], A ≤ B, and u and v are some functions on [A,B] such that

1 ≤ u(s) ≤ v(s), s ∈ [A,B].

We show how one can evaluate such integrals numerically. The function Q is defined by

Q(z) =

∫ z

1

xα(x− 1)α−1 dx, z ∈ [1,∞).

Then one can rewrite expression (13) as follows:

(14)

∫ B

A

s2α
(
Q(v(s))−Q(u(s))

)2
ds.
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The main problem in the procedure of the evaluation of Q is that the integrand has a
singularity at the point 1. To remove the singularity we integrate by parts:

(15)

Q(z) =

∫ z

1

xα(x− 1)α−1 dx =
xα(x− 1)α

α

∣∣∣∣z
1

−
∫ z

1

xα−1(x− 1)α dx

=
zα(z − 1)α

α
−
∫ z

1

xα−1(x− 1)α dx.

Put q(z) = xα−1(x− 1)α, z ∈ [1,∞).

The algorithm for the evaluation of Q(z), z ∈ [1,∞). Let N = 100 000 and Δ = 0.1.
Consider a partition πN of the interval [1, 1 +NΔ] = [1, 10 001] such that

πN =
{
1 = tN0 < tN1 = 1 +Δ < · · · < tNk = 1 + kΔ < · · · < tNN = 1 +NΔ

}
.

The function H(z), z ∈ [1,∞), is evaluated numerically as follows:

(1) If there exists a number k such that z = tNk , then we use the Simpson formula
for the numerical integration [8] and obtain

Q
(
tNk

)
≈

(
tNk

(
tNk − 1

))α
α

−
k∑

i=1

(
q
(
tNi−1

)
+ 4q

((
tNi−1 + tNi

)
/2
)
+ q

(
tNi

))
/6.

(2) If tNk < z < tNk+1, 1 ≤ k ≤ N − 1, then we use step (1) and consider the linear
interpolation

Q(z) ≈ (tk+1 − z)

Δ
Q
(
tNk

)
+

(z − tk)

Δ
Q
(
tNk+1

)
.

(3) If z > tNN , then Q(z) ∼ z2α/(2α) as z → ∞ by the l’Hospital rule, and thus one
can put

Q(z) ≈ z2α

2α
.

The algorithm for the evaluation of I(A,B, u, v) =
∫ B

A
s2α(Q(v(s))−Q(u(s)))2 ds.

Let N = 1000. Put Δ = (B−A)/N and consider the following partition π of the interval
[A,B]:

π =
{
A = sN0 < A+Δ = sN1 < · · · < A+ kΔ = sNk < · · · < B = sNN

}
.

Put sN∗
i =

(
sNi−1 + sNi

)
/2.

Then

(16)

∫ B

A

s2α
(
Q(v(s))−Q(u(s))

)2
ds =

N∑
i=1

∫ sNi

sNi−1

s2α
(
Q(v(s))−Q(u(s))

)2
ds

≈
N∑
i=1

(
Q
(
v
(
sN∗
i

))
−Q

(
u
(
sN∗
i

)))2 ∫ sNi

sNi−1

s2α ds

=
1

2α+ 1

N∑
i=1

(
Q
(
v
(
sN∗
i

))
−Q

(
u
(
sN∗
i

))2)
×
((

sNi
)2α+1 −

(
sNi−1

)2α+1
)
.

By definition Dα, we obtain

(17) Dα = max
0≤t≤1

g(t) = max
0≤t≤1

I(0, t, ut, v),

where ut(y) = t/y, v = 1/y, y ∈ (0, 1].
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Figure 1. �̌2H (lower graph), �̂2H (upper graph)

The algorithm for the evaluation of Dα. We find the maximum of the function g(t),
t ∈ [0, 1], by using standard methods of optimization of unimodal functions (note that g
is unimodal in view of Lemma 3.1). We use formula (17) to evaluate g.

The following table contains the results of evaluation for some H:

H 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Dα 0.0260 0.0289 0.0451 0.0742 0.1171 0.1767 0.2537 0.3368 0.3586
t∗0 0.9650 0.9504 0.9156 0.8651 0.8069 0.7471 0.6914 0.6467 0.6317

�̌2H 0.0065 0.0072 0.0113 0.0185 0.0293 0.0442 0.0634 0.0842 0.0897

�̂2H 0.0250 0.0272 0.0402 0.0606 0.0849 0.1108 0.1355 0.1537 0.1499

The values of �̌2H and �̂2H are depicted in Figure 1 for H running from 0.51 to 0.99
with the step 0.01.
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