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RATE OF CONVERGENCE OF OPTION PRICES

FOR APPROXIMATIONS

OF THE GEOMETRIC ORNSTEIN–UHLENBECK PROCESS

BY BERNOULLI JUMPS OF PRICES ON ASSETS

UDC 519.21

YU. S. MISHURA AND YE. YU. MUNCHAK

Abstract. We consider the discrete approximation scheme for the price of an asset
that is modeled by the geometric Ornstein–Uhlenbeck process. The approximation
scheme corresponds to Euler type discrete-time approximations where the increments
of the Wiener process are changed by independent identically distributed Bernoulli
random variables. The rate of convergence of both objective and fair option prices is
estimated by using the classical results on the rate of convergence to the normal law
of the distribution functions of sums of identically distributed random variables. We

analyze option prices and specific changes in a model where the martingale measure
is used instead of the objective measure.

1. Introduction

A number of papers in finance mathematics is devoted to the convergence of models
with discrete time to those with continuous time. This is explained by the fact that
analytical evaluations are easier for models with continuous time as compared to models
with discrete time, despite that the real financial operations are performed in discrete
time. In doing so, a natural question is about the rate of convergence of option prices.

A variety of choices for pre-limit and limit models is known in the literature, however,
the rate of convergence is studied mainly for binomial or trinomial pre-limit models and
Black–Scholes limit model [1, 2, 4, 10] that follows from rather deep results on the rate
of convergence of the binomial distribution to the standard Gaussian distribution. These
results allow one to improve the rate of convergence up to O(n−1), where n is the number
of trade periods on a fixed time interval in the pre-limit model.

More general pre-limit as well as limit models are considered in the papers [5]–[9].
General conditions for the weak convergence of a sequence of stochastic processes with
discrete time to a diffusion process are applied in [5] to study the weak convergence
of discrete models of financial markets to diffusion models with continuous time. The
Ornstein–Uhlenbeck process is viewed as the limit model (no rate of convergence of option
prices is obtained in [5]). The case where a general martingale scheme with discrete time
approximates the standard Black–Scholes model is considered in [6]. For this case, the
rate of convergence of option prices is not slower than O(n−1/8). Applying the asymptotic
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expansion of the distribution function, it is proved in [6] that the rate of convergence is
at least O

(
n−1/2

)
.

A discrete approximation scheme for the Ornstein–Uhlenbeck process is considered
in [7]. This scheme is based on Euler approximations where increments of the Wiener
process are changed by independent identically distributed bounded symmetric random
variables with uniform distribution. It is proved in [7] that the rate of convergence for
objective and fair option prices is at least O(n−1/3). The paper [9] studies the rate of
convergence of prices of put and call options if the risk assets in a model with discrete
time weakly converge to the Black–Scholes model. The rate of convergence is of order
O(n−1), where n is the number of trading periods in a fixed time interval for the pre-
limit model. This rate of convergence is achieved in [9] by using a bound for the rate
of convergence in the central limit theorem for identically distributed random variables
obtained in [8] with the help of pseudomoments. The main result of [9] follows by using
the method of pseudomoments; however, a specific method of proof of that bound does
not matter when obtaining the main result in [9]: the main conclusion remains the same
even if the rate of convergence in that bound could be improved, since the proof in [9]
is based on some extra bounds that obviously are of order O(n−1) and therefore an
improvment of the rate of convergence of option prices seems to be impossible for this
model.

In the current paper, we use the following approach to estimate the rate of convergence
of option prices. The limit model for the asset prices generated by a geometric Ornstein–
Uhlenbeck process is introduced in Section 2.

Section 3 contains a description of properties of the pre-limit discrete price process. We
consider a discrete approximation for the Ornstein–Uhlenbeck process based on Euler’s
approximations where increments of the Wiener process are changed by independent
identically distributed Bernoulli random variables.

Sections 4 and 5 contain the main results of the paper. We provide some sufficient
conditions under which the rate of convergence of objective and fair option prices are of
order O(n−1/2). We analyze the changes in the distribution of prices in the market when
substituting the martingale measure for the objective measure.

2. Description and properties of the limit continuous price process

Let T > 0, T = [0, T ], and let ΩF = (Ω,F , (Ft, t ∈ T),P) be a complete standard
stochastic basis. Furthermore, let W = {Wt,Ft, t ∈ T} be an adapted Wiener pro-
cess. In this stochastic basis, consider an adapted Ornstein–Uhlenbeck process X =
{Xt,Ft, t ∈ T} with constant parameters. This Ornstein–Uhlenbeck process is a unique
solution of the following stochastic differential equation:

(1) dXt = (μ−Xt) dt+ σ dWt, X0 = x0 ∈ R, t ∈ T,

where μ ∈ R and σ > 0. The process X can be written explicitly as follows:

Xt = x0e
−t + μ

(
1− e−t

)
+ σe−t

∫ t

0

es dWs.

Finally, we assume that the price St of an asset is such that

(2) St = exp

{
Xt −

σ2

2
t

}
, t ∈ T,

where the nonrandom constant − 1
2σ

2t is used to make further transformations easier.
It is proved in [5] that the market with the bond Bt = ert and share St is arbitrage

free and complete. Moreover, a unique probability measure P∗ ∼ P is such that Zt :=
St

Bt
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is an Ft-martingale with respect to P∗, possesses the Radon–Nikodym derivative dP∗

dP

∣∣∣
T
,

where
dP∗

dP

∣∣∣∣
t

= exp

{
−
∫ t

0

μ− r −Xs

σ
dWs −

1

2

∫ t

0

(μ− r −Xs)
2

σ2
ds

}
,

and Zt is represented with respect to P∗ as

Zt = exp

{
x0 + σW̃t −

σ2

2
t

}
with some Wiener process W̃ .

3. Description and properties of the pre-limit discrete price process

We construct a discrete scheme that weakly converges to the geometric Ornstein–
Uhlenbeck process (2). First we consider the following discrete approximation scheme
for the Ornstein–Uhlenbeck process itself that is based on Euler approximations of a
solution of stochastic differential equation (1) where increments of the Wiener process
are changed by independent identically distributed Bernoulli random variables. More
precisely, we assume that a sequence of probability spaces (Ωn,Fn,Pn), n ≥ 1, is given

and let
{
q
(n)
k , n ≥ 1, 0 ≤ k ≤ n

}
be a sequence of independent identically distributed

random variables such that q
(n)
k = ±

√
T/n with probability 1

2 .
Let n > T . Consider the recurrence scheme

(3) x
(n)
0 ∈ R, R

(n)
k := x

(n)
k − x

(n)
k−1 =

(
μ− x

(n)
k−1

)
T

n
+ σq

(n)
k , 1 ≤ k ≤ n.

Let Fn
0 = {∅,Ω} and Fn

k = σ
{
R

(n)
i , 1 ≤ i ≤ k

}
. Put

Xn
t = x

(n)
0 �t<T

n
+

⎛⎜⎝x(n)
0 +

∑
1≤k≤[ tnT ]

R
(n)
k

⎞⎟⎠�t≥T
n
= x

(n)

[ tnT ]
.

Throughout the rest of the paper we use the convention that∑
1≤k≤[ tnT ]

= 0,
∏

1≤k≤[ tnT ]

= 1

for t < T
n . Then we construct the corresponding multiplicative scheme for the pre-limit

price process as follows:

(4) Sn
t = exp

{
x
(n)
0

} ∏
1≤k≤[ tnT ]

(
1 +R

(n)
k

)
, t ∈ T.

The following results for the scheme (3)–(4) are proved in the paper [7].

Lemma 3.1. Let the sequence x
(n)
0 be bounded. Then

(i) there exist a positive integer number n0 ∈ N and a constant C > 0 that does not
depend on n such that ∣∣R(n)

k

∣∣ ≤ C√
n
< 1

for all n > n0 and all 1 ≤ k ≤ n;
(ii) there exists a constant C > 0 that does not depend on n and such that

E
(
x
(n)
k

)4 ≤ C

for n > T and 1 ≤ k ≤ n.
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As shown in the paper [5], if q
(n)
k is a Bernoulli random variable, then the financial

market with the bond

Bn
t =

∏
1≤k≤[nt

T ]

(
1 + r

(n)
k

)
and share Sn

t defined by (4) is arbitrage free and complete under the following additional
assumptions that

r
(n)
k = o

(
n−1/2

)
and
∣∣x(n)

0

∣∣ ≤ C.
It is also proved in [5] that there exists a unique equivalent martingale measure Pn,∗,

Pn,∗ ∼ Pn, whose Radon–Nikodym derivative is given by

(5)
dPn,∗

dPn =
n∏

k=1

(
1 + ρ

(n)
k−1q

(n)
k

)
,

where the random variables ρ
(n)
k−1 are such that

(6) ρ
(n)
k−1 =

nr
(n)
k −

(
μ− x

(n)
k−1

)
T

σT

and

(7) x
(n)
k − μ =

(
x
(n)
0 − μ

)(
1− T

n

)k

+ σ

k∑
i=1

q
(n)
i

(
1− T

n

)k−i

.

We collect the above observations in the following theorem.

Theorem 3.1. Let
{
q
(n)
k , n ≥ 1, 0 ≤ k ≤ n

}
be a sequence of independent identically

distributed random variables such that q
(n)
k = ±

√
T/n with probability 1

2 and

r
(n)
k = o

(
n−1/2

)
,

∣∣x(n)
0

∣∣ ≤ C.

Then the market (Bn
t , S

n
t ) is asymptotically arbitrage free which means that there exists a

positive integer number n0 ∈ N such that the market (Bn
t , S

n
t ) is arbitrage free for every

integer number n ≥ n0.
If n ≥ n0, then the market (Bn

t , S
n
t ) is complete and the Radon–Nikodym derivative

of a unique equivalent martingale measure Pn,∗ is given by relations (5)–(6).

Now we are going to prove that∑
1≤k≤n

(
R

(n)
k

)2
→ σ2T

in L2(P) and find the corresponding rate of convergence.

Lemma 3.2. For n > T ,

E

( ∑
1≤k≤n

(
R

(n)
k

)2
− σ2T

)2

≤ C

n2
.

Proof. We start with an obvious observation. Using the equality(
q
(n)
k

)2
= T/n,

we conclude that
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Σn := E

( ∑
1≤k≤n

(
R

(n)
k

)2
− σ2T

)2

= E

⎛⎜⎝ ∑
1≤k≤n

⎛⎝
(
μ− x

(n)
k−1

)
T

n
+ σq

(n)
k

⎞⎠2

− σ2T

⎞⎟⎠
2

= E

⎛⎜⎝ ∑
1≤k≤n

⎛⎝
(
μ− x

(n)
k−1

)
T

n

⎞⎠2

+ 2σ
∑

1≤k≤n

(
μ− x

(n)
k−1

)
T

n
q
(n)
k + σ2

∑
1≤k≤n

(
q
(n)
k

)2
− σ2T

⎞⎟⎠
2

= E

⎛⎜⎝ ∑
1≤k≤n

⎛⎝
(
μ− x

(n)
k−1

)
T

n

⎞⎠2

+ 2σ
∑

1≤k≤n

(
μ− x

(n)
k−1

)
T

n
q
(n)
k

⎞⎟⎠
2

≤ 3E

⎛⎜⎝ ∑
1≤k≤n

⎛⎝
(
μ− x

(n)
k−1

)
T

n

⎞⎠2
⎞⎟⎠

2

+ 12σ2 E

⎛⎝ ∑
1≤k≤n

(
μ− x

(n)
k−1

)
T

n
q
(n)
k

⎞⎠2

.

Taking into account Lemma 3.1 and the inequality( ∑
1≤k≤n

ak

)2

≤ n
∑

1≤k≤n

a2k,

we get

E

⎛⎜⎝ ∑
1≤k≤n

⎛⎝
(
μ− x

(n)
k−1

)
T

n

⎞⎠2
⎞⎟⎠

2

≤ n
∑

1≤k≤n

E

⎛⎝
(
μ− x

(n)
k−1

)
T

n

⎞⎠4

≤ Cn2n−4 ≤ C

n2
.

Recalling that the random variables q
(n)
k are independent, we deduce from Lemma 3.1

that

E
(
μ− x

(n)
k−1

)2
≤ C,

whence

E

⎛⎝ ∑
1≤k≤n

(
μ− x

(n)
k−1

)
T

n
q
(n)
k

⎞⎠2

=
∑

1≤k≤n

E

⎛⎝
(
μ− x

(n)
k−1

)
T

n
q
(n)
k

⎞⎠2

=
∑

1≤k≤n

E

⎛⎝
(
μ− x

(n)
k−1

)
T

n

⎞⎠2

E
(
q
(n)
k

)2
≤ Cnn−3 ≤ Cn−2.

The lemma is proved. �
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4. Main theorem on the rate of convergence of objective option prices

in the Bernoulli scheme

Denote by Cn and C a standard call option and by Pn and P the standard put option
for pre-limit and limit assets, respectively. Denote by K ≥ 0 the strike price and by T the
expiration date. Denote the corresponding discounted objective prices by π(Cn), π(C),
π(Pn), and π(P), and the fair prices by π∗(Cn), π

∗(C), π∗(Pn), and π∗(P), respectively.
For the sake of simplicity, assume that the price of a bond for the pre-limit model is

equal to

B
(n)
t =

(
1 +

rT

n

)[tn/T ]

,

while the limit price of a bond equals Bt = ert. Then

π(Cn) = E

⎛⎝ ∏
1≤k≤n

(
1 + R

(n)
k

)
−K

⎞⎠+(
1 +

rT

n

)−n

, n ≥ 1,

π(C) = E

(
exp

{
XT − 1

2
σ2T

}
−K

)+

e−rT ,

π(Pn) = E

⎛⎝K −
∏

1≤k≤n

(
1 +R

(n)
k

)⎞⎠+(
1 +

rT

n

)−n

, n ≥ 1,

π(P) = E

(
K − exp

{
XT − 1

2
σ2T

})+

e−rT .

Theorem 4.1. Assume that

(i) ∣∣∣x(n)
0 − x0

∣∣∣ ≤ C0

n1/2

with some constant C0 > 0;

(ii) independent identically distributed random variables q
(n)
k assume values ±

√
T/n

with probability 1
2 .

Then, starting with some n0 ∈ N,

(8) |π(D)− π(Dn)| ≤
C1

n1/2

for some C1 > 0 and D = C,P.

Proof. We consider the put options, since their payoff function is bounded. Then the
proof for call options follows from the result for put options in view of the put-call parity.

To make further reasoning simpler we assume that x
(n)
0 = x0 = 1. We are going to prove

an upper bound for the difference of prices

|π(P)− π(Pn)| =

∣∣∣∣∣∣E
⎛⎝K −

∏
1≤k≤n

(
1 +R

(n)
k

)⎞⎠+(
1 +

rT

n

)−n

− E

(
K − exp

{
XT − 1

2
σ2T

})+

e−rT

∣∣∣∣∣∣.
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Applying Lemma A.2 of [7], we get after simple algebra that

(9)

|π(P)− π(Pn)|

≤
(
1 +

rT

n

)−n
∣∣∣∣∣∣E
⎛⎝K −

∏
1≤k≤n

(
1 +R

(n)
k

)⎞⎠+

− E

(
K − exp

{
XT − 1

2
σ2T

})+
∣∣∣∣∣∣

+ E

(
K − exp

{
XT − 1

2
σ2T

})+
∣∣∣∣∣
(
1 +

rT

n

)−n

− e−rT

∣∣∣∣∣
≤

∣∣∣∣∣∣E
⎛⎝K −

∏
1≤k≤n

(
1 +R

(n)
k

)⎞⎠+

− E

(
K − exp

{
XT − 1

2
σ2T

})+
∣∣∣∣∣∣

+
K(rT )2

2n
.

Integrating by parts we conclude that

E(K − ξ)+ =

∫ K

−∞
P(ξ ≤ x) dx

for all integrable random variables ξ. Thus,∣∣∣∣∣∣E
⎛⎝K −

∏
1≤k≤n

(
1 + R

(n)
k

)⎞⎠+

− E

(
K − exp

{
XT − 1

2
σ2T

})+
∣∣∣∣∣∣

=

∣∣∣∣∣∣
∫ K

0

⎛⎝P(exp{XT − 1

2
σ2T

}
≤ z

)
− P

⎛⎝ ∏
1≤k≤n

(
1 +R

(n)
k

)
≤ z

⎞⎠⎞⎠ dz

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫ K

0

⎛⎝P(XT − 1

2
σ2T ≤ log z

)

− P

⎛⎝log
⎛⎝ ∏

1≤k≤n

(
1 +R

(n)
k

)⎞⎠ ≤ log z

⎞⎠⎞⎠ dz

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫ K

0

⎛⎝P(XT − 1

2
σ2T ≤ log z

)(10)

− P

⎛⎝ ∑
1≤k≤n

R
(n)
k − 1

2

∑
1≤k≤n

(
R

(n)
k

)2
≤ log z

⎞⎠⎞⎠ dz

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫ K

0

⎛⎝P
⎛⎝ ∑

1≤k≤n

log
(
1 + R

(n)
k

)
≤ log z

⎞⎠
− P

⎛⎝ ∑
1≤k≤n

R
(n)
k − 1

2

∑
1≤k≤n

(
R

(n)
k

)2
≤ log z

⎞⎠⎞⎠ dz

∣∣∣∣∣∣
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=

∣∣∣∣∣∣
∫ logK

−∞
ey

⎛⎝P(XT − 1

2
σ2T ≤ y

)

− P

⎛⎝ ∑
1≤k≤n

R
(n)
k − 1

2

∑
1≤k≤n

(
R

(n)
k

)2
≤ y

⎞⎠⎞⎠ dy

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫ logK

−∞
ey

⎛⎝P
⎛⎝ ∑

1≤k≤n

log
(
1 +R

(n)
k

)
≤ y

⎞⎠
− P

⎛⎝ ∑
1≤k≤n

R
(n)
k − 1

2

∑
1≤k≤n

(
R

(n)
k

)2
≤ y

⎞⎠⎞⎠ dy

∣∣∣∣∣∣
=: In1 + In2 .

We rewrite both probabilities in the latter inequality in order to estimate In1 from above.
Put

D(y) =

√
2
(
y − μ

(
1− e−T

)
− x0e

−T + σ2T
2

)
σ
√
1− e−2T

.

It is obvious that

P
(
XT − 1

2
σ2T ≤ y

)
= Φ(D(y)) .

Considering the inequality

|Φ(x)− Φ(y)| ≤ |x− y|/
√
2π

for the standard normal distribution function, we get

(11)

∣∣∣∣∣∣P
⎛⎝ ∑

1≤k≤n

R
(n)
k − 1

2

∑
1≤k≤n

(
R

(n)
k

)2
≤ y

⎞⎠− P

⎛⎝ ∑
1≤k≤n

R
(n)
k − σ2T

2
≤ y

⎞⎠∣∣∣∣∣∣
≤ P

⎛⎝∣∣∣∣∣∣
∑

1≤k≤n

(
R

(n)
k

)2
− σ2T

∣∣∣∣∣∣ > 2

n1/2

⎞⎠
+

∣∣∣∣∣∣P
⎛⎝ ∑

1≤k≤n

R
(n)
k − σ2T

2
≤ y

⎞⎠− P

⎛⎝ ∑
1≤k≤n

R
(n)
k − σ2T

2
≤ y ± 1

n1/2

⎞⎠∣∣∣∣∣∣
≤ P

⎛⎝∣∣∣∣∣∣
∑

1≤k≤n

(
R

(n)
k

)2
− σ2T

∣∣∣∣∣∣ > 2

n1/2

⎞⎠
+

∣∣∣∣∣∣P
⎛⎝ ∑

1≤k≤n

R
(n)
k − σ2T

2
≤ y

⎞⎠− Φ(D(y))

∣∣∣∣∣∣
+

∣∣∣∣∣∣P
⎛⎝ ∑

1≤k≤n

R
(n)
k − σ2T

2
≤ y ± 1

n1/2

⎞⎠− Φ

(
D

(
y ± 1

n1/2

))∣∣∣∣∣∣+ C

n1/2

=: Jn
1 + Jn

2 + Jn
3 +

C

n1/2
.
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It follows from (11) that∣∣∣∣∣∣P
(
XT − 1

2
σ2T ≤ y

)
− P

⎛⎝ ∑
1≤k≤n

R
(n)
k − 1

2

∑
1≤k≤n

(
R

(n)
k

)2
≤ y

⎞⎠∣∣∣∣∣∣
≤

∣∣∣∣∣∣Φ(D(y))− P

⎛⎝ ∑
1≤k≤n

R
(n)
k − 1

2
σ2T ≤ y

⎞⎠∣∣∣∣∣∣+ Jn
1 + Jn

2 + Jn
3 +

C

n1/2

≤ Jn
1 + 2Jn

2 + Jn
3 +

C

n1/2
.

Now Lemma 3.2 implies

Jn
1 ≤ CnE

⎛⎝ ∑
1≤k≤n

(
R

(n)
k

)2
− σ2T

⎞⎠2

≤ C

n
.

The reasoning needed to establish bounds for Jn
i , i = 2, 3, is the same, so that we treat

the case of Jn
2 only. Put Xk =

√
nq

(n)
k (1− T/n)n−k and

Bn =
∑

1≤k≤n

EX2
k =

n
(
1−
(
1− T

n

)2n)
2− T

n

.

Hence, definition (3) yields

x
(n)
k = x

(n)
0

(
1− T

n

)k

+ μ

(
1−
(
1− T

n

)k
)

+ σ
k∑

i=1

q
(n)
i

(
1− T

n

)k−i

.

For k = n, we obtain

Jn
2 =

∣∣∣∣∣∣P
⎛⎝B−1/2

n

∑
1≤k≤n

Xk ≤ Dn(y)

⎞⎠− Φ(D(y))

∣∣∣∣∣∣ ,
where

Dn(y) =

√
2− T

n

(
y − (μ− x0)

(
1−
(
1− T

n

)n)
+ σ2T

2

)
σ

√
1−
(
1− T

n

)2n .

Similarly to the proof of Lemma A.2 of [7], one can see that |D(y)−Dn(y)| ≤ (C+|y|)/
√
n.

Moreover, applying the Berry–Esseen inequality we conclude that

Jn
2 ≤

∣∣∣∣∣∣P
⎛⎝B−1/2

n

∑
1≤k≤n

Xk ≤ Dn(y)

⎞⎠− Φ(Dn(y))

∣∣∣∣∣∣+ C + |y|√
n

≤ C + |y|√
n

.

Then In1 admits the bound

(12) In1 ≤
∫ logK

−∞
ey
(
C

n
+

C + |y|√
n

)
dy ≤ C√

n
.

To estimate In2 from above, we note that∑
1≤k≤n

log
(
1 +R

(n)
k

)
=
∑

1≤k≤n

R
(n)
k − 1

2

∑
1≤k≤n

(
R

(n)
k

)2
+

1

3
αn

∑
1≤k≤n

(
R

(n)
k

)3
.
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Then we obtain from Lemma 3.1 that
∑

1≤k≤n

∣∣R(n)
k

∣∣3 ≤ C3/
√
n and thus Taylor’s ex-

pansion provides a bound for αn:

|αn| ≤
1(

1−max1≤k≤n

∣∣∣R(n)
k

∣∣∣)3 ≤ 1(
1− C√

n

)3 ≤ 8,

where n is such that C/
√
n ≤ 1/2. Then using inequality (11) we get∣∣∣∣∣∣P

⎛⎝ ∑
1≤k≤n

log
(
1 +R

(n)
k

)
≤ y

⎞⎠− P

⎛⎝ ∑
1≤k≤n

R
(n)
k − 1

2

∑
1≤k≤n

(
R

(n)
k

)2
≤ y

⎞⎠∣∣∣∣∣∣
≤

∣∣∣∣∣∣P
⎛⎝ ∑

1≤k≤n

R
(n)
k − 1

2

∑
1≤k≤n

(
R

(n)
k

)2
≤ y

⎞⎠
− P

⎛⎝ ∑
1≤k≤n

R
(n)
k − 1

2

∑
1≤k≤n

(
R

(n)
k

)2
≤ y ± C√

n

⎞⎠∣∣∣∣∣∣
≤

∣∣∣∣∣∣P
⎛⎝ ∑

1≤k≤n

R
(n)
k − 1

2

∑
1≤k≤n

(
R

(n)
k

)2
≤ y

⎞⎠− Φ(D(y))

∣∣∣∣∣∣
+

∣∣∣∣∣∣P
⎛⎝ ∑

1≤k≤n

R
(n)
k − 1

2

∑
1≤k≤n

(
R

(n)
k

)2
≤ y ± C√

n

⎞⎠− Φ

(
D

(
y ± C√

n

))∣∣∣∣∣∣
+

∣∣∣∣Φ(D(y))− Φ

(
D

(
y ± C√

n

))∣∣∣∣ ≤ C + |y|√
n

.

Similarly to the proof of (12), one can prove that In2 ≤ C/
√
n. Finally, (9), (10), (12),

and bounds obtained above yield inequality (8) and this completes the proof. �

Remark 4.1. A sequence of independent random variables
{
q
(n)
k , n ≥ 1, 0 ≤ k ≤ n

}
with

the uniform distribution in the interval (−
√
3T/n,

√
3T/n) is considered in the paper [7].

The bound

E

⎛⎝ ∑
1≤k≤n

(
R

(n)
k

)2
− σ2T

⎞⎠2

≤ C

n2
+ Cn

(
E
(
q
(n)
1

)4
− T 2

n2

)

is used in [7] to estimate the integral J
(n)
1 similarly to the proof of Theorem 4.1 above.

An extra property n
(
E
(
q
(n)
1

)4 − T 2/n2
)
= 4T 2/(5n) used in [7] is of a slower order of

decrease to zero as compared to the term O
(
n−2
)
and thus the rate of convergence of

option prices is of order O
(
n−1/3

)
in [7].

In the current paper, q
(n)
k are independent identically distributed random variables

assuming values ±
√
T/n with probability 1

2 . This yields E
(
q
(n)
1

)4 − T 2/n2 = 0 and, as

a result, a better rate of convergence of option prices of order n−1/2.

5. Changing the objective measure by martingale measure and a result

on the rate of convergence of fair prices of options

In the preceding section, we obtained the rate of convergence of objective option prices

under the assumption that q
(n)
k assume values ±

√
T/n with probability 1

2 with respect to
the objective measure. If one wishes to get a rate of convergence of the same order with
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respect to the martingale measure, then one needs to ensure that the probabilities for the

joint distribution Pn

(⋂n
k=1{q

(n)
k = ±

√
T/n}

)
are such that the random variables q

(n)
k are

jointly independent and assume values ±
√
T/n with probability 1

2 with respect to the
martingale measure P∗

n. In contrast to the results of the paper [9] where the independence
of random factors is preserved when passing from the objective measure to martingale
measure in the discrete Black–Scholes model, our case here does not possess such a
property. Therefore, we first consider the model of price process (3)–(4) without the

assumption on the joint independence of the random variables {q(n)k , 1 ≤ k ≤ n}.
Let P±

k,n = Pn

(
q
(n)
k = ±

√
T/n | Fn

k−1

)
. If the independence is not assumed, properties

of the pre-limit model depend essentially on the behavior of P±
k,n. This is explained in

the next result. Note that P+
k,n +P−

k,n = 1.
Put

h±
k,n =

(
μ− x

(n)
k−1

)
T

n
± σ

√
T

n
and

ρk,n =
r
(n)
k − h+

k,n P
+
k,n−h−

k,n P
−
k,n

4σ T
n P+

k,n P
−
k,n

.

Theorem 5.1. (i) Let every series be such that, for n > T :

(a) P±
k,n > 0 with probability one and E

∣∣ρk,n(q(n)k − E
(
q
(n)
k | Fn

k−1

))∣∣ < ∞ for
1 ≤ k ≤ n;

(b) there exists a constant C > 0 that does not depend on k and n for which∣∣∣2P+
k,n −1

∣∣∣ < C

n1/2
, r

(n)
k ≤ C

n
,

∣∣∣x(n)
0 − x0

∣∣∣ ≤ C,

1 ≤ k ≤ n.

Then there exists a number of a series n0 > T for which market (3)–(4) is
arbitrage free and complete starting with this number.

(ii) Assume that, for some number n > T of a series, P±
k,n > 0 with probability one

for 1 ≤ k ≤ n, and there exists k such that

E
∣∣∣ρk,n (q(n)k − E

(
q
(n)
k

∣∣ Fn
k−1

))∣∣∣ = ∞.

Then there is no equivalent martingale measure and thus the market is not arbi-
trage free (the question on completeness is not discussed for this case).

(iii) Let P+
k,n = 0 with positive probability or P−

k,n = 0 with positive probability.

(c) If

(13) h+
k,n = r

(n)
k

in the set A+
k,n := {ω ∈ Ω: P+

k,n = 0} provided that P+
k,n = 0 with positive

probability, or

(14) h−
k,n = r

(n)
k

in the set A−
k,n := {ω ∈ Ω: P−

k,n = 0} provided that P−
k,n = 0 with positive

probability, then

|2P+
k,n −1| < C/n1/2

in the set Ω \A+
k,n, while

|2P−
k,n −1| < C/n1/2
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in the set Ω \ A−
k,n. If, in addition, E

∣∣ρk,n(q(n)k − E
(
q
(n)
k |Fn

k−1

))∣∣ < ∞ for
1 ≤ k ≤ n, then the market is arbitrage free and incomplete.

(d) The market is not arbitrage free if P+
k,n = 0 with positive probability, and

equality (13) does not hold in the set A+
k,n, or if P−

k,n = 0 with positive

probability, and equality (14) does not hold in the set A−
k,n.

Proof. According to the general theory of financial markets in the discrete time (see, for
example, [3]), a martingale measure P∗

n for the pre-limit market is a probability measure
whose Radon–Nikodym derivative is given by

(15)
dPn,∗

dPn =

n∏
k=1

(
1 + ΔM

(n)
k

)
,

where M (n) =
{
M

(n)
k , 0 ≤ k ≤ n

}
is a martingale with respect to the objective measure.

In this case, the random variables ΔM
(n)
k = M

(n)
k −M

(n)
k−1 are measurable with respect

to the σ-algebra Fn
k and thus there exists a Borel function f(x1, x2, . . . , xk) such that

ΔM
(n)
k = f

(
q
(n)
1 , q

(n)
2 , . . . , q

(n)
k

)
:= f
(
q
(n)
k−1, q

(n)
k

)
= f

(
q
(n)
k−1,

√
T

n

)
�k,n,+ + f

(
q
(n)
k−1,−

√
T

n

)
�k,n,−,

where �k,n,± = �{q(n)
k =±

√
T
n }.

Let g±k,n = f
(
q
(n)
k−1,±

√
T/n
)
P±
k,n. Then the condition that the process M (n) is a

martingale is rewritten as follows:

(16) g+k,n + g−k,n = 0.

Now we provide the condition that the discounted price process is a martingale with
respect to the measure Pn,∗: For all 1 ≤ k ≤ n,

EPn,∗

(
k∏

i=1

1 +R
(n)
i

1 + r
(n)
i

∣∣∣ Fn
k−1

)
=

k−1∏
i=1

1 +R
(n)
i

1 + r
(n)
i

.

Using the standard equality

EQ(ξ | G) =
EP(

dQ
dPξ | G)

EP(
dQ
dP | G)

we rewrite the above condition in the following form:

E

(∏n
j=1

(
1 + ΔM

(n)
j

)∏k
i=1

1+R
(n)
i

1+r
(n)
i

∣∣∣ Fn
k−1

)
E
(∏n

j=1

(
1 + ΔM

(n)
j

) ∣∣∣ Fn
k−1

) =

k−1∏
i=1

1 +R
(n)
i

1 + r
(n)
i

or

E
((

1 + ΔM
(n)
k

)(
1 +R

(n)
k

) ∣∣∣ Fn
k−1

)
= 1 + r

(n)
k .

The latter relation is equivalent to the equality

(17) E
(
R

(n)
k

(
1 + ΔM

(n)
k

) ∣∣∣ Fn
k−1

)
= r

(n)
k .

Recalling the definition of all terms on the left-hand side of this equality and taking into
account recurrent scheme (3), we obtain

h+
k,ng

+
k,n + h−

k,ng
−
k,n + h+

k,n P
+
k,n +h−

k,n P
−
k,n = r

(n)
k .
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Combining this result with equality (16) we get a system of two linear equations with
two unknowns, g+k,n and g−k,n. A solution of this system exists, is unique, and can be
written as follows:

(18) g+k,n =
r
(n)
k − h+

k,n P
+
k,n−h−

k,n P
−
k,n

2σ
√

T
n

, g−k,n = −g+k,n.

Now we distinguish between the following three cases.

(i) If P+
k,n > 0 and P−

k,n > 0 with probability one, then we get a unique formula for

ΔM
(n)
k of the form

(19)

ΔM
(n)
k = f

(
q
(n)
k−1,

√
T

n

)
�k,n,+ + f

(
q
(n)
k−1,−

√
T

n

)
�k,n,−

=
r
(n)
k − h+

k,n P
+
k,n −h−

k,n P
−
k,n

2σ
√

T
n

(
�k,n,+

P+
k,n

− �k,n,−

P−
k,n

)
.

Recalling the notation,

ρk,n =
r
(n)
k − h+

k,n P
+
k,n−h−

k,n P
−
k,n

4σ T
n P+

k,n P
−
k,n

,

we rewrite equality (19) as follows:

(20) ΔM
(n)
k = ρk,n

(
q
(n)
k − E

(
q
(n)
k

∣∣∣ Fn
k−1

))
.

Note that the random variables ρk,n is Fn
k−1-measurable. If condition (a) of

Theorem 5.1 holds, then equality (20) defines a martingale, indeed.

Next we check the condition ΔM
(n)
k > −1. The following relation is proved

in [5]:

(21)

(
1

σ

√
T

n

(
x
(n)
0 − μ

)
+ 1

)(
1− T

n

)k

− 1 ≤

(
x
(n)
k−1 − μ

)
σ

√
T

n

≤
(
1

σ

√
T

n

(
x
(n)
0 − μ

)
− 1

)(
1− T

n

)k

+ 1.

Note that inequality (21) holds without any assumption on the independence.
Using the latter inequality in condition (b) we simplify the inequalities on the
left- and right-hand sides of (21) as follows:

(22)

(
x
(n)
k−1 − μ

)
σ

√
T

n
≥ −1 + e−T +O

(
n−1/2

)
and

(23)

(
x
(n)
k−1 − μ

)
σ

√
T

n
≤ 1− e−T +O

(
n−1/2

)
.
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Then we use relations (22)–(23) to estimate the right-hand side of (19). For
those elementary events ω, where �k,n,+ = 1 and hence �k,n,− = 0, we obtain

(24)

ΔM
(n)
k =

r
(n)
k − h+

k,n P
+
k,n −h−

k,n P
−
k,n

2σ
√

T
n P+

k,n

=

(
x
(n)
k−1 − μ

)
2σ P+

k,n

√
T

n
+

r
(n)
k

2σ P+
k,n

√
T
n

+
1− 2P+

k,n

2P+
k,n

.

By assumption (b), we have 2P+
k,n = 1+O(n−1/2) and O(n−1/2) is estimated by

C
n1/2 with a constant C that does not depend on both k and n. Thus,

1

2P+
k,n

= 1 +O
(
n−1/2

)
,

where the latter term O(n−1/2) is also bounded by C/n1/2 with the constant
that does not depend on both k and n. Then inequality (22) implies

(25)
(x

(n)
k−1 − μ)

2σ P+
k,n

√
T

n
≥ −1 + e−T +O

(
n−1/2

)
.

The second and third terms on the right-hand side of (24) are bounded by
O(n−1/2). For those elementary events ω where �k,n,− = 1 and correspond-
ingly �k,n,+ = 0, the transformations and reasoning are the same. Therefore,
there exists a number n0 for which the market is arbitrage free and complete for
n > n0.

(ii) If condition (ii) holds, then the process M
(n)
k , 1 ≤ k ≤ n, is not integrable and

thus is not a martingale. On the other hand, the preceding reasoning makes
it clear that there is no other martingales that generate martingale measures if
2P±

k,n > 0 with probability one. Therefore, the market in not arbitrage free and
the question on its completeness is not discussed at all.

(iii) (c) If equality (13) holds in the set A+
k,n provided that P+

k,n = 0 with positive

probability, then let f
(
q
(n)
k−1,
√
T/n
)
be equal to an arbitrary constant and

let f
(
q
(n)
k−1,−

√
T/n
)
be equal to zero on this set. Thus, equalities (18) hold

on this set and one can choose ΔM
(n)
k to be equal to an arbitrary constant

on this set. For the complement of A+
k,n, we repeat the same reasoning as

that used for the case of (i) and obtain an arbitrage free and incomplete
market. We follow a similar approach in the case where P−

k,n = 0 with
positive probability.

(d) If equality (13) does not hold in the set A+
k,n, provided that P+

k,n = 0 with

positive probability, or if equality (14) does not hold in the set A−
k,n, provided

that P−
k,n = 0 with positive probability, then equality (18) does not hold on

these sets, that is, ΔM
(n)
k cannot be defined on these sets and thus the

market is not arbitrage free.

The theorem is proved. �

Now we assume that condition (i) of Theorem 5.1 holds, that is, the market is arbitrage
free and complete. We are going to find sufficient conditions that random variables

{q(n)k , 1 ≤ k ≤ n} are independent symmetric identically distributed with respect to the
unique martingale measure P∗

n.
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We introduce the notation for the set of all possible values of the families of random

variables
{
q
(n)
k , 1 ≤ k ≤ n

}
: Ξ = {ξ =

√
T/n(±1, . . . ,±1)}. Let ω(ξ) be the elementary

events for which a family
{
q
(n)
k , 1 ≤ k ≤ n

}
assumes value ξ and denote the probability of

every family with this property with respect to the objective measure by Pn(ξ). Finally,

denote by q(n) the family of random variables
{
q
(n)
k , 1 ≤ k ≤ n

}
.

Lemma 5.1. If, for every ω(ξ),

(26)
n∏

k=1

(
1 + ΔM

(n)
k (ω(ξ))

)
Pn(ξ) = 2−n,

then the random variables {q(n)k , 1 ≤ k ≤ n} are independent symmetric and identically
distributed with respect to the martingale measure P∗

n.

Proof. We have P∗
n(ξ) = 2−n with respect to the martingale measure and for every

family ξ, or Pn

(∏n
k=1

(
1 + ΔM

(n)
k

)
�ω(ξ)

)
= 2−n, whence the lemma follows. �

Remark 5.1. Equalities (26) may simultaneously hold, that is, they do not contradict
each to other. This becomes obvious if one interchanges the measures. More precisely,
define a measure Qn for which a family of independent symmetric identically distributed

random variables
{
q
(n)
k , 1 ≤ k ≤ n

}
, exists. Then determine increments ΔM

(n)
k of the

martingale with respect to the measure Qn in the form of ΔM
(n)
k = ρ

(n)
k q

(n)
k and such

that

EQn

((
1 +R

(n)
k

)(
1 + ρ

(n)
k q

(n)
k

) ∣∣∣ Fn
k−1

)
= 1 + r

(n)
k .

Finally, put P∗
n = Qn and choose Pn to be the measure whose Radon–Nikodym derivative

is given by

dQn

dPn
=

n∏
k=1

(
1 + ΔM

(n)
k

)
=

n∏
k=1

(
1 + ρ

(n)
k q

(n)
k

)
.

The following result follows directly from Theorems 4.1 and 5.1 and Lemma 5.1.

Theorem 5.2. Assume that

(i) there exists a constant C > 0 such that∣∣x(n)
0 − x0

∣∣ ≤ C

n1/2
;

(ii) conditions (a) and (b) of the case (i) in Theorem 5.1 hold as well as all assump-
tions of Lemma 5.1.

Then

|π∗(D)− π∗(Dn)| ≤
C1

n1/2

starting with some n0 > T for some C1 > 0 and D = C,P.
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3. H. Föllmer and A. Schied, Stochastic Finance. An Introduction in Discrete Time, Second
revised and extended edition, Studies in Mathematics, vol. 27, Walter de Gruyter, 2004.
MR2169807

4. S. Heston and G. Zhou, On the rate of convergence of discrete-time contingent claims, Math.
Finance 10 (2000), no. 1, 53–75. MR1743973

http://www.ams.org/mathscinet-getitem?mr=1805321
http://www.ams.org/mathscinet-getitem?mr=2284013
http://www.ams.org/mathscinet-getitem?mr=2169807
http://www.ams.org/mathscinet-getitem?mr=1743973


152 YU. S. MISHURA AND YE. YU. MUNCHAK

5. Yu. Mishura, Diffusion approximation of recurrent schemes for financial markets, with applica-
tion to the Ornstein–Uhlenbeck process, Opuscula Math. 35 (2015), no. 1, 99–116. MR3282967

6. Yu. Mishura, The rate of convergence of option prices when general martingale discrete-time
scheme approximates the Black–Scholes model, Banach Center Publications. Advances in Math-
ematics of Finance. 104 (2015), 151–165. MR3363984

7. Yu. Mishura, The rate of convergence of option prices on the asset following geometric
Ornstein–Uhlenbeck process, Lith. Math. J. 55 (2015), no. 1, 134–149. MR3323287

8. Yu. Mishura, Ye. Munchak, and P. Slyusarchuk, The rate of convergence to the normal law in
terms of pseudomoments, Mod. Stoch. Theory Appl. 2 (2015), no. 2, 95–106. MR3389584

9. Yu. S. Mishura and E. Yu. Munchak, Rate of convergence of option prices by using the method
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